BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces

There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limit...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Neuroscience Vol. 14; p. 568104
Main Authors Simões, Marco, Borra, Davide, Santamaría-Vázquez, Eduardo, Bittencourt-Villalpando, Mayra, Krzemiński, Dominik, Miladinović, Aleksandar, Schmid, Thomas, Zhao, Haifeng, Amaral, Carlos, Direito, Bruno, Henriques, Jorge, Carvalho, Paulo, Castelo-Branco, Miguel
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Media SA 18.09.2020
Frontiers Research Foundation
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.
AbstractList There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.
There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.
Author Miladinovic A.
Gomez E. J.
Chatterjee B.
Schmid T.
Gupta C. N
Borra D.
Krzeminski D.
Oropesa I.
Palaniappan R.
Carvalho P.
Amaral C.
Direito B.
Sanchez-Gonzalez P.
Bittencourt-Villalpando M.
Henriques J.
Castelo-Branco M.
Santamaria-Vazquez E.
Elena Hernando M.
Zhao H.
Simoes M.
de Arancibia L.
AuthorAffiliation 10 Department of Biosciences and Bioengineering, Indian Institute of Technology , Guwahati , India
1 Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra , Coimbra , Portugal
6 Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid , Madrid , Spain
3 Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna , Cesena , Italy
8 CUBRIC, School of Psychology, Cardiff University , Cardiff , United Kingdom
4 Grupo de Ingeniería Biomédica, Universidad de Valladolid , Valladolid , Spain
9 Department of Engineering and Architecture, University of Trieste , Trieste , Italy
13 The University of Sydney , Camperdown, NSW , Australia
5 Centro de Investigación Biomédica en Red, Biomateriales y Nanomedicina , Madrid , Spain
12 Machine Learning Group, Universität Leipzig ,
AuthorAffiliation_xml – name: 2 Centre for Informatics and Systems (CISUC), Department of Informatics Engineering, University of Coimbra , Coimbra , Portugal
– name: 4 Grupo de Ingeniería Biomédica, Universidad de Valladolid , Valladolid , Spain
– name: 10 Department of Biosciences and Bioengineering, Indian Institute of Technology , Guwahati , India
– name: 11 Data Science Research Group, School of Computing, University of Kent , Chatham , United Kingdom
– name: 9 Department of Engineering and Architecture, University of Trieste , Trieste , Italy
– name: 5 Centro de Investigación Biomédica en Red, Biomateriales y Nanomedicina , Madrid , Spain
– name: 3 Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna , Cesena , Italy
– name: 8 CUBRIC, School of Psychology, Cardiff University , Cardiff , United Kingdom
– name: 1 Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra , Coimbra , Portugal
– name: 12 Machine Learning Group, Universität Leipzig , Leipzig , Germany
– name: 13 The University of Sydney , Camperdown, NSW , Australia
– name: 6 Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid , Madrid , Spain
– name: 7 Department of Neurology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
Author_xml – sequence: 1
  givenname: Marco
  surname: Simões
  fullname: Simões, Marco
– sequence: 2
  givenname: Davide
  surname: Borra
  fullname: Borra, Davide
– sequence: 3
  givenname: Eduardo
  surname: Santamaría-Vázquez
  fullname: Santamaría-Vázquez, Eduardo
– sequence: 4
  givenname: Mayra
  surname: Bittencourt-Villalpando
  fullname: Bittencourt-Villalpando, Mayra
– sequence: 5
  givenname: Dominik
  surname: Krzemiński
  fullname: Krzemiński, Dominik
