Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant

Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 196; p. 107788
Main Authors Li, Yuguo, Qian, Hua, Hang, Jian, Chen, Xuguang, Cheng, Pan, Ling, Hong, Wang, Shengqi, Liang, Peng, Li, Jiansen, Xiao, Shenglan, Wei, Jianjian, Liu, Li, Cowling, Benjamin J., Kang, Min
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-1323
1873-684X
DOI10.1016/j.buildenv.2021.107788

Cover

Loading…
Abstract Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. [Display omitted] •This outbreak involved ten infected persons in three families.•Full video recording at time of infection allows restoration of the scene.•Time-averaged ventilation rates were only 0.9 L/s per person in the restaurant.•Insufficient ventilation played a role in this outbreak of COVID-19.
AbstractList Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.
Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. [Display omitted] •This outbreak involved ten infected persons in three families.•Full video recording at time of infection allows restoration of the scene.•Time-averaged ventilation rates were only 0.9 L/s per person in the restaurant.•Insufficient ventilation played a role in this outbreak of COVID-19.
Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.
Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. Image 1
Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.
ArticleNumber 107788
Author Xiao, Shenglan
Li, Yuguo
Liu, Li
Wei, Jianjian
Kang, Min
Hang, Jian
Liang, Peng
Li, Jiansen
Cowling, Benjamin J.
Qian, Hua
Ling, Hong
Chen, Xuguang
Cheng, Pan
Wang, Shengqi
Author_xml – sequence: 1
  givenname: Yuguo
  orcidid: 0000-0002-2281-4529
  surname: Li
  fullname: Li, Yuguo
  email: liyg@hku.hk
  organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Hua
  orcidid: 0000-0002-7237-7806
  surname: Qian
  fullname: Qian, Hua
  organization: School of Energy and Environment, Southeast University, Nanjing, China
– sequence: 3
  givenname: Jian
  surname: Hang
  fullname: Hang, Jian
  organization: School of Atmospheric Sciences, Sun Yat-sen University and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
– sequence: 4
  givenname: Xuguang
  surname: Chen
  fullname: Chen, Xuguang
  organization: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
– sequence: 5
  givenname: Pan
  orcidid: 0000-0002-2392-0366
  surname: Cheng
  fullname: Cheng, Pan
  organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 6
  givenname: Hong
  orcidid: 0000-0001-6231-2470
  surname: Ling
  fullname: Ling, Hong
  organization: School of Atmospheric Sciences, Sun Yat-sen University and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
– sequence: 7
  givenname: Shengqi
  surname: Wang
  fullname: Wang, Shengqi
  organization: School of Energy and Environment, Southeast University, Nanjing, China
– sequence: 8
  givenname: Peng
  surname: Liang
  fullname: Liang, Peng
  organization: Guangdong Field Epidemiology Training Program, Ganzi Tibetan Autonomous Prefecture Center for Disease Control and Prevention, Sichuan, China
– sequence: 9
  givenname: Jiansen
  surname: Li
  fullname: Li, Jiansen
  organization: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
– sequence: 10
  givenname: Shenglan
  surname: Xiao
  fullname: Xiao, Shenglan
  organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
– sequence: 11
  givenname: Jianjian
  surname: Wei
  fullname: Wei, Jianjian
  organization: Institute of Refrigeration and Cryogenics and Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
– sequence: 12
  givenname: Li
  orcidid: 0000-0001-8512-8676
  surname: Liu
  fullname: Liu, Li
  organization: School of Architecture, Tsinghua University, Beijing, China
– sequence: 13
  givenname: Benjamin J.
  surname: Cowling
  fullname: Cowling, Benjamin J.
  organization: School of Public Health, The University of Hong Kong, Hong Kong, China
– sequence: 14
  givenname: Min
  surname: Kang
  fullname: Kang, Min
  email: kangmin@cdcp.org.cn
  organization: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33746341$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEYhYNU7Lb6F8qAN97Mmo9JMgERy-IXFC2tLd6FJPOOZplN1iSz0H9vyrZFe9OLEEieczjve47QQYgBEDoheEkwEW_XSzv7aYCwW1JMSX2Usu-foQXpJWtF3_08QAvMBG4Jo-wQHeW8xlWoWPcCHTImO8E6skDfzlO0xk7QGJ9sTAGakkzIG5-zj6GJY3N5enHZruJ1SxsfGtNsY0zTTbODUPxkCgxNglzMXGXlJXo-minDq7v7GF19-vhj9aU9-_756-r0rHVc8NIqYXvOBkyMoZbxAaQae7CUjb1lUM8IauQjFVaN1hjnhJWdJIoTxwELw47R-73vdrYbGFzNksykt8lvTLrR0Xj9_0_wv_WvuNNS8U5KVg3e3Bmk-Geu-XWd2ME0mQBxzpryujxBKJMVff0IXcc5hTpepRglCvdKVOrk30QPUe5XXQGxB1yKOScYHxCC9W2neq3vO9W3nep9p1X47pHQ-WJKbadO5qen5R_2cqh97DwknZ2H4GDwCVzRQ_RPWfwFFZPCuA
CitedBy_id crossref_primary_10_1093_cid_ciac334
crossref_primary_10_3390_app12189360
crossref_primary_10_1177_23998083221107019
crossref_primary_10_1016_j_enbenv_2023_05_005
crossref_primary_10_3390_ijerph19159270
crossref_primary_10_1016_j_enbuild_2024_113910
crossref_primary_10_1016_j_jhazmat_2024_136040
crossref_primary_10_1016_j_jece_2024_114877
crossref_primary_10_1360_TB_2022_0811
crossref_primary_10_3390_buildings12020180
crossref_primary_10_1016_j_buildenv_2023_110594
crossref_primary_10_1038_s42949_022_00074_w
crossref_primary_10_1016_j_buildenv_2021_108278
crossref_primary_10_1016_j_buildenv_2024_112256
crossref_primary_10_1051_e3sconf_202235601046
crossref_primary_10_1016_j_indenv_2025_100077
crossref_primary_10_1063_5_0160579
crossref_primary_10_1016_j_buildenv_2024_111161
crossref_primary_10_1098_rspa_2021_0383
crossref_primary_10_1016_j_jobe_2023_107913
crossref_primary_10_1088_1742_6596_2478_12_122043
crossref_primary_10_3390_su15032546
crossref_primary_10_1016_j_envint_2022_107153
crossref_primary_10_1016_j_scs_2021_103256
crossref_primary_10_1080_00038628_2022_2080637
crossref_primary_10_3390_buildings13010102
crossref_primary_10_1016_j_biologicals_2023_101680
crossref_primary_10_1016_j_buildenv_2022_109091
crossref_primary_10_1016_j_foodhyd_2024_110603
crossref_primary_10_1080_23748834_2023_2294642
crossref_primary_10_1016_j_buildenv_2024_111605
crossref_primary_10_1016_j_jhazmat_2025_137782
crossref_primary_10_3390_electrochem3020019
crossref_primary_10_1177_1420326X221098753
crossref_primary_10_1016_j_buildenv_2025_112527
crossref_primary_10_1021_acsestengg_1c00369
crossref_primary_10_1017_flo_2024_11
crossref_primary_10_1063_5_0070528
crossref_primary_10_3390_vaccines10060847
crossref_primary_10_1016_j_buildenv_2023_110343
crossref_primary_10_1016_j_buildenv_2021_108027
crossref_primary_10_1016_j_jobe_2022_105466
crossref_primary_10_1177_1420326X231154011
crossref_primary_10_1016_j_buildenv_2022_109415
crossref_primary_10_1016_j_buildenv_2024_111174
crossref_primary_10_1016_j_jhazmat_2022_129075
crossref_primary_10_1016_j_jobe_2023_107109
crossref_primary_10_1063_5_0163971
crossref_primary_10_1371_journal_pcbi_1012823
crossref_primary_10_1080_02786826_2023_2181142
crossref_primary_10_1080_09613218_2023_2185584
crossref_primary_10_3390_fluids7050176
crossref_primary_10_1016_j_icheatmasstransfer_2021_105744
crossref_primary_10_48130_emst_0024_0006
crossref_primary_10_1016_j_icheatmasstransfer_2021_105745
crossref_primary_10_3889_oamjms_2023_11160
crossref_primary_10_3346_jkms_2021_36_e140
crossref_primary_10_3390_su142214966
crossref_primary_10_1007_s42770_023_01089_w
crossref_primary_10_55905_cuadv16n8_078
crossref_primary_10_1016_j_jobe_2023_106807
crossref_primary_10_1111_ina_12928
crossref_primary_10_1016_j_buildenv_2021_108131
crossref_primary_10_3389_fbuil_2022_986923
crossref_primary_10_1016_j_buildenv_2021_108495
crossref_primary_10_1063_5_0063475
crossref_primary_10_1063_5_0069454
crossref_primary_10_1177_1420326X211048539
crossref_primary_10_1136_bmjopen_2021_055206
crossref_primary_10_1007_s11783_024_1845_y
crossref_primary_10_1016_j_jobe_2022_105599
crossref_primary_10_3390_ijerph191811300
crossref_primary_10_3130_aije_88_300
crossref_primary_10_24171_j_phrp_2022_0149
crossref_primary_10_3861_kenko_87_5_214
crossref_primary_10_1016_j_jobe_2024_109016
crossref_primary_10_1017_ice_2022_186
crossref_primary_10_1016_j_heliyon_2024_e31160
crossref_primary_10_1016_j_jinf_2021_05_030
crossref_primary_10_1016_j_jobe_2024_109132
crossref_primary_10_1038_s41598_024_79525_6
crossref_primary_10_1055_s_0041_1740582
crossref_primary_10_1093_pnasnexus_pgac223
crossref_primary_10_3390_buildings14010115
crossref_primary_10_1016_j_heha_2022_100006
crossref_primary_10_1093_pnasnexus_pgac218
crossref_primary_10_1016_j_buildenv_2024_111632
crossref_primary_10_1016_j_buildenv_2025_112739
crossref_primary_10_1111_ina_12937
crossref_primary_10_1016_j_buildenv_2023_110489
crossref_primary_10_3389_fmicb_2023_1183877
crossref_primary_10_1016_j_buildenv_2024_111993
crossref_primary_10_1016_j_buildenv_2024_112049
crossref_primary_10_1136_bmj_n1030
crossref_primary_10_1016_j_buildenv_2021_108367
crossref_primary_10_1021_acsomega_1c01489
crossref_primary_10_1038_s41598_023_34498_w
crossref_primary_10_1080_19475705_2024_2322482
crossref_primary_10_3390_app14072948
crossref_primary_10_3390_su151914232
crossref_primary_10_1016_j_scs_2024_105279
crossref_primary_10_1186_s12879_023_08819_3
crossref_primary_10_1016_j_jobe_2024_108839
crossref_primary_10_3390_covid1030050
crossref_primary_10_1016_j_bios_2022_114663
crossref_primary_10_1177_21582440231206664
crossref_primary_10_3390_su151511804
crossref_primary_10_1002_2475_8876_12463
crossref_primary_10_1098_rsta_2023_0130
crossref_primary_10_3390_ijerph20020976
crossref_primary_10_1111_ina_13119
crossref_primary_10_3390_buildings15050755
crossref_primary_10_3389_fpubh_2023_1327082
crossref_primary_10_1017_ice_2022_58
crossref_primary_10_1016_j_buildenv_2024_111911
crossref_primary_10_1016_j_jhazmat_2021_126837
crossref_primary_10_1016_j_buildenv_2022_109166
crossref_primary_10_1038_s41598_021_98895_9
crossref_primary_10_1051_e3sconf_202235605045
crossref_primary_10_1080_23744731_2022_2067423
crossref_primary_10_1016_j_jhin_2021_05_007
crossref_primary_10_1016_j_buildenv_2024_112455
crossref_primary_10_1051_e3sconf_202235601001
crossref_primary_10_1016_j_buildenv_2024_112453
crossref_primary_10_1016_j_fmre_2023_05_022
crossref_primary_10_1007_s11846_024_00825_2
crossref_primary_10_1016_j_buildenv_2022_108756
crossref_primary_10_1007_s12273_022_0936_6
crossref_primary_10_1136_bmj_n2895
crossref_primary_10_1186_s13037_022_00332_x
crossref_primary_10_31631_2073_3046_2022_21_3_63_71
crossref_primary_10_1016_j_snb_2024_135767
crossref_primary_10_1088_1755_1315_1054_1_012015
crossref_primary_10_1016_j_jhazmat_2022_128504
crossref_primary_10_1016_j_scitotenv_2024_171373
crossref_primary_10_3390_ijerph19127406
crossref_primary_10_1146_annurev_ecolsys_102320_101234
crossref_primary_10_1016_j_jobe_2024_109872
crossref_primary_10_3390_ijerph19010525
crossref_primary_10_1016_j_ssci_2024_106524
crossref_primary_10_1039_D3CS00417A
crossref_primary_10_3390_s23083920
crossref_primary_10_7759_cureus_74429
crossref_primary_10_1016_j_jhazmat_2024_135820
crossref_primary_10_1177_01436244241239284
crossref_primary_10_1016_j_cocis_2021_101462
crossref_primary_10_1016_j_buildenv_2022_108888
crossref_primary_10_1016_j_jclepro_2022_135577
crossref_primary_10_1016_j_jobe_2023_106737
crossref_primary_10_1016_j_buildenv_2024_111491
crossref_primary_10_1016_j_jhazmat_2022_129152
crossref_primary_10_3390_su13116188
crossref_primary_10_1007_s12273_023_1021_5
crossref_primary_10_1007_s12273_023_1060_y
crossref_primary_10_1016_j_enbuild_2022_111954
crossref_primary_10_1016_j_jobe_2024_111488
crossref_primary_10_1111_ina_13015
crossref_primary_10_1016_j_jobe_2022_104351
crossref_primary_10_1111_ina_13019
crossref_primary_10_1016_j_jhazmat_2024_136388
crossref_primary_10_1016_j_psep_2021_09_021
crossref_primary_10_1016_j_rser_2023_113378
crossref_primary_10_3390_atmos14111648
crossref_primary_10_1016_j_envpol_2023_122970
crossref_primary_10_1111_ina_12965
crossref_primary_10_1038_s41598_022_23423_2
crossref_primary_10_3390_s24134314
crossref_primary_10_1140_epjs_s11734_022_00614_6
crossref_primary_10_1063_5_0089347
crossref_primary_10_1016_j_csite_2024_104817
crossref_primary_10_1016_j_buildenv_2024_111264
crossref_primary_10_1007_s12273_022_0937_5
crossref_primary_10_1016_j_buildenv_2024_112471
crossref_primary_10_1016_j_jhazmat_2022_129241
crossref_primary_10_1111_ina_12970
crossref_primary_10_1111_ina_12973
crossref_primary_10_3390_buildings13040871
crossref_primary_10_1007_s44213_023_00015_y
crossref_primary_10_1177_1420326X241267888
crossref_primary_10_3389_fphy_2022_882904
crossref_primary_10_1016_j_envadv_2023_100376
crossref_primary_10_1177_01436244221137995
crossref_primary_10_1016_j_buildenv_2022_109398
crossref_primary_10_1016_j_jhazmat_2023_131863
crossref_primary_10_1038_s41598_024_84411_2
crossref_primary_10_2486_josh_JOSH_2022_0024_CHO
crossref_primary_10_1016_j_uclim_2024_101926
crossref_primary_10_1016_j_atmosenv_2022_119112
crossref_primary_10_1111_irv_12964
crossref_primary_10_1539_eohp_2023_0007_OA
crossref_primary_10_3389_fpubh_2021_777426
crossref_primary_10_1080_09603123_2024_2308731
crossref_primary_10_1177_1420326X231205527
crossref_primary_10_3390_buildings14061632
crossref_primary_10_1360_TB_2021_1228
crossref_primary_10_1016_j_egyr_2023_09_167
crossref_primary_10_1126_science_abd9149
crossref_primary_10_1539_eohp_2022_0024_OA
crossref_primary_10_1073_pnas_2116165119
crossref_primary_10_1016_j_scitotenv_2022_154143
crossref_primary_10_1111_ina_12862
crossref_primary_10_1016_j_fmre_2023_10_013
crossref_primary_10_1111_ina_12989
crossref_primary_10_1016_j_buildenv_2023_110626
crossref_primary_10_1136_bmj_2021_068743
crossref_primary_10_1111_ina_12866
crossref_primary_10_1111_ina_12987
crossref_primary_10_1021_acs_est_2c08131
crossref_primary_10_3390_ijerph20010576
crossref_primary_10_1016_j_buildenv_2022_109487
crossref_primary_10_1007_s10311_022_01557_z
crossref_primary_10_1016_j_enbuild_2021_111171
crossref_primary_10_1371_journal_pone_0265816
crossref_primary_10_2196_37587
crossref_primary_10_1016_j_envpol_2023_123031
crossref_primary_10_1155_2024_6685891
crossref_primary_10_1038_s41598_022_22764_2
crossref_primary_10_1111_ina_13165
crossref_primary_10_3389_fpubh_2022_919456
crossref_primary_10_1007_s12273_023_1035_z
crossref_primary_10_1038_s41598_022_12529_2
crossref_primary_10_1016_j_ssci_2021_105572
crossref_primary_10_1016_j_micres_2023_127364
crossref_primary_10_3390_ijerph182111523
crossref_primary_10_1016_j_buildenv_2023_110863
crossref_primary_10_1061__ASCE_ME_1943_5479_0001033
crossref_primary_10_1016_j_buildenv_2022_109137
crossref_primary_10_1016_j_identj_2024_09_026
crossref_primary_10_1016_j_buildenv_2022_109136
crossref_primary_10_1016_j_buildenv_2021_108543
crossref_primary_10_1016_j_jhazmat_2022_129233
crossref_primary_10_1038_s41612_025_00968_3
crossref_primary_10_1016_j_idc_2021_12_002
crossref_primary_10_1016_j_jhqr_2021_12_006
crossref_primary_10_1016_j_scs_2021_103416
crossref_primary_10_1016_j_jobe_2024_109766
crossref_primary_10_1016_j_isci_2023_108433
crossref_primary_10_1111_ina_13056
crossref_primary_10_1016_j_envint_2021_106774
crossref_primary_10_1177_11786302221148274
crossref_primary_10_23736_S2784_8671_21_06987_5
crossref_primary_10_1177_1420326X211039544
crossref_primary_10_7717_peerj_15298
crossref_primary_10_1177_1420326X241261854
crossref_primary_10_1016_j_buildenv_2022_109581
crossref_primary_10_1128_msphere_00226_23
crossref_primary_10_1108_JHTI_07_2021_0180
crossref_primary_10_1016_j_buildenv_2023_110775
crossref_primary_10_1016_j_buildenv_2024_111589
crossref_primary_10_1016_j_buildenv_2024_112435
crossref_primary_10_1016_j_buildenv_2021_108531
crossref_primary_10_3389_fpubh_2022_1052610
crossref_primary_10_1080_02786826_2023_2166394
crossref_primary_10_1016_j_buildenv_2021_108414
crossref_primary_10_1016_j_buildenv_2022_108931
crossref_primary_10_3389_fenvs_2022_1006209
crossref_primary_10_1016_j_envpol_2022_119167
crossref_primary_10_1016_j_jiac_2023_02_013
crossref_primary_10_1080_02786826_2023_2230240
crossref_primary_10_1002_2475_8876_12238
crossref_primary_10_1038_s41467_023_36986_z
crossref_primary_10_3390_ijerph19010220
crossref_primary_10_3390_ijerph20021574
crossref_primary_10_1016_j_jmii_2023_01_011
crossref_primary_10_1177_1420326X221084869
crossref_primary_10_1155_2024_6642205
crossref_primary_10_1038_s41598_023_35025_7
crossref_primary_10_22159_ajpcr_2023_v16i7_47522
crossref_primary_10_1016_j_buildenv_2024_111907
crossref_primary_10_1016_j_jhazmat_2024_136695
crossref_primary_10_1061_JMENEA_MEENG_5497
crossref_primary_10_1016_j_buildenv_2022_109232
crossref_primary_10_1051_e3sconf_202235605013
crossref_primary_10_3390_v14092038
crossref_primary_10_46234_ccdcw2022_064
crossref_primary_10_3390_ijerph19052512
crossref_primary_10_1097_QCO_0000000000000839
crossref_primary_10_1016_j_indenv_2024_100065
crossref_primary_10_1038_s41598_022_15703_8
crossref_primary_10_1016_j_apenergy_2023_120676
crossref_primary_10_1017_ice_2021_318
crossref_primary_10_3390_polym13234165
crossref_primary_10_1016_j_jhazmat_2022_129697
crossref_primary_10_1093_cid_ciab849
crossref_primary_10_1186_s12879_021_06357_4
crossref_primary_10_1016_j_buildenv_2021_108648
crossref_primary_10_1016_j_jobe_2021_103725
crossref_primary_10_1016_j_jdent_2022_104092
crossref_primary_10_3390_v13122536
crossref_primary_10_1360_TB_2021_1024
crossref_primary_10_1016_j_jinf_2021_12_017
crossref_primary_10_3389_fbioe_2022_800011
crossref_primary_10_1111_risa_14249
crossref_primary_10_1080_15459624_2022_2058701
crossref_primary_10_1016_j_jobe_2024_110571
crossref_primary_10_1111_apm_13160
crossref_primary_10_1016_j_enbuild_2023_113033
crossref_primary_10_3390_en15030937
crossref_primary_10_1016_j_jobe_2025_112483
crossref_primary_10_3390_buildings12030353
crossref_primary_10_1016_j_buildenv_2022_109323
crossref_primary_10_1016_j_heliyon_2024_e30724
crossref_primary_10_1371_journal_pone_0277699
crossref_primary_10_3390_s22187001
crossref_primary_10_1063_5_0186922
crossref_primary_10_3390_ijerph18168886
crossref_primary_10_1007_s11356_022_19824_5
crossref_primary_10_1016_j_jhazmat_2021_128051
crossref_primary_10_3390_su16031186
crossref_primary_10_20411_pai_v7i1_495
crossref_primary_10_1111_risa_13844
crossref_primary_10_3130_aija_89_689
crossref_primary_10_3389_fpubh_2021_725648
crossref_primary_10_1109_JIOT_2024_3353255
crossref_primary_10_1007_s10311_023_01579_1
crossref_primary_10_1016_j_heliyon_2023_e22826
crossref_primary_10_1063_5_0191573
crossref_primary_10_1021_acs_est_3c03026
crossref_primary_10_1007_s12273_023_1037_x
crossref_primary_10_1016_j_envint_2021_106723
crossref_primary_10_1016_j_buildenv_2022_109212
crossref_primary_10_1016_j_buildenv_2023_110941
crossref_primary_10_1016_j_indenv_2024_100045
crossref_primary_10_3201_eid2812_220666
crossref_primary_10_1080_15459624_2021_1963445
crossref_primary_10_1111_ina_13094
crossref_primary_10_1016_j_jinf_2022_08_029
crossref_primary_10_1265_ehpm_24_00251
crossref_primary_10_1016_j_envpol_2025_125645
crossref_primary_10_1016_j_jobe_2024_108473
crossref_primary_10_1016_j_envint_2022_107580
crossref_primary_10_1051_e3sconf_202235604008
crossref_primary_10_1515_sosys_2020_0027
crossref_primary_10_1063_5_0135247
crossref_primary_10_1109_TASE_2023_3315549
crossref_primary_10_1016_j_jvoice_2022_05_003
crossref_primary_10_1016_j_scs_2023_105164
crossref_primary_10_1016_j_buildenv_2024_111785
crossref_primary_10_1371_journal_pone_0307041
crossref_primary_10_1016_j_buildenv_2023_110292
crossref_primary_10_2166_wh_2022_190
crossref_primary_10_1080_23744731_2023_2234238
crossref_primary_10_7326_M21_2780
crossref_primary_10_1002_advs_202205255
crossref_primary_10_1016_j_apm_2022_08_027
crossref_primary_10_1021_acs_est_1c06531
crossref_primary_10_1016_j_buildenv_2021_107887
crossref_primary_10_1016_j_gsf_2021_101282
crossref_primary_10_1016_j_scs_2022_104342
crossref_primary_10_1007_s12273_022_0968_y
crossref_primary_10_1016_j_scitotenv_2021_152592
crossref_primary_10_1016_j_scitotenv_2023_163827
crossref_primary_10_1007_s12273_025_1228_8
crossref_primary_10_5694_mja2_51131
crossref_primary_10_3390_bios12070523
crossref_primary_10_3390_su141811281
crossref_primary_10_1016_j_idm_2024_10_004
crossref_primary_10_1016_j_buildenv_2022_109674
crossref_primary_10_1098_rsfs_2021_0072
crossref_primary_10_1098_rsos_230377
crossref_primary_10_1016_j_buildenv_2023_110720
crossref_primary_10_1016_j_buildenv_2021_108167
crossref_primary_10_1063_5_0237623
crossref_primary_10_1016_j_matpr_2023_08_274
crossref_primary_10_1038_s41579_021_00535_6
crossref_primary_10_1371_journal_pone_0260237
crossref_primary_10_1007_s11357_024_01379_7
Cites_doi 10.1073/pnas.1716561115
10.1080/15459624.2012.684582
10.1093/oxfordjournals.aje.a112560
10.1111/j.1600-0668.1998.t01-2-00006.x
10.1056/NEJMc2004973
10.15585/mmwr.mm6917e2
10.1111/j.1600-0668.2004.00317.x
10.1111/irv.12390
10.15585/mmwr.mm6914e1
10.15252/emmm.202013296
10.1034/j.1600-0668.2003.00189.x
10.1038/s41591-020-0869-5
10.1093/oxfordjournals.aje.a112781
10.1016/j.jvoice.2020.11.029
10.3201/eid2608.200633
10.1126/science.abe2424
10.1016/j.ijid.2020.12.031
10.1016/j.envint.2020.105794
10.3201/eid2610.202573
10.3346/jkms.2020.35.e288
10.1371/journal.pone.0162481
10.1056/NEJMoa032867
10.1111/ina.12388
10.1007/s12273-020-0703-5
10.3201/eid2607.200764
10.1016/S2666-5247(20)30172-5
10.1056/NEJMoa0906089
10.3201/eid1002.030452
10.1016/j.envint.2020.105730
ContentType Journal Article
Copyright 2021 Elsevier Ltd
2021 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Jun 2021
2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: 2021 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Jun 2021
– notice: 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7ST
8FD
C1K
F28
FR3
KR7
SOI
7X8
5PM
DOI 10.1016/j.buildenv.2021.107788
DatabaseName CrossRef
PubMed
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
EndPage 107788
ExternalDocumentID PMC7954773
33746341
10_1016_j_buildenv_2021_107788
S0360132321001955
Genre Journal Article
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
7X8
5PM
ID FETCH-LOGICAL-c565t-96b853d01aa2b35de79f8eb23f8b3e8b3fe9f5f26b9fbaacc6b7471951c5e06a3
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Thu Aug 21 14:34:41 EDT 2025
Fri Jul 11 02:39:40 EDT 2025
Wed Aug 13 08:16:44 EDT 2025
Thu Apr 03 07:06:38 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Tue Jul 01 00:25:05 EDT 2025
Fri Feb 23 02:45:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
SARS-CoV-2
Aerosol transmission
Building ventilation
Airborne transmission
Language English
License 2021 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-96b853d01aa2b35de79f8eb23f8b3e8b3fe9f5f26b9fbaacc6b7471951c5e06a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
ORCID 0000-0001-6231-2470
0000-0002-2281-4529
0000-0002-2392-0366
0000-0001-8512-8676
0000-0002-7237-7806
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7954773
PMID 33746341
PQID 2532190896
PQPubID 2045275
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7954773
proquest_miscellaneous_2503661237
proquest_journals_2532190896
pubmed_primary_33746341
crossref_primary_10_1016_j_buildenv_2021_107788
crossref_citationtrail_10_1016_j_buildenv_2021_107788
elsevier_sciencedirect_doi_10_1016_j_buildenv_2021_107788
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Building and environment
PublicationTitleAlternate Build Environ
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Qian, Miao, Liu (bib15) 2020
Ralli, Morrone, Arcangeli (bib18) 2021; 103
Gao, Wei, Xu (bib42) 2016; 11
Xie, Lau, Yoshida (bib33) 2020; 70
Cevik, Tate, Lloyd (bib24) 2021; 2
Swinkels (bib14) 2020
Tobolowsky, Gonzales, Self (bib19) 2020; 69
Charlotte (bib16) 2020
Yu, Li, Wong (bib11) 2004; 350
Wei, Li, Chiew (bib26) 2020; 69
Moser, Bender, Margolis (bib27) 1979; 110
Lu, Gu, Li (bib8) 2020; 26
World Health Organization (bib40)
USA Centers for Disease Control and Prevention CDC (bib2) 2020
Rudnick, Milton (bib28) 2003; 13
Holmberg, Li (bib36) 1998; 8
Kang, Lee, Park (bib20) 2020; 26
Dai, Zhao (bib6) 2020; 13
Jang, Han, Rhee (bib22) 2020; 26
Günther, Czech-Sioli, Indenbirken (bib23) 2020; 12
Buonanno, Stabile, Morawska (bib5) 2020; 141
Sun, Wang, Gao (bib38) 2021; 371
American Society of Heating (bib35) 2019; vol. 62
He, Lau, Wu (bib25) 2020; 26
Riley, Murphy, Riley (bib4) 1978; 107
Li, Huang, Yu (bib9) 2005; 15
Morawska, Cao (bib1) 2020; 139
Bivolarova, Ondráček, Melikov (bib12) 2017; 27
Lindsley, Blachere, Beezhold (bib32) 2016; 10
Lindsley, Pearce, Hudnall (bib31) 2012; 9
World Health Organization (bib3)
Yan, Grantham, Pantelic (bib34) 2018; 115
Lessler, Reich, Cummings (bib29) 2009; 361
Wong, Li, Tam (bib10) 2004; 10
Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic H1N1 (bib41) 2009; 362
van Doremalen, Morris, Holbrook (bib30) 2020; 382
Li, Gao (bib13) 2020; vol. 9
Bae, Kim, Jung (bib21) 2020; 35
Miller, Nazaroff, Jimenez (bib7) 2021
Imbert, Kinley, Scarborough (bib17) 2020
Li (10.1016/j.buildenv.2021.107788_bib9) 2005; 15
Bae (10.1016/j.buildenv.2021.107788_bib21) 2020; 35
Holmberg (10.1016/j.buildenv.2021.107788_bib36) 1998; 8
Yu (10.1016/j.buildenv.2021.107788_bib11) 2004; 350
Lindsley (10.1016/j.buildenv.2021.107788_bib31) 2012; 9
Charlotte (10.1016/j.buildenv.2021.107788_bib16) 2020
He (10.1016/j.buildenv.2021.107788_bib25) 2020; 26
Yan (10.1016/j.buildenv.2021.107788_bib34) 2018; 115
Wong (10.1016/j.buildenv.2021.107788_bib10) 2004; 10
Wei (10.1016/j.buildenv.2021.107788_bib26) 2020; 69
USA Centers for Disease Control and Prevention CDC (10.1016/j.buildenv.2021.107788_bib2) 2020
van Doremalen (10.1016/j.buildenv.2021.107788_bib30) 2020; 382
Tobolowsky (10.1016/j.buildenv.2021.107788_bib19) 2020; 69
Günther (10.1016/j.buildenv.2021.107788_bib23) 2020; 12
Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic H1N1 (10.1016/j.buildenv.2021.107788_bib41) 2009; 362
Bivolarova (10.1016/j.buildenv.2021.107788_bib12) 2017; 27
Swinkels (10.1016/j.buildenv.2021.107788_bib14)
Ralli (10.1016/j.buildenv.2021.107788_bib18) 2021; 103
Lessler (10.1016/j.buildenv.2021.107788_bib29) 2009; 361
Qian (10.1016/j.buildenv.2021.107788_bib15) 2020
Cevik (10.1016/j.buildenv.2021.107788_bib24) 2021; 2
Riley (10.1016/j.buildenv.2021.107788_bib4) 1978; 107
Jang (10.1016/j.buildenv.2021.107788_bib22) 2020; 26
Li (10.1016/j.buildenv.2021.107788_bib13) 2020; vol. 9
Miller (10.1016/j.buildenv.2021.107788_bib7) 2021
Moser (10.1016/j.buildenv.2021.107788_bib27) 1979; 110
Xie (10.1016/j.buildenv.2021.107788_bib33) 2020; 70
Buonanno (10.1016/j.buildenv.2021.107788_bib5) 2020; 141
Morawska (10.1016/j.buildenv.2021.107788_bib1) 2020; 139
Kang (10.1016/j.buildenv.2021.107788_bib20) 2020; 26
Gao (10.1016/j.buildenv.2021.107788_bib42) 2016; 11
American Society of Heating (10.1016/j.buildenv.2021.107788_bib35) 2019; vol. 62
Dai (10.1016/j.buildenv.2021.107788_bib6) 2020; 13
Lindsley (10.1016/j.buildenv.2021.107788_bib32) 2016; 10
Sun (10.1016/j.buildenv.2021.107788_bib38) 2021; 371
Rudnick (10.1016/j.buildenv.2021.107788_bib28) 2003; 13
World Health Organization (10.1016/j.buildenv.2021.107788_bib40)
Imbert (10.1016/j.buildenv.2021.107788_bib17) 2020
World Health Organization (10.1016/j.buildenv.2021.107788_bib3)
Lu (10.1016/j.buildenv.2021.107788_bib8) 2020; 26
References_xml – volume: 141
  start-page: 105794
  year: 2020
  ident: bib5
  article-title: Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment
  publication-title: Environ. Int.
– volume: 27
  start-page: 1201
  year: 2017
  end-page: 1212
  ident: bib12
  article-title: Comparison between tracer gas and aerosol particles distribution indoors: the impact of ventilation rate, interaction of airflows, and presence of objects
  publication-title: Indoor Air
– volume: 103
  start-page: 243
  year: 2021
  end-page: 245
  ident: bib18
  article-title: Asymptomatic patients as a source of transmission of COVID-19 in homeless shelters
  publication-title: Int. J. Infect. Dis.
– volume: 12
  year: 2020
  ident: bib23
  article-title: SARS-CoV-2 outbreak investigation in a German meat processing plant
  publication-title: EMBO Mol. Med.
– start-page: 3141
  year: 2021
  end-page: 32310
  ident: bib7
  article-title: Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event
  publication-title: Indoor Air
– year: 2020
  ident: bib14
  article-title: SARS-CoV-2 Superspreading events around the world
– volume: 8
  start-page: 113
  year: 1998
  end-page: 122
  ident: bib36
  article-title: Modelling of indoor environment - particle dispersion and deposition
  publication-title: Indoor Air
– volume: 26
  start-page: 1917
  year: 2020
  ident: bib22
  article-title: Cluster of coronavirus disease associated with fitness dance classes, South Korea
  publication-title: Emerg. Infect. Dis.
– volume: 10
  start-page: 269
  year: 2004
  end-page: 276
  ident: bib10
  article-title: Cluster of SARS among medical students exposed to single patient, Hong Kong
  publication-title: Emerg. Infect. Dis.
– year: 2020
  ident: bib15
  article-title: Indoor transmission of SARS-CoV-2
  publication-title: Indoor Air
– volume: 26
  start-page: 2499
  year: 2020
  ident: bib20
  article-title: Coronavirus disease exposure and spread from nightclubs, South Korea
  publication-title: Emerg. Infect. Dis.
– volume: 361
  start-page: 2628
  year: 2009
  end-page: 2636
  ident: bib29
  article-title: Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school
  publication-title: N. Engl. J. Med.
– volume: 107
  start-page: 421
  year: 1978
  end-page: 432
  ident: bib4
  article-title: Airborne spread of measles in a suburban elementary school
  publication-title: Am. J. Epidemiol.
– volume: 371
  start-page: 254
  year: 2021
  end-page: 2540
  ident: bib38
  article-title: Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2
  publication-title: Science
– volume: 115
  start-page: 1081
  year: 2018
  end-page: 1086
  ident: bib34
  article-title: Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 15
  start-page: 83
  year: 2005
  end-page: 95
  ident: bib9
  article-title: Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong
  publication-title: Indoor Air
– volume: vol. 9
  year: 2020
  ident: bib13
  article-title: Public prevention guidelines of infection due to the novel coronavirus pneumonia
  publication-title: Chinese, 新型冠状病毒感染的肺炎公众防护指南
– volume: vol. 62
  year: 2019
  ident: bib35
  publication-title: Refrigerating and Air-Conditioning Engineers (ASHRAE) Ventilation for Acceptable Indoor Air Quality
– ident: bib40
  article-title: WHO housing and health guidelines
– ident: bib3
  article-title: Coronavirus disease (COVID-19): how is it transmitted?
– volume: 13
  start-page: 237
  year: 2003
  end-page: 245
  ident: bib28
  article-title: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration
  publication-title: Indoor Air
– start-page: ciaa107
  year: 2020
  ident: bib17
  article-title: Coronavirus Disease 2019 (COVID-19) Outbreak in a San Francisco Homeless Shelter
– volume: 362
  start-page: 1708
  year: 2009
  end-page: 1719
  ident: bib41
  article-title: Influenza. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection
  publication-title: N. Engl. J. Med.
– volume: 2
  start-page: e13
  year: 2021
  end-page: e22
  ident: bib24
  article-title: SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis
  publication-title: The Lancet Microbe
– volume: 26
  start-page: 1628
  year: 2020
  ident: bib8
  article-title: COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China
  publication-title: Emerg. Infect. Dis.
– volume: 35
  start-page: e288
  year: 2020
  ident: bib21
  article-title: Epidemiological characteristics of COVID-19 outbreak outbreak at fitness fitness centers centers in cheonan, korea
  publication-title: J. Kor. Med. Sci.
– volume: 69
  start-page: 411
  year: 2020
  ident: bib26
  article-title: Presymptomatic transmission of SARS-CoV-2-Singapore, january 23-march 16, 2020
  publication-title: MMWR (Morb. Mortal. Wkly. Rep.)
– volume: 13
  start-page: 1321
  year: 2020
  end-page: 1327
  ident: bib6
  article-title: Association of the infection probability of COVID-19 with ventilation rates in confined spaces
  publication-title: Building Simulation
– volume: 69
  start-page: 523
  year: 2020
  ident: bib19
  article-title: COVID-19 outbreak among three affiliated homeless service sites-King County, Washington, 2020
  publication-title: MMWR (Morb. Mortal. Wkly. Rep.)
– volume: 11
  start-page: e0162481
  year: 2016
  ident: bib42
  article-title: Building ventilation as an effective disease intervention strategy on a large and dense social contact network
  publication-title: PLos One
– volume: 10
  start-page: 404
  year: 2016
  end-page: 413
  ident: bib32
  article-title: Viable influenza A virus in airborne particles expelled during coughs versus exhalations
  publication-title: Influenza and other respiratory viruses
– year: 2020
  ident: bib2
  article-title: How 2019-nCoV Spreads
– volume: 110
  start-page: 1
  year: 1979
  end-page: 6
  ident: bib27
  article-title: An outbreak of influenza aboard a commercial airliner
  publication-title: Am. J. Epidemiol.
– volume: 70
  start-page: 850
  year: 2020
  end-page: 858
  ident: bib33
  article-title: Detection of influenza and other respiratory viruses in air sampled from a university campus: a longitudinal study
  publication-title: Clin. Infect. Dis.
– volume: 9
  start-page: 443
  year: 2012
  end-page: 449
  ident: bib31
  article-title: Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness
  publication-title: J. Occup. Environ. Hyg.
– volume: 350
  start-page: 1731
  year: 2004
  end-page: 1739
  ident: bib11
  article-title: Evidence of airborne transmission of the severe acute respiratory syndrome virus
  publication-title: N. Engl. J. Med.
– volume: 382
  start-page: 1564
  year: 2020
  end-page: 1567
  ident: bib30
  article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
  publication-title: N. Engl. J. Med.
– volume: 26
  start-page: 672
  year: 2020
  end-page: 675
  ident: bib25
  article-title: Temporal dynamics in viral shedding and transmissibility of COVID-19
  publication-title: Nat. Med.
– year: 2020
  ident: bib16
  article-title: High rate of SARS-CoV-2 transmission due to choir practice in France at the beginning of the COVID-19 pandemic
  publication-title: J. Voice
– volume: 139
  start-page: 105730
  year: 2020
  ident: bib1
  article-title: Airborne transmission of SARS-CoV-2: the world should face the reality
  publication-title: Environ. Int.
– volume: 115
  start-page: 1081
  year: 2018
  ident: 10.1016/j.buildenv.2021.107788_bib34
  article-title: Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1716561115
– ident: 10.1016/j.buildenv.2021.107788_bib14
– volume: 9
  start-page: 443
  issue: 7
  year: 2012
  ident: 10.1016/j.buildenv.2021.107788_bib31
  article-title: Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness
  publication-title: J. Occup. Environ. Hyg.
  doi: 10.1080/15459624.2012.684582
– volume: 107
  start-page: 421
  issue: 5
  year: 1978
  ident: 10.1016/j.buildenv.2021.107788_bib4
  article-title: Airborne spread of measles in a suburban elementary school
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a112560
– volume: 8
  start-page: 113
  issue: 2
  year: 1998
  ident: 10.1016/j.buildenv.2021.107788_bib36
  article-title: Modelling of indoor environment - particle dispersion and deposition
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.1998.t01-2-00006.x
– volume: 382
  start-page: 1564
  issue: 16
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib30
  article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2004973
– volume: 69
  start-page: 523
  issue: 17
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib19
  article-title: COVID-19 outbreak among three affiliated homeless service sites-King County, Washington, 2020
  publication-title: MMWR (Morb. Mortal. Wkly. Rep.)
  doi: 10.15585/mmwr.mm6917e2
– volume: 15
  start-page: 83
  year: 2005
  ident: 10.1016/j.buildenv.2021.107788_bib9
  article-title: Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2004.00317.x
– volume: 10
  start-page: 404
  year: 2016
  ident: 10.1016/j.buildenv.2021.107788_bib32
  article-title: Viable influenza A virus in airborne particles expelled during coughs versus exhalations
  publication-title: Influenza and other respiratory viruses
  doi: 10.1111/irv.12390
– start-page: ciaa107
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib17
– volume: 362
  start-page: 1708
  issue: 18
  year: 2009
  ident: 10.1016/j.buildenv.2021.107788_bib41
  article-title: Influenza. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection
  publication-title: N. Engl. J. Med.
– volume: 69
  start-page: 411
  issue: 14
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib26
  article-title: Presymptomatic transmission of SARS-CoV-2-Singapore, january 23-march 16, 2020
  publication-title: MMWR (Morb. Mortal. Wkly. Rep.)
  doi: 10.15585/mmwr.mm6914e1
– ident: 10.1016/j.buildenv.2021.107788_bib3
– volume: 12
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib23
  article-title: SARS-CoV-2 outbreak investigation in a German meat processing plant
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.202013296
– volume: 13
  start-page: 237
  issue: 3
  year: 2003
  ident: 10.1016/j.buildenv.2021.107788_bib28
  article-title: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration
  publication-title: Indoor Air
  doi: 10.1034/j.1600-0668.2003.00189.x
– volume: 70
  start-page: 850
  issue: 5
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib33
  article-title: Detection of influenza and other respiratory viruses in air sampled from a university campus: a longitudinal study
  publication-title: Clin. Infect. Dis.
– year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib2
– volume: 26
  start-page: 672
  issue: 5
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib25
  article-title: Temporal dynamics in viral shedding and transmissibility of COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0869-5
– volume: 110
  start-page: 1
  issue: 1
  year: 1979
  ident: 10.1016/j.buildenv.2021.107788_bib27
  article-title: An outbreak of influenza aboard a commercial airliner
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a112781
– year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib16
  article-title: High rate of SARS-CoV-2 transmission due to choir practice in France at the beginning of the COVID-19 pandemic
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2020.11.029
– volume: 26
  start-page: 1917
  issue: 8
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib22
  article-title: Cluster of coronavirus disease associated with fitness dance classes, South Korea
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2608.200633
– volume: 371
  start-page: 254
  year: 2021
  ident: 10.1016/j.buildenv.2021.107788_bib38
  article-title: Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abe2424
– volume: 103
  start-page: 243
  year: 2021
  ident: 10.1016/j.buildenv.2021.107788_bib18
  article-title: Asymptomatic patients as a source of transmission of COVID-19 in homeless shelters
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.12.031
– volume: 141
  start-page: 105794
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib5
  article-title: Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105794
– volume: 26
  start-page: 2499
  issue: 10
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib20
  article-title: Coronavirus disease exposure and spread from nightclubs, South Korea
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2610.202573
– volume: 35
  start-page: e288
  issue: 31
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib21
  article-title: Epidemiological characteristics of COVID-19 outbreak outbreak at fitness fitness centers centers in cheonan, korea
  publication-title: J. Kor. Med. Sci.
  doi: 10.3346/jkms.2020.35.e288
– volume: 11
  start-page: e0162481
  issue: 9
  year: 2016
  ident: 10.1016/j.buildenv.2021.107788_bib42
  article-title: Building ventilation as an effective disease intervention strategy on a large and dense social contact network
  publication-title: PLos One
  doi: 10.1371/journal.pone.0162481
– volume: 350
  start-page: 1731
  year: 2004
  ident: 10.1016/j.buildenv.2021.107788_bib11
  article-title: Evidence of airborne transmission of the severe acute respiratory syndrome virus
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa032867
– volume: 27
  start-page: 1201
  issue: 6
  year: 2017
  ident: 10.1016/j.buildenv.2021.107788_bib12
  article-title: Comparison between tracer gas and aerosol particles distribution indoors: the impact of ventilation rate, interaction of airflows, and presence of objects
  publication-title: Indoor Air
  doi: 10.1111/ina.12388
– start-page: 3141
  year: 2021
  ident: 10.1016/j.buildenv.2021.107788_bib7
  article-title: Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event
  publication-title: Indoor Air
– volume: 13
  start-page: 1321
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib6
  article-title: Association of the infection probability of COVID-19 with ventilation rates in confined spaces
  publication-title: Building Simulation
  doi: 10.1007/s12273-020-0703-5
– volume: 26
  start-page: 1628
  issue: 7
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib8
  article-title: COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2607.200764
– volume: 2
  start-page: e13
  issue: 1
  year: 2021
  ident: 10.1016/j.buildenv.2021.107788_bib24
  article-title: SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis
  publication-title: The Lancet Microbe
  doi: 10.1016/S2666-5247(20)30172-5
– volume: 361
  start-page: 2628
  issue: 27
  year: 2009
  ident: 10.1016/j.buildenv.2021.107788_bib29
  article-title: Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0906089
– volume: 10
  start-page: 269
  year: 2004
  ident: 10.1016/j.buildenv.2021.107788_bib10
  article-title: Cluster of SARS among medical students exposed to single patient, Hong Kong
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1002.030452
– ident: 10.1016/j.buildenv.2021.107788_bib40
– volume: vol. 62
  year: 2019
  ident: 10.1016/j.buildenv.2021.107788_bib35
– year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib15
  article-title: Indoor transmission of SARS-CoV-2
  publication-title: Indoor Air
– volume: vol. 9
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib13
  article-title: Public prevention guidelines of infection due to the novel coronavirus pneumonia
– volume: 139
  start-page: 105730
  year: 2020
  ident: 10.1016/j.buildenv.2021.107788_bib1
  article-title: Airborne transmission of SARS-CoV-2: the world should face the reality
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105730
SSID ssj0016934
Score 2.698797
Snippet Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107788
SubjectTerms Aerosol transmission
Aerosols
Air flow
Airborne transmission
Building ventilation
Coronaviruses
COVID-19
Disease transmission
Droplets
Environmental conditions
Epidemiology
Mathematical models
Mechanical ventilation
Outbreaks
Restaurants
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Simulation
Tracer gas
Ventilation
Viral diseases
Viruses
Title Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant
URI https://dx.doi.org/10.1016/j.buildenv.2021.107788
https://www.ncbi.nlm.nih.gov/pubmed/33746341
https://www.proquest.com/docview/2532190896
https://www.proquest.com/docview/2503661237
https://pubmed.ncbi.nlm.nih.gov/PMC7954773
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N42U8IGB8BMZkJF6ztnZsN49VxVSYqBBlaG-WndgiU5VUJUXihb-du3ypBaQ97CEPsX2Sc3f2neO73wG8cxOuvJKovC6nEmbSxunY8RhdXYH2KHCrKMH501ItrpOPN_LmCOZ9LgyFVXZ7f7unN7t11zLquDnaFMVohXsvXRRQEgplvVGieZJo0vKL30OYB2GNdBBS45hG72UJ3144Kj3ty594TuQTbNS6qcDyXwP1rwP6dxzlnmG6fAyPOo-SzdpJP4EjXz6Fh3s4g6ew_LzFZevWntlii0IvPavJRqGM6WcZqwJbzb6s4nn1LeasKJllm6rarn-xJhpyjf5ozqiIh90hWf0Mri_ff50v4q6QQpyhv1bHqXJolfPxxFruhMy9TsMUj9QiTJ3w-ASfBhm4cmlw1maZcnRWRecrk36srHgOx2VV-pfAVKatJpS23OrEpm7qvJsGHUTO80y6EIHsuWeyDmWcil2sTR9Odmt6rhviumm5HsFooNu0OBt3UqS9cMyBxhg0BnfSnvXSNN2a_WG4RFWia1AVwduhGyVBVyi29NWOxqAiEWKNjuBFK_xhukLoRKFTEIE-UIthACF5H_aUxfcG0VunMtFavLrHJ72GE3pro9jO4Lje7vwb9Jdqd94siHN4MPtwtVj-AVrcF3Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4QHwTGGAkXkPbuLabx6pi6thWIbqhvVl2YmuZqqQq6aT999w1TtQC0h54yIvtk5K7s--cu_sdwGc7TKSTApXX5tTCTJg4HdgkRleXoz3yiZFU4Hw-l7PL0bcrcXUA07YWhtIqw9nfnOnb0zqM9AM3-6ui6C_w7KVAARWhUNWbeACHhE4lenA4OTmdzbtggkx5QJEaxESwUyh888VS92lX3uJVMRnioFLbJiz_tFF_-6B_plLu2Kbjp_AkOJVs0rz3Mzhw5XN4vAM1-ALm39e4c-3SMVOsUe6lYzWZKRQz_S9jlWeLyY9FPK1-xgkrSmbYqqrWyzu2TYhcokuaM-rjYTZIVr-Ey-OvF9NZHHopxBm6bHWcSouGOR8MjUksF7lTqR_jrZr7seUOH-9SL3wibeqtMVkmLV1X0f_KhBtIw19Br6xK9waYzJRRBNSWGzUyqR1bZ8deeZ4neSasj0C03NNZABqnfhdL3WaU3eiW65q4rhuuR9Dv6FYN1Ma9FGkrHL2nNBrtwb20R600ddi2v3QiUJsoEioj-NRNoyQoimJKV21oDSoSgdaoCF43wu9el3M1kugXRKD21KJbQGDe-zNlcb0F9VYp6q7ib__jkz7Cw9nF-Zk-O5mfvoNHNNMktR1Br15v3Ht0n2r7IWyP39YwGiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probable+airborne+transmission+of+SARS-CoV-2+in+a+poorly+ventilated+restaurant&rft.jtitle=Building+and+environment&rft.au=Li%2C+Yuguo&rft.au=Qian%2C+Hua&rft.au=Hang%2C+Jian&rft.au=Chen%2C+Xuguang&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=196&rft_id=info:doi/10.1016%2Fj.buildenv.2021.107788&rft.externalDocID=S0360132321001955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon