Rapid Structure Determination of Ranitidine Hydrochloride API in Two Crystal Forms Using Microcrystal Electron Diffraction
The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditiona...
Saved in:
Published in | Chemical & pharmaceutical bulletin Vol. 72; no. 5; pp. 471 - 474 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Pharmaceutical Society of Japan
2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research. |
---|---|
AbstractList | The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research. The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research. |
ArticleNumber | c23-00745 |
Author | Yokoo, Hidetomo Demizu, Yosuke Uchiyama, Nahoko Yamamoto, Eiichi Aoyama, Yoshitaka Matsumoto, Takashi |
Author_xml | – sequence: 1 fullname: Yokoo, Hidetomo organization: National Institute of Health Sciences – sequence: 2 fullname: Aoyama, Yoshitaka organization: JEOL Ltd – sequence: 3 fullname: Matsumoto, Takashi organization: Rigaku Corporation – sequence: 4 fullname: Yamamoto, Eiichi organization: National Institute of Health Sciences – sequence: 5 fullname: Uchiyama, Nahoko organization: National Institute of Health Sciences – sequence: 6 fullname: Demizu, Yosuke organization: National Institute of Health Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38749738$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c9vFCEUB3Biauy2evRqSLx4mcrAMMCx2f5MajS1PROGHy2bGViBiVn_etnudk28wOF9eOG97wk4CjFYAD626KzFHf-q18OZxqRBiHX0DVi0pGMNxZgcgQVCSDSY9OQYnOS8QghTxMg7cEw46wQjfAH-3Ku1N_BnSbMuc7LwwhabJh9U8THA6OC9Cr5444OFNxuTon4eY_LGwvMft9AH-PA7wmXa5KJGeBXTlOFj9uEJfvO64n3hcrS6pNrwwjuXlN42fw_eOjVm-2F_n4LHq8uH5U1z9_36dnl-12ja09JgJ9qWD4oNluiBY2cMMZg52hPRYSGoq6OLwaneMueGwSFlnONc9NQo1LfkFHzZ9V2n-Gu2ucjJZ23HUQUb5ywJopQLwrGo9PN_dBXnFOrvquo5aTvWo6o-7dU8TNbIdfKTShv5utUKmh2oG8g5WXcgLZLb1GRNTdbU5Etq1S93flWX9WQPWqXi9WhfNMOSbo_Dq3_VZ5WkDeQvXV2jgQ |
Cites_doi | 10.1107/S2053273315010669 10.1016/j.ijpharm.2006.07.032 10.1038/nprot.2016.046 10.1016/j.ultramic.2006.10.007 10.1039/D1RA03100G 10.1107/S010827010000785X 10.1038/s41592-019-0395-x 10.1039/D0CE01216E 10.1107/S0108270190000130 10.1016/j.ejpb.2007.09.001 10.1039/D1CE01172C 10.7554/eLife.01345 10.1016/j.ultramic.2007.12.002 10.1016/j.ijpharm.2021.120834 10.1107/S0907444913009700 10.1002/anie.201904564 10.1073/pnas.1606287113 10.1248/cpb.c22-00628 10.1126/science.aaw2560 10.1126/science.aak9652 10.1002/crat.201100036 10.1002/anie.201811318 10.1021/acscentsci.8b00760 10.1002/anie.202303761 10.1107/S2053273315022500 10.1016/j.addr.2003.10.007 10.1038/nmeth.3043 10.1002/jps.20074 10.1107/S0108768112003138 10.1016/j.jcrysgro.2003.08.061 10.1007/s11095-006-9134-y |
ContentType | Journal Article |
Copyright | 2024 The Pharmaceutical Society of Japan Copyright Japan Science and Technology Agency 2024 |
Copyright_xml | – notice: 2024 The Pharmaceutical Society of Japan – notice: Copyright Japan Science and Technology Agency 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7TM 7U9 H94 K9. 7X8 |
DOI | 10.1248/cpb.c23-00745 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Virology and AIDS Abstracts Neurosciences Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5223 |
EndPage | 474 |
ExternalDocumentID | 38749738 10_1248_cpb_c23_00745 article_cpb_72_5_72_c23_00745_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 29B 2WC 53G 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 L7B MOJWN OK1 P2P RJT RZJ TR2 XSB ZGI AAYXX CITATION .55 .GJ 3O- ABTAH AI. CGR CUY CVF ECM EIF NPM TKC VH1 X7J X7M ZE2 ZY4 7TK 7TM 7U9 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c565t-2f9118ba7be3cb82fdd3d27f563942995f0079bfa6e7ffbbf0adff88965da0613 |
ISSN | 0009-2363 1347-5223 |
IngestDate | Fri Jul 11 16:31:42 EDT 2025 Mon Jun 30 07:59:05 EDT 2025 Thu Jan 02 22:39:33 EST 2025 Tue Jul 01 01:28:31 EDT 2025 Sun Jul 28 06:07:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | crystal polymorphism microcrystal electron diffraction active pharmaceutical ingredient ranitidine hydrochloride |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-2f9118ba7be3cb82fdd3d27f563942995f0079bfa6e7ffbbf0adff88965da0613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/cpb/72/5/72_c23-00745/_article/-char/en |
PMID | 38749738 |
PQID | 3068314760 |
PQPubID | 1996362 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_3055893829 proquest_journals_3068314760 pubmed_primary_38749738 crossref_primary_10_1248_cpb_c23_00745 jstage_primary_article_cpb_72_5_72_c23_00745_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Chemical & pharmaceutical bulletin |
PublicationTitleAlternate | Chem. Pharm. Bull. |
PublicationYear | 2024 |
Publisher | The Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 4) Palatinus L., Brázda P., Boullay P., Perez O., Klementová M., Petit S., Eigner V., Zaarour M., Mintova S., Science, 355, 166–169 (2017). 8) van Genderen E., Clabbers M. T., Das P. P., Stewart A., Nederlof I., Barentsen K. C., Portillo Q., Pannu N. S., Nicolopoulos S., Gruene T., Abrahams J. P., Acta Crystallogr. A Found. Adv., 72, 236–242 (2016). 23) Shi D., Nannenga B. L., de la Cruz M. J., Liu J., Sawtelle S., Calero G., Reyes F. E., Hattne J., Gonen T., Nat. Protoc., 11, 895–904 (2016). 27) Chieng N., Zujovic Z., Bowmaker G., Rades T., Saville D., Int. J. Pharm., 327, 36–44 (2006). 2) Nannenga B. L., Gonen T., Nat. Methods, 16, 369–379 (2019). 12) Woollam G. R., Das P. P., Mugnaioli E., Andrusenko I., Galanis A. S., van de Streek J., Nicolopoulos S., Gemmi M., Wagner T., CrystEngComm, 22, 7490–7499 (2020). 21) Hattne J., Reyes F. E., Nannenga B. L., Shi D., de la Cruz M. J., Leslie A. G., Gonen T., Acta Crystallogr. A Found. Adv., 71, 353–360 (2015). 6) Nannenga B. L., Shi D., Leslie A. G. W., Gonen T., Nat. Methods, 11, 927–930 (2014). 29) Mirmehrabi M., Rohani S., Murthy K. S., Radatus B., J. Pharm. Sci., 93, 1692–1700 (2004). 10) Brázda P., Palatinus L., Babor M., Science, 364, 667–669 (2019). 26) Guerrieri P., Salameh A. K., Taylor L. S., Pharm. Res., 24, 147–156 (2007). 17) Kolb U., Gorelik T., Otten M. T., Ultramicroscopy, 108, 763–772 (2008). 3) Nederlof I., van Genderen E., Li Y. W., Abrahams J. P., Acta Crystallogr. D Biol. Crystallogr., 69, 1223–1230 (2013). 7) Gorelik T. E., van de Streek J., Kilbinger A. F., Brunklaus G., Kolb U., Acta Crystallogr. B, 68, 171–181 (2012). 18) Kolb U., Mugnaioli E., Gorelik T., Cryst. Res. Technol., 46, 542–554 (2011). 1) Huang L. F., Tong W. Q., Adv. Drug Deliv. Rev., 56, 321–334 (2004). 30) Chieng N., Rades T., Saville D., Eur. J. Pharm. Biopharm., 68, 771–780 (2008). 22) Nannenga B. L., Struct. Dyn., 7, 014304 (2020). 5) Jones C. G., Martynowycz M. W., Hattne J., Fulton T. J., Stoltz B. M., Rodriguez J. A., Nelson H. M., Gonen T., ACS Cent. Sci., 4, 1587–1592 (2018). 19) Shi D., Nannenga B. L., Iadanza M. G., Gonen T., eLife, 2, e01345 (2013). 9) Gruene T., Wennmacher J. T. C., Zaubitzer C., Holstein J. J., Heidler J., Fecteau-Lefebvre A., De Carlo S., Müller E., Goldie K. N., Regeni I., Li T., Santiso-Quinones G., Steinfeld G., Handschin S., van Genderen E., van Bokhoven J. A., Clever G. H., Pantelic R., Angew. Chem. Int. Ed., 57, 16313–16317 (2018). 32) Ishida T., In Y., Inoue M., Acta Crystallogr. C, 46, 1893–1896 (1990). 13) Ito S., White F. J., Okunishi E., Aoyama Y., Yamano A., Sato H., Ferrara J. D., Jasnowski M., Meyer M., CrystEngComm, 23, 8622–8630 (2021). 15) Karothu D. P., Alhaddad Z., Göb C. R., Schürmann C. J., Bücker R., Naumov P., Angew. Chem. Int. Ed., 62, e202303761 (2023). 20) Sawaya M. R., Rodriguez J., Cascio D., Collazo M. J., Shi D., Reyes F. E., Hattne J., Gonen T., Eisenberg D. S., Proc. Natl. Acad. Sci. U.S.A., 113, 11232–11236 (2016). 24) Yokoo H., Tanaka S., Yamamoto E., Tsuji G., Demizu Y., Uchiyama N., Chem. Pharm. Bull., 71, 58–63 (2023). 11) Andrusenko I., Hamilton V., Mugnaioli E., Lanza A., Hall C., Potticary J., Hall S. R., Gemmi M., Angew. Chem. Int. Ed., 58, 10919–10922 (2019). 25) Yamamoto E., Takeda Y., Ando D., Koide T., Amano Y., Miyazaki S., Miyazaki T., Izutsu K. I., Kanazawa H., Goda Y., Int. J. Pharm., 605, 120834 (2021). 28) Mirmehrabi M., Rohani S., Murthy K., Radatus B., J. Cryst. Growth, 260, 517–526 (2004). 14) Sekharan S., Liu X., Yang Z., Liu X., Deng L., Ruan S., Abramov Y., Sun G., Li S., Zhou T., Shi B., Zeng Q., Zeng Q., Chang C., Jin Y., Shi X., RSC Adv., 11, 17408–17412 (2021). 16) Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D., Ultramicroscopy, 107, 507–513 (2007). 31) Hempel A., Camerman N., Mastropaolo D., Camerman A., Acta Crystallogr. C, 56, 1048–1049 (2000). 22 23 24 25 26 27 28 29 30 31 10 32 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 16) Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D., Ultramicroscopy, 107, 507–513 (2007). – reference: 4) Palatinus L., Brázda P., Boullay P., Perez O., Klementová M., Petit S., Eigner V., Zaarour M., Mintova S., Science, 355, 166–169 (2017). – reference: 17) Kolb U., Gorelik T., Otten M. T., Ultramicroscopy, 108, 763–772 (2008). – reference: 13) Ito S., White F. J., Okunishi E., Aoyama Y., Yamano A., Sato H., Ferrara J. D., Jasnowski M., Meyer M., CrystEngComm, 23, 8622–8630 (2021). – reference: 28) Mirmehrabi M., Rohani S., Murthy K., Radatus B., J. Cryst. Growth, 260, 517–526 (2004). – reference: 5) Jones C. G., Martynowycz M. W., Hattne J., Fulton T. J., Stoltz B. M., Rodriguez J. A., Nelson H. M., Gonen T., ACS Cent. Sci., 4, 1587–1592 (2018). – reference: 9) Gruene T., Wennmacher J. T. C., Zaubitzer C., Holstein J. J., Heidler J., Fecteau-Lefebvre A., De Carlo S., Müller E., Goldie K. N., Regeni I., Li T., Santiso-Quinones G., Steinfeld G., Handschin S., van Genderen E., van Bokhoven J. A., Clever G. H., Pantelic R., Angew. Chem. Int. Ed., 57, 16313–16317 (2018). – reference: 10) Brázda P., Palatinus L., Babor M., Science, 364, 667–669 (2019). – reference: 22) Nannenga B. L., Struct. Dyn., 7, 014304 (2020). – reference: 18) Kolb U., Mugnaioli E., Gorelik T., Cryst. Res. Technol., 46, 542–554 (2011). – reference: 12) Woollam G. R., Das P. P., Mugnaioli E., Andrusenko I., Galanis A. S., van de Streek J., Nicolopoulos S., Gemmi M., Wagner T., CrystEngComm, 22, 7490–7499 (2020). – reference: 25) Yamamoto E., Takeda Y., Ando D., Koide T., Amano Y., Miyazaki S., Miyazaki T., Izutsu K. I., Kanazawa H., Goda Y., Int. J. Pharm., 605, 120834 (2021). – reference: 19) Shi D., Nannenga B. L., Iadanza M. G., Gonen T., eLife, 2, e01345 (2013). – reference: 31) Hempel A., Camerman N., Mastropaolo D., Camerman A., Acta Crystallogr. C, 56, 1048–1049 (2000). – reference: 20) Sawaya M. R., Rodriguez J., Cascio D., Collazo M. J., Shi D., Reyes F. E., Hattne J., Gonen T., Eisenberg D. S., Proc. Natl. Acad. Sci. U.S.A., 113, 11232–11236 (2016). – reference: 21) Hattne J., Reyes F. E., Nannenga B. L., Shi D., de la Cruz M. J., Leslie A. G., Gonen T., Acta Crystallogr. A Found. Adv., 71, 353–360 (2015). – reference: 3) Nederlof I., van Genderen E., Li Y. W., Abrahams J. P., Acta Crystallogr. D Biol. Crystallogr., 69, 1223–1230 (2013). – reference: 14) Sekharan S., Liu X., Yang Z., Liu X., Deng L., Ruan S., Abramov Y., Sun G., Li S., Zhou T., Shi B., Zeng Q., Zeng Q., Chang C., Jin Y., Shi X., RSC Adv., 11, 17408–17412 (2021). – reference: 7) Gorelik T. E., van de Streek J., Kilbinger A. F., Brunklaus G., Kolb U., Acta Crystallogr. B, 68, 171–181 (2012). – reference: 24) Yokoo H., Tanaka S., Yamamoto E., Tsuji G., Demizu Y., Uchiyama N., Chem. Pharm. Bull., 71, 58–63 (2023). – reference: 11) Andrusenko I., Hamilton V., Mugnaioli E., Lanza A., Hall C., Potticary J., Hall S. R., Gemmi M., Angew. Chem. Int. Ed., 58, 10919–10922 (2019). – reference: 15) Karothu D. P., Alhaddad Z., Göb C. R., Schürmann C. J., Bücker R., Naumov P., Angew. Chem. Int. Ed., 62, e202303761 (2023). – reference: 23) Shi D., Nannenga B. L., de la Cruz M. J., Liu J., Sawtelle S., Calero G., Reyes F. E., Hattne J., Gonen T., Nat. Protoc., 11, 895–904 (2016). – reference: 8) van Genderen E., Clabbers M. T., Das P. P., Stewart A., Nederlof I., Barentsen K. C., Portillo Q., Pannu N. S., Nicolopoulos S., Gruene T., Abrahams J. P., Acta Crystallogr. A Found. Adv., 72, 236–242 (2016). – reference: 26) Guerrieri P., Salameh A. K., Taylor L. S., Pharm. Res., 24, 147–156 (2007). – reference: 27) Chieng N., Zujovic Z., Bowmaker G., Rades T., Saville D., Int. J. Pharm., 327, 36–44 (2006). – reference: 2) Nannenga B. L., Gonen T., Nat. Methods, 16, 369–379 (2019). – reference: 1) Huang L. F., Tong W. Q., Adv. Drug Deliv. Rev., 56, 321–334 (2004). – reference: 32) Ishida T., In Y., Inoue M., Acta Crystallogr. C, 46, 1893–1896 (1990). – reference: 29) Mirmehrabi M., Rohani S., Murthy K. S., Radatus B., J. Pharm. Sci., 93, 1692–1700 (2004). – reference: 6) Nannenga B. L., Shi D., Leslie A. G. W., Gonen T., Nat. Methods, 11, 927–930 (2014). – reference: 30) Chieng N., Rades T., Saville D., Eur. J. Pharm. Biopharm., 68, 771–780 (2008). – ident: 21 doi: 10.1107/S2053273315010669 – ident: 27 doi: 10.1016/j.ijpharm.2006.07.032 – ident: 23 doi: 10.1038/nprot.2016.046 – ident: 16 doi: 10.1016/j.ultramic.2006.10.007 – ident: 14 doi: 10.1039/D1RA03100G – ident: 31 doi: 10.1107/S010827010000785X – ident: 2 doi: 10.1038/s41592-019-0395-x – ident: 12 doi: 10.1039/D0CE01216E – ident: 32 doi: 10.1107/S0108270190000130 – ident: 30 doi: 10.1016/j.ejpb.2007.09.001 – ident: 13 doi: 10.1039/D1CE01172C – ident: 19 doi: 10.7554/eLife.01345 – ident: 17 doi: 10.1016/j.ultramic.2007.12.002 – ident: 25 doi: 10.1016/j.ijpharm.2021.120834 – ident: 3 doi: 10.1107/S0907444913009700 – ident: 11 doi: 10.1002/anie.201904564 – ident: 20 doi: 10.1073/pnas.1606287113 – ident: 24 doi: 10.1248/cpb.c22-00628 – ident: 22 – ident: 10 doi: 10.1126/science.aaw2560 – ident: 4 doi: 10.1126/science.aak9652 – ident: 18 doi: 10.1002/crat.201100036 – ident: 9 doi: 10.1002/anie.201811318 – ident: 5 doi: 10.1021/acscentsci.8b00760 – ident: 15 doi: 10.1002/anie.202303761 – ident: 8 doi: 10.1107/S2053273315022500 – ident: 1 doi: 10.1016/j.addr.2003.10.007 – ident: 6 doi: 10.1038/nmeth.3043 – ident: 29 doi: 10.1002/jps.20074 – ident: 7 doi: 10.1107/S0108768112003138 – ident: 28 doi: 10.1016/j.jcrysgro.2003.08.061 – ident: 26 doi: 10.1007/s11095-006-9134-y |
SSID | ssj0025073 |
Score | 2.3989475 |
Snippet | The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 471 |
SubjectTerms | Active control active pharmaceutical ingredient crystal polymorphism Crystallization Crystallography Crystals Drug development Electron diffraction Electrons microcrystal electron diffraction Microcrystals Molecular Structure Quality control Ranitidine Ranitidine - chemistry Ranitidine hydrochloride Single crystals Structural analysis X-ray diffraction |
Title | Rapid Structure Determination of Ranitidine Hydrochloride API in Two Crystal Forms Using Microcrystal Electron Diffraction |
URI | https://www.jstage.jst.go.jp/article/cpb/72/5/72_c23-00745/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/38749738 https://www.proquest.com/docview/3068314760 https://www.proquest.com/docview/3055893829 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Chemical and Pharmaceutical Bulletin, 2024/05/15, Vol.72(5), pp.471-474 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK4IEXxPcKAxkJ9aXL6PJlR-JlGq0KrKNMqTSeIiexWZjWVGsm1P0Afjf3Oo6biiENXqIq17WinJPrc23fa0LeMsFllO67jpKR7_giEg7PAw5RSqCAM1HoK0xOnhyH45n_6TQ47XR-tXYtXVXpXnZ9Y17J_6AK9wBXzJL9B2Rtp3ADfgO-cAWE4XorjE_EokC9iCVgcSHgQ7O3pZGBJ1jcoshRSY5XOZ6OhRvuctk_mH7EmY74Z9k_vFwtMSNyBOp12a-3EExwm15mDENzUg64R6Uu60SItqa1NQeQRYuzjTnytF3dWzuX81JPzo7hKaryorSEK1fiQgvZb-XyrKjEuR0vJqKCl1rq8576MRjAbvuDPzWmYVFkxmKmMeq8aeNzPZ9BPFynHe_JG-4ZR83cFiGDltf161Nc_hgNXB8zHLIF8Mn1HFRLwXrYa5b6j78ko9nRURIPT-M75K4L4QaehPH5q12NApWodyrYhzK1WqH7dxudb2ibez8Ao-_y75GLVjDxQ_LAhB70oObRI9KR88ekN60BW-3SeJ2Kt9ylPTpdVzVfPSHXmmzUko1ukI2Wiq7JRjfIRoFstJhTIBs1ZKOabFSTjbbJRhuy0RbZnpLZaBgfjh1zcIeTQXxQOa6CIZSngqXSy1Luqjz3cpepAOQw6h9wAwMWpUqEkimVpmogcqU4j8IgFygwn5GteTmX24RyKaVIo4HEiYKQMxFmuLILYQkTMPYEXdJrXnmyqOuzJBjXAjYJYJMANonGpkve14DYZuaz1c2YmwR4sc3XVnjX4Gu6ZKeBMTEeYJlAuM29fZ-Fgy55Y83gn3HRTcxleYVtggBiAu5GXfK8ht8-gceZHzGPv7jFv1-S-_jZ1LN_O2QL0JavQA9X6WtN1t_hVL74 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Structure+Determination+of+Ranitidine+Hydrochloride+API+in+Two+Crystal+Forms+Using+Microcrystal+Electron+Diffraction&rft.jtitle=Chemical+%26+pharmaceutical+bulletin&rft.au=Yokoo%2C+Hidetomo&rft.au=Aoyama%2C+Yoshitaka&rft.au=Matsumoto%2C+Takashi&rft.au=Yamamoto%2C+Eiichi&rft.date=2024&rft.issn=1347-5223&rft.eissn=1347-5223&rft.volume=72&rft.issue=5&rft.spage=471&rft_id=info:doi/10.1248%2Fcpb.c23-00745&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2363&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2363&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2363&client=summon |