Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors
Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 25; pp. 11626 - 11631 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.06.2010
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PlF1) and other transcription factors of the phytochrome-interacting factor (PlF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PlF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PlFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PlF1 and other PlFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants. |
---|---|
AbstractList | Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PIF1) and other transcription factors of the phytochrome-interacting factor (PIF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PIF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PIFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PIF1 and other PIFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants. Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PIF1) and other transcription factors of the phytochrome-interacting factor (PIF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PIF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PIFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PIF1 and other PIFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants.Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PIF1) and other transcription factors of the phytochrome-interacting factor (PIF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PIF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PIFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PIF1 and other PIFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants. Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PIF1) and other transcription factors of the phytochrome-interacting factor (PIF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PIF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PIFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PIF1 and other PIFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants. Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PlF1) and other transcription factors of the phytochrome-interacting factor (PlF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PlF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PlFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PlF1 and other PlFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants. Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PIF1) and other transcription factors of the phytochrome-interacting factor (PIF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PIF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PIFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PIF1 and other PIFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants. [PUBLICATION ABSTRACT] |
Author | Rodríguez-Concepción, Manuel Huq, Enamul Quail, Peter H. Toledo-Ortiz, Gabriela |
Author_xml | – sequence: 1 givenname: Gabriela surname: Toledo-Ortiz fullname: Toledo-Ortiz, Gabriela – sequence: 2 givenname: Enamul surname: Huq fullname: Huq, Enamul – sequence: 3 givenname: Manuel surname: Rodríguez-Concepción fullname: Rodríguez-Concepción, Manuel – sequence: 4 givenname: Peter H. surname: Quail fullname: Quail, Peter H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20534526$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1URLeFMydQxKVc0vojtuMLEmr5kipxgbPlOJNdr7L2YjuI_fc4u1taKsFpNJ5nXr3jmTN04oMHhF4SfEmwZFdbb9IlVqRpaFsenqAFKVktGoVP0AJjKuu2oc0pOktpjTFWvMXP0CnFnDWcigWablwEm6sIy2k02QVfhaHarnY5gIcq7XxemQTVcs7g1zZCSjNkfF9ZE0MGH1xfdS7sUUguVd3uIGBXMWygdj5DNDY7v6yGEkNMz9HTwYwJXhzjOfr-8cO368_17ddPX67f39aWC57rngphWMdMK80wWNkTRSkWkis-CEp7wVWvmOHMylZwEEAKxBrZDZ0htDXsHL076G6nbgO9BZ-jGfU2uo2JOx2M039XvFvpZfipaas4YaoIXBwFYvgxQcp645KFcTQewpS0ZKzBBLcz-fa_JGkpbwhRShb0zSN0Haboy0doTknZDVez3uuH1v94vltdAfgBsDGkFGHQ1uX9BsskbtQE6_lE9Hwi-v5ESt_Vo7476X93VEcrc-GelppyTYjYm3l1QNap7PeBWUnL0C37DV5O1UY |
CitedBy_id | crossref_primary_10_1016_j_abb_2013_07_009 crossref_primary_10_3390_ijms20092246 crossref_primary_10_3390_ijms22105393 crossref_primary_10_1016_j_fochms_2022_100128 crossref_primary_10_1016_j_algal_2020_102126 crossref_primary_10_1111_j_1365_313X_2011_04863_x crossref_primary_10_3389_fpls_2025_1529455 crossref_primary_10_1093_plcell_koae111 crossref_primary_10_1016_j_abb_2013_07_002 crossref_primary_10_1111_pce_13467 crossref_primary_10_1007_s12033_023_00942_5 crossref_primary_10_1071_FP11192 crossref_primary_10_1016_j_plantsci_2020_110584 crossref_primary_10_1371_journal_pone_0195348 crossref_primary_10_1016_j_plantsci_2019_110327 crossref_primary_10_1105_tpc_113_109710 crossref_primary_10_1186_s43897_022_00023_2 crossref_primary_10_3389_fpls_2017_02140 crossref_primary_10_1016_j_pbi_2017_03_011 crossref_primary_10_3389_fpls_2016_01867 crossref_primary_10_3390_biom9120874 crossref_primary_10_1016_j_molp_2020_02_003 crossref_primary_10_1007_s11103_011_9827_4 crossref_primary_10_1371_journal_pone_0165929 crossref_primary_10_3390_plants8120531 crossref_primary_10_1093_mp_sss029 crossref_primary_10_1016_j_postharvbio_2023_112568 crossref_primary_10_1038_s41598_020_73859_7 crossref_primary_10_1080_15592324_2016_1184808 crossref_primary_10_1186_s12870_015_0661_8 crossref_primary_10_1007_s11105_012_0477_8 crossref_primary_10_1016_j_ijbiomac_2023_125693 crossref_primary_10_3389_fpls_2016_01197 crossref_primary_10_1016_j_hpj_2024_02_004 crossref_primary_10_1016_j_foodchem_2018_09_097 crossref_primary_10_1105_tpc_114_125591 crossref_primary_10_1007_s11295_012_0525_4 crossref_primary_10_1093_jxb_erad044 crossref_primary_10_3390_ijms23116153 crossref_primary_10_1038_s42003_022_03270_7 crossref_primary_10_1186_s12870_024_05242_x crossref_primary_10_3389_fpls_2018_01037 crossref_primary_10_1007_s11032_017_0723_8 crossref_primary_10_1016_j_plantsci_2015_11_005 crossref_primary_10_1016_j_biotechadv_2023_108267 crossref_primary_10_1007_s11105_013_0617_9 crossref_primary_10_1111_tpj_12264 crossref_primary_10_1016_j_jia_2023_09_029 crossref_primary_10_1038_s42003_020_01474_3 crossref_primary_10_1017_S0007485319000828 crossref_primary_10_1111_nph_15373 crossref_primary_10_1371_journal_pgen_1004416 crossref_primary_10_3390_ijms23116027 crossref_primary_10_1186_s12870_020_02808_3 crossref_primary_10_1134_S0006297919050043 crossref_primary_10_3390_foods8020077 crossref_primary_10_1080_07352689_2020_1768350 crossref_primary_10_1186_s12870_019_1850_7 crossref_primary_10_1186_s12870_015_0573_7 crossref_primary_10_7717_peerj_13266 crossref_primary_10_1080_14620316_2018_1521708 crossref_primary_10_1101_gad_193219_112 crossref_primary_10_1111_nph_14727 crossref_primary_10_1016_j_hpj_2022_01_007 crossref_primary_10_1007_s12374_016_0902_x crossref_primary_10_1016_j_molp_2017_11_003 crossref_primary_10_1007_s11103_012_9893_2 crossref_primary_10_3389_fpls_2019_01017 crossref_primary_10_1021_cr400106y crossref_primary_10_1016_j_plantsci_2019_110331 crossref_primary_10_3390_md19110595 crossref_primary_10_1016_j_postharvbio_2023_112588 crossref_primary_10_1002_jsfa_11797 crossref_primary_10_1038_s42003_023_05435_4 crossref_primary_10_17660_eJHS_2024_012 crossref_primary_10_1111_nph_19205 crossref_primary_10_1093_plcell_koae030 crossref_primary_10_1007_s11032_014_0163_7 crossref_primary_10_1016_j_pld_2021_11_005 crossref_primary_10_1371_journal_pone_0090765 crossref_primary_10_3389_fpls_2021_774582 crossref_primary_10_1016_j_tplants_2024_02_007 crossref_primary_10_1186_s12870_018_1327_0 crossref_primary_10_12677_BR_2020_93026 crossref_primary_10_3390_genes13071134 crossref_primary_10_1016_j_envexpbot_2022_105086 crossref_primary_10_1016_j_plaphy_2017_03_026 crossref_primary_10_1104_pp_112_205575 crossref_primary_10_3390_agronomy10081077 crossref_primary_10_1016_j_scienta_2022_111201 crossref_primary_10_1146_annurev_arplant_050312_120116 crossref_primary_10_1016_j_bbrep_2024_101815 crossref_primary_10_1093_plphys_kiac097 crossref_primary_10_3389_fpls_2019_01288 crossref_primary_10_1016_j_bcab_2012_03_004 crossref_primary_10_1021_acs_jafc_3c05662 crossref_primary_10_3390_ijms22031184 crossref_primary_10_1093_plcell_koaf010 crossref_primary_10_17660_ActaHortic_2024_1411_24 crossref_primary_10_3389_fpls_2019_01716 crossref_primary_10_2139_ssrn_4058205 crossref_primary_10_1016_j_foodchem_2023_135690 crossref_primary_10_1105_tpc_111_088161 crossref_primary_10_1016_j_phytochem_2011_01_037 crossref_primary_10_9787_KJBS_2020_52_4_281 crossref_primary_10_3389_fpls_2022_993682 crossref_primary_10_3390_ijms21020629 crossref_primary_10_1016_j_envexpbot_2020_104044 crossref_primary_10_1016_j_scienta_2013_08_014 crossref_primary_10_1093_jxb_ery145 crossref_primary_10_1016_j_plaphy_2019_07_023 crossref_primary_10_1186_1471_2229_13_156 crossref_primary_10_1039_C5RA10243J crossref_primary_10_1007_s00438_020_01707_4 crossref_primary_10_3390_metabo15010001 crossref_primary_10_1016_j_scienta_2021_110164 crossref_primary_10_1104_pp_111_175141 crossref_primary_10_1016_j_molp_2014_12_007 crossref_primary_10_1111_jipb_13076 crossref_primary_10_1093_mp_sss015 crossref_primary_10_1016_S2095_3119_18_62062_3 crossref_primary_10_1073_pnas_1420831112 crossref_primary_10_1016_j_foodchem_2013_06_085 crossref_primary_10_1016_j_plaphy_2017_08_027 crossref_primary_10_1016_j_postharvbio_2022_112076 crossref_primary_10_1093_bfgp_elu018 crossref_primary_10_1016_j_plaphy_2023_107647 crossref_primary_10_1371_journal_pone_0058144 crossref_primary_10_1093_plphys_kiad613 crossref_primary_10_1093_pcp_pcx149 crossref_primary_10_1111_j_1744_7909_2011_01081_x crossref_primary_10_1007_s00122_012_1803_0 crossref_primary_10_3390_genes13091565 crossref_primary_10_1007_s10725_023_01028_7 crossref_primary_10_1105_tpc_19_00480 crossref_primary_10_4161_psb_29248 crossref_primary_10_1016_j_algal_2024_103416 crossref_primary_10_1016_j_bbrc_2013_12_040 crossref_primary_10_1016_j_postharvbio_2018_07_008 crossref_primary_10_1071_FP12195 crossref_primary_10_1021_acs_jafc_8b01613 crossref_primary_10_3389_fpls_2018_01862 crossref_primary_10_3390_foods9030294 crossref_primary_10_1016_j_pbi_2015_05_022 crossref_primary_10_2139_ssrn_3978356 crossref_primary_10_1016_j_redox_2015_01_010 crossref_primary_10_1111_nph_15614 crossref_primary_10_5114_bta_2017_66616 crossref_primary_10_1016_j_plaphy_2024_109315 crossref_primary_10_1186_1471_2229_12_179 crossref_primary_10_1111_tpj_16124 crossref_primary_10_1199_tab_0147 crossref_primary_10_1186_s12870_020_02816_3 crossref_primary_10_1111_nph_12175 crossref_primary_10_1016_j_sajb_2024_02_005 crossref_primary_10_1080_07352689_2020_1866829 crossref_primary_10_1016_j_hpj_2020_07_006 crossref_primary_10_1016_j_abb_2018_07_014 crossref_primary_10_1016_j_scienta_2022_111076 crossref_primary_10_1016_j_phytochem_2014_11_018 crossref_primary_10_1016_j_pbi_2016_11_004 crossref_primary_10_1073_pnas_1214808109 crossref_primary_10_1007_s11105_013_0650_8 crossref_primary_10_1080_28347056_2024_2330972 crossref_primary_10_3389_fpls_2016_01367 crossref_primary_10_1093_pcp_pcv161 crossref_primary_10_1093_plphys_kiad312 crossref_primary_10_1038_s41438_019_0162_2 crossref_primary_10_1101_gad_594910 crossref_primary_10_3389_fpls_2022_845662 crossref_primary_10_1111_tpj_13094 crossref_primary_10_1080_11263504_2024_2375333 crossref_primary_10_1093_jxb_erab475 crossref_primary_10_1111_tpj_14071 crossref_primary_10_1007_s00709_020_01492_2 crossref_primary_10_1134_S102144371504007X crossref_primary_10_1186_s12870_015_0423_7 crossref_primary_10_1093_pcp_pcr100 crossref_primary_10_3389_fmicb_2022_940865 crossref_primary_10_1016_j_scitotenv_2018_06_168 crossref_primary_10_3389_fpls_2022_870974 crossref_primary_10_1093_mp_ssu078 crossref_primary_10_1016_j_molp_2014_11_006 crossref_primary_10_1105_tpc_112_105247 crossref_primary_10_1093_hr_uhac020 crossref_primary_10_1096_fj_201600974R crossref_primary_10_1021_acs_jafc_6b01020 crossref_primary_10_1074_jbc_M110_186882 crossref_primary_10_1016_j_molp_2016_06_008 crossref_primary_10_3389_fpls_2016_00263 crossref_primary_10_1007_s11676_017_0372_0 crossref_primary_10_11623_frj_2023_31_3_07 crossref_primary_10_3390_ijms232012650 crossref_primary_10_1093_jxb_erad443 crossref_primary_10_1111_nph_20457 crossref_primary_10_1016_j_tcb_2011_07_002 crossref_primary_10_1016_j_jtice_2021_104184 crossref_primary_10_3390_horticulturae8080727 crossref_primary_10_3390_agronomy13041080 crossref_primary_10_1038_s41598_024_81005_w crossref_primary_10_1016_j_plaphy_2016_08_020 crossref_primary_10_1016_j_plantsci_2016_07_017 crossref_primary_10_3389_fpls_2017_01433 crossref_primary_10_3390_ijms140919025 crossref_primary_10_1111_ppl_12129 crossref_primary_10_1016_j_scienta_2019_108582 crossref_primary_10_1007_s10725_020_00661_w crossref_primary_10_1016_j_plantsci_2023_111693 crossref_primary_10_3390_f11080851 crossref_primary_10_3390_ijms242316563 crossref_primary_10_1111_nph_14579 crossref_primary_10_1007_s00425_011_1442_8 crossref_primary_10_1140_epjp_i2017_11298_x crossref_primary_10_1016_j_envexpbot_2023_105300 crossref_primary_10_1371_journal_pone_0114878 crossref_primary_10_1134_S2079059716050026 crossref_primary_10_1016_j_pbi_2015_06_020 crossref_primary_10_3390_ijms25137308 crossref_primary_10_3390_md16100354 crossref_primary_10_1111_nph_14684 crossref_primary_10_1093_bfgp_elaa007 crossref_primary_10_1199_tab_0158 crossref_primary_10_1016_j_ijbiomac_2024_137195 crossref_primary_10_1186_s12870_022_03467_2 crossref_primary_10_1016_j_jphotobiol_2019_111549 crossref_primary_10_1016_j_saa_2016_07_025 crossref_primary_10_1021_jf401401w crossref_primary_10_3390_ijms24032063 crossref_primary_10_1007_s13580_020_00298_8 crossref_primary_10_1016_j_scienta_2017_08_048 crossref_primary_10_1111_tpj_14970 crossref_primary_10_3389_fpls_2020_00896 crossref_primary_10_1002_ppp3_10218 crossref_primary_10_1007_s00425_022_03840_3 crossref_primary_10_1016_j_sajb_2020_05_015 crossref_primary_10_1105_tpc_111_085233 crossref_primary_10_1016_j_jia_2024_03_068 crossref_primary_10_1093_jxb_ery207 crossref_primary_10_1093_jxb_erab045 crossref_primary_10_1111_nph_15362 crossref_primary_10_1016_j_postharvbio_2017_08_005 crossref_primary_10_1139_cjb_2016_0043 crossref_primary_10_3390_molecules190811250 crossref_primary_10_3390_plants12152791 crossref_primary_10_1016_j_jplph_2023_154126 crossref_primary_10_1016_j_algal_2019_101742 crossref_primary_10_3389_fpls_2022_967143 crossref_primary_10_1016_j_postharvbio_2024_113229 crossref_primary_10_1038_s41598_018_19866_1 crossref_primary_10_1007_s00425_018_3050_3 crossref_primary_10_1042_BCJ20220403 crossref_primary_10_1007_s00122_011_1781_7 crossref_primary_10_1016_j_plantsci_2022_111193 crossref_primary_10_3923_ajcs_2015_286_294 crossref_primary_10_1186_s12284_021_00474_z crossref_primary_10_17660_ActaHortic_2018_1201_20 crossref_primary_10_1016_j_jprot_2015_03_016 crossref_primary_10_1080_10408398_2018_1455030 crossref_primary_10_1093_jxb_erw037 crossref_primary_10_1186_s12870_015_0698_8 crossref_primary_10_1186_s40529_021_00329_2 crossref_primary_10_1186_s12864_019_6261_5 crossref_primary_10_1016_j_molp_2017_09_010 crossref_primary_10_1007_s00299_018_2314_5 crossref_primary_10_1186_s13068_018_1225_6 crossref_primary_10_3390_genes9090451 crossref_primary_10_1111_ppl_13523 crossref_primary_10_1007_s11101_018_9597_6 crossref_primary_10_3389_fpls_2022_814677 crossref_primary_10_1242_dev_169870 crossref_primary_10_48130_frures_0024_0018 crossref_primary_10_1016_j_scienta_2019_108870 crossref_primary_10_1371_journal_pone_0200320 crossref_primary_10_3390_antiox11071311 crossref_primary_10_3389_fpls_2022_884720 crossref_primary_10_1039_c0np00036a crossref_primary_10_1186_1752_0509_5_77 crossref_primary_10_3389_fpls_2016_00962 crossref_primary_10_3390_foods12081715 crossref_primary_10_3390_horticulturae9121295 crossref_primary_10_3835_plantgenome2017_06_0050 crossref_primary_10_1016_j_aggene_2016_05_001 crossref_primary_10_1002_biot_201700204 crossref_primary_10_3390_molecules24193440 crossref_primary_10_1111_pce_12153 crossref_primary_10_1105_tpc_114_136093 crossref_primary_10_1016_j_abb_2010_06_016 crossref_primary_10_1371_journal_pone_0130885 crossref_primary_10_3390_ijms222212151 crossref_primary_10_1016_j_jplph_2017_03_001 crossref_primary_10_3389_fpls_2021_749108 crossref_primary_10_1093_aobpla_plab063 crossref_primary_10_1111_pbi_14346 crossref_primary_10_1016_j_scienta_2023_112415 crossref_primary_10_1016_j_scienta_2021_110311 crossref_primary_10_3390_metabo12090871 crossref_primary_10_1038_hortres_2015_36 crossref_primary_10_1016_j_jphotobiol_2020_111950 crossref_primary_10_1007_s11738_016_2169_8 crossref_primary_10_1016_j_pbi_2014_05_006 crossref_primary_10_3390_f9060302 crossref_primary_10_1093_plphys_kiae417 crossref_primary_10_3389_fpls_2024_1497672 crossref_primary_10_1093_jxb_erz096 crossref_primary_10_1111_ppl_12332 |
Cites_doi | 10.1126/science.1078002 10.4161/psb.4.3.7798 10.1126/science.288.5467.859 10.1146/annurev.arplant.50.1.333 10.1038/sj.emboj.7601890 10.1038/nature00861 10.1104/pp.107.104828 10.1046/j.1365-313x.2000.00896.x 10.1016/j.cub.2008.10.058 10.1073/pnas.0811684106 10.1007/s11101-005-3130-4 10.1104/pp.108.117028 10.1105/tpc.108.060020 10.1016/j.ymben.2006.01.005 10.4161/psb.4.10.9672 10.1105/tpc.013839 10.1105/tpc.107.050153 10.1111/j.1399-3054.2006.00632.x 10.1146/annurev.genet.38.072902.092259 10.1016/S0955-0674(02)00309-5 10.1073/pnas.0803611105 10.1016/j.plipres.2003.10.002 10.1104/pp.108.122119 10.1146/annurev.arplant.49.1.557 10.1016/j.tplants.2007.10.001 10.1105/tpc.010302 10.1111/j.1365-313X.2009.03966.x 10.1371/journal.pone.0006373 10.1111/j.1365-313X.2004.02198.x 10.1007/BF00014672 10.1016/S0092-8674(00)80144-0 10.1007/s004250000352 10.1146/annurev.arplant.59.032607.092859 10.1073/pnas.0812219106 10.1105/tpc.109.070672 10.1104/pp.123.1.363 10.1126/science.7939683 10.1046/j.1365-313X.1997.d01-16.x 10.1007/s00425-002-0885-3 10.1105/tpc.108.064691 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 22, 2010 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 22, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0914428107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11631 |
ExternalDocumentID | PMC2895139 2067082551 20534526 10_1073_pnas_0914428107 107_25_11626 20724118 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c565t-d266a3b3a87affc7d1922067595f622d659d93a53c7865e6e1fc7347bfba128a3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:25:23 EDT 2025 Fri Jul 11 07:11:55 EDT 2025 Fri Jul 11 02:49:41 EDT 2025 Mon Jun 30 08:43:28 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Tue Jul 01 00:46:55 EDT 2025 Wed Nov 11 00:30:47 EST 2020 Thu May 29 08:40:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-d266a3b3a87affc7d1922067595f622d659d93a53c7865e6e1fc7347bfba128a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: G.T.-O. and M.R.-C. designed research; G.T.-O. performed research; E.H. contributed new reagents/analytic tools; G.T.-O., E.H., and M.R.-C. analyzed data; and G.T.-O. and M.R.-C. wrote the paper. Edited* by Peter H. Quail, University of California, Albany, CA, and approved May 14, 2010 (received for review December 15, 2009) |
OpenAccessLink | http://hdl.handle.net/10261/248465 |
PMID | 20534526 |
PQID | 521205599 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1825411997 proquest_journals_521205599 pubmed_primary_20534526 crossref_citationtrail_10_1073_pnas_0914428107 jstor_primary_20724118 crossref_primary_10_1073_pnas_0914428107 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895139 proquest_miscellaneous_733401089 pnas_primary_107_25_11626 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-22 |
PublicationDateYYYYMMDD | 2010-06-22 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Lichtenthaler HK (e_1_3_3_41_2) 1987; 148 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 17873090 - Plant Physiol. 2007 Nov;145(3):1073-85 18508954 - Plant Physiol. 2008 Jul;147(3):1334-46 19721751 - Plant Signal Behav. 2009 Mar;4(3):208-11 12520345 - Planta. 2003 Jan;216(3):523-34 11884677 - Plant Cell. 2002 Feb;14(2):321-32 15012213 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359 10806253 - Plant Physiol. 2000 May;123(1):363-70 15012246 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:557-583 19062289 - Curr Biol. 2008 Dec 9;18(23):1815-23 15568973 - Annu Rev Genet. 2004;38:87-117 18591656 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9433-8 10797009 - Science. 2000 May 5;288(5467):859-63 18539749 - Plant Cell. 2008 Jun;20(6):1586-602 17933576 - Trends Plant Sci. 2007 Nov;12(11):514-21 12481128 - Science. 2002 Dec 13;298(5601):2149-53 7939683 - Science. 1994 Oct 21;266(5184):436-9 19244139 - Plant Cell. 2009 Feb;21(2):403-19 15447646 - Plant J. 2004 Oct;40(2):188-99 17449805 - Plant Cell. 2007 Apr;19(4):1192-208 16621640 - Metab Eng. 2006 Jul;8(4):291-302 19826226 - Plant Signal Behav. 2009 Oct;4(10):965-7 19920208 - Plant Cell. 2009 Nov;21(11):3535-53 19594711 - Plant J. 2009 Nov;60(3):424-35 18257712 - Annu Rev Plant Biol. 2008;59:281-311 19636414 - PLoS One. 2009;4(7):e6373 11891117 - Curr Opin Cell Biol. 2002 Apr;14(2):180-8 15003396 - Prog Lipid Res. 2004 May;43(3):228-65 17948056 - EMBO J. 2007 Nov 14;26(22):4756-67 12110893 - Nature. 2002 Jul 11;418(6894):203-6 19380720 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5 8797817 - Cell. 1996 Sep 6;86(5):703-5 7919218 - Plant Mol Biol. 1994 Sep;25(6):989-94 19380736 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7654-9 11144270 - Planta. 2000 Nov;211(6):846-54 12897250 - Plant Cell. 2003 Aug;15(8):1749-70 11115136 - Plant J. 2000 Nov;24(4):551-8 18326788 - Plant Physiol. 2008 May;147(1):367-80 9351247 - Plant J. 1997 Sep;12(3):625-34 |
References_xml | – ident: e_1_3_3_7_2 doi: 10.1126/science.1078002 – ident: e_1_3_3_34_2 doi: 10.4161/psb.4.3.7798 – ident: e_1_3_3_31_2 doi: 10.1126/science.288.5467.859 – ident: e_1_3_3_6_2 doi: 10.1146/annurev.arplant.50.1.333 – ident: e_1_3_3_32_2 doi: 10.1038/sj.emboj.7601890 – ident: e_1_3_3_8_2 doi: 10.1038/nature00861 – ident: e_1_3_3_37_2 doi: 10.1104/pp.107.104828 – ident: e_1_3_3_40_2 doi: 10.1046/j.1365-313x.2000.00896.x – ident: e_1_3_3_22_2 doi: 10.1016/j.cub.2008.10.058 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.0811684106 – ident: e_1_3_3_35_2 doi: 10.1007/s11101-005-3130-4 – ident: e_1_3_3_13_2 doi: 10.1104/pp.108.117028 – ident: e_1_3_3_24_2 doi: 10.1105/tpc.108.060020 – ident: e_1_3_3_11_2 doi: 10.1016/j.ymben.2006.01.005 – ident: e_1_3_3_27_2 doi: 10.4161/psb.4.10.9672 – ident: e_1_3_3_28_2 doi: 10.1105/tpc.013839 – ident: e_1_3_3_29_2 doi: 10.1105/tpc.107.050153 – ident: e_1_3_3_36_2 doi: 10.1111/j.1399-3054.2006.00632.x – ident: e_1_3_3_3_2 doi: 10.1146/annurev.genet.38.072902.092259 – ident: e_1_3_3_2_2 doi: 10.1016/S0955-0674(02)00309-5 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.0803611105 – ident: e_1_3_3_9_2 doi: 10.1016/j.plipres.2003.10.002 – ident: e_1_3_3_12_2 doi: 10.1104/pp.108.122119 – ident: e_1_3_3_10_2 doi: 10.1146/annurev.arplant.49.1.557 – ident: e_1_3_3_20_2 doi: 10.1016/j.tplants.2007.10.001 – ident: e_1_3_3_4_2 doi: 10.1105/tpc.010302 – ident: e_1_3_3_5_2 doi: 10.1111/j.1365-313X.2009.03966.x – ident: e_1_3_3_14_2 doi: 10.1371/journal.pone.0006373 – ident: e_1_3_3_15_2 doi: 10.1111/j.1365-313X.2004.02198.x – ident: e_1_3_3_39_2 doi: 10.1007/BF00014672 – ident: e_1_3_3_1_2 doi: 10.1016/S0092-8674(00)80144-0 – ident: e_1_3_3_17_2 doi: 10.1007/s004250000352 – ident: e_1_3_3_19_2 doi: 10.1146/annurev.arplant.59.032607.092859 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.0812219106 – ident: e_1_3_3_23_2 doi: 10.1105/tpc.109.070672 – ident: e_1_3_3_33_2 doi: 10.1104/pp.123.1.363 – ident: e_1_3_3_38_2 doi: 10.1126/science.7939683 – ident: e_1_3_3_16_2 doi: 10.1046/j.1365-313X.1997.d01-16.x – ident: e_1_3_3_18_2 doi: 10.1007/s00425-002-0885-3 – volume: 148 start-page: 351 year: 1987 ident: e_1_3_3_41_2 article-title: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes publication-title: Methods Enzymol – ident: e_1_3_3_30_2 doi: 10.1105/tpc.108.064691 – reference: 15012213 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359 – reference: 15012246 - Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:557-583 – reference: 10797009 - Science. 2000 May 5;288(5467):859-63 – reference: 18591656 - Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9433-8 – reference: 7919218 - Plant Mol Biol. 1994 Sep;25(6):989-94 – reference: 10806253 - Plant Physiol. 2000 May;123(1):363-70 – reference: 15003396 - Prog Lipid Res. 2004 May;43(3):228-65 – reference: 19062289 - Curr Biol. 2008 Dec 9;18(23):1815-23 – reference: 18326788 - Plant Physiol. 2008 May;147(1):367-80 – reference: 18257712 - Annu Rev Plant Biol. 2008;59:281-311 – reference: 18508954 - Plant Physiol. 2008 Jul;147(3):1334-46 – reference: 16621640 - Metab Eng. 2006 Jul;8(4):291-302 – reference: 19636414 - PLoS One. 2009;4(7):e6373 – reference: 19721751 - Plant Signal Behav. 2009 Mar;4(3):208-11 – reference: 11884677 - Plant Cell. 2002 Feb;14(2):321-32 – reference: 19920208 - Plant Cell. 2009 Nov;21(11):3535-53 – reference: 11144270 - Planta. 2000 Nov;211(6):846-54 – reference: 19380736 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7654-9 – reference: 17933576 - Trends Plant Sci. 2007 Nov;12(11):514-21 – reference: 19244139 - Plant Cell. 2009 Feb;21(2):403-19 – reference: 17948056 - EMBO J. 2007 Nov 14;26(22):4756-67 – reference: 8797817 - Cell. 1996 Sep 6;86(5):703-5 – reference: 12520345 - Planta. 2003 Jan;216(3):523-34 – reference: 15568973 - Annu Rev Genet. 2004;38:87-117 – reference: 12110893 - Nature. 2002 Jul 11;418(6894):203-6 – reference: 18539749 - Plant Cell. 2008 Jun;20(6):1586-602 – reference: 17873090 - Plant Physiol. 2007 Nov;145(3):1073-85 – reference: 19594711 - Plant J. 2009 Nov;60(3):424-35 – reference: 19380720 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5 – reference: 19826226 - Plant Signal Behav. 2009 Oct;4(10):965-7 – reference: 11115136 - Plant J. 2000 Nov;24(4):551-8 – reference: 11891117 - Curr Opin Cell Biol. 2002 Apr;14(2):180-8 – reference: 12481128 - Science. 2002 Dec 13;298(5601):2149-53 – reference: 12897250 - Plant Cell. 2003 Aug;15(8):1749-70 – reference: 9351247 - Plant J. 1997 Sep;12(3):625-34 – reference: 7939683 - Science. 1994 Oct 21;266(5184):436-9 – reference: 17449805 - Plant Cell. 2007 Apr;19(4):1192-208 – reference: 15447646 - Plant J. 2004 Oct;40(2):188-99 |
SSID | ssj0009580 |
Score | 2.5076299 |
Snippet | Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11626 |
SubjectTerms | Alkyl and Aryl Transferases - biosynthesis Alkyl and Aryl Transferases - genetics Amino Acid Motifs Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - physiology Biological Sciences Biosynthesis carbon Carotenoids Carotenoids - metabolism Chlorophyll Chlorophyll - chemistry Chlorophyll - genetics Chlorophylls chloroplasts energy etiolation Flowers & plants Gene expression Gene expression regulation Gene Expression Regulation, Enzymologic Gene Expression Regulation, Plant Genes Geranylgeranyl-Diphosphate Geranylgeranyltransferase Light mature plants Models, Biological phytochrome Phytochrome - metabolism phytoene synthase Pigments Plant cells Plants Promoter regions Promoter Regions, Genetic Proteins Seedlings Seedlings - metabolism Signal transduction solar radiation transcription factors Transcription, Genetic |
Title | Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors |
URI | https://www.jstor.org/stable/20724118 http://www.pnas.org/content/107/25/11626.abstract https://www.ncbi.nlm.nih.gov/pubmed/20534526 https://www.proquest.com/docview/521205599 https://www.proquest.com/docview/1825411997 https://www.proquest.com/docview/733401089 https://pubmed.ncbi.nlm.nih.gov/PMC2895139 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQBshIPAxVKU2cOMnjGD8mJMqEOmlvkZM4a6UuGWvysP05_KXc2U6cjlUCXqIqubit78v5zrn7jpC3SSgUrbgbS3DfgmmWuCKAxz1IBKy3JU9KH6uRv8348Wnw9Sw8G41-DbKW2iab5Dd31pX8j1bhHOgVq2T_QbP9oHACPoN-4QgahuNf6Vjbq_GV7idvXD-Yt6YGC4ZkBM0CFinskiyRyl-nvOrsY2zXA-5yvQQHdFkrUYncJNm1HiBfII-Bi2wSqo4K8y11a56hO3vSL3_rLtlg1u0uHtpaFWNA1mN3fDKznY_n9UoWtfsd_pjaxv4iMgjcV8JC7acy1ZW4sOmLP-pCv93_eN7KG_dIlV3mSzz1genEZFG1phDAbGfgm3ju6srkidQmGDwYlwe6iWhvo3VrXANGPxyYXM_juub-j8UArBd2MK7EegJjBhBomWEG0Li8UNjwwRZhs3W7Kva5it2le-S-D6GI3-0I9cTO8bSjjIrY-1vfhlzT5v4Nx0fnviKhLsjfFdzcztEdOD3zR-ShiVbooYbeLhnJ6jHZ7dRJDwxp-bsnpNVYpBaLtC5ph0XaYZEiFqnFIgUsUotFOsQiza7pFixSg8Wn5PTzp_nRsWtaerg5RA6NW4A_KFjGRByJssyjAgIMbCAQJmAXfL_gYVIkTIQsj2IeSi49EGJBlJWZAE9KsD2yU9WVfE5oLBkLOHj3OQe0eJ4IeMkD7pVRMS2ykjlk0s13mhu-e2y7skpV3kXEUpz71OrKIQf9DZea6mW76J5SYC_nTyNwhb3YIY4StfdHqR-mCqMO2e_UnBojsk6xdH6KrH8OedNfBQuPr-1EJet2nXq4ieNhQphD6BaZCOYCHqYYhnmmcTP4aRp_Dok2ENULIMH85pVquVBE834M8RdLXmwdc588sM_wS7LTXLXyFTjpTfZaPSW_AQUn6ys |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+regulation+of+phytoene+synthase+gene+expression+and+carotenoid+biosynthesis+by+phytochrome-interacting+factors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Toledo-Ortiz%2C+Gabriela&rft.au=Huq%2C+Enamul&rft.au=Rodr%C3%ADguez-Concepci%C3%B3n%2C+Manuel&rft.date=2010-06-22&rft.eissn=1091-6490&rft.volume=107&rft.issue=25&rft.spage=11626&rft_id=info:doi/10.1073%2Fpnas.0914428107&rft_id=info%3Apmid%2F20534526&rft.externalDocID=20534526 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F25.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F25.cover.gif |