Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant
Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou...
Saved in:
Published in | Building and environment Vol. 196; p. 107788 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-1323 1873-684X |
DOI | 10.1016/j.buildenv.2021.107788 |
Cover
Loading…
Abstract | Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.
[Display omitted]
•This outbreak involved ten infected persons in three families.•Full video recording at time of infection allows restoration of the scene.•Time-averaged ventilation rates were only 0.9 L/s per person in the restaurant.•Insufficient ventilation played a role in this outbreak of COVID-19. |
---|---|
AbstractList | Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. [Display omitted] •This outbreak involved ten infected persons in three families.•Full video recording at time of infection allows restoration of the scene.•Time-averaged ventilation rates were only 0.9 L/s per person in the restaurant.•Insufficient ventilation played a role in this outbreak of COVID-19. Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. Image 1 Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person. |
ArticleNumber | 107788 |
Author | Xiao, Shenglan Li, Yuguo Liu, Li Wei, Jianjian Kang, Min Hang, Jian Liang, Peng Li, Jiansen Cowling, Benjamin J. Qian, Hua Ling, Hong Chen, Xuguang Cheng, Pan Wang, Shengqi |
Author_xml | – sequence: 1 givenname: Yuguo orcidid: 0000-0002-2281-4529 surname: Li fullname: Li, Yuguo email: liyg@hku.hk organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China – sequence: 2 givenname: Hua orcidid: 0000-0002-7237-7806 surname: Qian fullname: Qian, Hua organization: School of Energy and Environment, Southeast University, Nanjing, China – sequence: 3 givenname: Jian surname: Hang fullname: Hang, Jian organization: School of Atmospheric Sciences, Sun Yat-sen University and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China – sequence: 4 givenname: Xuguang surname: Chen fullname: Chen, Xuguang organization: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China – sequence: 5 givenname: Pan orcidid: 0000-0002-2392-0366 surname: Cheng fullname: Cheng, Pan organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China – sequence: 6 givenname: Hong orcidid: 0000-0001-6231-2470 surname: Ling fullname: Ling, Hong organization: School of Atmospheric Sciences, Sun Yat-sen University and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China – sequence: 7 givenname: Shengqi surname: Wang fullname: Wang, Shengqi organization: School of Energy and Environment, Southeast University, Nanjing, China – sequence: 8 givenname: Peng surname: Liang fullname: Liang, Peng organization: Guangdong Field Epidemiology Training Program, Ganzi Tibetan Autonomous Prefecture Center for Disease Control and Prevention, Sichuan, China – sequence: 9 givenname: Jiansen surname: Li fullname: Li, Jiansen organization: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China – sequence: 10 givenname: Shenglan surname: Xiao fullname: Xiao, Shenglan organization: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China – sequence: 11 givenname: Jianjian surname: Wei fullname: Wei, Jianjian organization: Institute of Refrigeration and Cryogenics and Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China – sequence: 12 givenname: Li orcidid: 0000-0001-8512-8676 surname: Liu fullname: Liu, Li organization: School of Architecture, Tsinghua University, Beijing, China – sequence: 13 givenname: Benjamin J. surname: Cowling fullname: Cowling, Benjamin J. organization: School of Public Health, The University of Hong Kong, Hong Kong, China – sequence: 14 givenname: Min surname: Kang fullname: Kang, Min email: kangmin@cdcp.org.cn organization: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33746341$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEYhYNU7Lb6F8qAN97Mmo9JMgERy-IXFC2tLd6FJPOOZplN1iSz0H9vyrZFe9OLEEieczjve47QQYgBEDoheEkwEW_XSzv7aYCwW1JMSX2Usu-foQXpJWtF3_08QAvMBG4Jo-wQHeW8xlWoWPcCHTImO8E6skDfzlO0xk7QGJ9sTAGakkzIG5-zj6GJY3N5enHZruJ1SxsfGtNsY0zTTbODUPxkCgxNglzMXGXlJXo-minDq7v7GF19-vhj9aU9-_756-r0rHVc8NIqYXvOBkyMoZbxAaQae7CUjb1lUM8IauQjFVaN1hjnhJWdJIoTxwELw47R-73vdrYbGFzNksykt8lvTLrR0Xj9_0_wv_WvuNNS8U5KVg3e3Bmk-Geu-XWd2ME0mQBxzpryujxBKJMVff0IXcc5hTpepRglCvdKVOrk30QPUe5XXQGxB1yKOScYHxCC9W2neq3vO9W3nep9p1X47pHQ-WJKbadO5qen5R_2cqh97DwknZ2H4GDwCVzRQ_RPWfwFFZPCuA |
CitedBy_id | crossref_primary_10_1093_cid_ciac334 crossref_primary_10_3390_app12189360 crossref_primary_10_1177_23998083221107019 crossref_primary_10_1016_j_enbenv_2023_05_005 crossref_primary_10_3390_ijerph19159270 crossref_primary_10_1016_j_enbuild_2024_113910 crossref_primary_10_1016_j_jhazmat_2024_136040 crossref_primary_10_1016_j_jece_2024_114877 crossref_primary_10_1360_TB_2022_0811 crossref_primary_10_3390_buildings12020180 crossref_primary_10_1016_j_buildenv_2023_110594 crossref_primary_10_1038_s42949_022_00074_w crossref_primary_10_1016_j_buildenv_2021_108278 crossref_primary_10_1016_j_buildenv_2024_112256 crossref_primary_10_1051_e3sconf_202235601046 crossref_primary_10_1016_j_indenv_2025_100077 crossref_primary_10_1063_5_0160579 crossref_primary_10_1016_j_buildenv_2024_111161 crossref_primary_10_1098_rspa_2021_0383 crossref_primary_10_1016_j_jobe_2023_107913 crossref_primary_10_1088_1742_6596_2478_12_122043 crossref_primary_10_3390_su15032546 crossref_primary_10_1016_j_envint_2022_107153 crossref_primary_10_1016_j_scs_2021_103256 crossref_primary_10_1080_00038628_2022_2080637 crossref_primary_10_3390_buildings13010102 crossref_primary_10_1016_j_biologicals_2023_101680 crossref_primary_10_1016_j_buildenv_2022_109091 crossref_primary_10_1016_j_foodhyd_2024_110603 crossref_primary_10_1080_23748834_2023_2294642 crossref_primary_10_1016_j_buildenv_2024_111605 crossref_primary_10_1016_j_jhazmat_2025_137782 crossref_primary_10_3390_electrochem3020019 crossref_primary_10_1177_1420326X221098753 crossref_primary_10_1016_j_buildenv_2025_112527 crossref_primary_10_1021_acsestengg_1c00369 crossref_primary_10_1017_flo_2024_11 crossref_primary_10_1063_5_0070528 crossref_primary_10_3390_vaccines10060847 crossref_primary_10_1016_j_buildenv_2023_110343 crossref_primary_10_1016_j_buildenv_2021_108027 crossref_primary_10_1016_j_jobe_2022_105466 crossref_primary_10_1177_1420326X231154011 crossref_primary_10_1016_j_buildenv_2022_109415 crossref_primary_10_1016_j_buildenv_2024_111174 crossref_primary_10_1016_j_jhazmat_2022_129075 crossref_primary_10_1016_j_jobe_2023_107109 crossref_primary_10_1063_5_0163971 crossref_primary_10_1371_journal_pcbi_1012823 crossref_primary_10_1080_02786826_2023_2181142 crossref_primary_10_1080_09613218_2023_2185584 crossref_primary_10_3390_fluids7050176 crossref_primary_10_1016_j_icheatmasstransfer_2021_105744 crossref_primary_10_48130_emst_0024_0006 crossref_primary_10_1016_j_icheatmasstransfer_2021_105745 crossref_primary_10_3889_oamjms_2023_11160 crossref_primary_10_3346_jkms_2021_36_e140 crossref_primary_10_3390_su142214966 crossref_primary_10_1007_s42770_023_01089_w crossref_primary_10_55905_cuadv16n8_078 crossref_primary_10_1016_j_jobe_2023_106807 crossref_primary_10_1111_ina_12928 crossref_primary_10_1016_j_buildenv_2021_108131 crossref_primary_10_3389_fbuil_2022_986923 crossref_primary_10_1016_j_buildenv_2021_108495 crossref_primary_10_1063_5_0063475 crossref_primary_10_1063_5_0069454 crossref_primary_10_1177_1420326X211048539 crossref_primary_10_1136_bmjopen_2021_055206 crossref_primary_10_1007_s11783_024_1845_y crossref_primary_10_1016_j_jobe_2022_105599 crossref_primary_10_3390_ijerph191811300 crossref_primary_10_3130_aije_88_300 crossref_primary_10_24171_j_phrp_2022_0149 crossref_primary_10_3861_kenko_87_5_214 crossref_primary_10_1016_j_jobe_2024_109016 crossref_primary_10_1017_ice_2022_186 crossref_primary_10_1016_j_heliyon_2024_e31160 crossref_primary_10_1016_j_jinf_2021_05_030 crossref_primary_10_1016_j_jobe_2024_109132 crossref_primary_10_1038_s41598_024_79525_6 crossref_primary_10_1055_s_0041_1740582 crossref_primary_10_1093_pnasnexus_pgac223 crossref_primary_10_3390_buildings14010115 crossref_primary_10_1016_j_heha_2022_100006 crossref_primary_10_1093_pnasnexus_pgac218 crossref_primary_10_1016_j_buildenv_2024_111632 crossref_primary_10_1016_j_buildenv_2025_112739 crossref_primary_10_1111_ina_12937 crossref_primary_10_1016_j_buildenv_2023_110489 crossref_primary_10_3389_fmicb_2023_1183877 crossref_primary_10_1016_j_buildenv_2024_111993 crossref_primary_10_1016_j_buildenv_2024_112049 crossref_primary_10_1136_bmj_n1030 crossref_primary_10_1016_j_buildenv_2021_108367 crossref_primary_10_1021_acsomega_1c01489 crossref_primary_10_1038_s41598_023_34498_w crossref_primary_10_1080_19475705_2024_2322482 crossref_primary_10_3390_app14072948 crossref_primary_10_3390_su151914232 crossref_primary_10_1016_j_scs_2024_105279 crossref_primary_10_1186_s12879_023_08819_3 crossref_primary_10_1016_j_jobe_2024_108839 crossref_primary_10_3390_covid1030050 crossref_primary_10_1016_j_bios_2022_114663 crossref_primary_10_1177_21582440231206664 crossref_primary_10_3390_su151511804 crossref_primary_10_1002_2475_8876_12463 crossref_primary_10_1098_rsta_2023_0130 crossref_primary_10_3390_ijerph20020976 crossref_primary_10_1111_ina_13119 crossref_primary_10_3390_buildings15050755 crossref_primary_10_3389_fpubh_2023_1327082 crossref_primary_10_1017_ice_2022_58 crossref_primary_10_1016_j_buildenv_2024_111911 crossref_primary_10_1016_j_jhazmat_2021_126837 crossref_primary_10_1016_j_buildenv_2022_109166 crossref_primary_10_1038_s41598_021_98895_9 crossref_primary_10_1051_e3sconf_202235605045 crossref_primary_10_1080_23744731_2022_2067423 crossref_primary_10_1016_j_jhin_2021_05_007 crossref_primary_10_1016_j_buildenv_2024_112455 crossref_primary_10_1051_e3sconf_202235601001 crossref_primary_10_1016_j_buildenv_2024_112453 crossref_primary_10_1016_j_fmre_2023_05_022 crossref_primary_10_1007_s11846_024_00825_2 crossref_primary_10_1016_j_buildenv_2022_108756 crossref_primary_10_1007_s12273_022_0936_6 crossref_primary_10_1136_bmj_n2895 crossref_primary_10_1186_s13037_022_00332_x crossref_primary_10_31631_2073_3046_2022_21_3_63_71 crossref_primary_10_1016_j_snb_2024_135767 crossref_primary_10_1088_1755_1315_1054_1_012015 crossref_primary_10_1016_j_jhazmat_2022_128504 crossref_primary_10_1016_j_scitotenv_2024_171373 crossref_primary_10_3390_ijerph19127406 crossref_primary_10_1146_annurev_ecolsys_102320_101234 crossref_primary_10_1016_j_jobe_2024_109872 crossref_primary_10_3390_ijerph19010525 crossref_primary_10_1016_j_ssci_2024_106524 crossref_primary_10_1039_D3CS00417A crossref_primary_10_3390_s23083920 crossref_primary_10_7759_cureus_74429 crossref_primary_10_1016_j_jhazmat_2024_135820 crossref_primary_10_1177_01436244241239284 crossref_primary_10_1016_j_cocis_2021_101462 crossref_primary_10_1016_j_buildenv_2022_108888 crossref_primary_10_1016_j_jclepro_2022_135577 crossref_primary_10_1016_j_jobe_2023_106737 crossref_primary_10_1016_j_buildenv_2024_111491 crossref_primary_10_1016_j_jhazmat_2022_129152 crossref_primary_10_3390_su13116188 crossref_primary_10_1007_s12273_023_1021_5 crossref_primary_10_1007_s12273_023_1060_y crossref_primary_10_1016_j_enbuild_2022_111954 crossref_primary_10_1016_j_jobe_2024_111488 crossref_primary_10_1111_ina_13015 crossref_primary_10_1016_j_jobe_2022_104351 crossref_primary_10_1111_ina_13019 crossref_primary_10_1016_j_jhazmat_2024_136388 crossref_primary_10_1016_j_psep_2021_09_021 crossref_primary_10_1016_j_rser_2023_113378 crossref_primary_10_3390_atmos14111648 crossref_primary_10_1016_j_envpol_2023_122970 crossref_primary_10_1111_ina_12965 crossref_primary_10_1038_s41598_022_23423_2 crossref_primary_10_3390_s24134314 crossref_primary_10_1140_epjs_s11734_022_00614_6 crossref_primary_10_1063_5_0089347 crossref_primary_10_1016_j_csite_2024_104817 crossref_primary_10_1016_j_buildenv_2024_111264 crossref_primary_10_1007_s12273_022_0937_5 crossref_primary_10_1016_j_buildenv_2024_112471 crossref_primary_10_1016_j_jhazmat_2022_129241 crossref_primary_10_1111_ina_12970 crossref_primary_10_1111_ina_12973 crossref_primary_10_3390_buildings13040871 crossref_primary_10_1007_s44213_023_00015_y crossref_primary_10_1177_1420326X241267888 crossref_primary_10_3389_fphy_2022_882904 crossref_primary_10_1016_j_envadv_2023_100376 crossref_primary_10_1177_01436244221137995 crossref_primary_10_1016_j_buildenv_2022_109398 crossref_primary_10_1016_j_jhazmat_2023_131863 crossref_primary_10_1038_s41598_024_84411_2 crossref_primary_10_2486_josh_JOSH_2022_0024_CHO crossref_primary_10_1016_j_uclim_2024_101926 crossref_primary_10_1016_j_atmosenv_2022_119112 crossref_primary_10_1111_irv_12964 crossref_primary_10_1539_eohp_2023_0007_OA crossref_primary_10_3389_fpubh_2021_777426 crossref_primary_10_1080_09603123_2024_2308731 crossref_primary_10_1177_1420326X231205527 crossref_primary_10_3390_buildings14061632 crossref_primary_10_1360_TB_2021_1228 crossref_primary_10_1016_j_egyr_2023_09_167 crossref_primary_10_1126_science_abd9149 crossref_primary_10_1539_eohp_2022_0024_OA crossref_primary_10_1073_pnas_2116165119 crossref_primary_10_1016_j_scitotenv_2022_154143 crossref_primary_10_1111_ina_12862 crossref_primary_10_1016_j_fmre_2023_10_013 crossref_primary_10_1111_ina_12989 crossref_primary_10_1016_j_buildenv_2023_110626 crossref_primary_10_1136_bmj_2021_068743 crossref_primary_10_1111_ina_12866 crossref_primary_10_1111_ina_12987 crossref_primary_10_1021_acs_est_2c08131 crossref_primary_10_3390_ijerph20010576 crossref_primary_10_1016_j_buildenv_2022_109487 crossref_primary_10_1007_s10311_022_01557_z crossref_primary_10_1016_j_enbuild_2021_111171 crossref_primary_10_1371_journal_pone_0265816 crossref_primary_10_2196_37587 crossref_primary_10_1016_j_envpol_2023_123031 crossref_primary_10_1155_2024_6685891 crossref_primary_10_1038_s41598_022_22764_2 crossref_primary_10_1111_ina_13165 crossref_primary_10_3389_fpubh_2022_919456 crossref_primary_10_1007_s12273_023_1035_z crossref_primary_10_1038_s41598_022_12529_2 crossref_primary_10_1016_j_ssci_2021_105572 crossref_primary_10_1016_j_micres_2023_127364 crossref_primary_10_3390_ijerph182111523 crossref_primary_10_1016_j_buildenv_2023_110863 crossref_primary_10_1061__ASCE_ME_1943_5479_0001033 crossref_primary_10_1016_j_buildenv_2022_109137 crossref_primary_10_1016_j_identj_2024_09_026 crossref_primary_10_1016_j_buildenv_2022_109136 crossref_primary_10_1016_j_buildenv_2021_108543 crossref_primary_10_1016_j_jhazmat_2022_129233 crossref_primary_10_1038_s41612_025_00968_3 crossref_primary_10_1016_j_idc_2021_12_002 crossref_primary_10_1016_j_jhqr_2021_12_006 crossref_primary_10_1016_j_scs_2021_103416 crossref_primary_10_1016_j_jobe_2024_109766 crossref_primary_10_1016_j_isci_2023_108433 crossref_primary_10_1111_ina_13056 crossref_primary_10_1016_j_envint_2021_106774 crossref_primary_10_1177_11786302221148274 crossref_primary_10_23736_S2784_8671_21_06987_5 crossref_primary_10_1177_1420326X211039544 crossref_primary_10_7717_peerj_15298 crossref_primary_10_1177_1420326X241261854 crossref_primary_10_1016_j_buildenv_2022_109581 crossref_primary_10_1128_msphere_00226_23 crossref_primary_10_1108_JHTI_07_2021_0180 crossref_primary_10_1016_j_buildenv_2023_110775 crossref_primary_10_1016_j_buildenv_2024_111589 crossref_primary_10_1016_j_buildenv_2024_112435 crossref_primary_10_1016_j_buildenv_2021_108531 crossref_primary_10_3389_fpubh_2022_1052610 crossref_primary_10_1080_02786826_2023_2166394 crossref_primary_10_1016_j_buildenv_2021_108414 crossref_primary_10_1016_j_buildenv_2022_108931 crossref_primary_10_3389_fenvs_2022_1006209 crossref_primary_10_1016_j_envpol_2022_119167 crossref_primary_10_1016_j_jiac_2023_02_013 crossref_primary_10_1080_02786826_2023_2230240 crossref_primary_10_1002_2475_8876_12238 crossref_primary_10_1038_s41467_023_36986_z crossref_primary_10_3390_ijerph19010220 crossref_primary_10_3390_ijerph20021574 crossref_primary_10_1016_j_jmii_2023_01_011 crossref_primary_10_1177_1420326X221084869 crossref_primary_10_1155_2024_6642205 crossref_primary_10_1038_s41598_023_35025_7 crossref_primary_10_22159_ajpcr_2023_v16i7_47522 crossref_primary_10_1016_j_buildenv_2024_111907 crossref_primary_10_1016_j_jhazmat_2024_136695 crossref_primary_10_1061_JMENEA_MEENG_5497 crossref_primary_10_1016_j_buildenv_2022_109232 crossref_primary_10_1051_e3sconf_202235605013 crossref_primary_10_3390_v14092038 crossref_primary_10_46234_ccdcw2022_064 crossref_primary_10_3390_ijerph19052512 crossref_primary_10_1097_QCO_0000000000000839 crossref_primary_10_1016_j_indenv_2024_100065 crossref_primary_10_1038_s41598_022_15703_8 crossref_primary_10_1016_j_apenergy_2023_120676 crossref_primary_10_1017_ice_2021_318 crossref_primary_10_3390_polym13234165 crossref_primary_10_1016_j_jhazmat_2022_129697 crossref_primary_10_1093_cid_ciab849 crossref_primary_10_1186_s12879_021_06357_4 crossref_primary_10_1016_j_buildenv_2021_108648 crossref_primary_10_1016_j_jobe_2021_103725 crossref_primary_10_1016_j_jdent_2022_104092 crossref_primary_10_3390_v13122536 crossref_primary_10_1360_TB_2021_1024 crossref_primary_10_1016_j_jinf_2021_12_017 crossref_primary_10_3389_fbioe_2022_800011 crossref_primary_10_1111_risa_14249 crossref_primary_10_1080_15459624_2022_2058701 crossref_primary_10_1016_j_jobe_2024_110571 crossref_primary_10_1111_apm_13160 crossref_primary_10_1016_j_enbuild_2023_113033 crossref_primary_10_3390_en15030937 crossref_primary_10_1016_j_jobe_2025_112483 crossref_primary_10_3390_buildings12030353 crossref_primary_10_1016_j_buildenv_2022_109323 crossref_primary_10_1016_j_heliyon_2024_e30724 crossref_primary_10_1371_journal_pone_0277699 crossref_primary_10_3390_s22187001 crossref_primary_10_1063_5_0186922 crossref_primary_10_3390_ijerph18168886 crossref_primary_10_1007_s11356_022_19824_5 crossref_primary_10_1016_j_jhazmat_2021_128051 crossref_primary_10_3390_su16031186 crossref_primary_10_20411_pai_v7i1_495 crossref_primary_10_1111_risa_13844 crossref_primary_10_3130_aija_89_689 crossref_primary_10_3389_fpubh_2021_725648 crossref_primary_10_1109_JIOT_2024_3353255 crossref_primary_10_1007_s10311_023_01579_1 crossref_primary_10_1016_j_heliyon_2023_e22826 crossref_primary_10_1063_5_0191573 crossref_primary_10_1021_acs_est_3c03026 crossref_primary_10_1007_s12273_023_1037_x crossref_primary_10_1016_j_envint_2021_106723 crossref_primary_10_1016_j_buildenv_2022_109212 crossref_primary_10_1016_j_buildenv_2023_110941 crossref_primary_10_1016_j_indenv_2024_100045 crossref_primary_10_3201_eid2812_220666 crossref_primary_10_1080_15459624_2021_1963445 crossref_primary_10_1111_ina_13094 crossref_primary_10_1016_j_jinf_2022_08_029 crossref_primary_10_1265_ehpm_24_00251 crossref_primary_10_1016_j_envpol_2025_125645 crossref_primary_10_1016_j_jobe_2024_108473 crossref_primary_10_1016_j_envint_2022_107580 crossref_primary_10_1051_e3sconf_202235604008 crossref_primary_10_1515_sosys_2020_0027 crossref_primary_10_1063_5_0135247 crossref_primary_10_1109_TASE_2023_3315549 crossref_primary_10_1016_j_jvoice_2022_05_003 crossref_primary_10_1016_j_scs_2023_105164 crossref_primary_10_1016_j_buildenv_2024_111785 crossref_primary_10_1371_journal_pone_0307041 crossref_primary_10_1016_j_buildenv_2023_110292 crossref_primary_10_2166_wh_2022_190 crossref_primary_10_1080_23744731_2023_2234238 crossref_primary_10_7326_M21_2780 crossref_primary_10_1002_advs_202205255 crossref_primary_10_1016_j_apm_2022_08_027 crossref_primary_10_1021_acs_est_1c06531 crossref_primary_10_1016_j_buildenv_2021_107887 crossref_primary_10_1016_j_gsf_2021_101282 crossref_primary_10_1016_j_scs_2022_104342 crossref_primary_10_1007_s12273_022_0968_y crossref_primary_10_1016_j_scitotenv_2021_152592 crossref_primary_10_1016_j_scitotenv_2023_163827 crossref_primary_10_1007_s12273_025_1228_8 crossref_primary_10_5694_mja2_51131 crossref_primary_10_3390_bios12070523 crossref_primary_10_3390_su141811281 crossref_primary_10_1016_j_idm_2024_10_004 crossref_primary_10_1016_j_buildenv_2022_109674 crossref_primary_10_1098_rsfs_2021_0072 crossref_primary_10_1098_rsos_230377 crossref_primary_10_1016_j_buildenv_2023_110720 crossref_primary_10_1016_j_buildenv_2021_108167 crossref_primary_10_1063_5_0237623 crossref_primary_10_1016_j_matpr_2023_08_274 crossref_primary_10_1038_s41579_021_00535_6 crossref_primary_10_1371_journal_pone_0260237 crossref_primary_10_1007_s11357_024_01379_7 |
Cites_doi | 10.1073/pnas.1716561115 10.1080/15459624.2012.684582 10.1093/oxfordjournals.aje.a112560 10.1111/j.1600-0668.1998.t01-2-00006.x 10.1056/NEJMc2004973 10.15585/mmwr.mm6917e2 10.1111/j.1600-0668.2004.00317.x 10.1111/irv.12390 10.15585/mmwr.mm6914e1 10.15252/emmm.202013296 10.1034/j.1600-0668.2003.00189.x 10.1038/s41591-020-0869-5 10.1093/oxfordjournals.aje.a112781 10.1016/j.jvoice.2020.11.029 10.3201/eid2608.200633 10.1126/science.abe2424 10.1016/j.ijid.2020.12.031 10.1016/j.envint.2020.105794 10.3201/eid2610.202573 10.3346/jkms.2020.35.e288 10.1371/journal.pone.0162481 10.1056/NEJMoa032867 10.1111/ina.12388 10.1007/s12273-020-0703-5 10.3201/eid2607.200764 10.1016/S2666-5247(20)30172-5 10.1056/NEJMoa0906089 10.3201/eid1002.030452 10.1016/j.envint.2020.105730 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd 2021 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Jun 2021 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: 2021 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Jun 2021 – notice: 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd |
DBID | AAYXX CITATION NPM 7ST 8FD C1K F28 FR3 KR7 SOI 7X8 5PM |
DOI | 10.1016/j.buildenv.2021.107788 |
DatabaseName | CrossRef PubMed Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-684X |
EndPage | 107788 |
ExternalDocumentID | PMC7954773 33746341 10_1016_j_buildenv_2021_107788 S0360132321001955 |
Genre | Journal Article |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSJ SSR SST SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c565t-96b853d01aa2b35de79f8eb23f8b3e8b3fe9f5f26b9fbaacc6b7471951c5e06a3 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Thu Aug 21 14:34:41 EDT 2025 Fri Jul 11 02:39:40 EDT 2025 Wed Aug 13 08:16:44 EDT 2025 Thu Apr 03 07:06:38 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Tue Jul 01 00:25:05 EDT 2025 Fri Feb 23 02:45:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 SARS-CoV-2 Aerosol transmission Building ventilation Airborne transmission |
Language | English |
License | 2021 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c565t-96b853d01aa2b35de79f8eb23f8b3e8b3fe9f5f26b9fbaacc6b7471951c5e06a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. |
ORCID | 0000-0001-6231-2470 0000-0002-2281-4529 0000-0002-2392-0366 0000-0001-8512-8676 0000-0002-7237-7806 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7954773 |
PMID | 33746341 |
PQID | 2532190896 |
PQPubID | 2045275 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7954773 proquest_miscellaneous_2503661237 proquest_journals_2532190896 pubmed_primary_33746341 crossref_primary_10_1016_j_buildenv_2021_107788 crossref_citationtrail_10_1016_j_buildenv_2021_107788 elsevier_sciencedirect_doi_10_1016_j_buildenv_2021_107788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Building and environment |
PublicationTitleAlternate | Build Environ |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Qian, Miao, Liu (bib15) 2020 Ralli, Morrone, Arcangeli (bib18) 2021; 103 Gao, Wei, Xu (bib42) 2016; 11 Xie, Lau, Yoshida (bib33) 2020; 70 Cevik, Tate, Lloyd (bib24) 2021; 2 Swinkels (bib14) 2020 Tobolowsky, Gonzales, Self (bib19) 2020; 69 Charlotte (bib16) 2020 Yu, Li, Wong (bib11) 2004; 350 Wei, Li, Chiew (bib26) 2020; 69 Moser, Bender, Margolis (bib27) 1979; 110 Lu, Gu, Li (bib8) 2020; 26 World Health Organization (bib40) USA Centers for Disease Control and Prevention CDC (bib2) 2020 Rudnick, Milton (bib28) 2003; 13 Holmberg, Li (bib36) 1998; 8 Kang, Lee, Park (bib20) 2020; 26 Dai, Zhao (bib6) 2020; 13 Jang, Han, Rhee (bib22) 2020; 26 Günther, Czech-Sioli, Indenbirken (bib23) 2020; 12 Buonanno, Stabile, Morawska (bib5) 2020; 141 Sun, Wang, Gao (bib38) 2021; 371 American Society of Heating (bib35) 2019; vol. 62 He, Lau, Wu (bib25) 2020; 26 Riley, Murphy, Riley (bib4) 1978; 107 Li, Huang, Yu (bib9) 2005; 15 Morawska, Cao (bib1) 2020; 139 Bivolarova, Ondráček, Melikov (bib12) 2017; 27 Lindsley, Blachere, Beezhold (bib32) 2016; 10 Lindsley, Pearce, Hudnall (bib31) 2012; 9 World Health Organization (bib3) Yan, Grantham, Pantelic (bib34) 2018; 115 Lessler, Reich, Cummings (bib29) 2009; 361 Wong, Li, Tam (bib10) 2004; 10 Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic H1N1 (bib41) 2009; 362 van Doremalen, Morris, Holbrook (bib30) 2020; 382 Li, Gao (bib13) 2020; vol. 9 Bae, Kim, Jung (bib21) 2020; 35 Miller, Nazaroff, Jimenez (bib7) 2021 Imbert, Kinley, Scarborough (bib17) 2020 Li (10.1016/j.buildenv.2021.107788_bib9) 2005; 15 Bae (10.1016/j.buildenv.2021.107788_bib21) 2020; 35 Holmberg (10.1016/j.buildenv.2021.107788_bib36) 1998; 8 Yu (10.1016/j.buildenv.2021.107788_bib11) 2004; 350 Lindsley (10.1016/j.buildenv.2021.107788_bib31) 2012; 9 Charlotte (10.1016/j.buildenv.2021.107788_bib16) 2020 He (10.1016/j.buildenv.2021.107788_bib25) 2020; 26 Yan (10.1016/j.buildenv.2021.107788_bib34) 2018; 115 Wong (10.1016/j.buildenv.2021.107788_bib10) 2004; 10 Wei (10.1016/j.buildenv.2021.107788_bib26) 2020; 69 USA Centers for Disease Control and Prevention CDC (10.1016/j.buildenv.2021.107788_bib2) 2020 van Doremalen (10.1016/j.buildenv.2021.107788_bib30) 2020; 382 Tobolowsky (10.1016/j.buildenv.2021.107788_bib19) 2020; 69 Günther (10.1016/j.buildenv.2021.107788_bib23) 2020; 12 Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic H1N1 (10.1016/j.buildenv.2021.107788_bib41) 2009; 362 Bivolarova (10.1016/j.buildenv.2021.107788_bib12) 2017; 27 Swinkels (10.1016/j.buildenv.2021.107788_bib14) Ralli (10.1016/j.buildenv.2021.107788_bib18) 2021; 103 Lessler (10.1016/j.buildenv.2021.107788_bib29) 2009; 361 Qian (10.1016/j.buildenv.2021.107788_bib15) 2020 Cevik (10.1016/j.buildenv.2021.107788_bib24) 2021; 2 Riley (10.1016/j.buildenv.2021.107788_bib4) 1978; 107 Jang (10.1016/j.buildenv.2021.107788_bib22) 2020; 26 Li (10.1016/j.buildenv.2021.107788_bib13) 2020; vol. 9 Miller (10.1016/j.buildenv.2021.107788_bib7) 2021 Moser (10.1016/j.buildenv.2021.107788_bib27) 1979; 110 Xie (10.1016/j.buildenv.2021.107788_bib33) 2020; 70 Buonanno (10.1016/j.buildenv.2021.107788_bib5) 2020; 141 Morawska (10.1016/j.buildenv.2021.107788_bib1) 2020; 139 Kang (10.1016/j.buildenv.2021.107788_bib20) 2020; 26 Gao (10.1016/j.buildenv.2021.107788_bib42) 2016; 11 American Society of Heating (10.1016/j.buildenv.2021.107788_bib35) 2019; vol. 62 Dai (10.1016/j.buildenv.2021.107788_bib6) 2020; 13 Lindsley (10.1016/j.buildenv.2021.107788_bib32) 2016; 10 Sun (10.1016/j.buildenv.2021.107788_bib38) 2021; 371 Rudnick (10.1016/j.buildenv.2021.107788_bib28) 2003; 13 World Health Organization (10.1016/j.buildenv.2021.107788_bib40) Imbert (10.1016/j.buildenv.2021.107788_bib17) 2020 World Health Organization (10.1016/j.buildenv.2021.107788_bib3) Lu (10.1016/j.buildenv.2021.107788_bib8) 2020; 26 |
References_xml | – volume: 141 start-page: 105794 year: 2020 ident: bib5 article-title: Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment publication-title: Environ. Int. – volume: 27 start-page: 1201 year: 2017 end-page: 1212 ident: bib12 article-title: Comparison between tracer gas and aerosol particles distribution indoors: the impact of ventilation rate, interaction of airflows, and presence of objects publication-title: Indoor Air – volume: 103 start-page: 243 year: 2021 end-page: 245 ident: bib18 article-title: Asymptomatic patients as a source of transmission of COVID-19 in homeless shelters publication-title: Int. J. Infect. Dis. – volume: 12 year: 2020 ident: bib23 article-title: SARS-CoV-2 outbreak investigation in a German meat processing plant publication-title: EMBO Mol. Med. – start-page: 3141 year: 2021 end-page: 32310 ident: bib7 article-title: Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event publication-title: Indoor Air – year: 2020 ident: bib14 article-title: SARS-CoV-2 Superspreading events around the world – volume: 8 start-page: 113 year: 1998 end-page: 122 ident: bib36 article-title: Modelling of indoor environment - particle dispersion and deposition publication-title: Indoor Air – volume: 26 start-page: 1917 year: 2020 ident: bib22 article-title: Cluster of coronavirus disease associated with fitness dance classes, South Korea publication-title: Emerg. Infect. Dis. – volume: 10 start-page: 269 year: 2004 end-page: 276 ident: bib10 article-title: Cluster of SARS among medical students exposed to single patient, Hong Kong publication-title: Emerg. Infect. Dis. – year: 2020 ident: bib15 article-title: Indoor transmission of SARS-CoV-2 publication-title: Indoor Air – volume: 26 start-page: 2499 year: 2020 ident: bib20 article-title: Coronavirus disease exposure and spread from nightclubs, South Korea publication-title: Emerg. Infect. Dis. – volume: 361 start-page: 2628 year: 2009 end-page: 2636 ident: bib29 article-title: Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school publication-title: N. Engl. J. Med. – volume: 107 start-page: 421 year: 1978 end-page: 432 ident: bib4 article-title: Airborne spread of measles in a suburban elementary school publication-title: Am. J. Epidemiol. – volume: 371 start-page: 254 year: 2021 end-page: 2540 ident: bib38 article-title: Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2 publication-title: Science – volume: 115 start-page: 1081 year: 2018 end-page: 1086 ident: bib34 article-title: Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 15 start-page: 83 year: 2005 end-page: 95 ident: bib9 article-title: Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong publication-title: Indoor Air – volume: vol. 9 year: 2020 ident: bib13 article-title: Public prevention guidelines of infection due to the novel coronavirus pneumonia publication-title: Chinese, 新型冠状病毒感染的肺炎公众防护指南 – volume: vol. 62 year: 2019 ident: bib35 publication-title: Refrigerating and Air-Conditioning Engineers (ASHRAE) Ventilation for Acceptable Indoor Air Quality – ident: bib40 article-title: WHO housing and health guidelines – ident: bib3 article-title: Coronavirus disease (COVID-19): how is it transmitted? – volume: 13 start-page: 237 year: 2003 end-page: 245 ident: bib28 article-title: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration publication-title: Indoor Air – start-page: ciaa107 year: 2020 ident: bib17 article-title: Coronavirus Disease 2019 (COVID-19) Outbreak in a San Francisco Homeless Shelter – volume: 362 start-page: 1708 year: 2009 end-page: 1719 ident: bib41 article-title: Influenza. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection publication-title: N. Engl. J. Med. – volume: 2 start-page: e13 year: 2021 end-page: e22 ident: bib24 article-title: SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis publication-title: The Lancet Microbe – volume: 26 start-page: 1628 year: 2020 ident: bib8 article-title: COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China publication-title: Emerg. Infect. Dis. – volume: 35 start-page: e288 year: 2020 ident: bib21 article-title: Epidemiological characteristics of COVID-19 outbreak outbreak at fitness fitness centers centers in cheonan, korea publication-title: J. Kor. Med. Sci. – volume: 69 start-page: 411 year: 2020 ident: bib26 article-title: Presymptomatic transmission of SARS-CoV-2-Singapore, january 23-march 16, 2020 publication-title: MMWR (Morb. Mortal. Wkly. Rep.) – volume: 13 start-page: 1321 year: 2020 end-page: 1327 ident: bib6 article-title: Association of the infection probability of COVID-19 with ventilation rates in confined spaces publication-title: Building Simulation – volume: 69 start-page: 523 year: 2020 ident: bib19 article-title: COVID-19 outbreak among three affiliated homeless service sites-King County, Washington, 2020 publication-title: MMWR (Morb. Mortal. Wkly. Rep.) – volume: 11 start-page: e0162481 year: 2016 ident: bib42 article-title: Building ventilation as an effective disease intervention strategy on a large and dense social contact network publication-title: PLos One – volume: 10 start-page: 404 year: 2016 end-page: 413 ident: bib32 article-title: Viable influenza A virus in airborne particles expelled during coughs versus exhalations publication-title: Influenza and other respiratory viruses – year: 2020 ident: bib2 article-title: How 2019-nCoV Spreads – volume: 110 start-page: 1 year: 1979 end-page: 6 ident: bib27 article-title: An outbreak of influenza aboard a commercial airliner publication-title: Am. J. Epidemiol. – volume: 70 start-page: 850 year: 2020 end-page: 858 ident: bib33 article-title: Detection of influenza and other respiratory viruses in air sampled from a university campus: a longitudinal study publication-title: Clin. Infect. Dis. – volume: 9 start-page: 443 year: 2012 end-page: 449 ident: bib31 article-title: Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness publication-title: J. Occup. Environ. Hyg. – volume: 350 start-page: 1731 year: 2004 end-page: 1739 ident: bib11 article-title: Evidence of airborne transmission of the severe acute respiratory syndrome virus publication-title: N. Engl. J. Med. – volume: 382 start-page: 1564 year: 2020 end-page: 1567 ident: bib30 article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 publication-title: N. Engl. J. Med. – volume: 26 start-page: 672 year: 2020 end-page: 675 ident: bib25 article-title: Temporal dynamics in viral shedding and transmissibility of COVID-19 publication-title: Nat. Med. – year: 2020 ident: bib16 article-title: High rate of SARS-CoV-2 transmission due to choir practice in France at the beginning of the COVID-19 pandemic publication-title: J. Voice – volume: 139 start-page: 105730 year: 2020 ident: bib1 article-title: Airborne transmission of SARS-CoV-2: the world should face the reality publication-title: Environ. Int. – volume: 115 start-page: 1081 year: 2018 ident: 10.1016/j.buildenv.2021.107788_bib34 article-title: Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1716561115 – ident: 10.1016/j.buildenv.2021.107788_bib14 – volume: 9 start-page: 443 issue: 7 year: 2012 ident: 10.1016/j.buildenv.2021.107788_bib31 article-title: Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness publication-title: J. Occup. Environ. Hyg. doi: 10.1080/15459624.2012.684582 – volume: 107 start-page: 421 issue: 5 year: 1978 ident: 10.1016/j.buildenv.2021.107788_bib4 article-title: Airborne spread of measles in a suburban elementary school publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a112560 – volume: 8 start-page: 113 issue: 2 year: 1998 ident: 10.1016/j.buildenv.2021.107788_bib36 article-title: Modelling of indoor environment - particle dispersion and deposition publication-title: Indoor Air doi: 10.1111/j.1600-0668.1998.t01-2-00006.x – volume: 382 start-page: 1564 issue: 16 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib30 article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2004973 – volume: 69 start-page: 523 issue: 17 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib19 article-title: COVID-19 outbreak among three affiliated homeless service sites-King County, Washington, 2020 publication-title: MMWR (Morb. Mortal. Wkly. Rep.) doi: 10.15585/mmwr.mm6917e2 – volume: 15 start-page: 83 year: 2005 ident: 10.1016/j.buildenv.2021.107788_bib9 article-title: Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong publication-title: Indoor Air doi: 10.1111/j.1600-0668.2004.00317.x – volume: 10 start-page: 404 year: 2016 ident: 10.1016/j.buildenv.2021.107788_bib32 article-title: Viable influenza A virus in airborne particles expelled during coughs versus exhalations publication-title: Influenza and other respiratory viruses doi: 10.1111/irv.12390 – start-page: ciaa107 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib17 – volume: 362 start-page: 1708 issue: 18 year: 2009 ident: 10.1016/j.buildenv.2021.107788_bib41 article-title: Influenza. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection publication-title: N. Engl. J. Med. – volume: 69 start-page: 411 issue: 14 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib26 article-title: Presymptomatic transmission of SARS-CoV-2-Singapore, january 23-march 16, 2020 publication-title: MMWR (Morb. Mortal. Wkly. Rep.) doi: 10.15585/mmwr.mm6914e1 – ident: 10.1016/j.buildenv.2021.107788_bib3 – volume: 12 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib23 article-title: SARS-CoV-2 outbreak investigation in a German meat processing plant publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202013296 – volume: 13 start-page: 237 issue: 3 year: 2003 ident: 10.1016/j.buildenv.2021.107788_bib28 article-title: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration publication-title: Indoor Air doi: 10.1034/j.1600-0668.2003.00189.x – volume: 70 start-page: 850 issue: 5 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib33 article-title: Detection of influenza and other respiratory viruses in air sampled from a university campus: a longitudinal study publication-title: Clin. Infect. Dis. – year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib2 – volume: 26 start-page: 672 issue: 5 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib25 article-title: Temporal dynamics in viral shedding and transmissibility of COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0869-5 – volume: 110 start-page: 1 issue: 1 year: 1979 ident: 10.1016/j.buildenv.2021.107788_bib27 article-title: An outbreak of influenza aboard a commercial airliner publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a112781 – year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib16 article-title: High rate of SARS-CoV-2 transmission due to choir practice in France at the beginning of the COVID-19 pandemic publication-title: J. Voice doi: 10.1016/j.jvoice.2020.11.029 – volume: 26 start-page: 1917 issue: 8 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib22 article-title: Cluster of coronavirus disease associated with fitness dance classes, South Korea publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2608.200633 – volume: 371 start-page: 254 year: 2021 ident: 10.1016/j.buildenv.2021.107788_bib38 article-title: Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abe2424 – volume: 103 start-page: 243 year: 2021 ident: 10.1016/j.buildenv.2021.107788_bib18 article-title: Asymptomatic patients as a source of transmission of COVID-19 in homeless shelters publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.12.031 – volume: 141 start-page: 105794 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib5 article-title: Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105794 – volume: 26 start-page: 2499 issue: 10 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib20 article-title: Coronavirus disease exposure and spread from nightclubs, South Korea publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2610.202573 – volume: 35 start-page: e288 issue: 31 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib21 article-title: Epidemiological characteristics of COVID-19 outbreak outbreak at fitness fitness centers centers in cheonan, korea publication-title: J. Kor. Med. Sci. doi: 10.3346/jkms.2020.35.e288 – volume: 11 start-page: e0162481 issue: 9 year: 2016 ident: 10.1016/j.buildenv.2021.107788_bib42 article-title: Building ventilation as an effective disease intervention strategy on a large and dense social contact network publication-title: PLos One doi: 10.1371/journal.pone.0162481 – volume: 350 start-page: 1731 year: 2004 ident: 10.1016/j.buildenv.2021.107788_bib11 article-title: Evidence of airborne transmission of the severe acute respiratory syndrome virus publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa032867 – volume: 27 start-page: 1201 issue: 6 year: 2017 ident: 10.1016/j.buildenv.2021.107788_bib12 article-title: Comparison between tracer gas and aerosol particles distribution indoors: the impact of ventilation rate, interaction of airflows, and presence of objects publication-title: Indoor Air doi: 10.1111/ina.12388 – start-page: 3141 year: 2021 ident: 10.1016/j.buildenv.2021.107788_bib7 article-title: Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event publication-title: Indoor Air – volume: 13 start-page: 1321 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib6 article-title: Association of the infection probability of COVID-19 with ventilation rates in confined spaces publication-title: Building Simulation doi: 10.1007/s12273-020-0703-5 – volume: 26 start-page: 1628 issue: 7 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib8 article-title: COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200764 – volume: 2 start-page: e13 issue: 1 year: 2021 ident: 10.1016/j.buildenv.2021.107788_bib24 article-title: SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis publication-title: The Lancet Microbe doi: 10.1016/S2666-5247(20)30172-5 – volume: 361 start-page: 2628 issue: 27 year: 2009 ident: 10.1016/j.buildenv.2021.107788_bib29 article-title: Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0906089 – volume: 10 start-page: 269 year: 2004 ident: 10.1016/j.buildenv.2021.107788_bib10 article-title: Cluster of SARS among medical students exposed to single patient, Hong Kong publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1002.030452 – ident: 10.1016/j.buildenv.2021.107788_bib40 – volume: vol. 62 year: 2019 ident: 10.1016/j.buildenv.2021.107788_bib35 – year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib15 article-title: Indoor transmission of SARS-CoV-2 publication-title: Indoor Air – volume: vol. 9 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib13 article-title: Public prevention guidelines of infection due to the novel coronavirus pneumonia – volume: 139 start-page: 105730 year: 2020 ident: 10.1016/j.buildenv.2021.107788_bib1 article-title: Airborne transmission of SARS-CoV-2: the world should face the reality publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105730 |
SSID | ssj0016934 |
Score | 2.698797 |
Snippet | Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107788 |
SubjectTerms | Aerosol transmission Aerosols Air flow Airborne transmission Building ventilation Coronaviruses COVID-19 Disease transmission Droplets Environmental conditions Epidemiology Mathematical models Mechanical ventilation Outbreaks Restaurants SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Simulation Tracer gas Ventilation Viral diseases Viruses |
Title | Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant |
URI | https://dx.doi.org/10.1016/j.buildenv.2021.107788 https://www.ncbi.nlm.nih.gov/pubmed/33746341 https://www.proquest.com/docview/2532190896 https://www.proquest.com/docview/2503661237 https://pubmed.ncbi.nlm.nih.gov/PMC7954773 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N42U8IGB8BMZkJF6ztnZsN49VxVSYqBBlaG-WndgiU5VUJUXihb-du3ypBaQ97CEPsX2Sc3f2neO73wG8cxOuvJKovC6nEmbSxunY8RhdXYH2KHCrKMH501ItrpOPN_LmCOZ9LgyFVXZ7f7unN7t11zLquDnaFMVohXsvXRRQEgplvVGieZJo0vKL30OYB2GNdBBS45hG72UJ3144Kj3ty594TuQTbNS6qcDyXwP1rwP6dxzlnmG6fAyPOo-SzdpJP4EjXz6Fh3s4g6ew_LzFZevWntlii0IvPavJRqGM6WcZqwJbzb6s4nn1LeasKJllm6rarn-xJhpyjf5ozqiIh90hWf0Mri_ff50v4q6QQpyhv1bHqXJolfPxxFruhMy9TsMUj9QiTJ3w-ASfBhm4cmlw1maZcnRWRecrk36srHgOx2VV-pfAVKatJpS23OrEpm7qvJsGHUTO80y6EIHsuWeyDmWcil2sTR9Odmt6rhviumm5HsFooNu0OBt3UqS9cMyBxhg0BnfSnvXSNN2a_WG4RFWia1AVwduhGyVBVyi29NWOxqAiEWKNjuBFK_xhukLoRKFTEIE-UIthACF5H_aUxfcG0VunMtFavLrHJ72GE3pro9jO4Lje7vwb9Jdqd94siHN4MPtwtVj-AVrcF3Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4QHwTGGAkXkPbuLabx6pi6thWIbqhvVl2YmuZqqQq6aT999w1TtQC0h54yIvtk5K7s--cu_sdwGc7TKSTApXX5tTCTJg4HdgkRleXoz3yiZFU4Hw-l7PL0bcrcXUA07YWhtIqw9nfnOnb0zqM9AM3-6ui6C_w7KVAARWhUNWbeACHhE4lenA4OTmdzbtggkx5QJEaxESwUyh888VS92lX3uJVMRnioFLbJiz_tFF_-6B_plLu2Kbjp_AkOJVs0rz3Mzhw5XN4vAM1-ALm39e4c-3SMVOsUe6lYzWZKRQz_S9jlWeLyY9FPK1-xgkrSmbYqqrWyzu2TYhcokuaM-rjYTZIVr-Ey-OvF9NZHHopxBm6bHWcSouGOR8MjUksF7lTqR_jrZr7seUOH-9SL3wibeqtMVkmLV1X0f_KhBtIw19Br6xK9waYzJRRBNSWGzUyqR1bZ8deeZ4neSasj0C03NNZABqnfhdL3WaU3eiW65q4rhuuR9Dv6FYN1Ma9FGkrHL2nNBrtwb20R600ddi2v3QiUJsoEioj-NRNoyQoimJKV21oDSoSgdaoCF43wu9el3M1kugXRKD21KJbQGDe-zNlcb0F9VYp6q7ib__jkz7Cw9nF-Zk-O5mfvoNHNNMktR1Br15v3Ht0n2r7IWyP39YwGiU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probable+airborne+transmission+of+SARS-CoV-2+in+a+poorly+ventilated+restaurant&rft.jtitle=Building+and+environment&rft.au=Li%2C+Yuguo&rft.au=Qian%2C+Hua&rft.au=Hang%2C+Jian&rft.au=Chen%2C+Xuguang&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=196&rft_id=info:doi/10.1016%2Fj.buildenv.2021.107788&rft.externalDocID=S0360132321001955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |