BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces
There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limit...
Saved in:
Published in | Frontiers in Neuroscience Vol. 14; p. 568104 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Media SA
18.09.2020
Frontiers Research Foundation Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data. |
---|---|
AbstractList | There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data.There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data. There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data. |
Author | Miladinovic A. Gomez E. J. Chatterjee B. Schmid T. Gupta C. N Borra D. Krzeminski D. Oropesa I. Palaniappan R. Carvalho P. Amaral C. Direito B. Sanchez-Gonzalez P. Bittencourt-Villalpando M. Henriques J. Castelo-Branco M. Santamaria-Vazquez E. Elena Hernando M. Zhao H. Simoes M. de Arancibia L. |
AuthorAffiliation | 10 Department of Biosciences and Bioengineering, Indian Institute of Technology , Guwahati , India 1 Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra , Coimbra , Portugal 6 Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid , Madrid , Spain 3 Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna , Cesena , Italy 8 CUBRIC, School of Psychology, Cardiff University , Cardiff , United Kingdom 4 Grupo de Ingeniería Biomédica, Universidad de Valladolid , Valladolid , Spain 9 Department of Engineering and Architecture, University of Trieste , Trieste , Italy 13 The University of Sydney , Camperdown, NSW , Australia 5 Centro de Investigación Biomédica en Red, Biomateriales y Nanomedicina , Madrid , Spain 12 Machine Learning Group, Universität Leipzig , |
AuthorAffiliation_xml | – name: 2 Centre for Informatics and Systems (CISUC), Department of Informatics Engineering, University of Coimbra , Coimbra , Portugal – name: 4 Grupo de Ingeniería Biomédica, Universidad de Valladolid , Valladolid , Spain – name: 10 Department of Biosciences and Bioengineering, Indian Institute of Technology , Guwahati , India – name: 11 Data Science Research Group, School of Computing, University of Kent , Chatham , United Kingdom – name: 9 Department of Engineering and Architecture, University of Trieste , Trieste , Italy – name: 5 Centro de Investigación Biomédica en Red, Biomateriales y Nanomedicina , Madrid , Spain – name: 3 Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna , Cesena , Italy – name: 8 CUBRIC, School of Psychology, Cardiff University , Cardiff , United Kingdom – name: 1 Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra , Coimbra , Portugal – name: 12 Machine Learning Group, Universität Leipzig , Leipzig , Germany – name: 13 The University of Sydney , Camperdown, NSW , Australia – name: 6 Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid , Madrid , Spain – name: 7 Department of Neurology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands |
Author_xml | – sequence: 1 givenname: Marco surname: Simões fullname: Simões, Marco – sequence: 2 givenname: Davide surname: Borra fullname: Borra, Davide – sequence: 3 givenname: Eduardo surname: Santamaría-Vázquez fullname: Santamaría-Vázquez, Eduardo – sequence: 4 givenname: Mayra surname: Bittencourt-Villalpando fullname: Bittencourt-Villalpando, Mayra – sequence: 5 givenname: Dominik surname: Krzemiński fullname: Krzemiński, Dominik – sequence: 6 givenname: Aleksandar surname: Miladinović fullname: Miladinović, Aleksandar – sequence: 7 givenname: Thomas surname: Schmid fullname: Schmid, Thomas – sequence: 8 givenname: Haifeng surname: Zhao fullname: Zhao, Haifeng – sequence: 9 givenname: Carlos surname: Amaral fullname: Amaral, Carlos – sequence: 10 givenname: Bruno surname: Direito fullname: Direito, Bruno – sequence: 11 givenname: Jorge surname: Henriques fullname: Henriques, Jorge – sequence: 12 givenname: Paulo surname: Carvalho fullname: Carvalho, Paulo – sequence: 13 givenname: Miguel surname: Castelo-Branco fullname: Castelo-Branco, Miguel |
BackLink | https://cir.nii.ac.jp/crid/1871146592578029824$$DView record in CiNii |
BookMark | eNp9UstuFDEQtFAQecAHcBsJDlxm8XtsDki7y2ulIJBIJG6Wx2MnXmbtje1B4u_xZhKJ5MClbXVXVXfbdQqOQgwWgJcILggR8q0LPuQFhhguGBcI0ifgBHGOW8rIz6N_7sfgNOcthBwLip-BY0IQhJLJE5BX683y8qL9TiB81yybr9NYfPvD5uxjaHQY7jNTv7WmNCsbzPVOp1_NB110tqWpsOVUfN41LqbmoNOuamFoVkn70K7jbj8Vm9pNqNFpY_Nz8NTpMdsXd-cZuPz08WL9pT3_9nmzXp63hnFW2gFprZ1FQ9f3khhCO2Y6K4R0Pe97xrQUEEJnMaWCIEmGChaQdQNldHCakzOwmXWHqLdqn3yd-4-K2qvbRExXSqfizWgVcr0WrrZjPaKW8d5CPDDtCGTacGiq1vtZaz_1OzsYG0rS4wPRh5Xgr9VV_K06xjiGogq8uRNI8Wayuaidz8aOow42TlnhOjWFsuNdhb56BN3GKYX6VBVFiWQcYVlR3YwyKeacrFPGF13qt9X-flQIqoNJ1K1J1MEkajZJZaJHzPs1_sd5PXOC97XRISLRIUQ5k5h1AmIpMCV_AT0Xy0E |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1016_j_neunet_2022_03_044 crossref_primary_10_1088_1741_2552_acd1b6 crossref_primary_10_1016_j_compbiomed_2024_108188 crossref_primary_10_1109_TNSRE_2020_3048106 crossref_primary_10_1016_j_bbe_2024_12_003 crossref_primary_10_1111_psyp_14328 crossref_primary_10_3389_fnins_2024_1306283 crossref_primary_10_1088_1741_2552_aca798 crossref_primary_10_1016_j_ynirp_2022_100118 crossref_primary_10_1109_ACCESS_2021_3132024 crossref_primary_10_17694_bajece_1088353 crossref_primary_10_1088_1741_2552_ad2495 crossref_primary_10_3389_fnhum_2024_1358809 crossref_primary_10_1016_j_compbiomed_2023_107323 crossref_primary_10_1109_THMS_2022_3168421 crossref_primary_10_1038_s41598_023_34487_z crossref_primary_10_1109_JBHI_2023_3337072 crossref_primary_10_1109_ACCESS_2023_3341419 crossref_primary_10_1109_JBHI_2022_3174771 crossref_primary_10_3390_brainsci13020315 crossref_primary_10_3389_fnhum_2021_655840 crossref_primary_10_1016_j_bspc_2023_105018 crossref_primary_10_1016_j_jisa_2024_103832 crossref_primary_10_1088_1741_2552_ac7908 crossref_primary_10_1016_j_media_2024_103230 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_1016_j_compbiomed_2022_105871 crossref_primary_10_31083_j_jin2004083 crossref_primary_10_1109_TNSRE_2023_3339698 |
Cites_doi | 10.1007/978-981-10-9023-3_20 10.1109/tnsre.2018.2855801 10.1016/j.cobme.2017.11.004 10.1109/TBME.2008.915728 10.1109/TNSRE.2016.2627016 10.1111/j.2517-6161.1995.tb02031.x 10.1007/978-3-030-31635-8_223 10.1109/MRA.2016.2605403 10.1093/acprof:oso/9780195388855.003.0001 10.1016/j.neucom.2018.04.087 10.1016/j.jneumeth.2017.07.029 10.1007/978-3-030-31635-8_231 10.1371/journal.pone.0181584 10.1111/cdev.12973 10.1007/978-3-030-31635-8_225 10.3389/fncom.2015.00146 10.1109/TNSRE.2003.814453 10.1007/978-3-030-31635-8_227 10.1088/1741-2560/3/4/007 10.1038/nature14539 10.1007/978-3-030-31635-8_229 10.1109/TBME.2004.826692 10.1007/978-3-030-31635-8_228 10.1007/s11517-018-1917-x 10.1088/1741-2560/4/2/R01 10.1016/S0167-8760(00)00143-4 10.1016/0013-4694(88)90149-6 10.1088/1741-2552/ab0ab5 10.1109/TNSRE.2006.875642 10.3389/fnins.2017.00246 10.1111/psyp.13346 10.1162/neco.1992.4.3.415 10.1016/j.neunet.2019.02.009 10.1007/978-3-030-31635-8_226 10.1016/j.neunet.2020.05.032 10.3389/fncom.2019.00024 10.1007/978-3-030-31635-8_224 10.1038/nrneurol.2016.113 10.3109/17483107.2014.961569 10.1109/tbme.2019.2929745 10.4018/978-1-5225-0571-6.ch012 10.1155/2007/25487 10.3389/fncom.2019.00087 10.1088/1741-2552/aace8c 10.3389/fnins.2012.00055 10.1007/978-3-642-15995-4_78 10.3389/fnins.2018.00477 10.1088/1741-2552/aab2f2 10.1007/978-3-030-31635-8_230 10.1016/j.clinph.2006.08.012 |
ContentType | Journal Article |
Contributor | Direito, Bruno Borra, Davide Krzemiński, Dominik Henriques, Jorge Santamaría-Vázquez, Eduardo Amaral, Carlo Schmid, Thoma Miladinović, Aleksandar Carvalho, Paulo Castelo-Branco, Miguel Zhao, Haifeng Simões, Marco Bittencourt-Villalpando, Mayra |
Contributor_xml | – sequence: 1 fullname: Simões, Marco – sequence: 2 fullname: Borra, Davide – sequence: 3 fullname: Santamaría-Vázquez, Eduardo – sequence: 4 fullname: Bittencourt-Villalpando, Mayra – sequence: 5 fullname: Krzemiński, Dominik – sequence: 6 fullname: Miladinović, Aleksandar – sequence: 7 fullname: Schmid, Thoma – sequence: 8 fullname: Zhao, Haifeng – sequence: 9 fullname: Amaral, Carlo – sequence: 10 fullname: Direito, Bruno – sequence: 11 fullname: Henriques, Jorge – sequence: 12 fullname: Carvalho, Paulo – sequence: 13 fullname: Castelo-Branco, Miguel |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco. Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco. 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco. – notice: Copyright © 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco. 2020 Simões, Borra, Santamaría-Vázquez, GBT-UPM, Bittencourt-Villalpando, Krzemiński, Miladinovic, Neural_Engineering_Group, Schmid, Zhao, Amaral, Direito, Henriques, Carvalho and Castelo-Branco |
CorporateAuthor | Neural_Engineering_Group GBT-UPM |
CorporateAuthor_xml | – name: GBT-UPM – name: Neural_Engineering_Group |
DBID | RYH AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2020.568104 |
DatabaseName | CiNii Complete CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_1fba8faaf5b14e56be02d5af305ac60c PMC7556208 10_3389_fnins_2020_568104 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM RYH W2D AAYXX CITATION 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c565t-d1aaafe1d7bb93c3475c7e889fb6bb55a98000fe24483193dafe8057d454dfa63 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Thu Aug 21 14:06:56 EDT 2025 Thu Jul 10 23:22:39 EDT 2025 Fri Jul 25 11:56:54 EDT 2025 Tue Jul 01 01:39:14 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Thu Jun 26 22:22:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c565t-d1aaafe1d7bb93c3475c7e889fb6bb55a98000fe24483193dafe8057d454dfa63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Tomasz Maciej Rutkowski, RIKEN Center for Advanced Intelligence Project (AIP), Japan; Motoaki Kawanabe, Advanced Telecommunications Research Institute International (ATR), Japan This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience Edited by: Davide Valeriani, Massachusetts Eye and Ear Infirmary and Harvard Medical School, United States These authors have contributed equally to this work and share first authorship |
ORCID | 0000-0003-4364-6373 0000-0002-3259-8815 0000-0003-4560-285x 0000-0001-6182-313x |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2020.568104 |
PMID | 33100959 |
PQID | 2443956129 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fba8faaf5b14e56be02d5af305ac60c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556208 proquest_miscellaneous_2454409767 proquest_journals_2443956129 crossref_citationtrail_10_3389_fnins_2020_568104 crossref_primary_10_3389_fnins_2020_568104 nii_cinii_1871146592578029824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-18 |
PublicationDateYYYYMMDD | 2020-09-18 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in Neuroscience |
PublicationYear | 2020 |
Publisher | Frontiers Media SA Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media SA – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Blankertz (B13) 2004; 51 Korczowski (B28) 2015 Adama (B1) 2020 Raza (B43) 2019; 343 Lotte (B35) 2007; 4 Miladinović (B39) 2020 Bhattacharyya (B9) 2017 Chatterjee (B18) 2020 Adamson (B2) 2019; 90 LeCun (B32) 2015; 521 Borra (B16); 129 Lopes (B33) 2016; 23 Lawhern (B31) 2018; 15 Santamaría-Vázquez (B47) 2020 Barachant (B7) 2010 Amaral (B5) 2017; 290 Borra (B15) Bittencourt-Villalpando (B11) 2018; 26 Zhao (B54) 2019; 114 Zou (B56) 2019; 57 Agapov (B3) 2016 Riggins (B44) 2019; 57 Tangermann (B50) 2012; 6 McFarland (B38) 2017; 4 Nakanishi (B40) 2019; 67 Rakotomamonjy (B42) 2008; 55 Krusienski (B29) 2006; 3 Craik (B21) 2019; 16 Zhao (B55) 2020 Sitaram (B49) 2007; 2007 Pinegger (B41) 2017; 12 Demiralp (B23) 2001; 39 Bittencourt-Villalpando (B12) 2020 Blankertz (B14) 2006; 14 Amaral (B4) 2018; 12 Lotte (B34) 2018; 15 Wolpaw (B51) 2012 Simões (B48) 2019 Zhang (B53) 2019; 1 Bamdad (B6) 2015; 10 Krzemiński (B30) 2020 de Arancibia (B22) 2020 Sajda (B46) 2003; 11 Deshpande (B24) 2017; 11 Bishop (B10) 2006 Bostanov (B17) 2006; 117 Drugowitsch (B25) 2013 Manor (B37) 2015; 9 Farwell (B26) 1988; 70 Saha (B45) 2020; 13 Benjamini (B8) 1995; 57 MacKay (B36) 1992; 4 Yger (B52) 2017; 25 Chollet (B20) 2016 Chaudhary (B19) 2016; 12 Guo (B27) 2019; 13 |
References_xml | – start-page: 113 year: 2019 ident: B48 article-title: Applying weightless neural networks to a P300-based brain-computer interface publication-title: World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings doi: 10.1007/978-981-10-9023-3_20 – volume: 26 start-page: 1669 year: 2018 ident: B11 article-title: Stimuli and feature extraction algorithms for brain-computer interfaces: a systematic comparison. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/tnsre.2018.2855801 – year: 2006 ident: B10 publication-title: Pattern Recognition and Machine Learning. – volume: 4 start-page: 194 year: 2017 ident: B38 article-title: EEG-based brain–computer interfaces. publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.11.004 – volume: 55 start-page: 1147 year: 2008 ident: B42 article-title: BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.915728 – volume: 25 start-page: 1753 year: 2017 ident: B52 article-title: Riemannian approaches in brain-computer interfaces: a review. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627016 – volume: 57 start-page: 289 year: 1995 ident: B8 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing. publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1995.tb02031.x – year: 2016 ident: B3 publication-title: Wavelet Algorithm for the Identification of P300 ERP Component. – start-page: 1837 ident: B15 article-title: Convolutional neural network for a P300 brain-computer interface to improve social attention in autistic spectrum disorder publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_223 – start-page: 1769 year: 2015 ident: B28 article-title: Single-trial classification of multi-user P300-based brain-computer interface using riemannian geometry publication-title: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 23 start-page: 82 year: 2016 ident: B33 article-title: A new hybrid motion planner. publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2016.2605403 – start-page: 3 year: 2012 ident: B51 article-title: Brain–computer interfaces: something new under the sun publication-title: Brain–Computer InterfacesPrinciples and Practice doi: 10.1093/acprof:oso/9780195388855.003.0001 – volume: 343 start-page: 154 year: 2019 ident: B43 article-title: Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface. publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.087 – volume: 290 start-page: 105 year: 2017 ident: B5 article-title: A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: a feasibility study. publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.07.029 – start-page: 1894 year: 2020 ident: B18 article-title: Performance evaluation of manifold algorithms on a P300 paradigm based online BCI dataset publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_231 – volume: 12 year: 2017 ident: B41 article-title: Composing only by thought: novel application of the P300 brain-computer interface. publication-title: PLoS One doi: 10.1371/journal.pone.0181584 – volume: 1 start-page: 504 year: 2019 ident: B53 article-title: A survey on deep learning based brain computer interface: recent advances and new frontiers. publication-title: ACM Int. Conf. Proc. Ser. – volume: 90 start-page: e1 year: 2019 ident: B2 article-title: An expanded view of joint attention: skill, engagement, and language in typical development and autism. publication-title: Child Dev. doi: 10.1111/cdev.12973 – start-page: 1853 year: 2020 ident: B39 article-title: Slow cortical potential BCI classification using sparse variational bayesian logistic regression with automatic relevance determination publication-title: Proceedings of the XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_225 – volume: 9 year: 2015 ident: B37 article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI. publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00146 – volume: 11 start-page: 184 year: 2003 ident: B46 article-title: A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814453 – start-page: 1869 year: 2020 ident: B22 article-title: Linear vs nonlinear classification of social joint attention in autism using VR P300-based brain computer interfaces publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_227 – volume: 3 year: 2006 ident: B29 article-title: A comparison of classification techniques for the P300 Speller. publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/4/007 – volume: 521 year: 2015 ident: B32 article-title: Deep learning. publication-title: Nature doi: 10.1038/nature14539 – start-page: 1885 year: 2020 ident: B30 article-title: Classification of P300 component using a riemannian ensemble approach publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_229 – volume: 51 start-page: 1044 year: 2004 ident: B13 article-title: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826692 – start-page: 1875 year: 2020 ident: B12 article-title: Linear SVM algorithm optimization for an EEG-based brain-computer interface used by high functioning autism spectrum disorder participants publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_228 – volume: 57 start-page: 939 year: 2019 ident: B56 article-title: An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface. publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1917-x – volume: 4 start-page: R1 year: 2007 ident: B35 article-title: A review of classification algorithms for EEG-based brain-computer interfaces. publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – volume: 39 start-page: 221 year: 2001 ident: B23 article-title: Wavelet analysis of oddball P300. publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(00)00143-4 – volume: 70 start-page: 510 year: 1988 ident: B26 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. publication-title: Electr. Clin. Neurophysiol. doi: 10.1016/0013-4694(88)90149-6 – volume: 16 year: 2019 ident: B21 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 14 start-page: 153 year: 2006 ident: B14 article-title: The BCI competition III: validating alternative approaches to actual BCI problems. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – volume: 11 year: 2017 ident: B24 article-title: A new generation of brain-computer interfaces driven by discovery of latent EEG-fMRI linkages using tensor decomposition. publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00246 – volume: 57 year: 2019 ident: B44 article-title: P300 development from infancy to adolescence. publication-title: Psychophysiology doi: 10.1111/psyp.13346 – volume: 4 start-page: 415 year: 1992 ident: B36 article-title: Bayesian interpolation. publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – volume: 114 start-page: 67 year: 2019 ident: B54 article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data. publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.02.009 – start-page: 1861 year: 2020 ident: B55 article-title: A feasible classification algorithm for event-related potential (ERP) based brain-computer-interface (BCI) from IFMBE scientific challenge dataset publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_226 – volume: 129 start-page: 55 ident: B16 article-title: Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination. publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.05.032 – volume: 13 year: 2019 ident: B27 article-title: Investigation of visual stimulus with various colors and the layout for the oddball paradigm in evoked related potential-based brain–computer interface. publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00024 – start-page: 1844 year: 2020 ident: B47 article-title: Deep learning architecture based on the combination of convolutional and recurrent layers for ERP-based brain-computer interfaces publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_224 – volume: 12 start-page: 513 year: 2016 ident: B19 article-title: Brain-computer interfaces for communication and rehabilitation. publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.113 – volume: 10 start-page: 355 year: 2015 ident: B6 article-title: Application of BCI systems in neurorehabilitation: a scoping review. publication-title: Disabil. Rehabil. Assist. Technol. doi: 10.3109/17483107.2014.961569 – volume: 67 start-page: 1105 year: 2019 ident: B40 article-title: Facilitating calibration in high-speed BCI spellers via leveraging cross-device shared latent responses. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/tbme.2019.2929745 – start-page: 300 year: 2017 ident: B9 article-title: A review on brain imaging techniques for BCI applications publication-title: Medical Imaging: Concepts, Methodologies, Tools, and Applications doi: 10.4018/978-1-5225-0571-6.ch012 – volume: 2007 year: 2007 ident: B49 article-title: FMRI brain-computer interface: a tool for neuroscientific research and treatment. publication-title: Comput. Intell. Neurosci. doi: 10.1155/2007/25487 – start-page: 1800 year: 2016 ident: B20 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the 2017 IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 13 year: 2020 ident: B45 article-title: Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: a review. publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00087 – volume: 15 year: 2018 ident: B31 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 6 year: 2012 ident: B50 article-title: Review of the BCI competition IV. publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – start-page: 629 year: 2010 ident: B7 article-title: Riemannian geometry applied to BCI classification publication-title: Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science doi: 10.1007/978-3-642-15995-4_78 – volume: 12 year: 2018 ident: B4 article-title: A feasibility clinical trial to improve social attention in autistic spectrum disorder (ASD) using a brain computer interface. publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00477 – year: 2013 ident: B25 article-title: Variational Bayesian inference for linear and logistic regression. publication-title: arXiv – volume: 15 start-page: R1 year: 2018 ident: B34 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – start-page: 1890 year: 2020 ident: B1 article-title: Using time domain and pearson’s correlation to predict attention focus in autistic spectrum disorder from EEG P300 components publication-title: XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 doi: 10.1007/978-3-030-31635-8_230 – volume: 117 start-page: 2627 year: 2006 ident: B17 article-title: The t-CWT: a new ERP detection and quantification method based on the continuous wavelet transform and Student’s t-statistics. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.08.012 |
SSID | ssj0062842 |
Score | 2.4445693 |
Snippet | There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of... |
SourceID | doaj pubmedcentral proquest crossref nii |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 568104 |
SubjectTerms | Algorithms Autism autism spectrum disorder autism spectrum disorder; benchmark dataset; brain-computer interface; EEG; multi-session; multi-subject; P300 benchmark dataset Brain research brain-computer interface Datasets Discriminant analysis EEG EEG; P300; autism spectrum disorder; benchmark dataset; brain-computer interface; multi-session; multi-subject Electroencephalography Interfaces Medical research multi-session multi-subject Neural networks Neuroscience Neurosciences. Biological psychiatry. Neuropsychiatry P300 RC321-571 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQp15QC0VNC5UrVT0gucSJP5LeNrSIVgJVapG4RXZsi1VZgyB74N8z4yQrcmkvvewhnmQdz9jzxp68IeRjAIygKx5YoaRmItiSGatqpl0nC6WtLzl-nHx-oc4uxY8refWs1BfmhA30wMPAHfNgTRWMCdJy4aWyPi-cNAHs1HQq73D1BZ83BVPDGqxg0S2GM0wIwerjEJcRubmL_HMi4BIzL5TI-sG3xOVyhjPnWZLP3M7pS7Iz4kW6GPr5imz5uEv2FhFi5dUj_URTBmfaGt8jD83Jd7A39rPM8y90QdPHtezXwLxBTXTTlbXF3RfagIVer8z9H_rV9ODNegpiC7DEhxUFLEvxOayBBkcbrCTBphIQLO0jBszmek0uT7_9PjljY1EF1gF265njBgbTc6etrcuuFFp22ldVHayyVkpTA4TMgwe3X8H0LB0IVwDqnJDCBaPKfbIdb6N_Q2ghraiR8F1YK6R0lpsSTzWDUoDbCp-RfBrkthsZx7HwxU0LkQfqpU16aVEv7aCXjBxtbrkb6Db-Jtyg5jaCyJSdLoD9tKP9tP-yn4wcgt6hf_jLIXwE1yFrXMiQnL6APzmYLKIdpzd0QgCOw7qidUY-bJphYuJpi4n-do0yUiCZmNIZ0TNLmnV43hKX14niW0vApXn19n-84TvyAgcNk1x4dUC2-_u1PwQk1dv3adI8AWjiG14 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQEEEWuRKFQck0zz8SLigTWlVkKgqoFJvkR3bdNWut-xmD_x7ZpxkRS697CH2brye8cxnz_gbQo48YARVZp7lUijGvSmYNrJiyrYil8q4IsPLyd8v5PkV_3YtrocDt_WQVjnaxGio7bLFM_JjcEMFXsLMq8_3fxhWjcLo6lBC4zHZBRNcwuZrtz69uPwx2mIJxjfGOyXeDQJw3sc1YVtWHfswD8jXnacfIykXn3imSOAP_ibM5xPsOc2c_M8VnT0jTwcMSWe90J-TRy68IHuzAPvnxV_6nsasznhcvkfW9clX0EF2WaTpJzqj8cIt-9mzcVAd7PhkY_BEhtagtTcLvbqlX3QHHq6j0G0G2rleUMC3FH-H1dBgaY3VJdhYFoLFs0WPGV4vydXZ6a-TczYUWmAt4LmO2Uxr7V1mlTFV0RZciVa5sqy8kcYIoSuAlal3IIMSlmxhoXMJQM_ClFqvZfGK7IRlcK8JzYXhFZLAc2O4ENZkusBIp5cSsFzuEpKOk9y0Aws5FsO4a2A3gnJpolwalEvTyyUhH7Zfue8pOB7qXKPkth2RPTs-WK5-N8NibDJvdOnhLwuTcSekcWluhfZg-3Qr0zYhByB3GB9-ZrClBHciKjRuSFifw0v2R41ohiUPg9gqaEIOt82wWDECo4NbbrCP4EgwJlVC1ESTJgOetoT5TaT9VgKwalq-efjlb8kTnA5MacnKfbLTrTbuAHBTZ94Ni-Mfz44UYQ priority: 102 providerName: ProQuest |
Title | BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces |
URI | https://cir.nii.ac.jp/crid/1871146592578029824 https://www.proquest.com/docview/2443956129 https://www.proquest.com/docview/2454409767 https://pubmed.ncbi.nlm.nih.gov/PMC7556208 https://doaj.org/article/1fba8faaf5b14e56be02d5af305ac60c |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfG9sILAgaisFVGQjwgecSJPxIkhJqxMZA2TUClvkV2HLPCmkKbSuy_585JKiJN8JKH-JI4vjvfz1-_I-SFB4ygU-5ZrKRmwtuEGasypl0pY6VtlXA8nHx-oc6m4tNMznZIn96qa8D1rUM7zCc1XV0f_f518w4c_i2OOCHevvb1vEbm7Tg6CvRa4g7Zg8Ck0U_PxXZRQUFPHLcLm7c_NghNgcEfAk49nw_A53Dr5F-x6PQ-udeBSDpptf6A7Hw3D8n-pIYB9OKGvqRhW2eYL98n6_z4Ixghu0yi6A2d0HDiln1p6TioqV1_Z2NxSobmYLZXC7P6Qd-bBkJcQ0FsAua5XlAAuBTfw3IocDTH9BKszwvBwuSixy1ej8j09OTr8RnrMi2wEgBdwxw3xviKO21tlpSJ0LLUVZpm3iprpTQZ4MrIV4AFUvDZxIFwCkjPCSmcNyp5THbrZV09ITSWVmTIAi-sFVI6y02CS51eKQBzcTUiUd_IRdnRkGM2jOsChiOolyLopUC9FK1eRuTV9pGfLQfHv4Rz1NxWEOmzw43l6lvReWPBvTWph1-WlotKKltFsZPGQ-dnShWVI3IIeof64ZXDmBLiicywd0PG-hg-ctBbRNGbbAGNk-Ax4TgbkefbYvBWXIIxdbXcoIwUyDCm9IjogSUNKjwsqedXgfdbSwCrUfr0P5V7Ru5ie-CmFp4ekN1mtakOATk1dkz28pOLy8_jMPMA1w8zPg4-8gd_SBao |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrbA1wQUBALLRgJOCCZ5mE7CRJCmz60S9tVBa3UW2rHNl3BZss-hPpTfCMzTrIil956ySGexE7m7fHMEPLWgY2QpKFjkRQJ407HTGmZscSUIpKJtnGIycknYzk8518vxMUG-dvmwuCxylYmekFtZiXuke-CGooxCTPKvlz_Ztg1CqOrbQuNmiyO7M0fcNkWn0f7gN93UXR4cLY3ZE1XAVaC8bJkJlRKORuaROssLmOeiDKxaZo5LbUWQmVgQwXOwoQp0GdsADgFq8ZwwY1TMob33iObPAZXpkc284Px6bdW9ksQ9j6-KjEXCZyBOo4KbmC266pJhfXBo-CjLwLGO5rQNwwA_VZNJh1bt3tS8z_Vd_iIPGxsVjqoiewx2bDVE7I1qMBfn97Q99SfIvXb81tkke-NgObZaRwEn-iA-gRf9r2u_kFVZdo7K407QDQHLrmaqvlPuq-WoFGXFMAGwA2LKQV7muJ7WA4DhubYzYK1bSiY38t0eKLsKTm_ExQ8I71qVtnnhEZC8wyLznOtuRBGhyrGyKqTEmzHyPZJ0P7komyqnmPzjV8FeD-Il8LjpUC8FDVe-uTD-pHruuTHbcA5Ym4NiNW6_Y3Z_EfRMH8ROq1SB58sdMitkNoGkRHKgaxVpQzKPtkBvMP68BqCCwvqS2QoTLFAfgSTbLcUUTQiBhaxZog-ebMeBuGAER9V2dkKYQTHgmYy6ZOkQ0mdBXdHqsmVLzOeCLCNg_TF7ZO_JveHZyfHxfFofPSSPMBfg8dpwnSb9Jbzld0Bm22pXzWMQsnlXfPmP2oYUj4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCXFBQEEstGAk4IBkmocfCRJCm25XXQqrFVCpt2DHNl3BZss-hPprfB0zeazIpbdecognsZN5e8YzhLz0YCOoJPQskkIx7k3MtJEpU7YQkVTGxSEeTv48kSdn_OO5ON8hf9uzMJhW2crESlDbRYF75IeghmI8hBmlh75Ji5gORx8ufzPsIIWR1radRk0ip-7qD7hvq_fjIeD6VRSNjr8dnbCmwwArwJBZMxtqrb0LrTImjYuYK1EolySpN9IYIXQK9lTgHUyeAK3GFoATsHAsF9x6LWN47y2yq8ArCnpkNzueTL-0ekCC4K9irRLPJYFjUMdUwSWELyhnJdYKj4K3VUEw3tGKVfMA0HXlbNaxe7tZm_-pwdE9crexX-mgJrj7ZMeVD8jeoATffX5FX9Mqo7Taqt8jq-xoDPTPpnEQvKMDWh32ZV_rSiBUl7a9szG4G0Qz4JiLuV7-pEO9Bu26pgA2AM5YzSnY1hTfwzIYsDTDzhasbUnBqn1Nj9llD8nZjaDgEemVi9I9JjQShqdYgJ4bw4WwJtQxRlm9lGBHRq5PgvYn50VTAR0bcfzKwRNCvOQVXnLES17jpU_ebB-5rMt_XAecIea2gFi5u7qxWP7IG0GQh97oxMMnCxNyJ6RxQWSF9iB3dSGDok8OAO-wPryG4M6CKhMpClYslh_BJPstReSNuIFFbJmjT15sh0FQYPRHl26xQRjBsbiZVH2iOpTUWXB3pJxdVCXHlQA7OUieXD_5c3IbeDL_NJ6cPiV38M9gZk2Y7JPeerlxB2C-rc2zhk8o-X7TrPkPQd5Wcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCIAUT-P300%3A+A+Multi-Session+and+Multi-Subject+Benchmark+Dataset+on+Autism+for+P300-Based+Brain-Computer-Interfaces&rft.jtitle=Frontiers+in+Neuroscience&rft.au=Simoes+M.&rft.au=Borra+D.&rft.au=Santamaria-Vazquez+E.&rft.au=de+Arancibia+L.&rft.date=2020-09-18&rft.pub=Frontiers+Media+SA&rft.eissn=1662-453X&rft.volume=14&rft_id=info:doi/10.3389%2Ffnins.2020.568104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |