A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement
Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable pr...
Saved in:
Published in | Journal of biomechanics Vol. 77; pp. 146 - 154 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
22.08.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR. |
---|---|
AbstractList | Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR.Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR. Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r ), was found in the FE-MS model (RMSE = 177.2 N, r = 0.90) when compared with the MS model (RMSE = 224.1 N, r = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR. Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR. |
Author | Liu, Yao Mitsuishi, Mamoru Yamamoto, Ko Sugita, Naohiko Yao, Jiang Saraswat, Prabhav Shu, Liming |
Author_xml | – sequence: 1 givenname: Liming surname: Shu fullname: Shu, Liming email: l.shu@mfg.t.u-tokyo.ac.jp organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan – sequence: 2 givenname: Ko surname: Yamamoto fullname: Yamamoto, Ko organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan – sequence: 3 givenname: Jiang surname: Yao fullname: Yao, Jiang organization: Dassault Systemes Simulia Corp., Johnston, RI, USA – sequence: 4 givenname: Prabhav surname: Saraswat fullname: Saraswat, Prabhav organization: Dassault Systemes Simulia Corp., Johnston, RI, USA – sequence: 5 givenname: Yao surname: Liu fullname: Liu, Yao organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan – sequence: 6 givenname: Mamoru surname: Mitsuishi fullname: Mitsuishi, Mamoru organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan – sequence: 7 givenname: Naohiko surname: Sugita fullname: Sugita, Naohiko organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30031649$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9rFTEUxYNU7Gv1K5SAGzcz5s9kMgERS7FVKLjRdchk7mDmZZJnMqO8b29eX-vibeoiXAi_c7g5JxfoLMQACF1RUlNC2_dTPfUuzmB_1ozQriayJqR7gTa0k7xivCNnaEMIo5Viipyji5wnQohspHqFzjkhnLaN2qBwjfPaT2CXKu_AutFZPLrgFsDgYYaw4HnNdvUxb8vFYjwek5nhT0xbPMaEDyuY4GzGJhi_zy7jOGKDl3hgtwEAJ9h5Yx_MXqOXo_EZ3jzOS_Tj9vP3my_V_be7rzfX95UVrVgqLpgBOZBRtcKwXgjgjeGSUA4DFR0o2jCuTDtIYag1gwCpaKdkw2QH_dDyS_Tu6LtL8dcKedGzyxa8NwHimjUrSVDGRaMK-vYEneKaylseKNWJcmShrh6ptZ9h0LvkZpP2-inJArRHwKaYc4LxH0KJPlSmJ_1UmT5UponUpbIi_HAitG4xi4thScb55-WfjnIocf52kHS2DoKFwaXSqh6ie97i44mF9eULWOO3sP8fg7_WJ8wP |
CitedBy_id | crossref_primary_10_1007_s10237_023_01726_1 crossref_primary_10_1007_s11517_021_02419_6 crossref_primary_10_1016_j_knee_2021_01_005 crossref_primary_10_3390_biomechanics1030025 crossref_primary_10_1007_s10439_024_03675_x crossref_primary_10_1007_s10439_020_02555_4 crossref_primary_10_3389_fbioe_2020_00233 crossref_primary_10_1109_TVCG_2023_3308753 crossref_primary_10_3390_ma15082878 crossref_primary_10_1016_j_medengphy_2025_104313 crossref_primary_10_1302_2046_3758_1110_BJR_2022_0039_R1 crossref_primary_10_1038_s41598_024_52548_9 crossref_primary_10_1016_j_compbiomed_2019_03_005 crossref_primary_10_1016_j_compbiomed_2021_104311 crossref_primary_10_1016_j_compbiomed_2021_105023 crossref_primary_10_1080_10255842_2020_1761960 crossref_primary_10_1016_j_compbiomed_2022_106099 crossref_primary_10_3389_fbioe_2021_765438 crossref_primary_10_1007_s11042_019_7565_9 crossref_primary_10_3390_app112311440 crossref_primary_10_1016_j_injury_2022_05_021 crossref_primary_10_1115_1_4053211 crossref_primary_10_1007_s42242_020_00102_7 crossref_primary_10_1016_j_medengphy_2019_08_002 crossref_primary_10_1080_10255842_2024_2329946 crossref_primary_10_1049_bsbt_2019_0012 crossref_primary_10_1142_S0219519420500475 crossref_primary_10_1007_s42600_022_00227_x crossref_primary_10_1109_TMI_2019_2940555 crossref_primary_10_1177_0954411919865385 crossref_primary_10_1051_medsci_2021243 crossref_primary_10_3389_fbioe_2021_648356 crossref_primary_10_1007_s11517_023_03011_w crossref_primary_10_1007_s11044_023_09876_x crossref_primary_10_1177_23259671211034487 crossref_primary_10_1016_j_jmbbm_2020_104136 crossref_primary_10_1007_s10439_021_02812_0 crossref_primary_10_3390_ma15010153 crossref_primary_10_1016_j_jbiomech_2021_110464 crossref_primary_10_1016_j_jbiomech_2024_111973 crossref_primary_10_1016_j_jbiomech_2019_07_042 crossref_primary_10_3389_fbioe_2023_1130219 |
Cites_doi | 10.1115/1.4026358 10.1115/1.4029258 10.1016/j.jbiomech.2013.01.025 10.1007/s11465-014-0306-x 10.1016/j.jbiomech.2010.03.005 10.1016/j.jbiomech.2010.05.036 10.1016/j.jbiomech.2009.06.019 10.1109/TRO.2004.833798 10.1115/1.1634282 10.1007/s10439-005-1433-7 10.1002/jor.20670 10.1302/0301-620X.50B3.505 10.1016/j.jbiomech.2013.10.015 10.1016/0021-9290(75)90089-5 10.1016/j.jbiomech.2011.02.009 10.1016/0010-4825(95)98882-E 10.1002/jor.23171 10.1016/S0021-9290(03)00176-3 10.1016/j.joca.2010.12.001 10.1016/S0268-0033(01)00109-7 10.1007/s11999-009-1119-9 10.1115/1.4032379 10.1002/jor.22023 10.1016/j.clinbiomech.2006.09.005 10.1080/01495739708936697 10.1016/j.knee.2013.08.004 10.1016/j.triboint.2016.10.050 10.1080/10255842.2013.845175 10.1115/1.1992522 