– sequence: 6
  givenname: Aleksandar
  surname: Miladinović
  fullname: Miladinović, Aleksandar
– sequence: 7
  givenname: Thomas
  surname: Schmid
  fullname: Schmid, Thomas
– sequence: 8
  givenname: Haifeng
  surname: Zhao
  fullname: Zhao, Haifeng
– sequence: 9
  givenname: Carlos
  surname: Amaral
  fullname: Amaral, Carlos
– sequence: 10
  givenname: Bruno
  surname: Direito
  fullname: Direito, Bruno
– sequence: 11
  givenname: Jorge
  surname: Henriques
  fullname: Henriques, Jorge
– sequence: 12
  givenname: Paulo
  surname: Carvalho
  fullname: Carvalho, Paulo
– sequence: 13
  givenname: Miguel
  surname: Castelo-Branco
  fullname: Castelo-Branco, Miguel
BackLink https://cir.nii.ac.jp/crid/1871146592578029824$$DView record in CiNii
BookMark eNp9UstuFDEQtFAQecAHcBsJDlxm8XtsDki7y2ulIJBIJG6Wx2MnXmbtje1B4u_xZhKJ5MClbXVXVXfbdQqOQgwWgJcILggR8q0LPuQFhhguGBcI0ifgBHGOW8rIz6N_7sfgNOcthBwLip-BY0IQhJLJE5BX683y8qL9TiB81yybr9NYfPvD5uxjaHQY7jNTv7WmNCsbzPVOp1_NB110tqWpsOVUfN41LqbmoNOuamFoVkn70K7jbj8Vm9pNqNFpY_Nz8NTpMdsXd-cZuPz08WL9pT3_9nmzXp63hnFW2gFprZ1FQ9f3khhCO2Y6K4R0Pe97xrQUEEJnMaWCIEmGChaQdQNldHCakzOwmXWHqLdqn3yd-4-K2qvbRExXSqfizWgVcr0WrrZjPaKW8d5CPDDtCGTacGiq1vtZaz_1OzsYG0rS4wPRh5Xgr9VV_K06xjiGogq8uRNI8Wayuaidz8aOow42TlnhOjWFsuNdhb56BN3GKYX6VBVFiWQcYVlR3YwyKeacrFPGF13qt9X-flQIqoNJ1K1J1MEkajZJZaJHzPs1_sd5PXOC97XRISLRIUQ5k5h1AmIpMCV_AT0Xy0E
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1016_j_neunet_2022_03_044
crossref_primary_10_1088_1741_2552_acd1b6
crossref_primary_10_1016_j_compbiomed_2024_108188
crossref_primary_10_1109_TNSRE_2020_3048106
crossref_primary_10_1016_j_bbe_2024_12_003
crossref_primary_10_1111_psyp_14328
crossref_primary_10_3389_fnins_2024_1306283
crossref_primary_10_1088_1741_2552_aca798
crossref_primary_10_1016_j_ynirp_2022_100118
crossref_primary_10_1109_ACCESS_2021_3132024
crossref_primary_10_17694_bajece_1088353
crossref_primary_10_1088_1741_2552_ad2495
crossref_primary_10_3389_fnhum_2024_1358809
crossref_primary_10_1016_j_compbiomed_2023_107323
crossref_primary_10_1109_THMS_2022_3168421
crossref_primary_10_1038_s41598_023_34487_z
crossref_primary_10_1109_JBHI_2023_3337072
crossref_primary_10_1109_ACCESS_2023_3341419
crossref_primary_10_1109_JBHI_2022_3174771
crossref_primary_10_3390_brainsci13020315
crossref_primary_10_3389_fnhum_2021_655840
crossref_primary_10_1016_j_bspc_2023_105018
crossref_primary_10_1016_j_jisa_2024_103832
crossref_primary_10_1088_1741_2552_ac7908
crossref_primary_10_1016_j_media_2024_103230
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_1016_j_compbiomed_2022_105871
crossref_primary_10_31083_j_jin2004083
crossref_primary_10_1109_TNSRE_2023_3339698
Cites_doi 10.1007/978-981-10-9023-3_20
10.1109/tnsre.2018.2855801
10.1016/j.cobme.2017.11.004
10.1109/TBME.2008.915728
10.1109/TNSRE.2016.2627016
10.1111/j.2517-6161.1995.tb02031.x
10.1007/978-3-030-31635-8_223
10.1109/MRA.2016.2605403
10.1093/acprof:oso/9780195388855.003.0001
10.1016/j.neucom.2018.04.087
10.1016/j.jneumeth.2017.07.029
10.1007/978-3-030-31635-8_231
10.1371/journal.pone.0181584
10.1111/cdev.12973
10.1007/978-3-030-31635-8_225
10.3389/fncom.2015.00146
10.1109/TNSRE.2003.814453
10.1007/978-3-030-31635-8_227
10.1088/1741-2560/3/4/007
10.1038/nature14539
10.1007/978-3-030-31635-8_229
10.1109/TBME.2004.826692
10.1007/978-3-030-31635-8_228
10.1007/s11517-018-1917-x
10.1088/1741-2560/4/2/R01
10.1016/S0167-8760(00)00143-4
10.1016/0013-4694(88)90149-6
10.1088/1741-2552/ab0ab5
10.1109/TNSRE.2006.875642
10.3389/fnins.2017.00246
10.1111/psyp.13346
10.1162/neco.1992.4.3.415
10.1016/j.neunet.2019.02.009
10.1007/978-3-030-31635-8_226
10.1016/j.neunet.2020.05.032
10.3389/fncom.2019.00024
10.1007/978-3-030-31635-8_224
10.1038/nrneurol.2016.113
10.3109/17483107.2014.961569
10.1109/tbme.2019.2929745
10.4018/978-1-5225-0571-6.ch012
10.1155/2007/25487
10.3389/fncom.2019.00087
10.1088/1741-2552/aace8c
10.3389/fnins.2012.00055
10.1007/978-3-642-15995-4_78
10.3389/fnins.2018.00477
10.1088/1741-2552/aab2f2
10.1007/978-3-030-31635-8_230
10.1016/j.clinph.2006.08.012
ContentType Journal Article
Contributor Direito, Bruno
Borra, Davide
Krzemiński, Dominik
Henriques, Jorge
Santamaría-Vázquez, Eduardo
Amaral, Carlo
Schmid, Thoma
Miladinović, Aleksandar
Carvalho, Paulo
Castelo-Branco, Miguel
Zhao, Haifeng
Simões, Marco
Bittencourt-Villalpando, Mayra
Contributor_xml – sequence: 1
  fullname: Simões, Marco
– sequence: 2
  fullname: Borra, Davide
– sequence: 3
  fullname: Santamaría-Vázquez, Eduardo
– sequence: 4
  fullname: Bittencourt-Villalpando, Mayra
– sequence: 5
  fullname: Krzemiński, Dominik
– sequence: 6
  fullname: Miladinović, Aleksandar
– sequence: 7
  fullname: Schmid, Thoma
– sequence: 8
  fullname: Zhao, Haifeng
– sequence: 9
  fullname: Amaral, Carlo
– sequence: 10
  fullname: Direito, Bruno
– sequence: 11
  fullname: Henriques, Jorge
– sequence: 12
  fullname: Carvalho, Paulo
– sequence: 13
  fullname: Castelo-Branco, Miguel
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco.
Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco. 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco.
– notice: Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco. 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco
CorporateAuthor Neural_Engineering_Group
GBT-UPM
CorporateAuthor_xml – name: GBT-UPM
– name: Neural_Engineering_Group
DBID RYH
AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2020.568104
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_1fba8faaf5b14e56be02d5af305ac60c
PMC7556208
10_3389_fnins_2020_568104
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
RYH
W2D
AAYXX
CITATION
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c565t-d1aaafe1d7bb93c3475c7e889fb6bb55a98000fe24483193dafe8057d454dfa63
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:32:05 EDT 2025
Thu Aug 21 14:06:56 EDT 2025
Thu Jul 10 23:22:39 EDT 2025
Fri Jul 25 11:56:54 EDT 2025
Tue Jul 01 01:39:14 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Thu Jun 26 22:22:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-d1aaafe1d7bb93c3475c7e889fb6bb55a98000fe24483193dafe8057d454dfa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Tomasz Maciej Rutkowski, RIKEN Center for Advanced Intelligence Project (AIP), Japan; Motoaki Kawanabe, Advanced Telecommunications Research Institute International (ATR), Japan
This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience
Edited by: Davide Valeriani, Massachusetts Eye and Ear Infirmary and Harvard Medical School, United States
These authors have contributed equally to this work and share first authorship
ORCID 0000-0003-4364-6373
0000-0002-3259-8815
0000-0003-4560-285x
0000-0001-6182-313x
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2020.568104
PMID 33100959
PQID 2443956129
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_1fba8faaf5b14e56be02d5af305ac60c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556208
proquest_miscellaneous_2454409767
proquest_journals_2443956129
crossref_citationtrail_10_3389_fnins_2020_568104
crossref_primary_10_3389_fnins_2020_568104
nii_cinii_1871146592578029824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-18
PublicationDateYYYYMMDD 2020-09-18
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-18
  day: 18
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in Neuroscience
PublicationYear 2020
Publisher Frontiers Media SA
Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Blankertz (B13) 2004; 51
Korczowski (B28) 2015
Adama (B1) 2020
Raza (B43) 2019; 343
Lotte (B35) 2007; 4
Miladinović (B39) 2020
Bhattacharyya (B9) 2017
Chatterjee (B18) 2020
Adamson (B2) 2019; 90
LeCun (B32) 2015; 521
Borra (B16); 129
Lopes (B33) 2016; 23
Lawhern (B31) 2018; 15
Santamaría-Vázquez (B47) 2020
Barachant (B7) 2010
Amaral (B5) 2017; 290
Borra (B15)
Bittencourt-Villalpando (B11) 2018; 26
Zhao (B54) 2019; 114
Zou (B56) 2019; 57
Agapov (B3) 2016
Riggins (B44) 2019; 57
Tangermann (B50) 2012; 6
McFarland (B38) 2017; 4
Nakanishi (B40) 2019; 67
Rakotomamonjy (B42) 2008; 55
Krusienski (B29) 2006; 3
Craik (B21) 2019; 16
Zhao (B55) 2020
Sitaram (B49) 2007; 2007
Pinegger (B41) 2017; 12
Demiralp (B23) 2001; 39
Bittencourt-Villalpando (B12) 2020
Blankertz (B14) 2006; 14
Amaral (B4) 2018; 12
Lotte (B34) 2018; 15
Wolpaw (B51) 2012
Simões (B48) 2019
Zhang (B53) 2019; 1
Bamdad (B6) 2015; 10
Krzemiński (B30) 2020
de Arancibia (B22) 2020
Sajda (B46) 2003; 11
Deshpande (B24) 2017; 11
Bishop (B10) 2006
Bostanov (B17) 2006; 117
Drugowitsch (B25) 2013
Manor (B37) 2015; 9
Farwell (B26) 1988; 70
Saha (B45) 2020; 13
Benjamini (B8) 1995; 57
MacKay (B36) 1992; 4
Yger (B52) 2017; 25
Chollet (B20) 2016
Chaudhary (B19) 2016; 12
Guo (B27) 2019; 13
References_xml – start-page: 113
  year: 2019
  ident: B48
  article-title: Applying weightless neural networks to a P300-based brain-computer interface
  publication-title: World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings
  doi: 10.1007/978-981-10-9023-3_20
– volume: 26
  start-page: 1669
  year: 2018
  ident: B11
  article-title: Stimuli and feature extraction algorithms for brain-computer interfaces: a systematic comparison.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2018.2855801
– year: 2006
  ident: B10
  publication-title: Pattern Recognition and Machine Learning.
– volume: 4
  start-page: 194
  year: 2017
  ident: B38
  article-title: EEG-based brain–computer interfaces.
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.11.004
– volume: 55
  start-page: 1147
  year: 2008
  ident: B42
  article-title: BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.915728
– volume: 25
  start-page: 1753
  year: 2017
  ident: B52
  article-title: Riemannian approaches in brain-computer interfaces: a review.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2627016
– volume: 57
  start-page: 289
  year: 1995
  ident: B8
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing.
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– year: 2016
  ident: B3
  publication-title: Wavelet Algorithm for the Identification of P300 ERP Component.
– start-page: 1837
  ident: B15
  article-title: Convolutional neural network for a P300 brain-computer interface to improve social attention in autistic spectrum disorder
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_223
– start-page: 1769
  year: 2015
  ident: B28
  article-title: Single-trial classification of multi-user P300-based brain-computer interface using riemannian geometry
  publication-title: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 23
  start-page: 82
  year: 2016
  ident: B33
  article-title: A new hybrid motion planner.
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2016.2605403
– start-page: 3
  year: 2012
  ident: B51
  article-title: Brain–computer interfaces: something new under the sun
  publication-title: Brain–Computer InterfacesPrinciples and Practice
  doi: 10.1093/acprof:oso/9780195388855.003.0001
– volume: 343
  start-page: 154
  year: 2019
  ident: B43
  article-title: Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.087
– volume: 290
  start-page: 105
  year: 2017
  ident: B5
  article-title: A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: a feasibility study.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.07.029
– start-page: 1894
  year: 2020
  ident: B18
  article-title: Performance evaluation of manifold algorithms on a P300 paradigm based online BCI dataset
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_231
– volume: 12
  year: 2017
  ident: B41
  article-title: Composing only by thought: novel application of the P300 brain-computer interface.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181584
– volume: 1
  start-page: 504
  year: 2019
  ident: B53
  article-title: A survey on deep learning based brain computer interface: recent advances and new frontiers.
  publication-title: ACM Int. Conf. Proc. Ser.
– volume: 90
  start-page: e1
  year: 2019
  ident: B2
  article-title: An expanded view of joint attention: skill, engagement, and language in typical development and autism.
  publication-title: Child Dev.
  doi: 10.1111/cdev.12973
– start-page: 1853
  year: 2020
  ident: B39
  article-title: Slow cortical potential BCI classification using sparse variational bayesian logistic regression with automatic relevance determination
  publication-title: Proceedings of the XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_225
– volume: 9
  year: 2015
  ident: B37
  article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI.
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00146
– volume: 11
  start-page: 184
  year: 2003
  ident: B46
  article-title: A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814453
– start-page: 1869
  year: 2020
  ident: B22
  article-title: Linear vs nonlinear classification of social joint attention in autism using VR P300-based brain computer interfaces
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_227
– volume: 3
  year: 2006
  ident: B29
  article-title: A comparison of classification techniques for the P300 Speller.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/4/007
– volume: 521
  year: 2015
  ident: B32
  article-title: Deep learning.
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1885
  year: 2020
  ident: B30
  article-title: Classification of P300 component using a riemannian ensemble approach
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_229
– volume: 51
  start-page: 1044
  year: 2004
  ident: B13
  article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826692
– start-page: 1875
  year: 2020
  ident: B12
  article-title: Linear SVM algorithm optimization for an EEG-based brain-computer interface used by high functioning autism spectrum disorder participants
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_228
– volume: 57
  start-page: 939
  year: 2019
  ident: B56
  article-title: An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface.
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1917-x
– volume: 4
  start-page: R1
  year: 2007
  ident: B35
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– volume: 39
  start-page: 221
  year: 2001
  ident: B23
  article-title: Wavelet analysis of oddball P300.
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(00)00143-4
– volume: 70
  start-page: 510
  year: 1988
  ident: B26
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials.
  publication-title: Electr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(88)90149-6
– volume: 16
  year: 2019
  ident: B21
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 14
  start-page: 153
  year: 2006
  ident: B14
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– volume: 11
  year: 2017
  ident: B24
  article-title: A new generation of brain-computer interfaces driven by discovery of latent EEG-fMRI linkages using tensor decomposition.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00246
– volume: 57
  year: 2019
  ident: B44
  article-title: P300 development from infancy to adolescence.
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13346
– volume: 4
  start-page: 415
  year: 1992
  ident: B36
  article-title: Bayesian interpolation.
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 114
  start-page: 67
  year: 2019
  ident: B54
  article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data.
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.02.009
– start-page: 1861
  year: 2020
  ident: B55
  article-title: A feasible classification algorithm for event-related potential (ERP) based brain-computer-interface (BCI) from IFMBE scientific challenge dataset
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_226
– volume: 129
  start-page: 55
  ident: B16
  article-title: Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination.
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.05.032
– volume: 13
  year: 2019
  ident: B27
  article-title: Investigation of visual stimulus with various colors and the layout for the oddball paradigm in evoked related potential-based brain–computer interface.
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00024
– start-page: 1844
  year: 2020
  ident: B47
  article-title: Deep learning architecture based on the combination of convolutional and recurrent layers for ERP-based brain-computer interfaces
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_224
– volume: 12
  start-page: 513
  year: 2016
  ident: B19
  article-title: Brain-computer interfaces for communication and rehabilitation.
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2016.113
– volume: 10
  start-page: 355
  year: 2015
  ident: B6
  article-title: Application of BCI systems in neurorehabilitation: a scoping review.
  publication-title: Disabil. Rehabil. Assist. Technol.
  doi: 10.3109/17483107.2014.961569
– volume: 67
  start-page: 1105
  year: 2019
  ident: B40
  article-title: Facilitating calibration in high-speed BCI spellers via leveraging cross-device shared latent responses.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2019.2929745
– start-page: 300
  year: 2017
  ident: B9
  article-title: A review on brain imaging techniques for BCI applications
  publication-title: Medical Imaging: Concepts, Methodologies, Tools, and Applications
  doi: 10.4018/978-1-5225-0571-6.ch012
– volume: 2007
  year: 2007
  ident: B49
  article-title: FMRI brain-computer interface: a tool for neuroscientific research and treatment.
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2007/25487
– start-page: 1800
  year: 2016
  ident: B20
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the 2017 IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 13
  year: 2020
  ident: B45
  article-title: Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: a review.
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00087
– volume: 15
  year: 2018
  ident: B31
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 6
  year: 2012
  ident: B50
  article-title: Review of the BCI competition IV.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– start-page: 629
  year: 2010
  ident: B7
  article-title: Riemannian geometry applied to BCI classification
  publication-title: Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-15995-4_78
– volume: 12
  year: 2018
  ident: B4
  article-title: A feasibility clinical trial to improve social attention in autistic spectrum disorder (ASD) using a brain computer interface.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00477
– year: 2013
  ident: B25
  article-title: Variational Bayesian inference for linear and logistic regression.
  publication-title: arXiv
– volume: 15
  start-page: R1
  year: 2018
  ident: B34
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– start-page: 1890
  year: 2020
  ident: B1
  article-title: Using time domain and pearson’s correlation to predict attention focus in autistic spectrum disorder from EEG P300 components
  publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
  doi: 10.1007/978-3-030-31635-8_230
– volume: 117
  start-page: 2627
  year: 2006
  ident: B17
  article-title: The t-CWT: a new ERP detection and quantification method based on the continuous wavelet transform and Student’s t-statistics.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.08.012
SSID ssj0062842
Score 2.4445693
Snippet There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of...
SourceID doaj
pubmedcentral
proquest
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 568104
SubjectTerms Algorithms
Autism
autism spectrum disorder
autism spectrum disorder; benchmark dataset; brain-computer interface; EEG; multi-session; multi-subject; P300
benchmark dataset
Brain research
brain-computer interface
Datasets
Discriminant analysis
EEG
EEG; P300; autism spectrum disorder; benchmark dataset; brain-computer interface; multi-session; multi-subject
Electroencephalography
Interfaces
Medical research
multi-session
multi-subject
Neural networks
Neuroscience
Neurosciences. Biological psychiatry. Neuropsychiatry
P300
RC321-571
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQp15QC0VNC5UrVT0gucSJP5LeNrSIVgJVapG4RXZsi1VZgyB74N8z4yQrcmkvvewhnmQdz9jzxp68IeRjAIygKx5YoaRmItiSGatqpl0nC6WtLzl-nHx-oc4uxY8refWs1BfmhA30wMPAHfNgTRWMCdJy4aWyPi-cNAHs1HQq73D1BZ83BVPDGqxg0S2GM0wIwerjEJcRubmL_HMi4BIzL5TI-sG3xOVyhjPnWZLP3M7pS7Iz4kW6GPr5imz5uEv2FhFi5dUj_URTBmfaGt8jD83Jd7A39rPM8y90QdPHtezXwLxBTXTTlbXF3RfagIVer8z9H_rV9ODNegpiC7DEhxUFLEvxOayBBkcbrCTBphIQLO0jBszmek0uT7_9PjljY1EF1gF265njBgbTc6etrcuuFFp22ldVHayyVkpTA4TMgwe3X8H0LB0IVwDqnJDCBaPKfbIdb6N_Q2ghraiR8F1YK6R0lpsSTzWDUoDbCp-RfBrkthsZx7HwxU0LkQfqpU16aVEv7aCXjBxtbrkb6Db-Jtyg5jaCyJSdLoD9tKP9tP-yn4wcgt6hf_jLIXwE1yFrXMiQnL6APzmYLKIdpzd0QgCOw7qidUY-bJphYuJpi4n-do0yUiCZmNIZ0TNLmnV43hKX14niW0vApXn19n-84TvyAgcNk1x4dUC2-_u1PwQk1dv3adI8AWjiG14
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQEEEWuRKFQck0zz8SLigTWlVkKgqoFJvkR3bdNWut-xmD_x7ZpxkRS697CH2brye8cxnz_gbQo48YARVZp7lUijGvSmYNrJiyrYil8q4IsPLyd8v5PkV_3YtrocDt_WQVjnaxGio7bLFM_JjcEMFXsLMq8_3fxhWjcLo6lBC4zHZBRNcwuZrtz69uPwx2mIJxjfGOyXeDQJw3sc1YVtWHfswD8jXnacfIykXn3imSOAP_ibM5xPsOc2c_M8VnT0jTwcMSWe90J-TRy68IHuzAPvnxV_6nsasznhcvkfW9clX0EF2WaTpJzqj8cIt-9mzcVAd7PhkY_BEhtagtTcLvbqlX3QHHq6j0G0G2rleUMC3FH-H1dBgaY3VJdhYFoLFs0WPGV4vydXZ6a-TczYUWmAt4LmO2Uxr7V1mlTFV0RZciVa5sqy8kcYIoSuAlal3IIMSlmxhoXMJQM_ClFqvZfGK7IRlcK8JzYXhFZLAc2O4ENZkusBIp5cSsFzuEpKOk9y0Aws5FsO4a2A3gnJpolwalEvTyyUhH7Zfue8pOB7qXKPkth2RPTs-WK5-N8NibDJvdOnhLwuTcSekcWluhfZg-3Qr0zYhByB3GB9-ZrClBHciKjRuSFifw0v2R41ohiUPg9gqaEIOt82wWDECo4NbbrCP4EgwJlVC1ESTJgOetoT5TaT9VgKwalq-efjlb8kTnA5MacnKfbLTrTbuAHBTZ94Ni-Mfz44UYQ
  priority: 102
  providerName: ProQuest
Title BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces
URI https://cir.nii.ac.jp/crid/1871146592578029824
https://www.proquest.com/docview/2443956129
https://www.proquest.com/docview/2454409767
https://pubmed.ncbi.nlm.nih.gov/PMC7556208
https://doaj.org/article/1fba8faaf5b14e56be02d5af305ac60c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfG9sILAgaisFVGQjwgecSJPxIkhJqxMZA2TUClvkV2HLPCmkKbSuy_585JKiJN8JKH-JI4vjvfz1-_I-SFB4ygU-5ZrKRmwtuEGasypl0pY6VtlXA8nHx-oc6m4tNMznZIn96qa8D1rUM7zCc1XV0f_f518w4c_i2OOCHevvb1vEbm7Tg6CvRa4g7Zg8Ck0U_PxXZRQUFPHLcLm7c_NghNgcEfAk49nw_A53Dr5F-x6PQ-udeBSDpptf6A7Hw3D8n-pIYB9OKGvqRhW2eYL98n6_z4Ixghu0yi6A2d0HDiln1p6TioqV1_Z2NxSobmYLZXC7P6Qd-bBkJcQ0FsAua5XlAAuBTfw3IocDTH9BKszwvBwuSixy1ej8j09OTr8RnrMi2wEgBdwxw3xviKO21tlpSJ0LLUVZpm3iprpTQZ4MrIV4AFUvDZxIFwCkjPCSmcNyp5THbrZV09ITSWVmTIAi-sFVI6y02CS51eKQBzcTUiUd_IRdnRkGM2jOsChiOolyLopUC9FK1eRuTV9pGfLQfHv4Rz1NxWEOmzw43l6lvReWPBvTWph1-WlotKKltFsZPGQ-dnShWVI3IIeof64ZXDmBLiicywd0PG-hg-ctBbRNGbbAGNk-Ax4TgbkefbYvBWXIIxdbXcoIwUyDCm9IjogSUNKjwsqedXgfdbSwCrUfr0P5V7Ru5ie-CmFp4ekN1mtakOATk1dkz28pOLy8_jMPMA1w8zPg4-8gd_SBao
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrbA1wQUBALLRgJOCCZ5mE7CRJCmz60S9tVBa3UW2rHNl3BZss-hPpTfCMzTrIil956ySGexE7m7fHMEPLWgY2QpKFjkRQJ407HTGmZscSUIpKJtnGIycknYzk8518vxMUG-dvmwuCxylYmekFtZiXuke-CGooxCTPKvlz_Ztg1CqOrbQuNmiyO7M0fcNkWn0f7gN93UXR4cLY3ZE1XAVaC8bJkJlRKORuaROssLmOeiDKxaZo5LbUWQmVgQwXOwoQp0GdsADgFq8ZwwY1TMob33iObPAZXpkc284Px6bdW9ksQ9j6-KjEXCZyBOo4KbmC266pJhfXBo-CjLwLGO5rQNwwA_VZNJh1bt3tS8z_Vd_iIPGxsVjqoiewx2bDVE7I1qMBfn97Q99SfIvXb81tkke-NgObZaRwEn-iA-gRf9r2u_kFVZdo7K407QDQHLrmaqvlPuq-WoFGXFMAGwA2LKQV7muJ7WA4DhubYzYK1bSiY38t0eKLsKTm_ExQ8I71qVtnnhEZC8wyLznOtuRBGhyrGyKqTEmzHyPZJ0P7komyqnmPzjV8FeD-Il8LjpUC8FDVe-uTD-pHruuTHbcA5Ym4NiNW6_Y3Z_EfRMH8ROq1SB58sdMitkNoGkRHKgaxVpQzKPtkBvMP68BqCCwvqS2QoTLFAfgSTbLcUUTQiBhaxZog-ebMeBuGAER9V2dkKYQTHgmYy6ZOkQ0mdBXdHqsmVLzOeCLCNg_TF7ZO_JveHZyfHxfFofPSSPMBfg8dpwnSb9Jbzld0Bm22pXzWMQsnlXfPmP2oYUj4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCXFBQEEstGAk4IBkmocfCRJCm25XXQqrFVCpt2DHNl3BZss-hPprfB0zeazIpbdecognsZN5e8YzhLz0YCOoJPQskkIx7k3MtJEpU7YQkVTGxSEeTv48kSdn_OO5ON8hf9uzMJhW2crESlDbRYF75IeghmI8hBmlh75Ji5gORx8ufzPsIIWR1radRk0ip-7qD7hvq_fjIeD6VRSNjr8dnbCmwwArwJBZMxtqrb0LrTImjYuYK1EolySpN9IYIXQK9lTgHUyeAK3GFoATsHAsF9x6LWN47y2yq8ArCnpkNzueTL-0ekCC4K9irRLPJYFjUMdUwSWELyhnJdYKj4K3VUEw3tGKVfMA0HXlbNaxe7tZm_-pwdE9crexX-mgJrj7ZMeVD8jeoATffX5FX9Mqo7Taqt8jq-xoDPTPpnEQvKMDWh32ZV_rSiBUl7a9szG4G0Qz4JiLuV7-pEO9Bu26pgA2AM5YzSnY1hTfwzIYsDTDzhasbUnBqn1Nj9llD8nZjaDgEemVi9I9JjQShqdYgJ4bw4WwJtQxRlm9lGBHRq5PgvYn50VTAR0bcfzKwRNCvOQVXnLES17jpU_ebB-5rMt_XAecIea2gFi5u7qxWP7IG0GQh97oxMMnCxNyJ6RxQWSF9iB3dSGDok8OAO-wPryG4M6CKhMpClYslh_BJPstReSNuIFFbJmjT15sh0FQYPRHl26xQRjBsbiZVH2iOpTUWXB3pJxdVCXHlQA7OUieXD_5c3IbeDL_NJ6cPiV38M9gZk2Y7JPeerlxB2C-rc2zhk8o-X7TrPkPQd5Wcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCIAUT-P300%3A+A+Multi-Session+and+Multi-Subject+Benchmark+Dataset+on+Autism+for+P300-Based+Brain-Computer-Interfaces&rft.jtitle=Frontiers+in+Neuroscience&rft.au=Simoes+M.&rft.au=Borra+D.&rft.au=Santamaria-Vazquez+E.&rft.au=de+Arancibia+L.&rft.date=2020-09-18&rft.pub=Frontiers+Media+SA&rft.eissn=1662-453X&rft.volume=14&rft_id=info:doi/10.3389%2Ffnins.2020.568104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon