Rapid Structure Determination of Ranitidine Hydrochloride API in Two Crystal Forms Using Microcrystal Electron Diffraction

The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditiona...

Full description

Saved in:
Bibliographic Details
Published inChemical & pharmaceutical bulletin Vol. 72; no. 5; pp. 471 - 474
Main Authors Yokoo, Hidetomo, Aoyama, Yoshitaka, Matsumoto, Takashi, Yamamoto, Eiichi, Uchiyama, Nahoko, Demizu, Yosuke
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.
AbstractList The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.
The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.
ArticleNumber c23-00745
Author Yokoo, Hidetomo
Demizu, Yosuke
Uchiyama, Nahoko
Yamamoto, Eiichi
Aoyama, Yoshitaka
Matsumoto, Takashi
Author_xml – sequence: 1
  fullname: Yokoo, Hidetomo
  organization: National Institute of Health Sciences
– sequence: 2
  fullname: Aoyama, Yoshitaka
  organization: JEOL Ltd
– sequence: 3
  fullname: Matsumoto, Takashi
  organization: Rigaku Corporation
– sequence: 4
  fullname: Yamamoto, Eiichi
  organization: National Institute of Health Sciences
– sequence: 5
  fullname: Uchiyama, Nahoko
  organization: National Institute of Health Sciences
– sequence: 6
  fullname: Demizu, Yosuke
  organization: National Institute of Health Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38749738$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9vFCEUB3Biauy2evRqSLx4mcrAMMCx2f5MajS1PROGHy2bGViBiVn_etnudk28wOF9eOG97wk4CjFYAD626KzFHf-q18OZxqRBiHX0DVi0pGMNxZgcgQVCSDSY9OQYnOS8QghTxMg7cEw46wQjfAH-3Ku1N_BnSbMuc7LwwhabJh9U8THA6OC9Cr5444OFNxuTon4eY_LGwvMft9AH-PA7wmXa5KJGeBXTlOFj9uEJfvO64n3hcrS6pNrwwjuXlN42fw_eOjVm-2F_n4LHq8uH5U1z9_36dnl-12ja09JgJ9qWD4oNluiBY2cMMZg52hPRYSGoq6OLwaneMueGwSFlnONc9NQo1LfkFHzZ9V2n-Gu2ucjJZ23HUQUb5ywJopQLwrGo9PN_dBXnFOrvquo5aTvWo6o-7dU8TNbIdfKTShv5utUKmh2oG8g5WXcgLZLb1GRNTdbU5Etq1S93flWX9WQPWqXi9WhfNMOSbo_Dq3_VZ5WkDeQvXV2jgQ
Cites_doi 10.1107/S2053273315010669
10.1016/j.ijpharm.2006.07.032
10.1038/nprot.2016.046
10.1016/j.ultramic.2006.10.007
10.1039/D1RA03100G
10.1107/S010827010000785X
10.1038/s41592-019-0395-x
10.1039/D0CE01216E
10.1107/S0108270190000130
10.1016/j.ejpb.2007.09.001
10.1039/D1CE01172C
10.7554/eLife.01345
10.1016/j.ultramic.2007.12.002
10.1016/j.ijpharm.2021.120834
10.1107/S0907444913009700
10.1002/anie.201904564
10.1073/pnas.1606287113
10.1248/cpb.c22-00628
10.1126/science.aaw2560
10.1126/science.aak9652
10.1002/crat.201100036
10.1002/anie.201811318
10.1021/acscentsci.8b00760
10.1002/anie.202303761
10.1107/S2053273315022500
10.1016/j.addr.2003.10.007
10.1038/nmeth.3043
10.1002/jps.20074
10.1107/S0108768112003138
10.1016/j.jcrysgro.2003.08.061
10.1007/s11095-006-9134-y
ContentType Journal Article
Copyright 2024 The Pharmaceutical Society of Japan
Copyright Japan Science and Technology Agency 2024
Copyright_xml – notice: 2024 The Pharmaceutical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
7U9
H94
K9.
7X8
DOI 10.1248/cpb.c23-00745
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Virology and AIDS Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
AIDS and Cancer Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5223
EndPage 474
ExternalDocumentID 38749738
10_1248_cpb_c23_00745
article_cpb_72_5_72_c23_00745_article_char_en
Genre Journal Article
GroupedDBID ---
29B
2WC
53G
5GY
6J9
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JMI
JSF
JSH
KQ8
L7B
MOJWN
OK1
P2P
RJT
RZJ
TR2
XSB
ZGI
AAYXX
CITATION
.55
.GJ
3O-
ABTAH
AI.
CGR
CUY
CVF
ECM
EIF
NPM
TKC
VH1
X7J
X7M
ZE2
ZY4
7TK
7TM
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c565t-2f9118ba7be3cb82fdd3d27f563942995f0079bfa6e7ffbbf0adff88965da0613
ISSN 0009-2363
1347-5223
IngestDate Fri Jul 11 16:31:42 EDT 2025
Mon Jun 30 07:59:05 EDT 2025
Thu Jan 02 22:39:33 EST 2025
Tue Jul 01 01:28:31 EDT 2025
Sun Jul 28 06:07:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords crystal polymorphism
microcrystal electron diffraction
active pharmaceutical ingredient
ranitidine hydrochloride
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-2f9118ba7be3cb82fdd3d27f563942995f0079bfa6e7ffbbf0adff88965da0613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/cpb/72/5/72_c23-00745/_article/-char/en
PMID 38749738
PQID 3068314760
PQPubID 1996362
PageCount 4
ParticipantIDs proquest_miscellaneous_3055893829
proquest_journals_3068314760
pubmed_primary_38749738
crossref_primary_10_1248_cpb_c23_00745
jstage_primary_article_cpb_72_5_72_c23_00745_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Chemical & pharmaceutical bulletin
PublicationTitleAlternate Chem. Pharm. Bull.
PublicationYear 2024
Publisher The Pharmaceutical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Japan Science and Technology Agency
References 4) Palatinus L., Brázda P., Boullay P., Perez O., Klementová M., Petit S., Eigner V., Zaarour M., Mintova S., Science, 355, 166–169 (2017).
8) van Genderen E., Clabbers M. T., Das P. P., Stewart A., Nederlof I., Barentsen K. C., Portillo Q., Pannu N. S., Nicolopoulos S., Gruene T., Abrahams J. P., Acta Crystallogr. A Found. Adv., 72, 236–242 (2016).
23) Shi D., Nannenga B. L., de la Cruz M. J., Liu J., Sawtelle S., Calero G., Reyes F. E., Hattne J., Gonen T., Nat. Protoc., 11, 895–904 (2016).
27) Chieng N., Zujovic Z., Bowmaker G., Rades T., Saville D., Int. J. Pharm., 327, 36–44 (2006).
2) Nannenga B. L., Gonen T., Nat. Methods, 16, 369–379 (2019).
12) Woollam G. R., Das P. P., Mugnaioli E., Andrusenko I., Galanis A. S., van de Streek J., Nicolopoulos S., Gemmi M., Wagner T., CrystEngComm, 22, 7490–7499 (2020).
21) Hattne J., Reyes F. E., Nannenga B. L., Shi D., de la Cruz M. J., Leslie A. G., Gonen T., Acta Crystallogr. A Found. Adv., 71, 353–360 (2015).
6) Nannenga B. L., Shi D., Leslie A. G. W., Gonen T., Nat. Methods, 11, 927–930 (2014).
29) Mirmehrabi M., Rohani S., Murthy K. S., Radatus B., J. Pharm. Sci., 93, 1692–1700 (2004).
10) Brázda P., Palatinus L., Babor M., Science, 364, 667–669 (2019).
26) Guerrieri P., Salameh A. K., Taylor L. S., Pharm. Res., 24, 147–156 (2007).
17) Kolb U., Gorelik T., Otten M. T., Ultramicroscopy, 108, 763–772 (2008).
3) Nederlof I., van Genderen E., Li Y. W., Abrahams J. P., Acta Crystallogr. D Biol. Crystallogr., 69, 1223–1230 (2013).
7) Gorelik T. E., van de Streek J., Kilbinger A. F., Brunklaus G., Kolb U., Acta Crystallogr. B, 68, 171–181 (2012).
18) Kolb U., Mugnaioli E., Gorelik T., Cryst. Res. Technol., 46, 542–554 (2011).
1) Huang L. F., Tong W. Q., Adv. Drug Deliv. Rev., 56, 321–334 (2004).
30) Chieng N., Rades T., Saville D., Eur. J. Pharm. Biopharm., 68, 771–780 (2008).
22) Nannenga B. L., Struct. Dyn., 7, 014304 (2020).
5) Jones C. G., Martynowycz M. W., Hattne J., Fulton T. J., Stoltz B. M., Rodriguez J. A., Nelson H. M., Gonen T., ACS Cent. Sci., 4, 1587–1592 (2018).
19) Shi D., Nannenga B. L., Iadanza M. G., Gonen T., eLife, 2, e01345 (2013).
9) Gruene T., Wennmacher J. T. C., Zaubitzer C., Holstein J. J., Heidler J., Fecteau-Lefebvre A., De Carlo S., Müller E., Goldie K. N., Regeni I., Li T., Santiso-Quinones G., Steinfeld G., Handschin S., van Genderen E., van Bokhoven J. A., Clever G. H., Pantelic R., Angew. Chem. Int. Ed., 57, 16313–16317 (2018).
32) Ishida T., In Y., Inoue M., Acta Crystallogr. C, 46, 1893–1896 (1990).
13) Ito S., White F. J., Okunishi E., Aoyama Y., Yamano A., Sato H., Ferrara J. D., Jasnowski M., Meyer M., CrystEngComm, 23, 8622–8630 (2021).
15) Karothu D. P., Alhaddad Z., Göb C. R., Schürmann C. J., Bücker R., Naumov P., Angew. Chem. Int. Ed., 62, e202303761 (2023).
20) Sawaya M. R., Rodriguez J., Cascio D., Collazo M. J., Shi D., Reyes F. E., Hattne J., Gonen T., Eisenberg D. S., Proc. Natl. Acad. Sci. U.S.A., 113, 11232–11236 (2016).
24) Yokoo H., Tanaka S., Yamamoto E., Tsuji G., Demizu Y., Uchiyama N., Chem. Pharm. Bull., 71, 58–63 (2023).
11) Andrusenko I., Hamilton V., Mugnaioli E., Lanza A., Hall C., Potticary J., Hall S. R., Gemmi M., Angew. Chem. Int. Ed., 58, 10919–10922 (2019).
25) Yamamoto E., Takeda Y., Ando D., Koide T., Amano Y., Miyazaki S., Miyazaki T., Izutsu K. I., Kanazawa H., Goda Y., Int. J. Pharm., 605, 120834 (2021).
28) Mirmehrabi M., Rohani S., Murthy K., Radatus B., J. Cryst. Growth, 260, 517–526 (2004).
14) Sekharan S., Liu X., Yang Z., Liu X., Deng L., Ruan S., Abramov Y., Sun G., Li S., Zhou T., Shi B., Zeng Q., Zeng Q., Chang C., Jin Y., Shi X., RSC Adv., 11, 17408–17412 (2021).
16) Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D., Ultramicroscopy, 107, 507–513 (2007).
31) Hempel A., Camerman N., Mastropaolo D., Camerman A., Acta Crystallogr. C, 56, 1048–1049 (2000).
22
23
24
25
26
27
28
29
30
31
10
32
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 16) Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D., Ultramicroscopy, 107, 507–513 (2007).
– reference: 4) Palatinus L., Brázda P., Boullay P., Perez O., Klementová M., Petit S., Eigner V., Zaarour M., Mintova S., Science, 355, 166–169 (2017).
– reference: 17) Kolb U., Gorelik T., Otten M. T., Ultramicroscopy, 108, 763–772 (2008).
– reference: 13) Ito S., White F. J., Okunishi E., Aoyama Y., Yamano A., Sato H., Ferrara J. D., Jasnowski M., Meyer M., CrystEngComm, 23, 8622–8630 (2021).
– reference: 28) Mirmehrabi M., Rohani S., Murthy K., Radatus B., J. Cryst. Growth, 260, 517–526 (2004).
– reference: 5) Jones C. G., Martynowycz M. W., Hattne J., Fulton T. J., Stoltz B. M., Rodriguez J. A., Nelson H. M., Gonen T., ACS Cent. Sci., 4, 1587–1592 (2018).
– reference: 9) Gruene T., Wennmacher J. T. C., Zaubitzer C., Holstein J. J., Heidler J., Fecteau-Lefebvre A., De Carlo S., Müller E., Goldie K. N., Regeni I., Li T., Santiso-Quinones G., Steinfeld G., Handschin S., van Genderen E., van Bokhoven J. A., Clever G. H., Pantelic R., Angew. Chem. Int. Ed., 57, 16313–16317 (2018).
– reference: 10) Brázda P., Palatinus L., Babor M., Science, 364, 667–669 (2019).
– reference: 22) Nannenga B. L., Struct. Dyn., 7, 014304 (2020).
– reference: 18) Kolb U., Mugnaioli E., Gorelik T., Cryst. Res. Technol., 46, 542–554 (2011).
– reference: 12) Woollam G. R., Das P. P., Mugnaioli E., Andrusenko I., Galanis A. S., van de Streek J., Nicolopoulos S., Gemmi M., Wagner T., CrystEngComm, 22, 7490–7499 (2020).
– reference: 25) Yamamoto E., Takeda Y., Ando D., Koide T., Amano Y., Miyazaki S., Miyazaki T., Izutsu K. I., Kanazawa H., Goda Y., Int. J. Pharm., 605, 120834 (2021).
– reference: 19) Shi D., Nannenga B. L., Iadanza M. G., Gonen T., eLife, 2, e01345 (2013).
– reference: 31) Hempel A., Camerman N., Mastropaolo D., Camerman A., Acta Crystallogr. C, 56, 1048–1049 (2000).
– reference: 20) Sawaya M. R., Rodriguez J., Cascio D., Collazo M. J., Shi D., Reyes F. E., Hattne J., Gonen T., Eisenberg D. S., Proc. Natl. Acad. Sci. U.S.A., 113, 11232–11236 (2016).
– reference: 21) Hattne J., Reyes F. E., Nannenga B. L., Shi D., de la Cruz M. J., Leslie A. G., Gonen T., Acta Crystallogr. A Found. Adv., 71, 353–360 (2015).
– reference: 3) Nederlof I., van Genderen E., Li Y. W., Abrahams J. P., Acta Crystallogr. D Biol. Crystallogr., 69, 1223–1230 (2013).
– reference: 14) Sekharan S., Liu X., Yang Z., Liu X., Deng L., Ruan S., Abramov Y., Sun G., Li S., Zhou T., Shi B., Zeng Q., Zeng Q., Chang C., Jin Y., Shi X., RSC Adv., 11, 17408–17412 (2021).
– reference: 7) Gorelik T. E., van de Streek J., Kilbinger A. F., Brunklaus G., Kolb U., Acta Crystallogr. B, 68, 171–181 (2012).
– reference: 24) Yokoo H., Tanaka S., Yamamoto E., Tsuji G., Demizu Y., Uchiyama N., Chem. Pharm. Bull., 71, 58–63 (2023).
– reference: 11) Andrusenko I., Hamilton V., Mugnaioli E., Lanza A., Hall C., Potticary J., Hall S. R., Gemmi M., Angew. Chem. Int. Ed., 58, 10919–10922 (2019).
– reference: 15) Karothu D. P., Alhaddad Z., Göb C. R., Schürmann C. J., Bücker R., Naumov P., Angew. Chem. Int. Ed., 62, e202303761 (2023).
– reference: 23) Shi D., Nannenga B. L., de la Cruz M. J., Liu J., Sawtelle S., Calero G., Reyes F. E., Hattne J., Gonen T., Nat. Protoc., 11, 895–904 (2016).
– reference: 8) van Genderen E., Clabbers M. T., Das P. P., Stewart A., Nederlof I., Barentsen K. C., Portillo Q., Pannu N. S., Nicolopoulos S., Gruene T., Abrahams J. P., Acta Crystallogr. A Found. Adv., 72, 236–242 (2016).
– reference: 26) Guerrieri P., Salameh A. K., Taylor L. S., Pharm. Res., 24, 147–156 (2007).
– reference: 27) Chieng N., Zujovic Z., Bowmaker G., Rades T., Saville D., Int. J. Pharm., 327, 36–44 (2006).
– reference: 2) Nannenga B. L., Gonen T., Nat. Methods, 16, 369–379 (2019).
– reference: 1) Huang L. F., Tong W. Q., Adv. Drug Deliv. Rev., 56, 321–334 (2004).
– reference: 32) Ishida T., In Y., Inoue M., Acta Crystallogr. C, 46, 1893–1896 (1990).
– reference: 29) Mirmehrabi M., Rohani S., Murthy K. S., Radatus B., J. Pharm. Sci., 93, 1692–1700 (2004).
– reference: 6) Nannenga B. L., Shi D., Leslie A. G. W., Gonen T., Nat. Methods, 11, 927–930 (2014).
– reference: 30) Chieng N., Rades T., Saville D., Eur. J. Pharm. Biopharm., 68, 771–780 (2008).
– ident: 21
  doi: 10.1107/S2053273315010669
– ident: 27
  doi: 10.1016/j.ijpharm.2006.07.032
– ident: 23
  doi: 10.1038/nprot.2016.046
– ident: 16
  doi: 10.1016/j.ultramic.2006.10.007
– ident: 14
  doi: 10.1039/D1RA03100G
– ident: 31
  doi: 10.1107/S010827010000785X
– ident: 2
  doi: 10.1038/s41592-019-0395-x
– ident: 12
  doi: 10.1039/D0CE01216E
– ident: 32
  doi: 10.1107/S0108270190000130
– ident: 30
  doi: 10.1016/j.ejpb.2007.09.001
– ident: 13
  doi: 10.1039/D1CE01172C
– ident: 19
  doi: 10.7554/eLife.01345
– ident: 17
  doi: 10.1016/j.ultramic.2007.12.002
– ident: 25
  doi: 10.1016/j.ijpharm.2021.120834
– ident: 3
  doi: 10.1107/S0907444913009700
– ident: 11
  doi: 10.1002/anie.201904564
– ident: 20
  doi: 10.1073/pnas.1606287113
– ident: 24
  doi: 10.1248/cpb.c22-00628
– ident: 22
– ident: 10
  doi: 10.1126/science.aaw2560
– ident: 4
  doi: 10.1126/science.aak9652
– ident: 18
  doi: 10.1002/crat.201100036
– ident: 9
  doi: 10.1002/anie.201811318
– ident: 5
  doi: 10.1021/acscentsci.8b00760
– ident: 15
  doi: 10.1002/anie.202303761
– ident: 8
  doi: 10.1107/S2053273315022500
– ident: 1
  doi: 10.1016/j.addr.2003.10.007
– ident: 6
  doi: 10.1038/nmeth.3043
– ident: 29
  doi: 10.1002/jps.20074
– ident: 7
  doi: 10.1107/S0108768112003138
– ident: 28
  doi: 10.1016/j.jcrysgro.2003.08.061
– ident: 26
  doi: 10.1007/s11095-006-9134-y
SSID ssj0025073
Score 2.3989475
Snippet The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 471
SubjectTerms Active control
active pharmaceutical ingredient
crystal polymorphism
Crystallization
Crystallography
Crystals
Drug development
Electron diffraction
Electrons
microcrystal electron diffraction
Microcrystals
Molecular Structure
Quality control
Ranitidine
Ranitidine - chemistry
Ranitidine hydrochloride
Single crystals
Structural analysis
X-ray diffraction
Title Rapid Structure Determination of Ranitidine Hydrochloride API in Two Crystal Forms Using Microcrystal Electron Diffraction
URI https://www.jstage.jst.go.jp/article/cpb/72/5/72_c23-00745/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38749738
https://www.proquest.com/docview/3068314760
https://www.proquest.com/docview/3055893829
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Chemical and Pharmaceutical Bulletin, 2024/05/15, Vol.72(5), pp.471-474
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK4IEXxPcKAxkJ9aXL6PJlR-JlGq0KrKNMqTSeIiexWZjWVGsm1P0Afjf3Oo6biiENXqIq17WinJPrc23fa0LeMsFllO67jpKR7_giEg7PAw5RSqCAM1HoK0xOnhyH45n_6TQ47XR-tXYtXVXpXnZ9Y17J_6AK9wBXzJL9B2Rtp3ADfgO-cAWE4XorjE_EokC9iCVgcSHgQ7O3pZGBJ1jcoshRSY5XOZ6OhRvuctk_mH7EmY74Z9k_vFwtMSNyBOp12a-3EExwm15mDENzUg64R6Uu60SItqa1NQeQRYuzjTnytF3dWzuX81JPzo7hKaryorSEK1fiQgvZb-XyrKjEuR0vJqKCl1rq8576MRjAbvuDPzWmYVFkxmKmMeq8aeNzPZ9BPFynHe_JG-4ZR83cFiGDltf161Nc_hgNXB8zHLIF8Mn1HFRLwXrYa5b6j78ko9nRURIPT-M75K4L4QaehPH5q12NApWodyrYhzK1WqH7dxudb2ibez8Ao-_y75GLVjDxQ_LAhB70oObRI9KR88ekN60BW-3SeJ2Kt9ylPTpdVzVfPSHXmmzUko1ukI2Wiq7JRjfIRoFstJhTIBs1ZKOabFSTjbbJRhuy0RbZnpLZaBgfjh1zcIeTQXxQOa6CIZSngqXSy1Luqjz3cpepAOQw6h9wAwMWpUqEkimVpmogcqU4j8IgFygwn5GteTmX24RyKaVIo4HEiYKQMxFmuLILYQkTMPYEXdJrXnmyqOuzJBjXAjYJYJMANonGpkve14DYZuaz1c2YmwR4sc3XVnjX4Gu6ZKeBMTEeYJlAuM29fZ-Fgy55Y83gn3HRTcxleYVtggBiAu5GXfK8ht8-gceZHzGPv7jFv1-S-_jZ1LN_O2QL0JavQA9X6WtN1t_hVL74
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Structure+Determination+of+Ranitidine+Hydrochloride+API+in+Two+Crystal+Forms+Using+Microcrystal+Electron+Diffraction&rft.jtitle=Chemical+%26+pharmaceutical+bulletin&rft.au=Yokoo%2C+Hidetomo&rft.au=Aoyama%2C+Yoshitaka&rft.au=Matsumoto%2C+Takashi&rft.au=Yamamoto%2C+Eiichi&rft.date=2024&rft.issn=1347-5223&rft.eissn=1347-5223&rft.volume=72&rft.issue=5&rft.spage=471&rft_id=info:doi/10.1248%2Fcpb.c23-00745&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2363&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2363&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2363&client=summon