10.1016/j.jbiomech.2012.05.040 10.1016/j.gaitpost.2005.04.012 10.1177/0954411917744586 10.1007/s00158-008-0281-0 10.1016/j.jbiomech.2011.01.027 10.1016/j.jbiomech.2012.01.015 10.1115/1.4026359 10.1002/jor.20876 10.1109/TBME.2007.901024 10.1016/j.jbiomech.2011.11.052 10.1016/j.jbiomech.2011.09.009 10.1007/BF01395810 10.1016/S0021-9290(03)00255-0 10.1016/j.medengphy.2013.12.007 10.1002/1097-4636(2001)58:3<282::AID-JBM1018>3.0.CO;2-S 10.1016/j.joca.2012.11.014 10.1016/j.arth.2016.09.034 10.1007/978-1-4614-1927-3_6 10.1007/s007760050157 10.3389/fncom.2017.00096 10.1016/j.gaitpost.2016.07.076 10.1002/jor.1100160507 10.1109/10.102791 10.1016/j.jbiomech.2012.05.035 10.1016/j.medengphy.2016.04.010 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. Copyright Elsevier Limited Aug 22, 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Aug 22, 2018 |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2018.07.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 154 |
ExternalDocumentID | 30031649 10_1016_j_jbiomech_2018_07_008 S0021929018305050 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- 3V. 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c565t-352ae7d0f965a2b55e34a37013ed158e914239a6d75a1cad5e7918974278ebd63 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 02:41:47 EDT 2025 Wed Aug 13 08:04:52 EDT 2025 Mon Jul 21 06:04:33 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 00:44:12 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Tue Aug 26 17:10:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomechanics Validation Musculoskeletal model Prosthetic knee Concurrent analysis |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c565t-352ae7d0f965a2b55e34a37013ed158e914239a6d75a1cad5e7918974278ebd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0021929018305050 |
PMID | 30031649 |
PQID | 2079857987 |
PQPubID | 1226346 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2074123549 proquest_journals_2079857987 pubmed_primary_30031649 crossref_primary_10_1016_j_jbiomech_2018_07_008 crossref_citationtrail_10_1016_j_jbiomech_2018_07_008 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_07_008 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-22 |
PublicationDateYYYYMMDD | 2018-08-22 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Pabinger, Berghold, Boehler, Labek (b0240) 2013; 21 Thelen, Won Choi, Schmitz (b0295) 2014; 136 Von Keudell, Sodha, Collins, Minas, Fitz, Gomoll (b0305) 2014; 21 Nagamine, Miura, Bravo, Urabe, Matsuda, Miyanishi, Hirata, Iwamoto (b0220) 2000; 5 Saraswat, Yao, Chinnakonda, Oancea, Hurtado, Sett (b0260) 2013 Guess, Stylianou, Kia (b0140) 2014; 136 Jones (b0165) 1968; 50 Nakamura, Yamane, Fujita, Suzuki (b0225) 2005; 21 Zhang, Chen, Wang, Li, Jin (b0335) 2017; 109 Sathasivam, Walker (b0265) 1998; 16 Navacchia, Rullkoetter, Schutz, List, Fitzpatrick, Shelburne (b0235) 2016; 34 Kia, Stylianou, Guess (b0180) 2014; 36 Moissenet, Chèze, Dumas (b0215) 2014; 47 Saraswat, Andersen, MacWilliams (b0255) 2010; 43 Winby, Lloyd, Besier, Kirk (b0320) 2009; 42 Cronskär, Rasmussen, Tinnsten (b0065) 2015; 18 Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (b0020) 2012; 45 Sathasivam, Walker, Campbell, Rayner (b0275) 2001; 58 Halloran, Easley, Petrella, Rullkoetter (b0150) 2005; 127 Zeller, Sharma, Kurtz, Anderle, Komistek (b0330) 2017; 32 Delp, Loan (b0080) 1995; 25 Lundberg, Foucher, Andriacchi, Wimmer (b0195) 2012; 45 Fitzpatrick, Clary, Rullkoetter (b0110) 2012; 45 Delp, Loan, Hoy, Zajac, Topp, Rosen (b0085) 1990; 37 Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot, Andersen (b0205) 2015; 137 Willing, Kim (b0310) 2011; 44 Fregly, Besier, Lloyd, Delp, Banks, Pandy, D’Lima (b0120) 2012; 30 Pandy, Sasaki, Kim (b0245) 1997; 1 Scarton, Guiotto, Malaquias, Sinigaglia, Jonkers, Sawacha (b0280) 2016; 49 Yao, Saraswat, Chinnakonda, Bertucci, Oancea, Hurtado, Sett (b0325) 2014 Kim, Fernandez, Akbarshahi, Walter, Fregly, Pandy (b0185) 2009; 27 Madeti, Chalamalasetti, Bolla Pragada, siva rao (b0200) 2015; 10 Chinnakonda, Saraswat, Yao, Oancea, Hurtado, Sett (b0055) 2013 Navacchia, Myers, Rullkoetter, Shelburne (b0230) 2016; 138 Halloran, Ackermann, Erdemir, van den Bogert (b0145) 2010; 43 Liau, Cheng, Huang, Lo (b0190) 2002; 17 Erdemir, McLean, Herzog, van den Bogert (b0100) 2007; 22 Adouni, Shirazi-Adl, Shirazi (b0010) 2012; 45 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0075) 2007; 54 Farrokhi, Keyak, Powers (b0105) 2011; 19 Benoit, Ramsey, Lamontagne, Xu (b0025) 2006; 24 Pizzolato, Lloyd, Barrett, Cook, Zheng, Besier, Saxby (b0250) 2017; 11 Clary, Fitzpatrick, Maletsky, Rullkoetter (b0060) 2013; 46 Galloway, Worsley, Stokes, Nair, Taylor (b0125) 2012; 45 McLean, Su, van den Bogert (b0210) 2003; 125 Seireg, Arvikar (b0290) 1975; 8 Khosravipour, Pejhan, Luo, Wyss (b0175) 2018; 232 Villa, Migliavacca, Gastaldi, Colombo, Pietrabissa (b0300) 2004; 37 Abdelgaied, Liu, Brockett, Jennings, Fisher, Jin (b0005) 2011; 44 Gill, Wong (b0130) 2012 Blemker, Delp (b0035) 2005; 33 Bourne, Chesworth, Davis, Mahomed, Charron (b0040) 2010; 468 Chen, Zhang, Wang, Li, Zhang, Jin (b0050) 2016; 38 Schittkowski (b0285) 1982; 38 Willing, Kim (b0315) 2009; 38 D’Lima, Steklov, Fregly, Banks, Colwell (b0070) 2008; 26 Fregly, Bei, Sylvester (b0115) 2003; 36 Jones (10.1016/j.jbiomech.2018.07.008_b0165) 1968; 50 Farrokhi (10.1016/j.jbiomech.2018.07.008_b0105) 2011; 19 Lundberg (10.1016/j.jbiomech.2018.07.008_b0195) 2012; 45 McLean (10.1016/j.jbiomech.2018.07.008_b0210) 2003; 125 Blemker (10.1016/j.jbiomech.2018.07.008_b0035) 2005; 33 Fregly (10.1016/j.jbiomech.2018.07.008_b0120) 2012; 30 Bourne (10.1016/j.jbiomech.2018.07.008_b0040) 2010; 468 Villa (10.1016/j.jbiomech.2018.07.008_b0300) 2004; 37 Moissenet (10.1016/j.jbiomech.2018.07.008_b0215) 2014; 47 D’Lima (10.1016/j.jbiomech.2018.07.008_b0070) 2008; 26 Erdemir (10.1016/j.jbiomech.2018.07.008_b0100) 2007; 22 Saraswat (10.1016/j.jbiomech.2018.07.008_b0260) 2013 Delp (10.1016/j.jbiomech.2018.07.008_b0075) 2007; 54 Winby (10.1016/j.jbiomech.2018.07.008_b0320) 2009; 42 Abdelgaied (10.1016/j.jbiomech.2018.07.008_b0005) 2011; 44 Clary (10.1016/j.jbiomech.2018.07.008_b0060) 2013; 46 Delp (10.1016/j.jbiomech.2018.07.008_b0080) 1995; 25 Chinnakonda (10.1016/j.jbiomech.2018.07.008_b0055) 2013 Kim (10.1016/j.jbiomech.2018.07.008_b0185) 2009; 27 Pizzolato (10.1016/j.jbiomech.2018.07.008_b0250) 2017; 11 Fitzpatrick (10.1016/j.jbiomech.2018.07.008_b0110) 2012; 45 Navacchia (10.1016/j.jbiomech.2018.07.008_b0230) 2016; 138 Fregly (10.1016/j.jbiomech.2018.07.008_b0115) 2003; 36 Zhang (10.1016/j.jbiomech.2018.07.008_b0335) 2017; 109 Scarton (10.1016/j.jbiomech.2018.07.008_b0280) 2016; 49 Cronskär (10.1016/j.jbiomech.2018.07.008_b0065) 2015; 18 Galloway (10.1016/j.jbiomech.2018.07.008_b0125) 2012; 45 Guess (10.1016/j.jbiomech.2018.07.008_b0140) 2014; 136 Liau (10.1016/j.jbiomech.2018.07.008_b0190) 2002; 17 Baldwin (10.1016/j.jbiomech.2018.07.008_b0020) 2012; 45 Pabinger (10.1016/j.jbiomech.2018.07.008_b0240) 2013; 21 Yao (10.1016/j.jbiomech.2018.07.008_b0325) 2014 Adouni (10.1016/j.jbiomech.2018.07.008_b0010) 2012; 45 Nagamine (10.1016/j.jbiomech.2018.07.008_b0220) 2000; 5 Saraswat (10.1016/j.jbiomech.2018.07.008_b0255) 2010; 43 Nakamura (10.1016/j.jbiomech.2018.07.008_b0225) 2005; 21 Delp (10.1016/j.jbiomech.2018.07.008_b0085) 1990; 37 Halloran (10.1016/j.jbiomech.2018.07.008_b0145) 2010; 43 Navacchia (10.1016/j.jbiomech.2018.07.008_b0235) 2016; 34 Pandy (10.1016/j.jbiomech.2018.07.008_b0245) 1997; 1 Benoit (10.1016/j.jbiomech.2018.07.008_b0025) 2006; 24 Khosravipour (10.1016/j.jbiomech.2018.07.008_b0175) 2018; 232 Kia (10.1016/j.jbiomech.2018.07.008_b0180) 2014; 36 Willing (10.1016/j.jbiomech.2018.07.008_b0315) 2009; 38 Chen (10.1016/j.jbiomech.2018.07.008_b0050) 2016; 38 Zeller (10.1016/j.jbiomech.2018.07.008_b0330) 2017; 32 Thelen (10.1016/j.jbiomech.2018.07.008_b0295) 2014; 136 Willing (10.1016/j.jbiomech.2018.07.008_b0310) 2011; 44 Gill (10.1016/j.jbiomech.2018.07.008_b0130) 2012 Sathasivam (10.1016/j.jbiomech.2018.07.008_b0275) 2001; 58 Von Keudell (10.1016/j.jbiomech.2018.07.008_b0305) 2014; 21 Halloran (10.1016/j.jbiomech.2018.07.008_b0150) 2005; 127 Madeti (10.1016/j.jbiomech.2018.07.008_b0200) 2015; 10 Sathasivam (10.1016/j.jbiomech.2018.07.008_b0265) 1998; 16 Marra (10.1016/j.jbiomech.2018.07.008_b0205) 2015; 137 Schittkowski (10.1016/j.jbiomech.2018.07.008_b0285) 1982; 38 Seireg (10.1016/j.jbiomech.2018.07.008_b0290) 1975; 8 |
References_xml | – volume: 36 start-page: 335 year: 2014 end-page: 344 ident: b0180 article-title: Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials publication-title: Med. Eng. Phys. – start-page: 367 year: 2013 end-page: 368 ident: b0055 article-title: Generating kinematically consistent data for musculoskeletal inverse dynamic analyses using finite element tools publication-title: Am. Soc. Biomech. – volume: 1 start-page: 87 year: 1997 end-page: 108 ident: b0245 article-title: A three-dimensional musculoskeletal model of the human knee joint. Part 1: theoretical construction publication-title: Comput. Methods Biomech. Biomed. Engin. – volume: 136 year: 2014 ident: b0140 article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait publication-title: J. Biomech. Eng. – volume: 44 start-page: 1108 year: 2011 end-page: 1116 ident: b0005 article-title: Computational wear prediction of artificial knee joints based on a new wear law and formulation publication-title: J. Biomech. – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: b0075 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. – volume: 136 year: 2014 ident: b0295 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J. Biomech. Eng. – volume: 49 start-page: 6 year: 2016 end-page: 7 ident: b0280 article-title: A methodological framework for detecting ulcers’ risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model publication-title: Gait Post. – volume: 36 start-page: 1659 year: 2003 end-page: 1668 ident: b0115 article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements publication-title: J. Biomech. – volume: 11 start-page: 1 year: 2017 end-page: 16 ident: b0250 article-title: Bioinspired technologies to connect musculoskeletal mechanobiology to the person for training and rehabilitation publication-title: Front. Comput. Neurosci. – volume: 125 start-page: 864 year: 2003 ident: b0210 article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement publication-title: J. Biomech. Eng. – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: b0085 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. – volume: 21 start-page: 263 year: 2013 end-page: 268 ident: b0240 article-title: Revision rates after knee replacement: cumulative results from worldwide clinical studies versus joint registers publication-title: Osteoarthr. Cartil. – volume: 42 start-page: 2294 year: 2009 end-page: 2300 ident: b0320 article-title: Muscle and external load contribution to knee joint contact loads during normal gait publication-title: J. Biomech. – volume: 38 start-page: 83 year: 1982 end-page: 114 ident: b0285 article-title: The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function publication-title: Numer. Math. – volume: 44 start-page: 1014 year: 2011 end-page: 1020 ident: b0310 article-title: Design optimization of a total knee replacement for improved constraint and flexion kinematics publication-title: J. Biomech. – volume: 21 start-page: 180 year: 2014 end-page: 184 ident: b0305 article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis publication-title: Knee – volume: 58 start-page: 282 year: 2001 end-page: 290 ident: b0275 article-title: The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements publication-title: J. Biomed. Mater. Res. – volume: 25 start-page: 21 year: 1995 end-page: 34 ident: b0080 article-title: A graphics-based software system to develop and analyze models of musculoskeletal structures publication-title: Comput. Biol. Med. – start-page: 1 year: 2014 end-page: 2 ident: b0325 article-title: Using Abaqus and Isight to simultaneously determine muscle forces, joint kinematics and strain/stresses in soft tissues during walking publication-title: Proceedings of the 7th World Congress of Biomechanics – volume: 30 start-page: 503 year: 2012 end-page: 513 ident: b0120 article-title: Grand challenge competition to predict in vivo knee loads publication-title: J. Orthop. Res. – volume: 137 year: 2015 ident: b0205 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J. Biomech. Eng. – volume: 468 start-page: 57 year: 2010 end-page: 63 ident: b0040 article-title: Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? publication-title: Clin. Orthop. Relat. Res. – volume: 34 start-page: 1576 year: 2016 end-page: 1587 ident: b0235 article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty publication-title: J. Orthop. Res. – volume: 43 start-page: 2810 year: 2010 end-page: 2815 ident: b0145 article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading publication-title: J. Biomech. – volume: 38 start-page: 708 year: 2016 end-page: 716 ident: b0050 article-title: Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty publication-title: Med. Eng. Phys. – volume: 127 start-page: 813 year: 2005 end-page: 818 ident: b0150 article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics publication-title: J. Biomech. Eng. – volume: 37 start-page: 45 year: 2004 end-page: 53 ident: b0300 article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations publication-title: J. Biomech. – volume: 33 start-page: 661 year: 2005 end-page: 673 ident: b0035 article-title: Three-dimensional representation of complex muscle architectures and geometries publication-title: Ann. Biomed. Eng. – volume: 45 start-page: 2149 year: 2012 end-page: 2156 ident: b0010 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. – volume: 16 start-page: 564 year: 1998 end-page: 571 ident: b0265 article-title: Computer model to predict subsurface damage in tibial inserts of total knees publication-title: J. Orthop. Res. – volume: 8 start-page: 89 year: 1975 end-page: 102 ident: b0290 article-title: The prediction of muscular load sharing and joint forces in the lower extremities during walking publication-title: J. Biomech. – volume: 10 start-page: 176 year: 2015 end-page: 186 ident: b0200 article-title: Biomechanics of knee joint—a review publication-title: Front. Mech. Eng. – volume: 27 start-page: 1326 year: 2009 end-page: 1331 ident: b0185 article-title: Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant publication-title: J. Orthop. Res. – volume: 109 start-page: 382 year: 2017 end-page: 389 ident: b0335 article-title: A patient-specific wear prediction framework for an artificial knee joint with coupled musculoskeletal multibody-dynamics and finite element analysis publication-title: Tribol. Int. – volume: 19 start-page: 287 year: 2011 end-page: 294 ident: b0105 article-title: Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study publication-title: Osteoarthr. Cartil. – volume: 24 start-page: 152 year: 2006 end-page: 164 ident: b0025 article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo publication-title: Gait Post. – volume: 38 start-page: 405 year: 2009 end-page: 414 ident: b0315 article-title: Three dimensional shape optimization of total knee replacements for reduced wear publication-title: Struct. Multidiscip. Optim. – volume: 47 start-page: 50 year: 2014 end-page: 58 ident: b0215 article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait publication-title: J. Biomech. – volume: 5 start-page: 232 year: 2000 end-page: 237 ident: b0220 article-title: Anatomic variations should be considered in total knee arthroplasty publication-title: J. Orthop. Sci. – volume: 45 start-page: 474 year: 2012 end-page: 483 ident: b0020 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J. Biomech. – volume: 45 start-page: 191 year: 2012 end-page: 195 ident: b0125 article-title: Development of a statistical model of knee kinetics for applications in pre-clinical testing publication-title: J. Biomech. – volume: 46 start-page: 1351 year: 2013 end-page: 1357 ident: b0060 article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study publication-title: J. Biomech. – volume: 21 start-page: 58 year: 2005 end-page: 66 ident: b0225 article-title: Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model publication-title: IEEE Trans. Robot. – volume: 43 start-page: 1645 year: 2010 end-page: 1652 ident: b0255 article-title: A musculoskeletal foot model for clinical gait analysis publication-title: J. Biomech. – volume: 138 year: 2016 ident: b0230 article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis publication-title: J. Biomech. Eng. – volume: 17 start-page: 140 year: 2002 end-page: 146 ident: b0190 article-title: The effect of malalignment on stresses in polyethylene component of total knee prostheses – a finite element analysis publication-title: Clin. Biomech. – volume: 45 start-page: 2092 year: 2012 end-page: 2102 ident: b0110 article-title: The role of patient, surgical, and implant design variation in total knee replacement performance publication-title: J. Biomech. – start-page: 136 year: 2013 end-page: 195 ident: b0260 article-title: Results repeatability of right leg finite element based muscuosleletal modeling publication-title: XXIV Congress of the International Society of Biomechanics – volume: 232 start-page: 90 year: 2018 end-page: 100 ident: b0175 article-title: Customized surface-guided knee implant: contact analysis and experimental test publication-title: Proc. Inst Mech. Eng. Part H J. Eng. Med. – start-page: 147 year: 2012 end-page: 224 ident: b0130 article-title: Sequential quadratic programming methods publication-title: Mixed Int. Nonlinear Program. – volume: 32 start-page: 1344 year: 2017 end-page: 1350 ident: b0330 article-title: Customized versus patient-sized cruciate-retaining total knee arthroplasty: an in vivo kinematics study using mobile fluoroscopy publication-title: J. Arthroplasty – volume: 18 start-page: 740 year: 2015 end-page: 748 ident: b0065 article-title: Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 50 start-page: 505 year: 1968 end-page: 510 ident: b0165 article-title: Arthroplasty of the knee by the Walldius prosthesis publication-title: J. Bone Joint Surg. Br. – volume: 45 start-page: 990 year: 2012 end-page: 996 ident: b0195 article-title: Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns publication-title: J. Biomech. – volume: 22 start-page: 131 year: 2007 end-page: 154 ident: b0100 article-title: Model-based estimation of muscle forces exerted during movements publication-title: Clin. Biomech. – volume: 26 start-page: 1549 year: 2008 end-page: 1555 ident: b0070 article-title: In vivo contact stresses during activities of daily living after knee arthroplasty publication-title: J. Orthop. Res. – volume: 136 year: 2014 ident: 10.1016/j.jbiomech.2018.07.008_b0295 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J. Biomech. Eng. doi: 10.1115/1.4026358 – volume: 137 year: 2015 ident: 10.1016/j.jbiomech.2018.07.008_b0205 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J. Biomech. Eng. doi: 10.1115/1.4029258 – volume: 46 start-page: 1351 year: 2013 ident: 10.1016/j.jbiomech.2018.07.008_b0060 article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.01.025 – volume: 10 start-page: 176 year: 2015 ident: 10.1016/j.jbiomech.2018.07.008_b0200 article-title: Biomechanics of knee joint—a review publication-title: Front. Mech. Eng. doi: 10.1007/s11465-014-0306-x – volume: 43 start-page: 1645 year: 2010 ident: 10.1016/j.jbiomech.2018.07.008_b0255 article-title: A musculoskeletal foot model for clinical gait analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.03.005 – volume: 43 start-page: 2810 year: 2010 ident: 10.1016/j.jbiomech.2018.07.008_b0145 article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.05.036 – volume: 42 start-page: 2294 year: 2009 ident: 10.1016/j.jbiomech.2018.07.008_b0320 article-title: Muscle and external load contribution to knee joint contact loads during normal gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.06.019 – volume: 21 start-page: 58 year: 2005 ident: 10.1016/j.jbiomech.2018.07.008_b0225 article-title: Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2004.833798 – volume: 125 start-page: 864 year: 2003 ident: 10.1016/j.jbiomech.2018.07.008_b0210 article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement publication-title: J. Biomech. Eng. doi: 10.1115/1.1634282 – start-page: 367 year: 2013 ident: 10.1016/j.jbiomech.2018.07.008_b0055 article-title: Generating kinematically consistent data for musculoskeletal inverse dynamic analyses using finite element tools publication-title: Am. Soc. Biomech. – volume: 33 start-page: 661 year: 2005 ident: 10.1016/j.jbiomech.2018.07.008_b0035 article-title: Three-dimensional representation of complex muscle architectures and geometries publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-1433-7 – volume: 26 start-page: 1549 year: 2008 ident: 10.1016/j.jbiomech.2018.07.008_b0070 article-title: In vivo contact stresses during activities of daily living after knee arthroplasty publication-title: J. Orthop. Res. doi: 10.1002/jor.20670 – volume: 50 start-page: 505 year: 1968 ident: 10.1016/j.jbiomech.2018.07.008_b0165 article-title: Arthroplasty of the knee by the Walldius prosthesis publication-title: J. Bone Joint Surg. Br. doi: 10.1302/0301-620X.50B3.505 – volume: 47 start-page: 50 year: 2014 ident: 10.1016/j.jbiomech.2018.07.008_b0215 article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.015 – start-page: 136 year: 2013 ident: 10.1016/j.jbiomech.2018.07.008_b0260 article-title: Results repeatability of right leg finite element based muscuosleletal modeling – volume: 8 start-page: 89 year: 1975 ident: 10.1016/j.jbiomech.2018.07.008_b0290 article-title: The prediction of muscular load sharing and joint forces in the lower extremities during walking publication-title: J. Biomech. doi: 10.1016/0021-9290(75)90089-5 – volume: 44 start-page: 1014 year: 2011 ident: 10.1016/j.jbiomech.2018.07.008_b0310 article-title: Design optimization of a total knee replacement for improved constraint and flexion kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.02.009 – volume: 25 start-page: 21 year: 1995 ident: 10.1016/j.jbiomech.2018.07.008_b0080 article-title: A graphics-based software system to develop and analyze models of musculoskeletal structures publication-title: Comput. Biol. Med. doi: 10.1016/0010-4825(95)98882-E – volume: 34 start-page: 1576 year: 2016 ident: 10.1016/j.jbiomech.2018.07.008_b0235 article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty publication-title: J. Orthop. Res. doi: 10.1002/jor.23171 – volume: 36 start-page: 1659 year: 2003 ident: 10.1016/j.jbiomech.2018.07.008_b0115 article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00176-3 – volume: 19 start-page: 287 year: 2011 ident: 10.1016/j.jbiomech.2018.07.008_b0105 article-title: Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2010.12.001 – volume: 17 start-page: 140 year: 2002 ident: 10.1016/j.jbiomech.2018.07.008_b0190 article-title: The effect of malalignment on stresses in polyethylene component of total knee prostheses – a finite element analysis publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(01)00109-7 – volume: 468 start-page: 57 year: 2010 ident: 10.1016/j.jbiomech.2018.07.008_b0040 article-title: Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-009-1119-9 – volume: 138 year: 2016 ident: 10.1016/j.jbiomech.2018.07.008_b0230 article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis publication-title: J. Biomech. Eng. doi: 10.1115/1.4032379 – volume: 30 start-page: 503 year: 2012 ident: 10.1016/j.jbiomech.2018.07.008_b0120 article-title: Grand challenge competition to predict in vivo knee loads publication-title: J. Orthop. Res. doi: 10.1002/jor.22023 – volume: 22 start-page: 131 year: 2007 ident: 10.1016/j.jbiomech.2018.07.008_b0100 article-title: Model-based estimation of muscle forces exerted during movements publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2006.09.005 – volume: 1 start-page: 87 year: 1997 ident: 10.1016/j.jbiomech.2018.07.008_b0245 article-title: A three-dimensional musculoskeletal model of the human knee joint. Part 1: theoretical construction publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/01495739708936697 – volume: 21 start-page: 180 year: 2014 ident: 10.1016/j.jbiomech.2018.07.008_b0305 article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis publication-title: Knee doi: 10.1016/j.knee.2013.08.004 – volume: 109 start-page: 382 year: 2017 ident: 10.1016/j.jbiomech.2018.07.008_b0335 article-title: A patient-specific wear prediction framework for an artificial knee joint with coupled musculoskeletal multibody-dynamics and finite element analysis publication-title: Tribol. Int. doi: 10.1016/j.triboint.2016.10.050 – volume: 18 start-page: 740 year: 2015 ident: 10.1016/j.jbiomech.2018.07.008_b0065 article-title: Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2013.845175 – volume: 127 start-page: 813 year: 2005 ident: 10.1016/j.jbiomech.2018.07.008_b0150 article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.1992522 – volume: 45 start-page: 2149 year: 2012 ident: 10.1016/j.jbiomech.2018.07.008_b0010 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.040 – volume: 24 start-page: 152 year: 2006 ident: 10.1016/j.jbiomech.2018.07.008_b0025 article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo publication-title: Gait Post. doi: 10.1016/j.gaitpost.2005.04.012 – volume: 232 start-page: 90 year: 2018 ident: 10.1016/j.jbiomech.2018.07.008_b0175 article-title: Customized surface-guided knee implant: contact analysis and experimental test publication-title: Proc. Inst Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411917744586 – volume: 38 start-page: 405 year: 2009 ident: 10.1016/j.jbiomech.2018.07.008_b0315 article-title: Three dimensional shape optimization of total knee replacements for reduced wear publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0281-0 – volume: 44 start-page: 1108 year: 2011 ident: 10.1016/j.jbiomech.2018.07.008_b0005 article-title: Computational wear prediction of artificial knee joints based on a new wear law and formulation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.01.027 – volume: 45 start-page: 990 year: 2012 ident: 10.1016/j.jbiomech.2018.07.008_b0195 article-title: Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.015 – volume: 136 year: 2014 ident: 10.1016/j.jbiomech.2018.07.008_b0140 article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait publication-title: J. Biomech. Eng. doi: 10.1115/1.4026359 – volume: 27 start-page: 1326 year: 2009 ident: 10.1016/j.jbiomech.2018.07.008_b0185 article-title: Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant publication-title: J. Orthop. Res. doi: 10.1002/jor.20876 – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2018.07.008_b0075 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 45 start-page: 474 year: 2012 ident: 10.1016/j.jbiomech.2018.07.008_b0020 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.052 – volume: 45 start-page: 191 year: 2012 ident: 10.1016/j.jbiomech.2018.07.008_b0125 article-title: Development of a statistical model of knee kinetics for applications in pre-clinical testing publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.09.009 – volume: 38 start-page: 83 year: 1982 ident: 10.1016/j.jbiomech.2018.07.008_b0285 article-title: The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function publication-title: Numer. Math. doi: 10.1007/BF01395810 – volume: 37 start-page: 45 year: 2004 ident: 10.1016/j.jbiomech.2018.07.008_b0300 article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00255-0 – volume: 36 start-page: 335 year: 2014 ident: 10.1016/j.jbiomech.2018.07.008_b0180 article-title: Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.12.007 – volume: 58 start-page: 282 year: 2001 ident: 10.1016/j.jbiomech.2018.07.008_b0275 article-title: The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(2001)58:3<282::AID-JBM1018>3.0.CO;2-S – start-page: 1 year: 2014 ident: 10.1016/j.jbiomech.2018.07.008_b0325 article-title: Using Abaqus and Isight to simultaneously determine muscle forces, joint kinematics and strain/stresses in soft tissues during walking – volume: 21 start-page: 263 year: 2013 ident: 10.1016/j.jbiomech.2018.07.008_b0240 article-title: Revision rates after knee replacement: cumulative results from worldwide clinical studies versus joint registers publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2012.11.014 – volume: 32 start-page: 1344 year: 2017 ident: 10.1016/j.jbiomech.2018.07.008_b0330 article-title: Customized versus patient-sized cruciate-retaining total knee arthroplasty: an in vivo kinematics study using mobile fluoroscopy publication-title: J. Arthroplasty doi: 10.1016/j.arth.2016.09.034 – start-page: 147 year: 2012 ident: 10.1016/j.jbiomech.2018.07.008_b0130 article-title: Sequential quadratic programming methods publication-title: Mixed Int. Nonlinear Program. doi: 10.1007/978-1-4614-1927-3_6 – volume: 5 start-page: 232 year: 2000 ident: 10.1016/j.jbiomech.2018.07.008_b0220 article-title: Anatomic variations should be considered in total knee arthroplasty publication-title: J. Orthop. Sci. doi: 10.1007/s007760050157 – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.jbiomech.2018.07.008_b0250 article-title: Bioinspired technologies to connect musculoskeletal mechanobiology to the person for training and rehabilitation publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2017.00096 – volume: 49 start-page: 6 year: 2016 ident: 10.1016/j.jbiomech.2018.07.008_b0280 article-title: A methodological framework for detecting ulcers’ risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model publication-title: Gait Post. doi: 10.1016/j.gaitpost.2016.07.076 – volume: 16 start-page: 564 year: 1998 ident: 10.1016/j.jbiomech.2018.07.008_b0265 article-title: Computer model to predict subsurface damage in tibial inserts of total knees publication-title: J. Orthop. Res. doi: 10.1002/jor.1100160507 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.jbiomech.2018.07.008_b0085 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.102791 – volume: 45 start-page: 2092 year: 2012 ident: 10.1016/j.jbiomech.2018.07.008_b0110 article-title: The role of patient, surgical, and implant design variation in total knee replacement performance publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.035 – volume: 38 start-page: 708 year: 2016 ident: 10.1016/j.jbiomech.2018.07.008_b0050 article-title: Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.04.010 |
SSID | ssj0007479 |
Score | 2.4464412 |
Snippet | Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 146 |
SubjectTerms | Biomechanics Biomedical materials Computer simulation Concurrent analysis Conflicts of interest Constraint modelling Contact force Contact pressure Contact stresses Correlation coefficients Deformation Electromyography Finite element method Formability Gait Knee Ligaments Mathematical analysis Mathematical models Model accuracy Muscles Musculoskeletal model Polyethylene Predictions Pressure Prostheses Prosthetic knee Root-mean-square errors Surgery Surgical implants Surgical outcomes Ultra high molecular weight polyethylene Validation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CISE4TKOD0TGQkRA3Qx3_ik9ThTZNSOPEpN4ix3akdSwZS3vgv5-f44QdgHHopc1Lm9p-_vze974H8CGuH-2VYdTZQlMhCkdtEIJ6puqi4crxAmuHz7-pswvxdSVXOeDWZ1rl6BOTo_adwxg5RkJMKeNLH9_8pNg1CrOruYXGY3iC0mU4q_VqOnChNnymeDAaYcDiXoXw-tM61benhAQrk4Antpj88-b0N_CZNqHTPdjN6JEsh-F-AY9CO4P9ZRtPzte_yEeS-JwpUD6D5_ekBmfw9Dwn0fehXZJ-W2P8hWKdJXKFSHOJ2JOEgUxOrrfIT-36q_hGROekGSlcJGJcgs9j20vXE5slTUjXEEs2HV57Fb-T3IZE9sKbvYSL05PvX85obrtAXUR3GxohmQ3aLxqjpC1qKQMXlmuMl3omy2AYigZa5bW0zFkvgzasjOeSQpeh9oq_gp22a8NrIEb42jjtuFKoQsNtLZiPIKGOwMJzoeYgx_-7clmTHFtj_KhG8tm6GsepwnGqFpguL-fwebK7GVQ5HrTQ43BWY81p9JJV3DgetDSTZUYlA9r4L9ujceZU2Tf01e-ZPIf308dxVWOqxrah26ZrBFYxCzOHg2HGTQ_K0RErYQ7_ffM38Ax_Cca_i-IIdja32_A2AqhN_S6tkjuwRhmf priority: 102 providerName: ProQuest |
Title | A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018305050 https://dx.doi.org/10.1016/j.jbiomech.2018.07.008 https://www.ncbi.nlm.nih.gov/pubmed/30031649 https://www.proquest.com/docview/2079857987 https://www.proquest.com/docview/2074123549 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB2N7GFu6j7Rd0WDszU1tyZL1mJaWbKNhjBXyZmRJhqSrXZrkYS_923sny2kHGx3swTaWdf6SdPpJ97sTwEdsP8pJnSbWZCoRIrOJ8UIkLpVVVnNpeUa-w-dTObkQX2b5bAtOel8YolVG3d_p9KCtY8oo_s3R9XxOPr7Y2sgMWHBajo3G7UIoquWHt_c0D4TLkeaRJpT7gZfw4nARfNyDUSItQhBPWmbyzx3U3wBo6IjOXsKLiCDZuHvJV7DlmwHsjBscPV_9Yp9Y4HSGyfIBPH8QbnAAT8-jIX0HmjFbriuag0nI15L4QqyeE_5kviOUs6s1cVTb5SUmIEJndU_jYohzGX2PaeZ2yUwMa8Lamhm2ainvJT6T3fhA-KKbvYaLs9MfJ5MkLr2QWER4qwRhmfHKHdVa5iar8txzYbiiOVOX5oXXKQUONNKp3KTWuNwrnRY4NslU4Ssn-RvYbtrGvwOmhau0VZZLSZFouKlE6hAoVAguHBdyCHn_v0sb45LT8hg_y56Atij7ciqpnMojMpkXQxht5K67yByPSqi-OMve7xQ1ZYmdx6OSeiP5W-38J9n9vuaUUT8s8brSRY6bGsKHzWVs2WSuMY1v1yGPIE9moYfwtqtxmw_lpIyl0Lv_8WJ78IzOaII8y_Zhe3Wz9u8RYa2qg9CEcK9m6gCejD9_nUzxeHw6_fb9DqsnJ_M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4INgCXShgJOCWskkcOz4gtAKqLe321Ep7C47tSN22SWl2hfqn-I3MOPHSA1AuPeSSZJzH2ONv3gBvcP1IK1QcGZ3IiPPERNpxHtlYlEmVCpMmlDs8PRCTI_51ls3W4GfIhaGwyiATvaC2jSEbOVlCVJ7hIT-ef4-oaxR5V0MLjW5a7LnLH6iytR92PyN_3ybJzpfDT5Oo7yoQGQQviwgRh3bSjiolMp2UWeZSrlNJ5kAbZ7lTMdXE08LKTMdG28xJFecIuxOZu9KKFMe9Bbdx4x2RsidnKwWPatH3ISVxhLBjdCUjeb499_n03gES575gKLW0_PNm-Dew6ze9nYfwoEerbNxNr0ew5uoBbIxr1NTPLtk75uNHvWF-APevlDYcwJ1p77TfgHrM2mVJ9p6I8jopNolVx4R1meuC19nZkuJhm_YET6A2wKoQMsYQUzP6Hl0fm5bpvoQKayqm2aKhe0_wmezC-eAyGuwxHN0IQ57Aet3UbhOY4rZURppUCKp6k-qSxxZBSYlAxqZcDCEL_7swfQ10asVxWoRgt3kR-FQQn4oRuefzIbxf0Z13VUCupZCBnUXIcUWpXOBGdS2lWlH2KKhDN_9FuxVmTtHLorb4vXKG8Hp1GaUIuYZ07Zqlv4dT1jRXQ3jazbjVh6Yk-AVXz_49-Cu4Ozmc7hf7uwd7z-EevRXZ3pNkC9YXF0v3AsHbonzpVwyDbze9RH8B4OVVPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggCDlESiwSMDNNLbXu_YBoUAbtZRGFaJSb9u1dy01pXapE6H-NX4dM_au6QEolx5ycTzrOLMz8-08AV6h_EgjsjAodCQDzqMi0JbzwIQij8pYFHFEtcP7M7FzyD8dJUcr8NPXwlBapdeJraI2dUE-cvKEZGmCH7lZurSIg63p-_PvAU2QokirH6fRbZE9e_kDj2_Nu90t5PXrKJpuf_24E7gJA0GBQGYRIPrQVppxmYlER3mS2JjrWJJr0IRJarOQ-uNpYWSiw0KbxMosTBGCRzK1uRExrnsLViWdigaw-mF7dvCltwMI1F2CSRggCBlfqU-ev5231fVtOCRM2_ahNODyz6bxb9C3NYHTe3DXYVc26TbbfVix1RDWJxWe288u2RvWZpO2bvoh3LnS6HAIa_suhL8O1YQ1y5y8PwFVeVKmEitPCPky26Wys7MlZcfWzSlewLMBK30CGUOEzeh9dHVSNEy7hiqsLplmi5ruPcVnsgvbpprRYg_g8EZY8hAGVV3Zx8AybvKskEUsBPXAiXXOQ4MQJUdYY2IuRpD4_1sVriM6Deb4pnzq21x5PinikxpTsD4dwWZPd971BLmWQnp2Kl_xijpaodm6ljLrKR0m6rDOf9Fu-J2jnGZq1G85GsHL_mvUKRQo0pWtl-09nGqoeTaCR92O6180JjMgePbk34u_gDUUT_V5d7b3FG7TjyJHfBRtwGBxsbTPEMkt8udOZBgc37SU_gKvMlrZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+subject-specific+finite+element+musculoskeletal+framework+for+mechanics+analysis+of+a+total+knee+replacement&rft.jtitle=Journal+of+biomechanics&rft.au=Shu%2C+Liming&rft.au=Yamamoto%2C+Ko&rft.au=Yao%2C+Jiang&rft.au=Saraswat%2C+Prabhav&rft.date=2018-08-22&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=77&rft.spage=146&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.07.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |