A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement

Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 77; pp. 146 - 154
Main Authors Shu, Liming, Yamamoto, Ko, Yao, Jiang, Saraswat, Prabhav, Liu, Yao, Mitsuishi, Mamoru, Sugita, Naohiko
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 22.08.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR.
AbstractList Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR.Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR.
Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r ), was found in the FE-MS model (RMSE = 177.2 N, r  = 0.90) when compared with the MS model (RMSE = 224.1 N, r  = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR.
Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR.
Author Liu, Yao
Mitsuishi, Mamoru
Yamamoto, Ko
Sugita, Naohiko
Yao, Jiang
Saraswat, Prabhav
Shu, Liming
Author_xml – sequence: 1
  givenname: Liming
  surname: Shu
  fullname: Shu, Liming
  email: l.shu@mfg.t.u-tokyo.ac.jp
  organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Ko
  surname: Yamamoto
  fullname: Yamamoto, Ko
  organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
– sequence: 3
  givenname: Jiang
  surname: Yao
  fullname: Yao, Jiang
  organization: Dassault Systemes Simulia Corp., Johnston, RI, USA
– sequence: 4
  givenname: Prabhav
  surname: Saraswat
  fullname: Saraswat, Prabhav
  organization: Dassault Systemes Simulia Corp., Johnston, RI, USA
– sequence: 5
  givenname: Yao
  surname: Liu
  fullname: Liu, Yao
  organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
– sequence: 6
  givenname: Mamoru
  surname: Mitsuishi
  fullname: Mitsuishi, Mamoru
  organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
– sequence: 7
  givenname: Naohiko
  surname: Sugita
  fullname: Sugita, Naohiko
  organization: Department of Mechanical Engineering, School of Engineering, University of Tokyo, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30031649$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9rFTEUxYNU7Gv1K5SAGzcz5s9kMgERS7FVKLjRdchk7mDmZZJnMqO8b29eX-vibeoiXAi_c7g5JxfoLMQACF1RUlNC2_dTPfUuzmB_1ozQriayJqR7gTa0k7xivCNnaEMIo5Viipyji5wnQohspHqFzjkhnLaN2qBwjfPaT2CXKu_AutFZPLrgFsDgYYaw4HnNdvUxb8vFYjwek5nhT0xbPMaEDyuY4GzGJhi_zy7jOGKDl3hgtwEAJ9h5Yx_MXqOXo_EZ3jzOS_Tj9vP3my_V_be7rzfX95UVrVgqLpgBOZBRtcKwXgjgjeGSUA4DFR0o2jCuTDtIYag1gwCpaKdkw2QH_dDyS_Tu6LtL8dcKedGzyxa8NwHimjUrSVDGRaMK-vYEneKaylseKNWJcmShrh6ptZ9h0LvkZpP2-inJArRHwKaYc4LxH0KJPlSmJ_1UmT5UponUpbIi_HAitG4xi4thScb55-WfjnIocf52kHS2DoKFwaXSqh6ie97i44mF9eULWOO3sP8fg7_WJ8wP
CitedBy_id crossref_primary_10_1007_s10237_023_01726_1
crossref_primary_10_1007_s11517_021_02419_6
crossref_primary_10_1016_j_knee_2021_01_005
crossref_primary_10_3390_biomechanics1030025
crossref_primary_10_1007_s10439_024_03675_x
crossref_primary_10_1007_s10439_020_02555_4
crossref_primary_10_3389_fbioe_2020_00233
crossref_primary_10_1109_TVCG_2023_3308753
crossref_primary_10_3390_ma15082878
crossref_primary_10_1016_j_medengphy_2025_104313
crossref_primary_10_1302_2046_3758_1110_BJR_2022_0039_R1
crossref_primary_10_1038_s41598_024_52548_9
crossref_primary_10_1016_j_compbiomed_2019_03_005
crossref_primary_10_1016_j_compbiomed_2021_104311
crossref_primary_10_1016_j_compbiomed_2021_105023
crossref_primary_10_1080_10255842_2020_1761960
crossref_primary_10_1016_j_compbiomed_2022_106099
crossref_primary_10_3389_fbioe_2021_765438
crossref_primary_10_1007_s11042_019_7565_9
crossref_primary_10_3390_app112311440
crossref_primary_10_1016_j_injury_2022_05_021
crossref_primary_10_1115_1_4053211
crossref_primary_10_1007_s42242_020_00102_7
crossref_primary_10_1016_j_medengphy_2019_08_002
crossref_primary_10_1080_10255842_2024_2329946
crossref_primary_10_1049_bsbt_2019_0012
crossref_primary_10_1142_S0219519420500475
crossref_primary_10_1007_s42600_022_00227_x
crossref_primary_10_1109_TMI_2019_2940555
crossref_primary_10_1177_0954411919865385
crossref_primary_10_1051_medsci_2021243
crossref_primary_10_3389_fbioe_2021_648356
crossref_primary_10_1007_s11517_023_03011_w
crossref_primary_10_1007_s11044_023_09876_x
crossref_primary_10_1177_23259671211034487
crossref_primary_10_1016_j_jmbbm_2020_104136
crossref_primary_10_1007_s10439_021_02812_0
crossref_primary_10_3390_ma15010153
crossref_primary_10_1016_j_jbiomech_2021_110464
crossref_primary_10_1016_j_jbiomech_2024_111973
crossref_primary_10_1016_j_jbiomech_2019_07_042
crossref_primary_10_3389_fbioe_2023_1130219
Cites_doi 10.1115/1.4026358
10.1115/1.4029258
10.1016/j.jbiomech.2013.01.025
10.1007/s11465-014-0306-x
10.1016/j.jbiomech.2010.03.005
10.1016/j.jbiomech.2010.05.036
10.1016/j.jbiomech.2009.06.019
10.1109/TRO.2004.833798
10.1115/1.1634282
10.1007/s10439-005-1433-7
10.1002/jor.20670
10.1302/0301-620X.50B3.505
10.1016/j.jbiomech.2013.10.015
10.1016/0021-9290(75)90089-5
10.1016/j.jbiomech.2011.02.009
10.1016/0010-4825(95)98882-E
10.1002/jor.23171
10.1016/S0021-9290(03)00176-3
10.1016/j.joca.2010.12.001
10.1016/S0268-0033(01)00109-7
10.1007/s11999-009-1119-9
10.1115/1.4032379
10.1002/jor.22023
10.1016/j.clinbiomech.2006.09.005
10.1080/01495739708936697
10.1016/j.knee.2013.08.004
10.1016/j.triboint.2016.10.050
10.1080/10255842.2013.845175
10.1115/1.1992522
10.1016/j.jbiomech.2012.05.040
10.1016/j.gaitpost.2005.04.012
10.1177/0954411917744586
10.1007/s00158-008-0281-0
10.1016/j.jbiomech.2011.01.027
10.1016/j.jbiomech.2012.01.015
10.1115/1.4026359
10.1002/jor.20876
10.1109/TBME.2007.901024
10.1016/j.jbiomech.2011.11.052
10.1016/j.jbiomech.2011.09.009
10.1007/BF01395810
10.1016/S0021-9290(03)00255-0
10.1016/j.medengphy.2013.12.007
10.1002/1097-4636(2001)58:3<282::AID-JBM1018>3.0.CO;2-S
10.1016/j.joca.2012.11.014
10.1016/j.arth.2016.09.034
10.1007/978-1-4614-1927-3_6
10.1007/s007760050157
10.3389/fncom.2017.00096
10.1016/j.gaitpost.2016.07.076
10.1002/jor.1100160507
10.1109/10.102791
10.1016/j.jbiomech.2012.05.035
10.1016/j.medengphy.2016.04.010
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Ltd.
Copyright Elsevier Limited Aug 22, 2018
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Aug 22, 2018
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2018.07.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 154
ExternalDocumentID 30031649
10_1016_j_jbiomech_2018_07_008
S0021929018305050
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
3V.
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c565t-352ae7d0f965a2b55e34a37013ed158e914239a6d75a1cad5e7918974278ebd63
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 02:41:47 EDT 2025
Wed Aug 13 08:04:52 EDT 2025
Mon Jul 21 06:04:33 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Tue Jul 01 00:44:12 EDT 2025
Fri Feb 23 02:20:32 EST 2024
Tue Aug 26 17:10:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biomechanics
Validation
Musculoskeletal model
Prosthetic knee
Concurrent analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-352ae7d0f965a2b55e34a37013ed158e914239a6d75a1cad5e7918974278ebd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0021929018305050
PMID 30031649
PQID 2079857987
PQPubID 1226346
PageCount 9
ParticipantIDs proquest_miscellaneous_2074123549
proquest_journals_2079857987
pubmed_primary_30031649
crossref_primary_10_1016_j_jbiomech_2018_07_008
crossref_citationtrail_10_1016_j_jbiomech_2018_07_008
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_07_008
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-22
PublicationDateYYYYMMDD 2018-08-22
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Pabinger, Berghold, Boehler, Labek (b0240) 2013; 21
Thelen, Won Choi, Schmitz (b0295) 2014; 136
Von Keudell, Sodha, Collins, Minas, Fitz, Gomoll (b0305) 2014; 21
Nagamine, Miura, Bravo, Urabe, Matsuda, Miyanishi, Hirata, Iwamoto (b0220) 2000; 5
Saraswat, Yao, Chinnakonda, Oancea, Hurtado, Sett (b0260) 2013
Guess, Stylianou, Kia (b0140) 2014; 136
Jones (b0165) 1968; 50
Nakamura, Yamane, Fujita, Suzuki (b0225) 2005; 21
Zhang, Chen, Wang, Li, Jin (b0335) 2017; 109
Sathasivam, Walker (b0265) 1998; 16
Navacchia, Rullkoetter, Schutz, List, Fitzpatrick, Shelburne (b0235) 2016; 34
Kia, Stylianou, Guess (b0180) 2014; 36
Moissenet, Chèze, Dumas (b0215) 2014; 47
Saraswat, Andersen, MacWilliams (b0255) 2010; 43
Winby, Lloyd, Besier, Kirk (b0320) 2009; 42
Cronskär, Rasmussen, Tinnsten (b0065) 2015; 18
Baldwin, Clary, Fitzpatrick, Deacy, Maletsky, Rullkoetter (b0020) 2012; 45
Sathasivam, Walker, Campbell, Rayner (b0275) 2001; 58
Halloran, Easley, Petrella, Rullkoetter (b0150) 2005; 127
Zeller, Sharma, Kurtz, Anderle, Komistek (b0330) 2017; 32
Delp, Loan (b0080) 1995; 25
Lundberg, Foucher, Andriacchi, Wimmer (b0195) 2012; 45
Fitzpatrick, Clary, Rullkoetter (b0110) 2012; 45
Delp, Loan, Hoy, Zajac, Topp, Rosen (b0085) 1990; 37
Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot, Andersen (b0205) 2015; 137
Willing, Kim (b0310) 2011; 44
Fregly, Besier, Lloyd, Delp, Banks, Pandy, D’Lima (b0120) 2012; 30
Pandy, Sasaki, Kim (b0245) 1997; 1
Scarton, Guiotto, Malaquias, Sinigaglia, Jonkers, Sawacha (b0280) 2016; 49
Yao, Saraswat, Chinnakonda, Bertucci, Oancea, Hurtado, Sett (b0325) 2014
Kim, Fernandez, Akbarshahi, Walter, Fregly, Pandy (b0185) 2009; 27
Madeti, Chalamalasetti, Bolla Pragada, siva rao (b0200) 2015; 10
Chinnakonda, Saraswat, Yao, Oancea, Hurtado, Sett (b0055) 2013
Navacchia, Myers, Rullkoetter, Shelburne (b0230) 2016; 138
Halloran, Ackermann, Erdemir, van den Bogert (b0145) 2010; 43
Liau, Cheng, Huang, Lo (b0190) 2002; 17
Erdemir, McLean, Herzog, van den Bogert (b0100) 2007; 22
Adouni, Shirazi-Adl, Shirazi (b0010) 2012; 45
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0075) 2007; 54
Farrokhi, Keyak, Powers (b0105) 2011; 19
Benoit, Ramsey, Lamontagne, Xu (b0025) 2006; 24
Pizzolato, Lloyd, Barrett, Cook, Zheng, Besier, Saxby (b0250) 2017; 11
Clary, Fitzpatrick, Maletsky, Rullkoetter (b0060) 2013; 46
Galloway, Worsley, Stokes, Nair, Taylor (b0125) 2012; 45
McLean, Su, van den Bogert (b0210) 2003; 125
Seireg, Arvikar (b0290) 1975; 8
Khosravipour, Pejhan, Luo, Wyss (b0175) 2018; 232
Villa, Migliavacca, Gastaldi, Colombo, Pietrabissa (b0300) 2004; 37
Abdelgaied, Liu, Brockett, Jennings, Fisher, Jin (b0005) 2011; 44
Gill, Wong (b0130) 2012
Blemker, Delp (b0035) 2005; 33
Bourne, Chesworth, Davis, Mahomed, Charron (b0040) 2010; 468
Chen, Zhang, Wang, Li, Zhang, Jin (b0050) 2016; 38
Schittkowski (b0285) 1982; 38
Willing, Kim (b0315) 2009; 38
D’Lima, Steklov, Fregly, Banks, Colwell (b0070) 2008; 26
Fregly, Bei, Sylvester (b0115) 2003; 36
Jones (10.1016/j.jbiomech.2018.07.008_b0165) 1968; 50
Farrokhi (10.1016/j.jbiomech.2018.07.008_b0105) 2011; 19
Lundberg (10.1016/j.jbiomech.2018.07.008_b0195) 2012; 45
McLean (10.1016/j.jbiomech.2018.07.008_b0210) 2003; 125
Blemker (10.1016/j.jbiomech.2018.07.008_b0035) 2005; 33
Fregly (10.1016/j.jbiomech.2018.07.008_b0120) 2012; 30
Bourne (10.1016/j.jbiomech.2018.07.008_b0040) 2010; 468
Villa (10.1016/j.jbiomech.2018.07.008_b0300) 2004; 37
Moissenet (10.1016/j.jbiomech.2018.07.008_b0215) 2014; 47
D’Lima (10.1016/j.jbiomech.2018.07.008_b0070) 2008; 26
Erdemir (10.1016/j.jbiomech.2018.07.008_b0100) 2007; 22
Saraswat (10.1016/j.jbiomech.2018.07.008_b0260) 2013
Delp (10.1016/j.jbiomech.2018.07.008_b0075) 2007; 54
Winby (10.1016/j.jbiomech.2018.07.008_b0320) 2009; 42
Abdelgaied (10.1016/j.jbiomech.2018.07.008_b0005) 2011; 44
Clary (10.1016/j.jbiomech.2018.07.008_b0060) 2013; 46
Delp (10.1016/j.jbiomech.2018.07.008_b0080) 1995; 25
Chinnakonda (10.1016/j.jbiomech.2018.07.008_b0055) 2013
Kim (10.1016/j.jbiomech.2018.07.008_b0185) 2009; 27
Pizzolato (10.1016/j.jbiomech.2018.07.008_b0250) 2017; 11
Fitzpatrick (10.1016/j.jbiomech.2018.07.008_b0110) 2012; 45
Navacchia (10.1016/j.jbiomech.2018.07.008_b0230) 2016; 138
Fregly (10.1016/j.jbiomech.2018.07.008_b0115) 2003; 36
Zhang (10.1016/j.jbiomech.2018.07.008_b0335) 2017; 109
Scarton (10.1016/j.jbiomech.2018.07.008_b0280) 2016; 49
Cronskär (10.1016/j.jbiomech.2018.07.008_b0065) 2015; 18
Galloway (10.1016/j.jbiomech.2018.07.008_b0125) 2012; 45
Guess (10.1016/j.jbiomech.2018.07.008_b0140) 2014; 136
Liau (10.1016/j.jbiomech.2018.07.008_b0190) 2002; 17
Baldwin (10.1016/j.jbiomech.2018.07.008_b0020) 2012; 45
Pabinger (10.1016/j.jbiomech.2018.07.008_b0240) 2013; 21
Yao (10.1016/j.jbiomech.2018.07.008_b0325) 2014
Adouni (10.1016/j.jbiomech.2018.07.008_b0010) 2012; 45
Nagamine (10.1016/j.jbiomech.2018.07.008_b0220) 2000; 5
Saraswat (10.1016/j.jbiomech.2018.07.008_b0255) 2010; 43
Nakamura (10.1016/j.jbiomech.2018.07.008_b0225) 2005; 21
Delp (10.1016/j.jbiomech.2018.07.008_b0085) 1990; 37
Halloran (10.1016/j.jbiomech.2018.07.008_b0145) 2010; 43
Navacchia (10.1016/j.jbiomech.2018.07.008_b0235) 2016; 34
Pandy (10.1016/j.jbiomech.2018.07.008_b0245) 1997; 1
Benoit (10.1016/j.jbiomech.2018.07.008_b0025) 2006; 24
Khosravipour (10.1016/j.jbiomech.2018.07.008_b0175) 2018; 232
Kia (10.1016/j.jbiomech.2018.07.008_b0180) 2014; 36
Willing (10.1016/j.jbiomech.2018.07.008_b0315) 2009; 38
Chen (10.1016/j.jbiomech.2018.07.008_b0050) 2016; 38
Zeller (10.1016/j.jbiomech.2018.07.008_b0330) 2017; 32
Thelen (10.1016/j.jbiomech.2018.07.008_b0295) 2014; 136
Willing (10.1016/j.jbiomech.2018.07.008_b0310) 2011; 44
Gill (10.1016/j.jbiomech.2018.07.008_b0130) 2012
Sathasivam (10.1016/j.jbiomech.2018.07.008_b0275) 2001; 58
Von Keudell (10.1016/j.jbiomech.2018.07.008_b0305) 2014; 21
Halloran (10.1016/j.jbiomech.2018.07.008_b0150) 2005; 127
Madeti (10.1016/j.jbiomech.2018.07.008_b0200) 2015; 10
Sathasivam (10.1016/j.jbiomech.2018.07.008_b0265) 1998; 16
Marra (10.1016/j.jbiomech.2018.07.008_b0205) 2015; 137
Schittkowski (10.1016/j.jbiomech.2018.07.008_b0285) 1982; 38
Seireg (10.1016/j.jbiomech.2018.07.008_b0290) 1975; 8
References_xml – volume: 36
  start-page: 335
  year: 2014
  end-page: 344
  ident: b0180
  article-title: Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials
  publication-title: Med. Eng. Phys.
– start-page: 367
  year: 2013
  end-page: 368
  ident: b0055
  article-title: Generating kinematically consistent data for musculoskeletal inverse dynamic analyses using finite element tools
  publication-title: Am. Soc. Biomech.
– volume: 1
  start-page: 87
  year: 1997
  end-page: 108
  ident: b0245
  article-title: A three-dimensional musculoskeletal model of the human knee joint. Part 1: theoretical construction
  publication-title: Comput. Methods Biomech. Biomed. Engin.
– volume: 136
  year: 2014
  ident: b0140
  article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait
  publication-title: J. Biomech. Eng.
– volume: 44
  start-page: 1108
  year: 2011
  end-page: 1116
  ident: b0005
  article-title: Computational wear prediction of artificial knee joints based on a new wear law and formulation
  publication-title: J. Biomech.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: b0075
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 136
  year: 2014
  ident: b0295
  article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking
  publication-title: J. Biomech. Eng.
– volume: 49
  start-page: 6
  year: 2016
  end-page: 7
  ident: b0280
  article-title: A methodological framework for detecting ulcers’ risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model
  publication-title: Gait Post.
– volume: 36
  start-page: 1659
  year: 2003
  end-page: 1668
  ident: b0115
  article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements
  publication-title: J. Biomech.
– volume: 11
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0250
  article-title: Bioinspired technologies to connect musculoskeletal mechanobiology to the person for training and rehabilitation
  publication-title: Front. Comput. Neurosci.
– volume: 125
  start-page: 864
  year: 2003
  ident: b0210
  article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: b0085
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 21
  start-page: 263
  year: 2013
  end-page: 268
  ident: b0240
  article-title: Revision rates after knee replacement: cumulative results from worldwide clinical studies versus joint registers
  publication-title: Osteoarthr. Cartil.
– volume: 42
  start-page: 2294
  year: 2009
  end-page: 2300
  ident: b0320
  article-title: Muscle and external load contribution to knee joint contact loads during normal gait
  publication-title: J. Biomech.
– volume: 38
  start-page: 83
  year: 1982
  end-page: 114
  ident: b0285
  article-title: The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function
  publication-title: Numer. Math.
– volume: 44
  start-page: 1014
  year: 2011
  end-page: 1020
  ident: b0310
  article-title: Design optimization of a total knee replacement for improved constraint and flexion kinematics
  publication-title: J. Biomech.
– volume: 21
  start-page: 180
  year: 2014
  end-page: 184
  ident: b0305
  article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis
  publication-title: Knee
– volume: 58
  start-page: 282
  year: 2001
  end-page: 290
  ident: b0275
  article-title: The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements
  publication-title: J. Biomed. Mater. Res.
– volume: 25
  start-page: 21
  year: 1995
  end-page: 34
  ident: b0080
  article-title: A graphics-based software system to develop and analyze models of musculoskeletal structures
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2014
  end-page: 2
  ident: b0325
  article-title: Using Abaqus and Isight to simultaneously determine muscle forces, joint kinematics and strain/stresses in soft tissues during walking
  publication-title: Proceedings of the 7th World Congress of Biomechanics
– volume: 30
  start-page: 503
  year: 2012
  end-page: 513
  ident: b0120
  article-title: Grand challenge competition to predict in vivo knee loads
  publication-title: J. Orthop. Res.
– volume: 137
  year: 2015
  ident: b0205
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J. Biomech. Eng.
– volume: 468
  start-page: 57
  year: 2010
  end-page: 63
  ident: b0040
  article-title: Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not?
  publication-title: Clin. Orthop. Relat. Res.
– volume: 34
  start-page: 1576
  year: 2016
  end-page: 1587
  ident: b0235
  article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty
  publication-title: J. Orthop. Res.
– volume: 43
  start-page: 2810
  year: 2010
  end-page: 2815
  ident: b0145
  article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading
  publication-title: J. Biomech.
– volume: 38
  start-page: 708
  year: 2016
  end-page: 716
  ident: b0050
  article-title: Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty
  publication-title: Med. Eng. Phys.
– volume: 127
  start-page: 813
  year: 2005
  end-page: 818
  ident: b0150
  article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 45
  year: 2004
  end-page: 53
  ident: b0300
  article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations
  publication-title: J. Biomech.
– volume: 33
  start-page: 661
  year: 2005
  end-page: 673
  ident: b0035
  article-title: Three-dimensional representation of complex muscle architectures and geometries
  publication-title: Ann. Biomed. Eng.
– volume: 45
  start-page: 2149
  year: 2012
  end-page: 2156
  ident: b0010
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
– volume: 16
  start-page: 564
  year: 1998
  end-page: 571
  ident: b0265
  article-title: Computer model to predict subsurface damage in tibial inserts of total knees
  publication-title: J. Orthop. Res.
– volume: 8
  start-page: 89
  year: 1975
  end-page: 102
  ident: b0290
  article-title: The prediction of muscular load sharing and joint forces in the lower extremities during walking
  publication-title: J. Biomech.
– volume: 10
  start-page: 176
  year: 2015
  end-page: 186
  ident: b0200
  article-title: Biomechanics of knee joint—a review
  publication-title: Front. Mech. Eng.
– volume: 27
  start-page: 1326
  year: 2009
  end-page: 1331
  ident: b0185
  article-title: Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant
  publication-title: J. Orthop. Res.
– volume: 109
  start-page: 382
  year: 2017
  end-page: 389
  ident: b0335
  article-title: A patient-specific wear prediction framework for an artificial knee joint with coupled musculoskeletal multibody-dynamics and finite element analysis
  publication-title: Tribol. Int.
– volume: 19
  start-page: 287
  year: 2011
  end-page: 294
  ident: b0105
  article-title: Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study
  publication-title: Osteoarthr. Cartil.
– volume: 24
  start-page: 152
  year: 2006
  end-page: 164
  ident: b0025
  article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo
  publication-title: Gait Post.
– volume: 38
  start-page: 405
  year: 2009
  end-page: 414
  ident: b0315
  article-title: Three dimensional shape optimization of total knee replacements for reduced wear
  publication-title: Struct. Multidiscip. Optim.
– volume: 47
  start-page: 50
  year: 2014
  end-page: 58
  ident: b0215
  article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait
  publication-title: J. Biomech.
– volume: 5
  start-page: 232
  year: 2000
  end-page: 237
  ident: b0220
  article-title: Anatomic variations should be considered in total knee arthroplasty
  publication-title: J. Orthop. Sci.
– volume: 45
  start-page: 474
  year: 2012
  end-page: 483
  ident: b0020
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J. Biomech.
– volume: 45
  start-page: 191
  year: 2012
  end-page: 195
  ident: b0125
  article-title: Development of a statistical model of knee kinetics for applications in pre-clinical testing
  publication-title: J. Biomech.
– volume: 46
  start-page: 1351
  year: 2013
  end-page: 1357
  ident: b0060
  article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study
  publication-title: J. Biomech.
– volume: 21
  start-page: 58
  year: 2005
  end-page: 66
  ident: b0225
  article-title: Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model
  publication-title: IEEE Trans. Robot.
– volume: 43
  start-page: 1645
  year: 2010
  end-page: 1652
  ident: b0255
  article-title: A musculoskeletal foot model for clinical gait analysis
  publication-title: J. Biomech.
– volume: 138
  year: 2016
  ident: b0230
  article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis
  publication-title: J. Biomech. Eng.
– volume: 17
  start-page: 140
  year: 2002
  end-page: 146
  ident: b0190
  article-title: The effect of malalignment on stresses in polyethylene component of total knee prostheses – a finite element analysis
  publication-title: Clin. Biomech.
– volume: 45
  start-page: 2092
  year: 2012
  end-page: 2102
  ident: b0110
  article-title: The role of patient, surgical, and implant design variation in total knee replacement performance
  publication-title: J. Biomech.
– start-page: 136
  year: 2013
  end-page: 195
  ident: b0260
  article-title: Results repeatability of right leg finite element based muscuosleletal modeling
  publication-title: XXIV Congress of the International Society of Biomechanics
– volume: 232
  start-page: 90
  year: 2018
  end-page: 100
  ident: b0175
  article-title: Customized surface-guided knee implant: contact analysis and experimental test
  publication-title: Proc. Inst Mech. Eng. Part H J. Eng. Med.
– start-page: 147
  year: 2012
  end-page: 224
  ident: b0130
  article-title: Sequential quadratic programming methods
  publication-title: Mixed Int. Nonlinear Program.
– volume: 32
  start-page: 1344
  year: 2017
  end-page: 1350
  ident: b0330
  article-title: Customized versus patient-sized cruciate-retaining total knee arthroplasty: an in vivo kinematics study using mobile fluoroscopy
  publication-title: J. Arthroplasty
– volume: 18
  start-page: 740
  year: 2015
  end-page: 748
  ident: b0065
  article-title: Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 50
  start-page: 505
  year: 1968
  end-page: 510
  ident: b0165
  article-title: Arthroplasty of the knee by the Walldius prosthesis
  publication-title: J. Bone Joint Surg. Br.
– volume: 45
  start-page: 990
  year: 2012
  end-page: 996
  ident: b0195
  article-title: Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns
  publication-title: J. Biomech.
– volume: 22
  start-page: 131
  year: 2007
  end-page: 154
  ident: b0100
  article-title: Model-based estimation of muscle forces exerted during movements
  publication-title: Clin. Biomech.
– volume: 26
  start-page: 1549
  year: 2008
  end-page: 1555
  ident: b0070
  article-title: In vivo contact stresses during activities of daily living after knee arthroplasty
  publication-title: J. Orthop. Res.
– volume: 136
  year: 2014
  ident: 10.1016/j.jbiomech.2018.07.008_b0295
  article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4026358
– volume: 137
  year: 2015
  ident: 10.1016/j.jbiomech.2018.07.008_b0205
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4029258
– volume: 46
  start-page: 1351
  year: 2013
  ident: 10.1016/j.jbiomech.2018.07.008_b0060
  article-title: The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.01.025
– volume: 10
  start-page: 176
  year: 2015
  ident: 10.1016/j.jbiomech.2018.07.008_b0200
  article-title: Biomechanics of knee joint—a review
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-014-0306-x
– volume: 43
  start-page: 1645
  year: 2010
  ident: 10.1016/j.jbiomech.2018.07.008_b0255
  article-title: A musculoskeletal foot model for clinical gait analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.03.005
– volume: 43
  start-page: 2810
  year: 2010
  ident: 10.1016/j.jbiomech.2018.07.008_b0145
  article-title: Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.05.036
– volume: 42
  start-page: 2294
  year: 2009
  ident: 10.1016/j.jbiomech.2018.07.008_b0320
  article-title: Muscle and external load contribution to knee joint contact loads during normal gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.019
– volume: 21
  start-page: 58
  year: 2005
  ident: 10.1016/j.jbiomech.2018.07.008_b0225
  article-title: Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2004.833798
– volume: 125
  start-page: 864
  year: 2003
  ident: 10.1016/j.jbiomech.2018.07.008_b0210
  article-title: Development and validation of a 3-D model to predict knee joint loading during dynamic movement
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1634282
– start-page: 367
  year: 2013
  ident: 10.1016/j.jbiomech.2018.07.008_b0055
  article-title: Generating kinematically consistent data for musculoskeletal inverse dynamic analyses using finite element tools
  publication-title: Am. Soc. Biomech.
– volume: 33
  start-page: 661
  year: 2005
  ident: 10.1016/j.jbiomech.2018.07.008_b0035
  article-title: Three-dimensional representation of complex muscle architectures and geometries
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-1433-7
– volume: 26
  start-page: 1549
  year: 2008
  ident: 10.1016/j.jbiomech.2018.07.008_b0070
  article-title: In vivo contact stresses during activities of daily living after knee arthroplasty
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20670
– volume: 50
  start-page: 505
  year: 1968
  ident: 10.1016/j.jbiomech.2018.07.008_b0165
  article-title: Arthroplasty of the knee by the Walldius prosthesis
  publication-title: J. Bone Joint Surg. Br.
  doi: 10.1302/0301-620X.50B3.505
– volume: 47
  start-page: 50
  year: 2014
  ident: 10.1016/j.jbiomech.2018.07.008_b0215
  article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.015
– start-page: 136
  year: 2013
  ident: 10.1016/j.jbiomech.2018.07.008_b0260
  article-title: Results repeatability of right leg finite element based muscuosleletal modeling
– volume: 8
  start-page: 89
  year: 1975
  ident: 10.1016/j.jbiomech.2018.07.008_b0290
  article-title: The prediction of muscular load sharing and joint forces in the lower extremities during walking
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(75)90089-5
– volume: 44
  start-page: 1014
  year: 2011
  ident: 10.1016/j.jbiomech.2018.07.008_b0310
  article-title: Design optimization of a total knee replacement for improved constraint and flexion kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.02.009
– volume: 25
  start-page: 21
  year: 1995
  ident: 10.1016/j.jbiomech.2018.07.008_b0080
  article-title: A graphics-based software system to develop and analyze models of musculoskeletal structures
  publication-title: Comput. Biol. Med.
  doi: 10.1016/0010-4825(95)98882-E
– volume: 34
  start-page: 1576
  year: 2016
  ident: 10.1016/j.jbiomech.2018.07.008_b0235
  article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23171
– volume: 36
  start-page: 1659
  year: 2003
  ident: 10.1016/j.jbiomech.2018.07.008_b0115
  article-title: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00176-3
– volume: 19
  start-page: 287
  year: 2011
  ident: 10.1016/j.jbiomech.2018.07.008_b0105
  article-title: Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2010.12.001
– volume: 17
  start-page: 140
  year: 2002
  ident: 10.1016/j.jbiomech.2018.07.008_b0190
  article-title: The effect of malalignment on stresses in polyethylene component of total knee prostheses – a finite element analysis
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(01)00109-7
– volume: 468
  start-page: 57
  year: 2010
  ident: 10.1016/j.jbiomech.2018.07.008_b0040
  article-title: Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-009-1119-9
– volume: 138
  year: 2016
  ident: 10.1016/j.jbiomech.2018.07.008_b0230
  article-title: Prediction of in vivo knee joint loads using a global probabilistic analysis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4032379
– volume: 30
  start-page: 503
  year: 2012
  ident: 10.1016/j.jbiomech.2018.07.008_b0120
  article-title: Grand challenge competition to predict in vivo knee loads
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22023
– volume: 22
  start-page: 131
  year: 2007
  ident: 10.1016/j.jbiomech.2018.07.008_b0100
  article-title: Model-based estimation of muscle forces exerted during movements
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2006.09.005
– volume: 1
  start-page: 87
  year: 1997
  ident: 10.1016/j.jbiomech.2018.07.008_b0245
  article-title: A three-dimensional musculoskeletal model of the human knee joint. Part 1: theoretical construction
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/01495739708936697
– volume: 21
  start-page: 180
  year: 2014
  ident: 10.1016/j.jbiomech.2018.07.008_b0305
  article-title: Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis
  publication-title: Knee
  doi: 10.1016/j.knee.2013.08.004
– volume: 109
  start-page: 382
  year: 2017
  ident: 10.1016/j.jbiomech.2018.07.008_b0335
  article-title: A patient-specific wear prediction framework for an artificial knee joint with coupled musculoskeletal multibody-dynamics and finite element analysis
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2016.10.050
– volume: 18
  start-page: 740
  year: 2015
  ident: 10.1016/j.jbiomech.2018.07.008_b0065
  article-title: Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2013.845175
– volume: 127
  start-page: 813
  year: 2005
  ident: 10.1016/j.jbiomech.2018.07.008_b0150
  article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1992522
– volume: 45
  start-page: 2149
  year: 2012
  ident: 10.1016/j.jbiomech.2018.07.008_b0010
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.040
– volume: 24
  start-page: 152
  year: 2006
  ident: 10.1016/j.jbiomech.2018.07.008_b0025
  article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo
  publication-title: Gait Post.
  doi: 10.1016/j.gaitpost.2005.04.012
– volume: 232
  start-page: 90
  year: 2018
  ident: 10.1016/j.jbiomech.2018.07.008_b0175
  article-title: Customized surface-guided knee implant: contact analysis and experimental test
  publication-title: Proc. Inst Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411917744586
– volume: 38
  start-page: 405
  year: 2009
  ident: 10.1016/j.jbiomech.2018.07.008_b0315
  article-title: Three dimensional shape optimization of total knee replacements for reduced wear
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0281-0
– volume: 44
  start-page: 1108
  year: 2011
  ident: 10.1016/j.jbiomech.2018.07.008_b0005
  article-title: Computational wear prediction of artificial knee joints based on a new wear law and formulation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.01.027
– volume: 45
  start-page: 990
  year: 2012
  ident: 10.1016/j.jbiomech.2018.07.008_b0195
  article-title: Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.015
– volume: 136
  year: 2014
  ident: 10.1016/j.jbiomech.2018.07.008_b0140
  article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4026359
– volume: 27
  start-page: 1326
  year: 2009
  ident: 10.1016/j.jbiomech.2018.07.008_b0185
  article-title: Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20876
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2018.07.008_b0075
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 45
  start-page: 474
  year: 2012
  ident: 10.1016/j.jbiomech.2018.07.008_b0020
  article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.052
– volume: 45
  start-page: 191
  year: 2012
  ident: 10.1016/j.jbiomech.2018.07.008_b0125
  article-title: Development of a statistical model of knee kinetics for applications in pre-clinical testing
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.09.009
– volume: 38
  start-page: 83
  year: 1982
  ident: 10.1016/j.jbiomech.2018.07.008_b0285
  article-title: The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function
  publication-title: Numer. Math.
  doi: 10.1007/BF01395810
– volume: 37
  start-page: 45
  year: 2004
  ident: 10.1016/j.jbiomech.2018.07.008_b0300
  article-title: Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00255-0
– volume: 36
  start-page: 335
  year: 2014
  ident: 10.1016/j.jbiomech.2018.07.008_b0180
  article-title: Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.12.007
– volume: 58
  start-page: 282
  year: 2001
  ident: 10.1016/j.jbiomech.2018.07.008_b0275
  article-title: The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(2001)58:3<282::AID-JBM1018>3.0.CO;2-S
– start-page: 1
  year: 2014
  ident: 10.1016/j.jbiomech.2018.07.008_b0325
  article-title: Using Abaqus and Isight to simultaneously determine muscle forces, joint kinematics and strain/stresses in soft tissues during walking
– volume: 21
  start-page: 263
  year: 2013
  ident: 10.1016/j.jbiomech.2018.07.008_b0240
  article-title: Revision rates after knee replacement: cumulative results from worldwide clinical studies versus joint registers
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2012.11.014
– volume: 32
  start-page: 1344
  year: 2017
  ident: 10.1016/j.jbiomech.2018.07.008_b0330
  article-title: Customized versus patient-sized cruciate-retaining total knee arthroplasty: an in vivo kinematics study using mobile fluoroscopy
  publication-title: J. Arthroplasty
  doi: 10.1016/j.arth.2016.09.034
– start-page: 147
  year: 2012
  ident: 10.1016/j.jbiomech.2018.07.008_b0130
  article-title: Sequential quadratic programming methods
  publication-title: Mixed Int. Nonlinear Program.
  doi: 10.1007/978-1-4614-1927-3_6
– volume: 5
  start-page: 232
  year: 2000
  ident: 10.1016/j.jbiomech.2018.07.008_b0220
  article-title: Anatomic variations should be considered in total knee arthroplasty
  publication-title: J. Orthop. Sci.
  doi: 10.1007/s007760050157
– volume: 11
  start-page: 1
  year: 2017
  ident: 10.1016/j.jbiomech.2018.07.008_b0250
  article-title: Bioinspired technologies to connect musculoskeletal mechanobiology to the person for training and rehabilitation
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2017.00096
– volume: 49
  start-page: 6
  year: 2016
  ident: 10.1016/j.jbiomech.2018.07.008_b0280
  article-title: A methodological framework for detecting ulcers’ risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model
  publication-title: Gait Post.
  doi: 10.1016/j.gaitpost.2016.07.076
– volume: 16
  start-page: 564
  year: 1998
  ident: 10.1016/j.jbiomech.2018.07.008_b0265
  article-title: Computer model to predict subsurface damage in tibial inserts of total knees
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100160507
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.jbiomech.2018.07.008_b0085
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– volume: 45
  start-page: 2092
  year: 2012
  ident: 10.1016/j.jbiomech.2018.07.008_b0110
  article-title: The role of patient, surgical, and implant design variation in total knee replacement performance
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.035
– volume: 38
  start-page: 708
  year: 2016
  ident: 10.1016/j.jbiomech.2018.07.008_b0050
  article-title: Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.04.010
SSID ssj0007479
Score 2.4464412
Snippet Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 146
SubjectTerms Biomechanics
Biomedical materials
Computer simulation
Concurrent analysis
Conflicts of interest
Constraint modelling
Contact force
Contact pressure
Contact stresses
Correlation coefficients
Deformation
Electromyography
Finite element method
Formability
Gait
Knee
Ligaments
Mathematical analysis
Mathematical models
Model accuracy
Muscles
Musculoskeletal model
Polyethylene
Predictions
Pressure
Prostheses
Prosthetic knee
Root-mean-square errors
Surgery
Surgical implants
Surgical outcomes
Ultra high molecular weight polyethylene
Validation
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6CISE4TKOD0TGQkRA3Qx3_ik9ThTZNSOPEpN4ix3akdSwZS3vgv5-f44QdgHHopc1Lm9p-_vze974H8CGuH-2VYdTZQlMhCkdtEIJ6puqi4crxAmuHz7-pswvxdSVXOeDWZ1rl6BOTo_adwxg5RkJMKeNLH9_8pNg1CrOruYXGY3iC0mU4q_VqOnChNnymeDAaYcDiXoXw-tM61benhAQrk4Antpj88-b0N_CZNqHTPdjN6JEsh-F-AY9CO4P9ZRtPzte_yEeS-JwpUD6D5_ekBmfw9Dwn0fehXZJ-W2P8hWKdJXKFSHOJ2JOEgUxOrrfIT-36q_hGROekGSlcJGJcgs9j20vXE5slTUjXEEs2HV57Fb-T3IZE9sKbvYSL05PvX85obrtAXUR3GxohmQ3aLxqjpC1qKQMXlmuMl3omy2AYigZa5bW0zFkvgzasjOeSQpeh9oq_gp22a8NrIEb42jjtuFKoQsNtLZiPIKGOwMJzoeYgx_-7clmTHFtj_KhG8tm6GsepwnGqFpguL-fwebK7GVQ5HrTQ43BWY81p9JJV3DgetDSTZUYlA9r4L9ujceZU2Tf01e-ZPIf308dxVWOqxrah26ZrBFYxCzOHg2HGTQ_K0RErYQ7_ffM38Ax_Cca_i-IIdja32_A2AqhN_S6tkjuwRhmf
  priority: 102
  providerName: ProQuest
Title A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018305050
https://dx.doi.org/10.1016/j.jbiomech.2018.07.008
https://www.ncbi.nlm.nih.gov/pubmed/30031649
https://www.proquest.com/docview/2079857987
https://www.proquest.com/docview/2074123549
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB2N7GFu6j7Rd0WDszU1tyZL1mJaWbKNhjBXyZmRJhqSrXZrkYS_923sny2kHGx3swTaWdf6SdPpJ97sTwEdsP8pJnSbWZCoRIrOJ8UIkLpVVVnNpeUa-w-dTObkQX2b5bAtOel8YolVG3d_p9KCtY8oo_s3R9XxOPr7Y2sgMWHBajo3G7UIoquWHt_c0D4TLkeaRJpT7gZfw4nARfNyDUSItQhBPWmbyzx3U3wBo6IjOXsKLiCDZuHvJV7DlmwHsjBscPV_9Yp9Y4HSGyfIBPH8QbnAAT8-jIX0HmjFbriuag0nI15L4QqyeE_5kviOUs6s1cVTb5SUmIEJndU_jYohzGX2PaeZ2yUwMa8Lamhm2ainvJT6T3fhA-KKbvYaLs9MfJ5MkLr2QWER4qwRhmfHKHdVa5iar8txzYbiiOVOX5oXXKQUONNKp3KTWuNwrnRY4NslU4Ssn-RvYbtrGvwOmhau0VZZLSZFouKlE6hAoVAguHBdyCHn_v0sb45LT8hg_y56Atij7ciqpnMojMpkXQxht5K67yByPSqi-OMve7xQ1ZYmdx6OSeiP5W-38J9n9vuaUUT8s8brSRY6bGsKHzWVs2WSuMY1v1yGPIE9moYfwtqtxmw_lpIyl0Lv_8WJ78IzOaII8y_Zhe3Wz9u8RYa2qg9CEcK9m6gCejD9_nUzxeHw6_fb9DqsnJ_M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4INgCXShgJOCWskkcOz4gtAKqLe321Ep7C47tSN22SWl2hfqn-I3MOPHSA1AuPeSSZJzH2ONv3gBvcP1IK1QcGZ3IiPPERNpxHtlYlEmVCpMmlDs8PRCTI_51ls3W4GfIhaGwyiATvaC2jSEbOVlCVJ7hIT-ef4-oaxR5V0MLjW5a7LnLH6iytR92PyN_3ybJzpfDT5Oo7yoQGQQviwgRh3bSjiolMp2UWeZSrlNJ5kAbZ7lTMdXE08LKTMdG28xJFecIuxOZu9KKFMe9Bbdx4x2RsidnKwWPatH3ISVxhLBjdCUjeb499_n03gES575gKLW0_PNm-Dew6ze9nYfwoEerbNxNr0ew5uoBbIxr1NTPLtk75uNHvWF-APevlDYcwJ1p77TfgHrM2mVJ9p6I8jopNolVx4R1meuC19nZkuJhm_YET6A2wKoQMsYQUzP6Hl0fm5bpvoQKayqm2aKhe0_wmezC-eAyGuwxHN0IQ57Aet3UbhOY4rZURppUCKp6k-qSxxZBSYlAxqZcDCEL_7swfQ10asVxWoRgt3kR-FQQn4oRuefzIbxf0Z13VUCupZCBnUXIcUWpXOBGdS2lWlH2KKhDN_9FuxVmTtHLorb4vXKG8Hp1GaUIuYZ07Zqlv4dT1jRXQ3jazbjVh6Yk-AVXz_49-Cu4Ozmc7hf7uwd7z-EevRXZ3pNkC9YXF0v3AsHbonzpVwyDbze9RH8B4OVVPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggCDlESiwSMDNNLbXu_YBoUAbtZRGFaJSb9u1dy01pXapE6H-NX4dM_au6QEolx5ycTzrOLMz8-08AV6h_EgjsjAodCQDzqMi0JbzwIQij8pYFHFEtcP7M7FzyD8dJUcr8NPXwlBapdeJraI2dUE-cvKEZGmCH7lZurSIg63p-_PvAU2QokirH6fRbZE9e_kDj2_Nu90t5PXrKJpuf_24E7gJA0GBQGYRIPrQVppxmYlER3mS2JjrWJJr0IRJarOQ-uNpYWSiw0KbxMosTBGCRzK1uRExrnsLViWdigaw-mF7dvCltwMI1F2CSRggCBlfqU-ev5231fVtOCRM2_ahNODyz6bxb9C3NYHTe3DXYVc26TbbfVix1RDWJxWe288u2RvWZpO2bvoh3LnS6HAIa_suhL8O1YQ1y5y8PwFVeVKmEitPCPky26Wys7MlZcfWzSlewLMBK30CGUOEzeh9dHVSNEy7hiqsLplmi5ruPcVnsgvbpprRYg_g8EZY8hAGVV3Zx8AybvKskEUsBPXAiXXOQ4MQJUdYY2IuRpD4_1sVriM6Deb4pnzq21x5PinikxpTsD4dwWZPd971BLmWQnp2Kl_xijpaodm6ljLrKR0m6rDOf9Fu-J2jnGZq1G85GsHL_mvUKRQo0pWtl-09nGqoeTaCR92O6180JjMgePbk34u_gDUUT_V5d7b3FG7TjyJHfBRtwGBxsbTPEMkt8udOZBgc37SU_gKvMlrZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+subject-specific+finite+element+musculoskeletal+framework+for+mechanics+analysis+of+a+total+knee+replacement&rft.jtitle=Journal+of+biomechanics&rft.au=Shu%2C+Liming&rft.au=Yamamoto%2C+Ko&rft.au=Yao%2C+Jiang&rft.au=Saraswat%2C+Prabhav&rft.date=2018-08-22&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=77&rft.spage=146&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.07.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon