Discrete Nonlinear Optimization by State-Space Decompositions

This paper investigates a decomposition approach for binary optimization problems with nonlinear objectives and linear constraints. Our methodology relies on the partition of the objective function into separate low-dimensional dynamic programming (DP) models, each of which can be equivalently repre...

Full description

Saved in:
Bibliographic Details
Published inManagement science Vol. 64; no. 10; pp. 4700 - 4720
Main Authors Bergman, David, Cire, Andre A.
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.10.2018
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates a decomposition approach for binary optimization problems with nonlinear objectives and linear constraints. Our methodology relies on the partition of the objective function into separate low-dimensional dynamic programming (DP) models, each of which can be equivalently represented as a shortest-path problem in an underlying state-transition graph. We show that the associated transition graphs can be related by a mixed-integer linear program (MILP) so as to produce exact solutions to the original nonlinear problem. To address DPs with large state spaces, we present a general relaxation mechanism that dynamically aggregates states during the construction of the transition graphs. The resulting MILP provides both lower and upper bounds to the nonlinear function, and it may be embedded in branch-and-bound procedures to find provably optimal solutions. We describe how to specialize our technique for structured objectives (e.g., submodular functions) and consider three problems arising in revenue management, portfolio optimization, and healthcare. Numerical studies indicate that the proposed technique often outperforms state-of-the-art approaches by orders of magnitude in these applications. Data and the online appendix are available at https://doi.org/10.1287/mnsc.2017.2849 . This paper was accepted by Yinyu Ye, optimization.
AbstractList This paper investigates a decomposition approach for binary optimization problems with nonlinear objectives and linear constraints. Our methodology relies on the partition of the objective function into separate low-dimensional dynamic programming (DP) models, each of which can be equivalently represented as a shortest-path problem in an underlying state-transition graph. We show that the associated transition graphs can be related by a mixed-integer linear program (MILP) so as to produce exact solutions to the original nonlinear problem. To address DPs with large state spaces, we present a general relaxation mechanism that dynamically aggregates states during the construction of the transition graphs. The resulting MILP provides both lower and upper bounds to the nonlinear function, and it may be embedded in branch-and-bound procedures to find provably optimal solutions. We describe how to specialize our technique for structured objectives (e.g., submodular functions) and consider three problems arising in revenue management, portfolio optimization, and healthcare. Numerical studies indicate that the proposed technique often outperforms state-of-the-art approaches by orders of magnitude in these applications.
This paper investigates a decomposition approach for binary optimization problems with nonlinear objectives and linear constraints. Our methodology relies on the partition of the objective function into separate low-dimensional dynamic programming (DP) models, each of which can be equivalently represented as a shortest-path problem in an underlying state-transition graph. We show that the associated transition graphs can be related by a mixed-integer linear program (MILP) so as to produce exact solutions to the original nonlinear problem. To address DPs with large state spaces, we present a general relaxation mechanism that dynamically aggregates states during the construction of the transition graphs. The resulting MILP provides both lower and upper bounds to the nonlinear function, and it may be embedded in branch-and-bound procedures to find provably optimal solutions. We describe how to specialize our technique for structured objectives (e.g., submodular functions) and consider three problems arising in revenue management, portfolio optimization, and healthcare. Numerical studies indicate that the proposed technique often outperforms state-of-the-art approaches by orders of magnitude in these applications. Data and the online appendix are available at https://doi.org/10.1287/mnsc.2017.2849 . This paper was accepted by Yinyu Ye, optimization.
This paper investigates a decomposition approach for binary optimization problems with nonlinear objectives and linear constraints. Our methodology relies on the partition of the objective function into separate low-dimensional dynamic programming (DP) models, each of which can be equivalently represented as a shortest-path problem in an underlying state-transition graph. We show that the associated transition graphs can be related by a mixed-integer linear program (MILP) so as to produce exact solutions to the original nonlinear problem. To address DPs with large state spaces, we present a general relaxation mechanism that dynamically aggregates states during the construction of the transition graphs. The resulting MILP provides both lower and upper bounds to the nonlinear function, and it may be embedded in branch-and-bound procedures to find provably optimal solutions. We describe how to specialize our technique for structured objectives (e.g., submodular functions) and consider three problems arising in revenue management, portfolio optimization, and healthcare. Numerical studies indicate that the proposed technique often outperforms state-of-the-art approaches by orders of magnitude in these applications. History: Accepted by Yinyu Ye, optimization. Funding: The research of A. A. Cire was supported by the Natural Sciences and Engineering Research Council of Canada [Discovery Grant RGPIN-2015-04152]. Supplemental Material: Data and the online appendix are available at Keywords: nonlinear * algorithms * programming * integer * network-graphs * dynamic programming * optimal control * finite state
This paper investigates a decomposition approach for binary optimization problems with nonlinear objectives and linear constraints. Our methodology relies on the partition of the objective function into separate low-dimensional dynamic programming (DP) models, each of which can be equivalently represented as a shortest-path problem in an underlying state-transition graph. We show that the associated transition graphs can be related by a mixed-integer linear program (MILP) so as to produce exact solutions to the original nonlinear problem. To address DPs with large state spaces, we present a general relaxation mechanism that dynamically aggregates states during the construction of the transition graphs. The resulting MILP provides both lower and upper bounds to the nonlinear function, and it may be embedded in branch-and-bound procedures to find provably optimal solutions. We describe how to specialize our technique for structured objectives (e.g., submodular functions) and consider three problems arising in revenue management, portfolio optimization, and healthcare. Numerical studies indicate that the proposed technique often outperforms state-of-the-art approaches by orders of magnitude in these applications. Data and the online appendix are available at https://doi.org/10.1287/mnsc.2017.2849 . This paper was accepted by Yinyu Ye, optimization.
Audience Trade
Academic
Author Cire, Andre A.
Bergman, David
Author_xml – sequence: 1
  givenname: David
  surname: Bergman
  fullname: Bergman, David
– sequence: 2
  givenname: Andre A.
  surname: Cire
  fullname: Cire, Andre A.
BookMark eNqFkt1rHCEUxaUk0E3a174VBgp96mz9WEd96ENI-gUheUj6LOrc2brs6FRdSPrX12FD04WFIijo79zruZwzdBJiAITeELwkVIqPY8huSTERSypX6gVaEE67lnNMTtACY8pborB6ic5y3mCMhRTdAn268tklKNDcxLD1AUxqbqfiR__bFB9DYx-bu2IKtHeTcdBcgYvjFLOfH_MrdDqYbYbXT-c5-vHl8_3lt_b69uv3y4vr1vGOl9Yaafuhl7YbesVcZ4nsjOGdHZzqewwdt6w3HIRS_YowQS2AwBQqqwQwx87Ru33dKcVfO8hFb-IuhdpSU8IIUdULeabWZgvahyGWZNxYDeoLzpVkGCteqfYItYYAyWzrRAdfrw_45RG-rh5G744K3h8IKlPgoazNLmd9CH74B7S7XMef65b9-mfJe_7YR1yKOScY9JT8aNKjJljPCdBzAvScAD0noAre7gWbXGL6S6-kWElG2fMkZlNpzP-r9weAUbxf
CitedBy_id crossref_primary_10_1287_opre_2019_1953
crossref_primary_10_1016_j_ejor_2023_12_021
crossref_primary_10_1007_s12532_020_00191_6
crossref_primary_10_1287_trsc_2022_1194
crossref_primary_10_1007_s10601_019_09306_w
crossref_primary_10_1287_opre_2022_2353
crossref_primary_10_1287_ijoc_2019_0163
crossref_primary_10_1287_opre_2020_1979
crossref_primary_10_1016_j_disopt_2020_100610
crossref_primary_10_1007_s10107_021_01699_y
crossref_primary_10_1007_s10601_017_9280_3
crossref_primary_10_1287_ijoc_2022_1170
crossref_primary_10_1080_24725854_2020_1828668
crossref_primary_10_1287_ijoc_2022_1194
crossref_primary_10_1287_ijoc_2021_1125
crossref_primary_10_1016_j_ejor_2022_03_033
crossref_primary_10_1007_s10107_020_01607_w
crossref_primary_10_1016_j_neucom_2022_11_024
Cites_doi 10.1016/j.artint.2006.11.003
10.1007/s10690-014-9180-0
10.1007/978-3-642-15396-9_23
10.1007/978-1-4614-7052-6
10.1007/978-3-642-21311-3_5
10.1287/opre.2013.1221
10.1016/S0378-4266(02)00271-6
10.1287/opre.1070.0445
10.1016/j.dss.2012.10.046
10.1287/opre.2014.1256
10.1287/opre.2015.1471
10.1007/s10288-010-0122-z
10.1109/TC.1986.1676819
10.1287/ijoc.1110.0456
10.1287/ijoc.1110.0461
10.1287/opre.2013.1186
10.1007/3-540-48057-9_15
10.1002/9781118625651
10.1007/s10107-003-0467-6
10.1287/opre.35.6.832
10.1287/opre.38.1.127
10.1017/CBO9781139177801.004
10.1287/opre.2015.1450
10.1007/s00186-012-0408-3
10.1016/j.dam.2012.03.003
10.1017/CBO9780511804441
10.1080/14697681003756877
10.1287/opre.1080.0567
10.1007/3-7643-7374-1
10.1007/978-3-642-38171-3_7
10.1287/ijoc.2015.0648
10.1016/j.orl.2008.04.006
10.1287/msom.1050.0083
10.1287/mnsc.1050.0418
10.1007/s10479-006-0145-1
10.1007/3-540-45622-8_4
10.1080/10556788.2017.1335312
10.1007/s10107-005-0585-4
10.1016/j.ejor.2015.05.053
10.1007/978-1-4757-3155-2
10.1287/opre.2015.1355
10.1287/ijoc.2013.0561
10.1287/mnsc.2015.2312
10.1002/net.3230110207
10.1287/opre.2015.1424
10.1007/s10107-005-0581-8
10.1016/j.sorms.2010.08.001
10.2307/3215235
10.1007/978-3-540-74970-7_11
ContentType Journal Article
Copyright 2017 INFORMS
COPYRIGHT 2018 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Oct 2018
Copyright_xml – notice: 2017 INFORMS
– notice: COPYRIGHT 2018 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Oct 2018
DBID AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1287/mnsc.2017.2849
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList




CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1526-5501
EndPage 4720
ExternalDocumentID A559830095
10_1287_mnsc_2017_2849
48748323
mnsc.2017.2849
Genre Research Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 08R
0R1
1AW
1OL
29M
2AX
3EH
3R3
3V.
4
4.4
41
5GY
6XO
7WY
7X5
85S
8AO
8FI
8FJ
8FL
8VB
AABCJ
AAIKC
AAPBV
AAYJJ
ABBHK
ABEFU
ABIVO
ABNOP
ABPPZ
ABSIS
ABTRL
ABUFD
ABUWG
ABZEH
ACDCL
ACHQT
ACNCT
ACTDY
ACVYA
ACYGS
ADBBV
ADDCT
ADGDI
ADNFJ
AEILP
AENEX
AETEA
AEUPB
AFDAS
AFFDN
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
AQUVI
AZQEC
B-7
BBAFP
BENPR
BEZIV
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DU5
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HGD
HVGLF
H~9
IAO
IEA
IGG
IOF
IPO
ISM
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
L8O
LI
M0C
M0T
M2M
MV1
N95
NEJ
NIEAY
P-O
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
REX
RNS
RPU
SA0
SJN
TH9
TN5
U5U
UKR
VOH
VQA
WH7
X
XFK
XHC
XI7
XXP
XZL
Y99
YCJ
YNT
YZZ
ZCG
ZL0
-~X
18M
AABXT
AAMNW
AAWTO
ABDNZ
ABKVW
ABXSQ
ABYYQ
ACGFO
ADEPB
ADNWM
AEGXH
AEMOZ
AFAIT
AFTQD
AGHSJ
AHAJD
AIAGR
BAAKF
ICW
IPC
IPY
ISL
JPPEU
K1G
K6~
OFU
XSW
.-4
41~
AAYOK
AAYXX
ABLWH
ADACV
ADULT
ALIPV
CCPQU
CITATION
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
LPU
PQBIZ
PQBZA
PSYQQ
UKHRP
YYP
ADMHG
8BJ
FQK
JBE
ID FETCH-LOGICAL-c565t-ba8bdfd8b6fd93c6b186aa56bfc9dd0e65b3da5e799d41372bee702e93c97e3c3
ISSN 0025-1909
IngestDate Fri Sep 13 04:57:27 EDT 2024
Wed May 29 17:40:48 EDT 2024
Wed Oct 02 03:24:46 EDT 2024
Tue May 28 06:10:47 EDT 2024
Sat Sep 28 20:54:03 EDT 2024
Tue May 28 02:01:09 EDT 2024
Thu Sep 12 18:12:42 EDT 2024
Fri Feb 02 07:06:04 EST 2024
Wed Jan 06 02:48:08 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-ba8bdfd8b6fd93c6b186aa56bfc9dd0e65b3da5e799d41372bee702e93c97e3c3
ORCID 0000-0002-5566-5224
0000-0001-5993-4295
PQID 2131198761
PQPubID 40737
PageCount 21
ParticipantIDs gale_infotracgeneralonefile_A559830095
crossref_primary_10_1287_mnsc_2017_2849
jstor_primary_48748323
informs_primary_10_1287_mnsc_2017_2849
proquest_journals_2131198761
gale_infotracacademiconefile_A559830095
gale_incontextgauss__A559830095
gale_businessinsightsgauss_A559830095
gale_infotracmisc_A559830095
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Management science
PublicationYear 2018
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B64
B21
B65
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
B63
Cook WJ (B26) 1998
Sahinidis NV (B56) 2016
Nowak I (B51) 2005; 152
Bertsekas DP (B14) 1999
Derman C (B29) 1970
Birge JR (B17) 1997
Tawarmalani M (B60) 2002; 65
Ahuja RK (B3) 1993
Beardsley XW (B10) 2012; 1
Ebendt R (B31) 2005
Bertsekas DP (B15) 2012
References_xml – ident: B12
– ident: B35
– ident: B60
– ident: B3
– ident: B41
– ident: B45
– ident: B7
– ident: B29
– ident: B64
– ident: B25
– ident: B50
– ident: B21
– ident: B16
– ident: B31
– ident: B58
– ident: B39
– ident: B54
– ident: B61
– ident: B59
– ident: B13
– ident: B2
– ident: B40
– ident: B28
– ident: B44
– ident: B49
– ident: B65
– ident: B6
– ident: B24
– ident: B48
– ident: B17
– ident: B30
– ident: B34
– ident: B51
– ident: B38
– ident: B55
– ident: B9
– ident: B14
– ident: B10
– ident: B43
– ident: B20
– ident: B1
– ident: B27
– ident: B62
– ident: B5
– ident: B47
– ident: B23
– ident: B18
– ident: B33
– ident: B52
– ident: B37
– ident: B56
– ident: B8
– ident: B36
– ident: B11
– ident: B42
– ident: B26
– ident: B4
– ident: B46
– ident: B63
– ident: B22
– ident: B32
– ident: B15
– ident: B57
– ident: B19
– ident: B53
– ident: B28
  doi: 10.1016/j.artint.2006.11.003
– volume-title: Dynamic Programming and Optimal Control
  year: 2012
  ident: B15
  contributor:
    fullname: Bertsekas DP
– ident: B58
  doi: 10.1007/s10690-014-9180-0
– volume-title: Combinatorial Optimization
  year: 1998
  ident: B26
  contributor:
    fullname: Cook WJ
– ident: B37
  doi: 10.1007/978-3-642-15396-9_23
– ident: B57
  doi: 10.1007/978-1-4614-7052-6
– volume-title: Network Flows: Theory, Algorithms, and Applications
  year: 1993
  ident: B3
  contributor:
    fullname: Ahuja RK
– ident: B11
  doi: 10.1007/978-3-642-21311-3_5
– ident: B23
  doi: 10.1287/opre.2013.1221
– ident: B55
  doi: 10.1016/S0378-4266(02)00271-6
– ident: B2
  doi: 10.1287/opre.1070.0445
– ident: B7
  doi: 10.1016/j.dss.2012.10.046
– ident: B27
  doi: 10.1287/opre.2014.1256
– ident: B40
  doi: 10.1287/opre.2015.1471
– ident: B25
  doi: 10.1007/s10288-010-0122-z
– volume-title: Advanced BDD Optimization
  year: 2005
  ident: B31
  contributor:
    fullname: Ebendt R
– ident: B19
  doi: 10.1109/TC.1986.1676819
– ident: B8
  doi: 10.1287/ijoc.1110.0456
– volume-title: Nonlinear Programming
  year: 1999
  ident: B14
  contributor:
    fullname: Bertsekas DP
– volume: 65
  volume-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming—Theory, Algorithms, Software, and Applications
  year: 2002
  ident: B60
  contributor:
    fullname: Tawarmalani M
– ident: B6
  doi: 10.1287/ijoc.1110.0461
– ident: B52
  doi: 10.1287/opre.2013.1186
– ident: B47
  doi: 10.1007/3-540-48057-9_15
– volume: 1
  start-page: 13
  issue: 1
  year: 2012
  ident: B10
  publication-title: Comm. Math. Finance
  contributor:
    fullname: Beardsley XW
– ident: B34
  doi: 10.1002/9781118625651
– ident: B61
  doi: 10.1007/s10107-003-0467-6
– ident: B32
  doi: 10.1287/opre.35.6.832
– ident: B45
  doi: 10.1287/opre.38.1.127
– ident: B41
  doi: 10.1017/CBO9781139177801.004
– ident: B33
  doi: 10.1287/opre.2015.1450
– ident: B9
  doi: 10.1007/s00186-012-0408-3
– ident: B46
  doi: 10.1016/j.dam.2012.03.003
– ident: B18
  doi: 10.1017/CBO9780511804441
– ident: B36
  doi: 10.1080/14697681003756877
– ident: B49
  doi: 10.1287/opre.1080.0567
– volume: 152
  volume-title: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming
  year: 2005
  ident: B51
  doi: 10.1007/3-7643-7374-1
  contributor:
    fullname: Nowak I
– ident: B38
  doi: 10.1007/978-3-642-38171-3_7
– volume-title: Finite State Markovian Decision Processes
  year: 1970
  ident: B29
  contributor:
    fullname: Derman C
– ident: B13
  doi: 10.1287/ijoc.2015.0648
– ident: B5
  doi: 10.1016/j.orl.2008.04.006
– volume-title: Introduction to Stochastic Programming
  year: 1997
  ident: B17
  contributor:
    fullname: Birge JR
– ident: B59
  doi: 10.1287/msom.1050.0083
– ident: B16
  doi: 10.1287/mnsc.1050.0418
– ident: B44
  doi: 10.1007/s10479-006-0145-1
– ident: B48
  doi: 10.1007/3-540-45622-8_4
– ident: B63
  doi: 10.1080/10556788.2017.1335312
– ident: B50
  doi: 10.1007/s10107-005-0585-4
– ident: B64
  doi: 10.1016/j.ejor.2015.05.053
– ident: B53
  doi: 10.1007/978-1-4757-3155-2
– ident: B43
  doi: 10.1287/opre.2015.1355
– ident: B12
  doi: 10.1287/ijoc.2013.0561
– ident: B21
  doi: 10.1287/mnsc.2015.2312
– volume-title: BARON User Manual 16.8.24: Global Optimization of Mixed-Integer Nonlinear Programs
  year: 2016
  ident: B56
  contributor:
    fullname: Sahinidis NV
– ident: B22
  doi: 10.1002/net.3230110207
– ident: B30
  doi: 10.1287/opre.2015.1424
– ident: B62
  doi: 10.1007/s10107-005-0581-8
– ident: B42
  doi: 10.1016/j.sorms.2010.08.001
– ident: B20
  doi: 10.2307/3215235
– ident: B4
  doi: 10.1007/978-3-540-74970-7_11
SSID ssj0007876
Score 2.4435217
Snippet This paper investigates a decomposition approach for binary optimization problems with nonlinear objectives and linear constraints. Our methodology relies on...
SourceID proquest
gale
crossref
jstor
informs
SourceType Aggregation Database
Publisher
StartPage 4700
SubjectTerms algorithms
Analysis
Artificial intelligence
Dynamic programming
finite state
Health services administration
Heuristic
integer
Linear programming
Mathematical optimization
network-graphs
nonlinear
optimal control
Optimization
Portfolio management
programming
Title Discrete Nonlinear Optimization by State-Space Decompositions
URI https://www.jstor.org/stable/48748323
https://www.proquest.com/docview/2131198761/abstract/
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFagXxKtiS4EcgB5WWZL4kfWhh6W0qpC6INpKvUV27Kx6aFptsgf49Z1JnKyjFvG4WKto4k3mc76ZsWbGhLyXiYql4TbUWoqQGW5ClcsCyFAwZYVRymDt8MlcHJ-zrxf8Yn3qWlNdUutJ_uveupL_QRWuAa5YJfsPyPaTwgX4DfjCCAjD-FcYf7mEjx683vG8bXihluNvQAFXrrYSXcvGmQxPITLGBCFMIO-ytHy3dJ0EM3YmsQ_T7XLhNkm99PfV_oHb024SIsezib97EE_7PDQXUc4h1jw59Rky4SE4CS2NWUeKiQghkol91mx7j3erI_I4kKVR5NlTljbVbne5OsHdjqOrssJOknE6AUMp11apzxWEiIoB7dCHZDNJJYcAe_Pz4fz7j97eAuWI7mBefHLXmhOm_zScfOB6OAP8qO1PW3XpqHdMcuNnnD0lT1yAEMxatJ-RB7Z8Th539QkvSA960IMe-KAH-mfggR4MQX9Jzo8Ozw6OQ3cGRpiDq12HWk21KcxUi8JImgsdT4VSXOgil8ZEVnBNjeI2ldKAP5Im2to0SizIytTSnG6TjfK6tK9IAJGh4lSnmjLDrNUKuJsaig2DDNzERmSvU09207Y6yTBEBEVmqMgMFZmhIkfkA2ovc-ekwlDhTlK1UKuqymbY85-i7z4i7xo57DNSYiJTKzCQ2HMSxXW9VLlyRSHwxNiXbCD5cSC5aLuy3ye4OxAEusyH8zjI__iS282K6MW6hQh_0C2RzJFBlSXYtkrCSox3fnffa7K1_gJ3yUa9XNk34NHW-q1b0rcGuJ-B
link.rule.ids 315,786,790,27957,27958,33779
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Nonlinear+Optimization+by+State-Space+Decompositions&rft.jtitle=Management+science&rft.au=Bergman%2C+David&rft.au=Cire%2C+Andre+A.&rft.date=2018-10-01&rft.pub=INFORMS&rft.issn=0025-1909&rft.eissn=1526-5501&rft.volume=64&rft.issue=10&rft.spage=4700&rft.epage=4720&rft_id=info:doi/10.1287%2Fmnsc.2017.2849&rft.externalDocID=48748323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon