Evidence for Recombination Between Feline Panleukopenia Virus and Canine Parvovirus Type 2
Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emer...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 71; no. 4; pp. 403 - 408 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
01.01.2009
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies. |
---|---|
AbstractList | Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies.Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies. Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies. |
Author | MOCHIZUKI, Masami OHSHIMA, Takahisa |
Author_xml | – sequence: 1 fullname: OHSHIMA, Takahisa organization: Advanced Technology Development Center, Kyoritsu Seiyaku Corporation – sequence: 2 fullname: MOCHIZUKI, Masami organization: Advanced Technology Development Center, Kyoritsu Seiyaku Corporation |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19420841$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9rFDEUB_AgFbutnrxLQPAis-bnJHNTl1aFgiLVg5eQybzRrDPJNplZ6X9v2qkrFMFLAnmfb-C9d4KOQgyA0FNK1pQ17NV2P-a1omtB-AO0olyoSgneHKEVaWhdKSbJMTrJeUsIo6JuHqFj2ghGtKAr9O1s7zsIDnAfE_4MLo6tD3byMeC3MP0CCPgcBh8Af7JhgPln3EHwFn_1ac7Yhg5vbFjKaR_3t6-X1zvA7DF62Nshw5O7-xR9OT-73LyvLj6--7B5c1E5Wcup4kJyIq2EVvdOcKIYaN11Tcu1bB3vG6W0g5a4lraNAFLXVIqup13pQUjb8FP0Yvl3l-LVDHkyo88OhsEGiHM2tWKUldh_YUGsJkoX-Pwe3MY5hdKEKQPUiipNSVHP7tTcjtCZXfKjTdfmz3ALoAtwKeacoDfOT7ejnZL1g6HE3CzQ3CzQKGrKAkvm5b3M4dt_6teL3ubJfoeDtWnyboC_djlK5FByP2wyEPhvNuSy9A |
CitedBy_id | crossref_primary_10_1128_JVI_01162_19 crossref_primary_10_1002_jmv_21940 crossref_primary_10_1016_j_cvsm_2020_07_008 crossref_primary_10_1292_jvms_24_0138 crossref_primary_10_47027_duvetfd_827886 crossref_primary_10_22201_fmvz_24486760e_2019_4_643 crossref_primary_10_1099_vir_0_045765_0 crossref_primary_10_1038_s41598_024_54914_z crossref_primary_10_1099_jgv_0_001187 crossref_primary_10_1186_s40064_015_1155_8 crossref_primary_10_15421_022231 crossref_primary_10_1128_genomeA_01556_14 crossref_primary_10_1016_j_virusres_2014_01_012 crossref_primary_10_1093_ve_veab075 crossref_primary_10_1128_JVI_02710_14 crossref_primary_10_1016_j_meegid_2024_105675 crossref_primary_10_1016_j_actatropica_2023_107108 crossref_primary_10_1093_ve_vey011 crossref_primary_10_1186_1743_422X_7_124 crossref_primary_10_1007_s11262_020_01781_1 crossref_primary_10_1016_j_rvsc_2024_105186 crossref_primary_10_1111_irv_12185 crossref_primary_10_1111_tbed_13746 crossref_primary_10_1007_s00705_015_2620_y crossref_primary_10_1186_s12917_022_03281_w crossref_primary_10_1007_s00705_015_2642_5 crossref_primary_10_1016_j_psj_2022_101929 crossref_primary_10_1038_srep24257 crossref_primary_10_4102_jsava_v90i0_1671 crossref_primary_10_1111_tbed_13917 crossref_primary_10_1155_2024_5514806 crossref_primary_10_1016_j_cvsm_2025_01_002 crossref_primary_10_1186_1743_422X_9_252 crossref_primary_10_1186_s12917_019_1898_5 crossref_primary_10_1292_jvms_12_0527 crossref_primary_10_1093_ve_vew004 crossref_primary_10_3390_v11040308 crossref_primary_10_1007_s13337_022_00760_4 crossref_primary_10_1007_s00580_016_2322_1 crossref_primary_10_3389_fvets_2021_660046 crossref_primary_10_1016_j_jviromet_2014_09_014 crossref_primary_10_1038_emi_2017_25 crossref_primary_10_1186_1297_9716_42_43 crossref_primary_10_56093_ijans_v93i11_133463 crossref_primary_10_3390_cimb45040236 crossref_primary_10_1128_MRA_00431_23 crossref_primary_10_1016_j_vetmic_2014_10_032 crossref_primary_10_3390_ijms231911240 crossref_primary_10_3390_v15091890 crossref_primary_10_3389_fmicb_2022_862352 crossref_primary_10_1111_tbed_12751 crossref_primary_10_1371_journal_pone_0111779 |
Cites_doi | 10.1292/jvms.70.769 10.1128/JVI.71.6.4241-4253.1997 10.1128/JVI.62.1.266-276.1988 10.1146/annurev.micro.59.030804.121059 10.1073/pnas.0406765102 10.1007/s00705-007-0940-2 10.1016/j.virusres.2008.04.022 10.1073/pnas.241370698 10.1099/vir.0.83255-0 10.1093/nar/25.24.4876 10.1007/BF01315223 10.1007/BF01731581 10.1099/vir.0.19743-0 10.1093/molbev/msl051 10.1093/bioinformatics/16.6.562 10.1136/vr.105.8.156 10.1006/viro.1999.0056 10.1093/bioinformatics/bth490 10.1111/j.1348-0421.1996.tb01089.x 10.1093/bioinformatics/16.7.573 10.1292/jvms.70.1305 10.1128/JCM.34.9.2101-2105.1996 10.1006/viro.1996.0021 10.1099/0022-1317-71-11-2747 10.1093/bib/5.2.150 10.1128/JVI.02090-06 10.1099/0022-1317-75-6-1319 10.1089/aid.2005.21.98 10.1016/0042-6822(91)90132-U 10.1016/S0378-1135(99)00086-3 10.1099/0022-1317-82-7-1555 10.1099/vir.0.81537-0 10.1006/viro.1995.1520 |
ContentType | Journal Article |
Copyright | 2009 by the Japanese Society of Veterinary Science Copyright Japan Science and Technology Agency 2009 |
Copyright_xml | – notice: 2009 by the Japanese Society of Veterinary Science – notice: Copyright Japan Science and Technology Agency 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1292/jvms.71.403 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 408 |
ExternalDocumentID | 3158662811 19420841 10_1292_jvms_71_403 article_jvms_71_4_71_4_403_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c565t-345305a5eb8fc43072e88dd9b385bc3f9778ceb0cb1b94e066154df1d94245a93 |
ISSN | 0916-7250 |
IngestDate | Fri Jul 11 16:25:05 EDT 2025 Thu Jul 10 17:16:24 EDT 2025 Mon Jun 30 05:24:24 EDT 2025 Sat Sep 28 08:35:08 EDT 2024 Thu Apr 24 22:59:40 EDT 2025 Tue Jul 01 04:14:06 EDT 2025 Wed Apr 05 07:31:46 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-345305a5eb8fc43072e88dd9b385bc3f9778ceb0cb1b94e066154df1d94245a93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jvms/71/4/71_4_403/_article/-char/en |
PMID | 19420841 |
PQID | 1468717810 |
PQPubID | 2028964 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_67212066 proquest_miscellaneous_20626078 proquest_journals_1468717810 pubmed_primary_19420841 crossref_citationtrail_10_1292_jvms_71_403 crossref_primary_10_1292_jvms_71_403 jstage_primary_article_jvms_71_4_71_4_403_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090101 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 20090101 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2009 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency |
References | 14. Martin, D. P., Posada, D., Crandall, K. A. and Williamson, C. 2005. A modified bootscan algorithm for automated identification of recombinant sequences and recombinant breakpoints. AIDS Res. Hum. Retroviruses 21: 98-102. 35. Truyen, U., Evermann, J. F., Vieler, E. and Parrish, C. R. 1996. Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215: 186-189. 25. Parrish, C. R., Carmichael, L. E. and Antczak, D. F. 1982. Antigenic relationships between canine parvovirus type 2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal antibodies. Arch. Virol. 72: 267-278. 15. Martin, D. and Rybicki, E. 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562-563. 20. Mochizuki, M., Ohshima, T., Une, Y. and Yachi, A. 2008. Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures. J. Vet. Med. Sci. 70: 1305-1314. 30. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 23. Padidam, M., Sawyer, S. and Fauquet, C. M. 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218-225. 3. Battilani, M., Scagliarini, A., Tisato, E., Turilli, C., Jacoboni, I., Casadio, R. and Prosperi, S. 2001. Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy. J. Gen. Virol. 82: 1555-1560. 16. Martin, D. P., Williamson, C. and Posada, D. 2005. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260-262. 10. Kahn, R., Seddon, J., Kyaw-Tanner, M. and Meers, J. 2007. Co-infection with different sybtypes of feline immunodeficiency virus can complicate subtype assignment by phlogenetic analysis. Arch. Virol. 152: 1187-1193. 26. Parrish, C. R. and Kawaoka, Y. 2005. The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu. Rev. Microbiol. 59: 553-586. 17. Martyn, J. C., Davidson, B. E. and Studdert, M. J. 1990. Nucleotide sequence of feline panleukopenia virus: comparison with canine parvovirus identifies host-specific differences. J. Gen. Virol. 71: 2747-2753. 33. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. 36. Truyen, U., Steinel, A., Bruckner, L., Lutz, H. and Möstl, K. 2000. Distribution of antigen types of canine parvovirus in Switzerland, Austria and Germany. Schweiz Arch. Tierheilkd. 142: 115-119. 29. Reggeti, F. and Bienzle, D. 2004. Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada. J. Gen. Virol. 85: 1843-1852. 1. Appel, M. J. G., Scott, F. W. and Carmichael, L. E. 1979. Isolation and immunization studies of a canine parvo-like virus from dogs with hemorrhagic enteritis. Vet. Rec. 105: 156-159. 4. Coyne, K. P., Reed, F. C., Porter, C. J., Dawson, S., Gaskell, R. M. and Radford, A. D. 2006. Recombination of feline calicivirus within an endemically infected cat colony. J. Gen. Virol. 87: 921-926. 24. Parrish, C. R. 1991. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology 183: 195-205. 11. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. 12. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. and Frost, S. D. 2006. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23: 1891-1901. 5. Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. 2000. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573-582. 13. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163. 28. Reed, A. P., Jones, E. V. and Miller, T. J. 1988. Nucleotide sequence and genome organization of canine parvovirus. J. Virol. 62: 266-276. 34. Truyen, U. 1999. Emergence and recent evolution of canine parvovirus. Vet. Microbiol. 69: 47-50. 27. Posada, D. and Crandall, K. A. 2001. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. U. S. A. 98: 13757-13762. 32. Shackelton, L. A., Parrish, C. R., Truyen, U. and Holmes, E. C. 2005. High rate of viral evolution associated with the emergence of canine parvovirus. Proc. Natl. Acad. Sci. U.S.A. 102: 379-384. 6. Han, G.-Z., Liu, X.-P. and Li, S.-S. 2008. Cross-species recombination in the haemagglutinin gene of canine distemper virus. Virus Res. 136: 198-201. 19. Mochizuki, M., Horiuchi, M., Hiragi, H., San Gabriel, M. C., Yasuda, N. and Uno, T. 1996. Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleukopenia. J. Clin. Microbiol. 34: 2101-2105. 22. Ohshima, T., Hisaka, M., Kawakami, K., Kishi, M., Tohya, Y. and Mochizuki, M. 2008. Chronological analysis of canine parvovirus type 2 isolates in Japan. J. Vet. Med. Sci. 70: 769-775. 31. Shackelton, L. A., Hoelzer, K., Parrish, C. R. and Holmes, E. C. 2007. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 88: 3294-3301. 7. Hayward, J. J., Taylor, J. and Rodrigo, A. G. 2007. Phylogenetic analysis of feline immunodeficiency virus in feral and companion domestic cats of New Zealand. J. Virol. 81: 2999-3004. 2. Bachmann, M. H., Mathiason-Dubard, C., Learn, G. H., Rodrigo, A. G., Sodora, D. L., Mazzetti, P., Hoover, E. A. and Mullins, J. I. 1997. Genetic diversity of feline immunodeficiency virus: dual infection, recombination, and distinct evolutionary rates among envelope sequence clades. J. Virol. 71: 4241-4253. 21. Motokawa, K., Hohdatsu, T., Hashimoto, H. and Koyama, H. 1996. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol. Immunol. 40: 425-433. 8. Herrewegh, A. A. P. M., Vennema, H., Horzinek, M. C., Rottier, P. J. M. and de Groot, R. J. 1995. The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212: 622-631. 9. Horiuchi, M., Goto, H., Ishiguro, N. and Shinagawa, M. 1994. Mapping of determinants of the host range for canine cells in the genome of canine parvovirus using canine parvovirus/mink enteritis virus chimeric viruses. J. Gen. Virol. 75: 1319-1328. 18. Maynard Smith, J. 1992. Analyzing the mosaic structure of genes. J. Mol. Evol. 34: 126-129. 22 23 24 (18) 1992; 34 25 26 27 29 BACHMANN M H (2) 1997; 71 (17) 1990; 71 (28) 1988; 62 30 31 10 32 11 33 12 34 13 35 14 36 15 16 BATTILANI M (3) 2001; 82 1 4 5 6 7 8 9 (19) 1996; 34 MOTOKAWA K (21) 1996; 40 20 |
References_xml | – reference: 12. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. and Frost, S. D. 2006. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23: 1891-1901. – reference: 7. Hayward, J. J., Taylor, J. and Rodrigo, A. G. 2007. Phylogenetic analysis of feline immunodeficiency virus in feral and companion domestic cats of New Zealand. J. Virol. 81: 2999-3004. – reference: 1. Appel, M. J. G., Scott, F. W. and Carmichael, L. E. 1979. Isolation and immunization studies of a canine parvo-like virus from dogs with hemorrhagic enteritis. Vet. Rec. 105: 156-159. – reference: 2. Bachmann, M. H., Mathiason-Dubard, C., Learn, G. H., Rodrigo, A. G., Sodora, D. L., Mazzetti, P., Hoover, E. A. and Mullins, J. I. 1997. Genetic diversity of feline immunodeficiency virus: dual infection, recombination, and distinct evolutionary rates among envelope sequence clades. J. Virol. 71: 4241-4253. – reference: 31. Shackelton, L. A., Hoelzer, K., Parrish, C. R. and Holmes, E. C. 2007. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 88: 3294-3301. – reference: 28. Reed, A. P., Jones, E. V. and Miller, T. J. 1988. Nucleotide sequence and genome organization of canine parvovirus. J. Virol. 62: 266-276. – reference: 8. Herrewegh, A. A. P. M., Vennema, H., Horzinek, M. C., Rottier, P. J. M. and de Groot, R. J. 1995. The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212: 622-631. – reference: 20. Mochizuki, M., Ohshima, T., Une, Y. and Yachi, A. 2008. Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures. J. Vet. Med. Sci. 70: 1305-1314. – reference: 22. Ohshima, T., Hisaka, M., Kawakami, K., Kishi, M., Tohya, Y. and Mochizuki, M. 2008. Chronological analysis of canine parvovirus type 2 isolates in Japan. J. Vet. Med. Sci. 70: 769-775. – reference: 10. Kahn, R., Seddon, J., Kyaw-Tanner, M. and Meers, J. 2007. Co-infection with different sybtypes of feline immunodeficiency virus can complicate subtype assignment by phlogenetic analysis. Arch. Virol. 152: 1187-1193. – reference: 6. Han, G.-Z., Liu, X.-P. and Li, S.-S. 2008. Cross-species recombination in the haemagglutinin gene of canine distemper virus. Virus Res. 136: 198-201. – reference: 33. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. – reference: 36. Truyen, U., Steinel, A., Bruckner, L., Lutz, H. and Möstl, K. 2000. Distribution of antigen types of canine parvovirus in Switzerland, Austria and Germany. Schweiz Arch. Tierheilkd. 142: 115-119. – reference: 15. Martin, D. and Rybicki, E. 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562-563. – reference: 35. Truyen, U., Evermann, J. F., Vieler, E. and Parrish, C. R. 1996. Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215: 186-189. – reference: 26. Parrish, C. R. and Kawaoka, Y. 2005. The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu. Rev. Microbiol. 59: 553-586. – reference: 23. Padidam, M., Sawyer, S. and Fauquet, C. M. 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218-225. – reference: 24. Parrish, C. R. 1991. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology 183: 195-205. – reference: 13. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163. – reference: 14. Martin, D. P., Posada, D., Crandall, K. A. and Williamson, C. 2005. A modified bootscan algorithm for automated identification of recombinant sequences and recombinant breakpoints. AIDS Res. Hum. Retroviruses 21: 98-102. – reference: 3. Battilani, M., Scagliarini, A., Tisato, E., Turilli, C., Jacoboni, I., Casadio, R. and Prosperi, S. 2001. Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy. J. Gen. Virol. 82: 1555-1560. – reference: 34. Truyen, U. 1999. Emergence and recent evolution of canine parvovirus. Vet. Microbiol. 69: 47-50. – reference: 25. Parrish, C. R., Carmichael, L. E. and Antczak, D. F. 1982. Antigenic relationships between canine parvovirus type 2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal antibodies. Arch. Virol. 72: 267-278. – reference: 18. Maynard Smith, J. 1992. Analyzing the mosaic structure of genes. J. Mol. Evol. 34: 126-129. – reference: 19. Mochizuki, M., Horiuchi, M., Hiragi, H., San Gabriel, M. C., Yasuda, N. and Uno, T. 1996. Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleukopenia. J. Clin. Microbiol. 34: 2101-2105. – reference: 4. Coyne, K. P., Reed, F. C., Porter, C. J., Dawson, S., Gaskell, R. M. and Radford, A. D. 2006. Recombination of feline calicivirus within an endemically infected cat colony. J. Gen. Virol. 87: 921-926. – reference: 21. Motokawa, K., Hohdatsu, T., Hashimoto, H. and Koyama, H. 1996. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol. Immunol. 40: 425-433. – reference: 16. Martin, D. P., Williamson, C. and Posada, D. 2005. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260-262. – reference: 27. Posada, D. and Crandall, K. A. 2001. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. U. S. A. 98: 13757-13762. – reference: 5. Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. 2000. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573-582. – reference: 29. Reggeti, F. and Bienzle, D. 2004. Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada. J. Gen. Virol. 85: 1843-1852. – reference: 32. Shackelton, L. A., Parrish, C. R., Truyen, U. and Holmes, E. C. 2005. High rate of viral evolution associated with the emergence of canine parvovirus. Proc. Natl. Acad. Sci. U.S.A. 102: 379-384. – reference: 11. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. – reference: 9. Horiuchi, M., Goto, H., Ishiguro, N. and Shinagawa, M. 1994. Mapping of determinants of the host range for canine cells in the genome of canine parvovirus using canine parvovirus/mink enteritis virus chimeric viruses. J. Gen. Virol. 75: 1319-1328. – reference: 17. Martyn, J. C., Davidson, B. E. and Studdert, M. J. 1990. Nucleotide sequence of feline panleukopenia virus: comparison with canine parvovirus identifies host-specific differences. J. Gen. Virol. 71: 2747-2753. – reference: 30. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. – ident: 22 doi: 10.1292/jvms.70.769 – volume: 71 start-page: 4241 issn: 0022-538X issue: 6 year: 1997 ident: 2 publication-title: J. Virol. doi: 10.1128/JVI.71.6.4241-4253.1997 – volume: 62 start-page: 266 issn: 0022-538X issue: 1 year: 1988 ident: 28 publication-title: J. Virol. doi: 10.1128/JVI.62.1.266-276.1988 – volume: 34 start-page: 126 issn: 0022-2844 issue: 2 year: 1992 ident: 18 publication-title: J. Mol. Evol. – ident: 26 doi: 10.1146/annurev.micro.59.030804.121059 – ident: 32 doi: 10.1073/pnas.0406765102 – ident: 10 doi: 10.1007/s00705-007-0940-2 – ident: 6 doi: 10.1016/j.virusres.2008.04.022 – ident: 27 doi: 10.1073/pnas.241370698 – ident: 31 doi: 10.1099/vir.0.83255-0 – ident: 33 doi: 10.1093/nar/25.24.4876 – ident: 25 doi: 10.1007/BF01315223 – ident: 11 doi: 10.1007/BF01731581 – ident: 29 doi: 10.1099/vir.0.19743-0 – ident: 12 doi: 10.1093/molbev/msl051 – ident: 15 doi: 10.1093/bioinformatics/16.6.562 – ident: 1 doi: 10.1136/vr.105.8.156 – ident: 23 doi: 10.1006/viro.1999.0056 – ident: 16 doi: 10.1093/bioinformatics/bth490 – volume: 40 start-page: 425 issn: 0385-5600 issue: 6 year: 1996 ident: 21 publication-title: Microbiol. Immunol. doi: 10.1111/j.1348-0421.1996.tb01089.x – ident: 5 doi: 10.1093/bioinformatics/16.7.573 – ident: 20 doi: 10.1292/jvms.70.1305 – volume: 34 start-page: 2101 issn: 0095-1137 issue: 9 year: 1996 ident: 19 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.34.9.2101-2105.1996 – ident: 35 doi: 10.1006/viro.1996.0021 – ident: 36 – volume: 71 start-page: 2747 issn: 0022-1317 issue: 11 year: 1990 ident: 17 publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-71-11-2747 – ident: 13 doi: 10.1093/bib/5.2.150 – ident: 7 doi: 10.1128/JVI.02090-06 – ident: 9 doi: 10.1099/0022-1317-75-6-1319 – ident: 14 doi: 10.1089/aid.2005.21.98 – ident: 30 – ident: 24 doi: 10.1016/0042-6822(91)90132-U – ident: 34 doi: 10.1016/S0378-1135(99)00086-3 – volume: 82 start-page: 1555 issn: 0022-1317 issue: 7 year: 2001 ident: 3 publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-82-7-1555 – ident: 4 doi: 10.1099/vir.0.81537-0 – ident: 8 doi: 10.1006/viro.1995.1520 |
SSID | ssj0021469 |
Score | 2.068251 |
Snippet | Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 403 |
SubjectTerms | Animals Canine parvovirus cat Cats Dog Diseases - genetics Dog Diseases - virology Dogs Feline Panleukopenia - genetics Feline Panleukopenia - virology Feline panleukopenia virus Feline Panleukopenia Virus - genetics Feline parvovirus Parvoviridae Infections - genetics Parvoviridae Infections - veterinary Parvoviridae Infections - virology Parvovirus Parvovirus, Canine - genetics Phylogeny recombination Recombination, Genetic Sequence Alignment |
Title | Evidence for Recombination Between Feline Panleukopenia Virus and Canine Parvovirus Type 2 |
URI | https://www.jstage.jst.go.jp/article/jvms/71/4/71_4_403/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/19420841 https://www.proquest.com/docview/1468717810 https://www.proquest.com/docview/20626078 https://www.proquest.com/docview/67212066 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2009, Vol.71(4), pp.403-408 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENaEwoELA-UVKKBDTzAOli3b8jFk0knaSenQpNP24pFkGdI2DpPXgb_BH2ZlyY4DzUyBiycjKbGt78tqd7W7QmifZyxSjEgHrJ_YoUJ5DpeZcgKXZxkPGFOyCJA9DnsjengenDcaP2tRS8uFaMkft-aV_Auq0Aa46izZv0C2-lFogM-AL1wBYbjeCePySNAiVlAbkhOwcw2in2z81YEq9MgTnt-o5bU-K2vMP5yNZ0tTm7nDc9M9W01XReuw8Mlu0VnPdPCMyeAtd3iscKictb3TXn_QLmjAr_m38byS-4PPnV7_cnTUNzlCcz4Zb_gc4t98Doftk_Zx97SrqzX0u8MLHaB01h3qIljtLxele6zuayShE3mmwmxLGUnr08jR1lBdFJvTWCzlaE2uUtevLdG0KAXxp_T3Yl1N9mo1mbci0qq-s1FO24KV6FFJRBJqLjA4Kbt0vhvQ6x6674HtUdjp_aPKioelxRRwtO9kkz7h3h9rd95Qcx5cgab_VW03YgplZvgYPbKI4rZ5lCeoofJdtLtGFw9syMVTdFmSDAPJ8AbJsCUZNiTDGyTDBckwkAwbkuE1ybAmGfaeodFBd9jpOfZADkeC3r9wfBrA8sADJVgmKawOnmIsTWPhs0BIPwNbgkklXCmIiKkCbRYU9DQjaaz313nsP0c7-TRXLxEWoYh8mpIsTHU5IyJCX-rSjZLwmPtu2kTvy_lLpK1Wrw9NuUm01QqTvQbQ9Ztovxr83RRpuX1YbICoBt2dDE20V2KXWAkw12Yzi0jEiNtE76pukM96043narqcJ56rXQYR2z4ijEB9hLlqoheGE-t3iHXwCyWv_uPBX6OH63_wHtpZzJbqDejRC_G24PUvo_POag |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+Recombination+Between+Feline+Panleukopenia+Virus+and+Canine+Parvovirus+Type+2&rft.jtitle=Journal+of+Veterinary+Medical+Science&rft.au=OHSHIMA%2C+Takahisa&rft.au=MOCHIZUKI%2C+Masami&rft.date=2009-01-01&rft.pub=JAPANESE+SOCIETY+OF+VETERINARY+SCIENCE&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=71&rft.issue=4&rft.spage=403&rft.epage=408&rft_id=info:doi/10.1292%2Fjvms.71.403&rft.externalDocID=article_jvms_71_4_71_4_403_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |