Evidence for Recombination Between Feline Panleukopenia Virus and Canine Parvovirus Type 2

Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emer...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 71; no. 4; pp. 403 - 408
Main Authors OHSHIMA, Takahisa, MOCHIZUKI, Masami
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 01.01.2009
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies.
AbstractList Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies.Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies.
Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely related carnivore parvovirus belonging to the feline parvovirus (FPV) subspecies. In contrast to FPLV, CPV has evolved rapidly since its emergence. The original antigenic type of CPV disappeared more than two decades ago and several new antigenic as well as genetic CPV variants have appeared and spread in the field. Both high mutation rate and positive selection of mutations in the capsid gene appear to be the driving force for such rapid evolution. In addition, genetic recombination has been assessed as a factor in parvovirus evolution. Recently, we provided the first evidence of inter-antigenic type recombination of CPV in nature. Here, an inter-FPV subspecies recombinant was revealed by analyzing the genetic data deposited in databases with several recombination detection programs, and by phylogeny. FPLV strain XJ-1, submitted by Su et al., Harbin, China in 2007 (GenBank accession no. EF988660), was most likely generated by recombination between CPV and FPLV. Its genome was generally composed of the NS1 gene of CPV origin and the VP1 gene of FPLV origin. This is the first demonstration of recombination between different FPV subspecies in nature. Consequently, recombination should be considered as an element in the generation and evolution of parvoviruses of the FPV subspecies.
Author MOCHIZUKI, Masami
OHSHIMA, Takahisa
Author_xml – sequence: 1
  fullname: OHSHIMA, Takahisa
  organization: Advanced Technology Development Center, Kyoritsu Seiyaku Corporation
– sequence: 2
  fullname: MOCHIZUKI, Masami
  organization: Advanced Technology Development Center, Kyoritsu Seiyaku Corporation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19420841$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9rFDEUB_AgFbutnrxLQPAis-bnJHNTl1aFgiLVg5eQybzRrDPJNplZ6X9v2qkrFMFLAnmfb-C9d4KOQgyA0FNK1pQ17NV2P-a1omtB-AO0olyoSgneHKEVaWhdKSbJMTrJeUsIo6JuHqFj2ghGtKAr9O1s7zsIDnAfE_4MLo6tD3byMeC3MP0CCPgcBh8Af7JhgPln3EHwFn_1ac7Yhg5vbFjKaR_3t6-X1zvA7DF62Nshw5O7-xR9OT-73LyvLj6--7B5c1E5Wcup4kJyIq2EVvdOcKIYaN11Tcu1bB3vG6W0g5a4lraNAFLXVIqup13pQUjb8FP0Yvl3l-LVDHkyo88OhsEGiHM2tWKUldh_YUGsJkoX-Pwe3MY5hdKEKQPUiipNSVHP7tTcjtCZXfKjTdfmz3ALoAtwKeacoDfOT7ejnZL1g6HE3CzQ3CzQKGrKAkvm5b3M4dt_6teL3ubJfoeDtWnyboC_djlK5FByP2wyEPhvNuSy9A
CitedBy_id crossref_primary_10_1128_JVI_01162_19
crossref_primary_10_1002_jmv_21940
crossref_primary_10_1016_j_cvsm_2020_07_008
crossref_primary_10_1292_jvms_24_0138
crossref_primary_10_47027_duvetfd_827886
crossref_primary_10_22201_fmvz_24486760e_2019_4_643
crossref_primary_10_1099_vir_0_045765_0
crossref_primary_10_1038_s41598_024_54914_z
crossref_primary_10_1099_jgv_0_001187
crossref_primary_10_1186_s40064_015_1155_8
crossref_primary_10_15421_022231
crossref_primary_10_1128_genomeA_01556_14
crossref_primary_10_1016_j_virusres_2014_01_012
crossref_primary_10_1093_ve_veab075
crossref_primary_10_1128_JVI_02710_14
crossref_primary_10_1016_j_meegid_2024_105675
crossref_primary_10_1016_j_actatropica_2023_107108
crossref_primary_10_1093_ve_vey011
crossref_primary_10_1186_1743_422X_7_124
crossref_primary_10_1007_s11262_020_01781_1
crossref_primary_10_1016_j_rvsc_2024_105186
crossref_primary_10_1111_irv_12185
crossref_primary_10_1111_tbed_13746
crossref_primary_10_1007_s00705_015_2620_y
crossref_primary_10_1186_s12917_022_03281_w
crossref_primary_10_1007_s00705_015_2642_5
crossref_primary_10_1016_j_psj_2022_101929
crossref_primary_10_1038_srep24257
crossref_primary_10_4102_jsava_v90i0_1671
crossref_primary_10_1111_tbed_13917
crossref_primary_10_1155_2024_5514806
crossref_primary_10_1016_j_cvsm_2025_01_002
crossref_primary_10_1186_1743_422X_9_252
crossref_primary_10_1186_s12917_019_1898_5
crossref_primary_10_1292_jvms_12_0527
crossref_primary_10_1093_ve_vew004
crossref_primary_10_3390_v11040308
crossref_primary_10_1007_s13337_022_00760_4
crossref_primary_10_1007_s00580_016_2322_1
crossref_primary_10_3389_fvets_2021_660046
crossref_primary_10_1016_j_jviromet_2014_09_014
crossref_primary_10_1038_emi_2017_25
crossref_primary_10_1186_1297_9716_42_43
crossref_primary_10_56093_ijans_v93i11_133463
crossref_primary_10_3390_cimb45040236
crossref_primary_10_1128_MRA_00431_23
crossref_primary_10_1016_j_vetmic_2014_10_032
crossref_primary_10_3390_ijms231911240
crossref_primary_10_3390_v15091890
crossref_primary_10_3389_fmicb_2022_862352
crossref_primary_10_1111_tbed_12751
crossref_primary_10_1371_journal_pone_0111779
Cites_doi 10.1292/jvms.70.769
10.1128/JVI.71.6.4241-4253.1997
10.1128/JVI.62.1.266-276.1988
10.1146/annurev.micro.59.030804.121059
10.1073/pnas.0406765102
10.1007/s00705-007-0940-2
10.1016/j.virusres.2008.04.022
10.1073/pnas.241370698
10.1099/vir.0.83255-0
10.1093/nar/25.24.4876
10.1007/BF01315223
10.1007/BF01731581
10.1099/vir.0.19743-0
10.1093/molbev/msl051
10.1093/bioinformatics/16.6.562
10.1136/vr.105.8.156
10.1006/viro.1999.0056
10.1093/bioinformatics/bth490
10.1111/j.1348-0421.1996.tb01089.x
10.1093/bioinformatics/16.7.573
10.1292/jvms.70.1305
10.1128/JCM.34.9.2101-2105.1996
10.1006/viro.1996.0021
10.1099/0022-1317-71-11-2747
10.1093/bib/5.2.150
10.1128/JVI.02090-06
10.1099/0022-1317-75-6-1319
10.1089/aid.2005.21.98
10.1016/0042-6822(91)90132-U
10.1016/S0378-1135(99)00086-3
10.1099/0022-1317-82-7-1555
10.1099/vir.0.81537-0
10.1006/viro.1995.1520
ContentType Journal Article
Copyright 2009 by the Japanese Society of Veterinary Science
Copyright Japan Science and Technology Agency 2009
Copyright_xml – notice: 2009 by the Japanese Society of Veterinary Science
– notice: Copyright Japan Science and Technology Agency 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1292/jvms.71.403
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 408
ExternalDocumentID 3158662811
19420841
10_1292_jvms_71_403
article_jvms_71_4_71_4_403_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
B.T
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c565t-345305a5eb8fc43072e88dd9b385bc3f9778ceb0cb1b94e066154df1d94245a93
ISSN 0916-7250
IngestDate Fri Jul 11 16:25:05 EDT 2025
Thu Jul 10 17:16:24 EDT 2025
Mon Jun 30 05:24:24 EDT 2025
Sat Sep 28 08:35:08 EDT 2024
Thu Apr 24 22:59:40 EDT 2025
Tue Jul 01 04:14:06 EDT 2025
Wed Apr 05 07:31:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-345305a5eb8fc43072e88dd9b385bc3f9778ceb0cb1b94e066154df1d94245a93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jvms/71/4/71_4_403/_article/-char/en
PMID 19420841
PQID 1468717810
PQPubID 2028964
PageCount 6
ParticipantIDs proquest_miscellaneous_67212066
proquest_miscellaneous_20626078
proquest_journals_1468717810
pubmed_primary_19420841
crossref_citationtrail_10_1292_jvms_71_403
crossref_primary_10_1292_jvms_71_403
jstage_primary_article_jvms_71_4_71_4_403_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 20090101
  day: 01
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2009
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
References 14. Martin, D. P., Posada, D., Crandall, K. A. and Williamson, C. 2005. A modified bootscan algorithm for automated identification of recombinant sequences and recombinant breakpoints. AIDS Res. Hum. Retroviruses 21: 98-102.
35. Truyen, U., Evermann, J. F., Vieler, E. and Parrish, C. R. 1996. Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215: 186-189.
25. Parrish, C. R., Carmichael, L. E. and Antczak, D. F. 1982. Antigenic relationships between canine parvovirus type 2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal antibodies. Arch. Virol. 72: 267-278.
15. Martin, D. and Rybicki, E. 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562-563.
20. Mochizuki, M., Ohshima, T., Une, Y. and Yachi, A. 2008. Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures. J. Vet. Med. Sci. 70: 1305-1314.
30. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
23. Padidam, M., Sawyer, S. and Fauquet, C. M. 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218-225.
3. Battilani, M., Scagliarini, A., Tisato, E., Turilli, C., Jacoboni, I., Casadio, R. and Prosperi, S. 2001. Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy. J. Gen. Virol. 82: 1555-1560.
16. Martin, D. P., Williamson, C. and Posada, D. 2005. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260-262.
10. Kahn, R., Seddon, J., Kyaw-Tanner, M. and Meers, J. 2007. Co-infection with different sybtypes of feline immunodeficiency virus can complicate subtype assignment by phlogenetic analysis. Arch. Virol. 152: 1187-1193.
26. Parrish, C. R. and Kawaoka, Y. 2005. The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu. Rev. Microbiol. 59: 553-586.
17. Martyn, J. C., Davidson, B. E. and Studdert, M. J. 1990. Nucleotide sequence of feline panleukopenia virus: comparison with canine parvovirus identifies host-specific differences. J. Gen. Virol. 71: 2747-2753.
33. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
36. Truyen, U., Steinel, A., Bruckner, L., Lutz, H. and Möstl, K. 2000. Distribution of antigen types of canine parvovirus in Switzerland, Austria and Germany. Schweiz Arch. Tierheilkd. 142: 115-119.
29. Reggeti, F. and Bienzle, D. 2004. Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada. J. Gen. Virol. 85: 1843-1852.
1. Appel, M. J. G., Scott, F. W. and Carmichael, L. E. 1979. Isolation and immunization studies of a canine parvo-like virus from dogs with hemorrhagic enteritis. Vet. Rec. 105: 156-159.
4. Coyne, K. P., Reed, F. C., Porter, C. J., Dawson, S., Gaskell, R. M. and Radford, A. D. 2006. Recombination of feline calicivirus within an endemically infected cat colony. J. Gen. Virol. 87: 921-926.
24. Parrish, C. R. 1991. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology 183: 195-205.
11. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
12. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. and Frost, S. D. 2006. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23: 1891-1901.
5. Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. 2000. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573-582.
13. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163.
28. Reed, A. P., Jones, E. V. and Miller, T. J. 1988. Nucleotide sequence and genome organization of canine parvovirus. J. Virol. 62: 266-276.
34. Truyen, U. 1999. Emergence and recent evolution of canine parvovirus. Vet. Microbiol. 69: 47-50.
27. Posada, D. and Crandall, K. A. 2001. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. U. S. A. 98: 13757-13762.
32. Shackelton, L. A., Parrish, C. R., Truyen, U. and Holmes, E. C. 2005. High rate of viral evolution associated with the emergence of canine parvovirus. Proc. Natl. Acad. Sci. U.S.A. 102: 379-384.
6. Han, G.-Z., Liu, X.-P. and Li, S.-S. 2008. Cross-species recombination in the haemagglutinin gene of canine distemper virus. Virus Res. 136: 198-201.
19. Mochizuki, M., Horiuchi, M., Hiragi, H., San Gabriel, M. C., Yasuda, N. and Uno, T. 1996. Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleukopenia. J. Clin. Microbiol. 34: 2101-2105.
22. Ohshima, T., Hisaka, M., Kawakami, K., Kishi, M., Tohya, Y. and Mochizuki, M. 2008. Chronological analysis of canine parvovirus type 2 isolates in Japan. J. Vet. Med. Sci. 70: 769-775.
31. Shackelton, L. A., Hoelzer, K., Parrish, C. R. and Holmes, E. C. 2007. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 88: 3294-3301.
7. Hayward, J. J., Taylor, J. and Rodrigo, A. G. 2007. Phylogenetic analysis of feline immunodeficiency virus in feral and companion domestic cats of New Zealand. J. Virol. 81: 2999-3004.
2. Bachmann, M. H., Mathiason-Dubard, C., Learn, G. H., Rodrigo, A. G., Sodora, D. L., Mazzetti, P., Hoover, E. A. and Mullins, J. I. 1997. Genetic diversity of feline immunodeficiency virus: dual infection, recombination, and distinct evolutionary rates among envelope sequence clades. J. Virol. 71: 4241-4253.
21. Motokawa, K., Hohdatsu, T., Hashimoto, H. and Koyama, H. 1996. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol. Immunol. 40: 425-433.
8. Herrewegh, A. A. P. M., Vennema, H., Horzinek, M. C., Rottier, P. J. M. and de Groot, R. J. 1995. The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212: 622-631.
9. Horiuchi, M., Goto, H., Ishiguro, N. and Shinagawa, M. 1994. Mapping of determinants of the host range for canine cells in the genome of canine parvovirus using canine parvovirus/mink enteritis virus chimeric viruses. J. Gen. Virol. 75: 1319-1328.
18. Maynard Smith, J. 1992. Analyzing the mosaic structure of genes. J. Mol. Evol. 34: 126-129.
22
23
24
(18) 1992; 34
25
26
27
29
BACHMANN M H (2) 1997; 71
(17) 1990; 71
(28) 1988; 62
30
31
10
32
11
33
12
34
13
35
14
36
15
16
BATTILANI M (3) 2001; 82
1
4
5
6
7
8
9
(19) 1996; 34
MOTOKAWA K (21) 1996; 40
20
References_xml – reference: 12. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. and Frost, S. D. 2006. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23: 1891-1901.
– reference: 7. Hayward, J. J., Taylor, J. and Rodrigo, A. G. 2007. Phylogenetic analysis of feline immunodeficiency virus in feral and companion domestic cats of New Zealand. J. Virol. 81: 2999-3004.
– reference: 1. Appel, M. J. G., Scott, F. W. and Carmichael, L. E. 1979. Isolation and immunization studies of a canine parvo-like virus from dogs with hemorrhagic enteritis. Vet. Rec. 105: 156-159.
– reference: 2. Bachmann, M. H., Mathiason-Dubard, C., Learn, G. H., Rodrigo, A. G., Sodora, D. L., Mazzetti, P., Hoover, E. A. and Mullins, J. I. 1997. Genetic diversity of feline immunodeficiency virus: dual infection, recombination, and distinct evolutionary rates among envelope sequence clades. J. Virol. 71: 4241-4253.
– reference: 31. Shackelton, L. A., Hoelzer, K., Parrish, C. R. and Holmes, E. C. 2007. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 88: 3294-3301.
– reference: 28. Reed, A. P., Jones, E. V. and Miller, T. J. 1988. Nucleotide sequence and genome organization of canine parvovirus. J. Virol. 62: 266-276.
– reference: 8. Herrewegh, A. A. P. M., Vennema, H., Horzinek, M. C., Rottier, P. J. M. and de Groot, R. J. 1995. The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212: 622-631.
– reference: 20. Mochizuki, M., Ohshima, T., Une, Y. and Yachi, A. 2008. Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures. J. Vet. Med. Sci. 70: 1305-1314.
– reference: 22. Ohshima, T., Hisaka, M., Kawakami, K., Kishi, M., Tohya, Y. and Mochizuki, M. 2008. Chronological analysis of canine parvovirus type 2 isolates in Japan. J. Vet. Med. Sci. 70: 769-775.
– reference: 10. Kahn, R., Seddon, J., Kyaw-Tanner, M. and Meers, J. 2007. Co-infection with different sybtypes of feline immunodeficiency virus can complicate subtype assignment by phlogenetic analysis. Arch. Virol. 152: 1187-1193.
– reference: 6. Han, G.-Z., Liu, X.-P. and Li, S.-S. 2008. Cross-species recombination in the haemagglutinin gene of canine distemper virus. Virus Res. 136: 198-201.
– reference: 33. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
– reference: 36. Truyen, U., Steinel, A., Bruckner, L., Lutz, H. and Möstl, K. 2000. Distribution of antigen types of canine parvovirus in Switzerland, Austria and Germany. Schweiz Arch. Tierheilkd. 142: 115-119.
– reference: 15. Martin, D. and Rybicki, E. 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562-563.
– reference: 35. Truyen, U., Evermann, J. F., Vieler, E. and Parrish, C. R. 1996. Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215: 186-189.
– reference: 26. Parrish, C. R. and Kawaoka, Y. 2005. The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu. Rev. Microbiol. 59: 553-586.
– reference: 23. Padidam, M., Sawyer, S. and Fauquet, C. M. 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218-225.
– reference: 24. Parrish, C. R. 1991. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology 183: 195-205.
– reference: 13. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163.
– reference: 14. Martin, D. P., Posada, D., Crandall, K. A. and Williamson, C. 2005. A modified bootscan algorithm for automated identification of recombinant sequences and recombinant breakpoints. AIDS Res. Hum. Retroviruses 21: 98-102.
– reference: 3. Battilani, M., Scagliarini, A., Tisato, E., Turilli, C., Jacoboni, I., Casadio, R. and Prosperi, S. 2001. Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy. J. Gen. Virol. 82: 1555-1560.
– reference: 34. Truyen, U. 1999. Emergence and recent evolution of canine parvovirus. Vet. Microbiol. 69: 47-50.
– reference: 25. Parrish, C. R., Carmichael, L. E. and Antczak, D. F. 1982. Antigenic relationships between canine parvovirus type 2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal antibodies. Arch. Virol. 72: 267-278.
– reference: 18. Maynard Smith, J. 1992. Analyzing the mosaic structure of genes. J. Mol. Evol. 34: 126-129.
– reference: 19. Mochizuki, M., Horiuchi, M., Hiragi, H., San Gabriel, M. C., Yasuda, N. and Uno, T. 1996. Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleukopenia. J. Clin. Microbiol. 34: 2101-2105.
– reference: 4. Coyne, K. P., Reed, F. C., Porter, C. J., Dawson, S., Gaskell, R. M. and Radford, A. D. 2006. Recombination of feline calicivirus within an endemically infected cat colony. J. Gen. Virol. 87: 921-926.
– reference: 21. Motokawa, K., Hohdatsu, T., Hashimoto, H. and Koyama, H. 1996. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol. Immunol. 40: 425-433.
– reference: 16. Martin, D. P., Williamson, C. and Posada, D. 2005. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260-262.
– reference: 27. Posada, D. and Crandall, K. A. 2001. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. U. S. A. 98: 13757-13762.
– reference: 5. Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. 2000. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573-582.
– reference: 29. Reggeti, F. and Bienzle, D. 2004. Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada. J. Gen. Virol. 85: 1843-1852.
– reference: 32. Shackelton, L. A., Parrish, C. R., Truyen, U. and Holmes, E. C. 2005. High rate of viral evolution associated with the emergence of canine parvovirus. Proc. Natl. Acad. Sci. U.S.A. 102: 379-384.
– reference: 11. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
– reference: 9. Horiuchi, M., Goto, H., Ishiguro, N. and Shinagawa, M. 1994. Mapping of determinants of the host range for canine cells in the genome of canine parvovirus using canine parvovirus/mink enteritis virus chimeric viruses. J. Gen. Virol. 75: 1319-1328.
– reference: 17. Martyn, J. C., Davidson, B. E. and Studdert, M. J. 1990. Nucleotide sequence of feline panleukopenia virus: comparison with canine parvovirus identifies host-specific differences. J. Gen. Virol. 71: 2747-2753.
– reference: 30. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
– ident: 22
  doi: 10.1292/jvms.70.769
– volume: 71
  start-page: 4241
  issn: 0022-538X
  issue: 6
  year: 1997
  ident: 2
  publication-title: J. Virol.
  doi: 10.1128/JVI.71.6.4241-4253.1997
– volume: 62
  start-page: 266
  issn: 0022-538X
  issue: 1
  year: 1988
  ident: 28
  publication-title: J. Virol.
  doi: 10.1128/JVI.62.1.266-276.1988
– volume: 34
  start-page: 126
  issn: 0022-2844
  issue: 2
  year: 1992
  ident: 18
  publication-title: J. Mol. Evol.
– ident: 26
  doi: 10.1146/annurev.micro.59.030804.121059
– ident: 32
  doi: 10.1073/pnas.0406765102
– ident: 10
  doi: 10.1007/s00705-007-0940-2
– ident: 6
  doi: 10.1016/j.virusres.2008.04.022
– ident: 27
  doi: 10.1073/pnas.241370698
– ident: 31
  doi: 10.1099/vir.0.83255-0
– ident: 33
  doi: 10.1093/nar/25.24.4876
– ident: 25
  doi: 10.1007/BF01315223
– ident: 11
  doi: 10.1007/BF01731581
– ident: 29
  doi: 10.1099/vir.0.19743-0
– ident: 12
  doi: 10.1093/molbev/msl051
– ident: 15
  doi: 10.1093/bioinformatics/16.6.562
– ident: 1
  doi: 10.1136/vr.105.8.156
– ident: 23
  doi: 10.1006/viro.1999.0056
– ident: 16
  doi: 10.1093/bioinformatics/bth490
– volume: 40
  start-page: 425
  issn: 0385-5600
  issue: 6
  year: 1996
  ident: 21
  publication-title: Microbiol. Immunol.
  doi: 10.1111/j.1348-0421.1996.tb01089.x
– ident: 5
  doi: 10.1093/bioinformatics/16.7.573
– ident: 20
  doi: 10.1292/jvms.70.1305
– volume: 34
  start-page: 2101
  issn: 0095-1137
  issue: 9
  year: 1996
  ident: 19
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.34.9.2101-2105.1996
– ident: 35
  doi: 10.1006/viro.1996.0021
– ident: 36
– volume: 71
  start-page: 2747
  issn: 0022-1317
  issue: 11
  year: 1990
  ident: 17
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-71-11-2747
– ident: 13
  doi: 10.1093/bib/5.2.150
– ident: 7
  doi: 10.1128/JVI.02090-06
– ident: 9
  doi: 10.1099/0022-1317-75-6-1319
– ident: 14
  doi: 10.1089/aid.2005.21.98
– ident: 30
– ident: 24
  doi: 10.1016/0042-6822(91)90132-U
– ident: 34
  doi: 10.1016/S0378-1135(99)00086-3
– volume: 82
  start-page: 1555
  issn: 0022-1317
  issue: 7
  year: 2001
  ident: 3
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-82-7-1555
– ident: 4
  doi: 10.1099/vir.0.81537-0
– ident: 8
  doi: 10.1006/viro.1995.1520
SSID ssj0021469
Score 2.068251
Snippet Canine parvovirus type 2 (CPV) is a virulent pathogen that emerged in the late 1970s, probably originating from feline panleukopenia virus (FPLV) or a closely...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 403
SubjectTerms Animals
Canine parvovirus
cat
Cats
Dog Diseases - genetics
Dog Diseases - virology
Dogs
Feline Panleukopenia - genetics
Feline Panleukopenia - virology
Feline panleukopenia virus
Feline Panleukopenia Virus - genetics
Feline parvovirus
Parvoviridae Infections - genetics
Parvoviridae Infections - veterinary
Parvoviridae Infections - virology
Parvovirus
Parvovirus, Canine - genetics
Phylogeny
recombination
Recombination, Genetic
Sequence Alignment
Title Evidence for Recombination Between Feline Panleukopenia Virus and Canine Parvovirus Type 2
URI https://www.jstage.jst.go.jp/article/jvms/71/4/71_4_403/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/19420841
https://www.proquest.com/docview/1468717810
https://www.proquest.com/docview/20626078
https://www.proquest.com/docview/67212066
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2009, Vol.71(4), pp.403-408
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENaEwoELA-UVKKBDTzAOli3b8jFk0knaSenQpNP24pFkGdI2DpPXgb_BH2ZlyY4DzUyBiycjKbGt78tqd7W7QmifZyxSjEgHrJ_YoUJ5DpeZcgKXZxkPGFOyCJA9DnsjengenDcaP2tRS8uFaMkft-aV_Auq0Aa46izZv0C2-lFogM-AL1wBYbjeCePySNAiVlAbkhOwcw2in2z81YEq9MgTnt-o5bU-K2vMP5yNZ0tTm7nDc9M9W01XReuw8Mlu0VnPdPCMyeAtd3iscKictb3TXn_QLmjAr_m38byS-4PPnV7_cnTUNzlCcz4Zb_gc4t98Doftk_Zx97SrqzX0u8MLHaB01h3qIljtLxele6zuayShE3mmwmxLGUnr08jR1lBdFJvTWCzlaE2uUtevLdG0KAXxp_T3Yl1N9mo1mbci0qq-s1FO24KV6FFJRBJqLjA4Kbt0vhvQ6x6674HtUdjp_aPKioelxRRwtO9kkz7h3h9rd95Qcx5cgab_VW03YgplZvgYPbKI4rZ5lCeoofJdtLtGFw9syMVTdFmSDAPJ8AbJsCUZNiTDGyTDBckwkAwbkuE1ybAmGfaeodFBd9jpOfZADkeC3r9wfBrA8sADJVgmKawOnmIsTWPhs0BIPwNbgkklXCmIiKkCbRYU9DQjaaz313nsP0c7-TRXLxEWoYh8mpIsTHU5IyJCX-rSjZLwmPtu2kTvy_lLpK1Wrw9NuUm01QqTvQbQ9Ztovxr83RRpuX1YbICoBt2dDE20V2KXWAkw12Yzi0jEiNtE76pukM96043narqcJ56rXQYR2z4ijEB9hLlqoheGE-t3iHXwCyWv_uPBX6OH63_wHtpZzJbqDejRC_G24PUvo_POag
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+Recombination+Between+Feline+Panleukopenia+Virus+and+Canine+Parvovirus+Type+2&rft.jtitle=Journal+of+Veterinary+Medical+Science&rft.au=OHSHIMA%2C+Takahisa&rft.au=MOCHIZUKI%2C+Masami&rft.date=2009-01-01&rft.pub=JAPANESE+SOCIETY+OF+VETERINARY+SCIENCE&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=71&rft.issue=4&rft.spage=403&rft.epage=408&rft_id=info:doi/10.1292%2Fjvms.71.403&rft.externalDocID=article_jvms_71_4_71_4_403_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon