Retinal Structure, Function, and Molecular Pathologic Features in Gyrate Atrophy
To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. Retrospective case series. Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy. Detailed ophthalmologic examination, fundus photography, fundu...
Saved in:
Published in | Ophthalmology (Rochester, Minn.) Vol. 119; no. 3; pp. 596 - 605 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
01.03.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0161-6420 1549-4713 1549-4713 |
DOI | 10.1016/j.ophtha.2011.09.017 |
Cover
Loading…
Abstract | To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy.
Retrospective case series.
Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy.
Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron–exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed.
OAT mutation status and resultant clinical, structural, and functional characteristics.
Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient.
Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease. Analysis of leukocyte RNA complements the high sensitivity of conventional sequencing of genomic DNA for mutation detection in this gene.
The author(s) have no proprietary or commercial interest in any materials discussed in this article. |
---|---|
AbstractList | Purpose To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. Design Retrospective case series. Participants Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy. Methods Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron–exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed. Main Outcome Measures OAT mutation status and resultant clinical, structural, and functional characteristics. Results Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation ). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient. Conclusions Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease. Analysis of leukocyte RNA complements the high sensitivity of conventional sequencing of genomic DNA for mutation detection in this gene. Financial Disclosure(s) The author(s) have no proprietary or commercial interest in any materials discussed in this article. To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy.PURPOSETo describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy.Retrospective case series.DESIGNRetrospective case series.Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy.PARTICIPANTSSeven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy.Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron-exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed.METHODSDetailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron-exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed.OAT mutation status and resultant clinical, structural, and functional characteristics.MAIN OUTCOME MEASURESOAT mutation status and resultant clinical, structural, and functional characteristics.Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient.RESULTSFunduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient.Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease. Analysis of leukocyte RNA complements the high sensitivity of conventional sequencing of genomic DNA for mutation detection in this gene.CONCLUSIONSFundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease. Analysis of leukocyte RNA complements the high sensitivity of conventional sequencing of genomic DNA for mutation detection in this gene. To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. Retrospective case series. Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy. Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron-exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed. OAT mutation status and resultant clinical, structural, and functional characteristics. Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient. Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease. Analysis of leukocyte RNA complements the high sensitivity of conventional sequencing of genomic DNA for mutation detection in this gene. To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. Retrospective case series. Seven unrelated patients (10 to 52 years of age) with clinical and biochemical evidence of gyrate atrophy. Detailed ophthalmologic examination, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography, and microperimetry testing were performed. The coding region and intron–exon boundaries of ornithine aminotransferase (OAT) were analyzed. OAT mRNA was isolated from peripheral blood leucocytes of 1 patient and analyzed. OAT mutation status and resultant clinical, structural, and functional characteristics. Funduscopy revealed circular areas of chorioretinal atrophy, and FAF imaging showed sharply demarcated areas of increased or preserved signal in all 7 patients. Spectral-domain optical coherence tomography revealed multiple intraretinal cystic spaces and hyperreflective deposit in the ganglion cell layer of all study subjects. Round tubular, rosette-like structures located in the outer nuclear layer of the retinae of the 4 older patients were observed (termed outer retinal tubulation). Thickening was evident in the foveolae of younger patients, despite the posterior pole appearing relatively preserved. Macular function, assessed by microperimetry, was preserved over areas of normal or increased autofluorescence. However, sensitivity was reduced even in structurally intact parts of the retina. The molecular pathologic features were determined in all study subjects: 9 mutations, 4 novel, were detected in the OAT gene. OAT mRNA was isolated from blood leukocytes, and monoallelic expression of a mutated allele was demonstrated in 1 patient. Fundus autofluorescence imaging can reveal the extent of neurosensory dysfunction in gyrate atrophy patients. Macular edema is a uniform finding; the fovea is relatively thick in early stages of disease and retinal tubulation is present in advanced disease. Analysis of leukocyte RNA complements the high sensitivity of conventional sequencing of genomic DNA for mutation detection in this gene. The author(s) have no proprietary or commercial interest in any materials discussed in this article. |
Author | Davidson, Alice E. Webster, Andrew R. Sergouniotis, Panagiotis I. Moore, Anthony T. Devery, Sophie R. Lenassi, Eva |
Author_xml | – sequence: 1 givenname: Panagiotis I. surname: Sergouniotis fullname: Sergouniotis, Panagiotis I. organization: Institute of Ophthalmology, University College London, London, United Kingdom – sequence: 2 givenname: Alice E. surname: Davidson fullname: Davidson, Alice E. organization: Institute of Ophthalmology, University College London, London, United Kingdom – sequence: 3 givenname: Eva surname: Lenassi fullname: Lenassi, Eva organization: Institute of Ophthalmology, University College London, London, United Kingdom – sequence: 4 givenname: Sophie R. surname: Devery fullname: Devery, Sophie R. organization: Moorfields Eye Hospital, London, United Kingdom – sequence: 5 givenname: Anthony T. surname: Moore fullname: Moore, Anthony T. organization: Institute of Ophthalmology, University College London, London, United Kingdom – sequence: 6 givenname: Andrew R. surname: Webster fullname: Webster, Andrew R. email: andrew.webster@ucl.ac.uk organization: Institute of Ophthalmology, University College London, London, United Kingdom |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25867268$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22182799$$D View this record in MEDLINE/PubMed |
BookMark | eNqVklFrFDEUhYNU7Lb6D0TmRXzpjEkmk5mICKW4VahYrD6HbHLjZp1N1iQj7L83w64KghQhkJfvnOSec8_QiQ8eEHpKcEMw4S83Tdit81o1FBPSYNFg0j9AC9IxUbOetCdoUTBSc0bxKTpLaYMx5rxlj9AppWSgvRALdPsJsvNqrO5ynHSeIlxUy8nr7IK_qJQ31Ycwgp5GFatblddhDF-drpagZjZVzlfX-6gyVJc5lg_tH6OHVo0Jnhzvc_Rl-fbz1bv65uP1-6vLm1p3vMs1bXsQnCu-YkQMtu8sxdZY0hNlB9GyVgvMBmBiZYzqBDe4HLXqtBDYWmPac_Ti4LuL4fsEKcutSxrGUXkIU5KC8g4z0dFCPjuS02oLRu6i26q4l79CKMDzI6CSVqONymuX_nDdwHvKh8KxA6djSCmC_Y0QLOdO5EYeOpFzJxILWTopsld_ybTLag44R-XG-8RvDmIoWf5wEGXSDrwG4yLoLE1w_2ugR-ddmfMb7CFtwhRL_UkSmajE8m7emXllCMF46FteDF7_2-D-938CQWbSYQ |
CODEN | OPHTDG |
CitedBy_id | crossref_primary_10_1016_j_ajo_2013_05_003 crossref_primary_10_3390_jcm13072079 crossref_primary_10_1177_11206721221085868 crossref_primary_10_1016_j_preteyeres_2013_08_003 crossref_primary_10_1177_11206721231178147 crossref_primary_10_1097_IAE_0000000000000471 crossref_primary_10_1016_j_ajo_2024_07_032 crossref_primary_10_1016_j_jfo_2014_11_032 crossref_primary_10_1007_s10792_017_0579_2 crossref_primary_10_1080_13816810_2020_1814347 crossref_primary_10_1177_2515841418817490 crossref_primary_10_1016_j_ophtha_2013_11_042 crossref_primary_10_15252_emmm_202217033 crossref_primary_10_1186_s13023_023_02840_0 crossref_primary_10_1186_s40942_016_0029_8 crossref_primary_10_1016_j_jaapos_2017_12_016 crossref_primary_10_3390_diagnostics11030382 crossref_primary_10_1016_j_preteyeres_2024_101324 crossref_primary_10_1016_j_saa_2024_124527 crossref_primary_10_3928_23258160_20240528_04 crossref_primary_10_1111_1541_4337_13360 crossref_primary_10_1016_j_ymgme_2021_07_010 crossref_primary_10_1007_s10792_015_0085_3 crossref_primary_10_1016_j_jfo_2015_01_027 crossref_primary_10_1080_13816810_2017_1301966 crossref_primary_10_1007_s10633_014_9426_1 crossref_primary_10_1097_IAE_0b013e318296b12f crossref_primary_10_1016_j_cub_2022_09_016 crossref_primary_10_1080_13816810_2022_2098986 crossref_primary_10_1016_j_ophtha_2014_06_013 crossref_primary_10_3928_01913913_20141230_11 crossref_primary_10_3341_jkos_2014_55_11_1642 crossref_primary_10_5301_ejo_5000660 crossref_primary_10_1101_cshperspect_a041652 crossref_primary_10_1016_j_preteyeres_2022_101092 crossref_primary_10_1080_13816810_2019_1711429 crossref_primary_10_1007_s10792_024_03260_0 crossref_primary_10_1097_IAE_0000000000000439 crossref_primary_10_3390_ijms24043369 crossref_primary_10_1016_j_oftal_2024_03_006 crossref_primary_10_1007_s00417_019_04508_7 crossref_primary_10_1016_j_oret_2024_10_016 crossref_primary_10_1097_IAE_0000000000001220 crossref_primary_10_1097_OPX_0000000000000906 crossref_primary_10_18502_jovr_v19i1_15446 crossref_primary_10_1016_j_jconrel_2012_10_022 crossref_primary_10_1177_1120672121990578 crossref_primary_10_1177_11206721211067333 crossref_primary_10_1016_j_ophtha_2014_08_012 crossref_primary_10_4103_jcor_jcor_142_21 crossref_primary_10_1007_s00417_018_4037_2 crossref_primary_10_1016_j_oftale_2024_04_009 crossref_primary_10_1016_j_jfo_2018_03_029 crossref_primary_10_1097_IAE_0b013e31828221ae crossref_primary_10_1186_s12886_018_0755_9 crossref_primary_10_1002_humu_22233 crossref_primary_10_1002_humu_22398 crossref_primary_10_1002_humu_24174 crossref_primary_10_1155_2015_137270 crossref_primary_10_5301_ejo_5001010 crossref_primary_10_1016_j_survophthal_2012_11_006 crossref_primary_10_1136_bjophthalmol_2018_312347 crossref_primary_10_3390_genes15081020 crossref_primary_10_3341_jkos_2015_56_7_1141 crossref_primary_10_1111_febs_14843 crossref_primary_10_1167_iovs_64_12_33 crossref_primary_10_1016_j_bbapap_2020_140555 crossref_primary_10_1186_s40662_015_0018_2 crossref_primary_10_1007_s00417_012_2151_0 crossref_primary_10_1016_j_survophthal_2020_01_001 |
Cites_doi | 10.1097/IAE.0b013e3181e097f0 10.1073/pnas.85.11.3777 10.1016/j.ajo.2004.12.083 10.1073/pnas.1103388108 10.1620/tjem.205.335 10.1016/S0140-6736(73)90667-3 10.1086/507318 10.1126/science.635581 10.1016/0888-7543(90)90252-P 10.1016/S0021-9258(19)50731-1 10.1167/iovs.07-0838 10.1038/nmeth0410-248 10.1007/BF00964382 10.1136/bjo.2009.174912 10.1016/S0161-6420(00)00587-X 10.1590/S0004-27492007000500024 10.1001/archopht.119.5.667 10.1172/JCI109680 10.1038/sj.eye.6702009 10.1016/j.preteyeres.2008.07.003 10.1016/j.preteyeres.2007.07.005 10.1167/iovs.08-2133 10.1007/s003470050009 10.1016/S0002-9394(14)76892-8 10.1093/hmg/5.9.1229 10.1097/IAE.0b013e318164a907 10.1038/nprot.2009.86 10.1136/bjo.58.1.24 10.1016/S0021-9258(18)94412-1 10.1136/bjo.58.1.3 10.1172/JCI118730 10.1076/opge.20.4.219.2271 10.1001/archophthalmol.2009.326 10.1001/archopht.120.2.146 10.1016/S0161-6420(81)35031-3 10.1006/jmbi.1997.1583 |
ContentType | Journal Article |
Copyright | 2012 American Academy of Ophthalmology American Academy of Ophthalmology 2015 INIST-CNRS Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2012 American Academy of Ophthalmology – notice: American Academy of Ophthalmology – notice: 2015 INIST-CNRS – notice: Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ophtha.2011.09.017 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1549-4713 |
EndPage | 605 |
ExternalDocumentID | 22182799 25867268 10_1016_j_ophtha_2011_09_017 S0161642011008736 1_s2_0_S0161642011008736 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 123 1B1 1CY 1P~ 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M AAEDT AAEDW AALRI AAQFI AAQQT AAQXK AAXUO ABCQX ABFRF ABJNI ABLJU ABMAC ABOCM ABWVN ACGFO ACGFS ACIUM ACNCT ACRPL ACVFH ADCNI ADMUD ADNMO AEFWE AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AGCQF AGQPQ AIGII AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BELOY C5W CS3 DU5 EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M27 M41 MO0 N4W N9A NQ- O9- OF- OPF OQ~ P2P R2- ROL RPZ SDG SEL SES SSZ UHS UNMZH UV1 WH7 X7M XH2 XPP Z5R ZGI ZXP ADPAM RIG AAIAV AGZHU AHPSJ ALXNB ZA5 AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c565t-237e966a6b4198f75f20fdf171af89343c9048e49bdda596d06d0ab5c990ffdd3 |
ISSN | 0161-6420 1549-4713 |
IngestDate | Thu Sep 04 17:24:52 EDT 2025 Thu Apr 03 06:58:24 EDT 2025 Mon Jul 21 09:14:47 EDT 2025 Tue Jul 01 03:37:23 EDT 2025 Thu Apr 24 22:52:23 EDT 2025 Fri Feb 23 02:14:12 EST 2024 Sun Feb 23 10:19:12 EST 2025 Tue Aug 26 19:02:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Atrophy Retina Ophthalmology Structure |
Language | English |
License | CC BY 4.0 Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-237e966a6b4198f75f20fdf171af89343c9048e49bdda596d06d0ab5c990ffdd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22182799 |
PQID | 926504952 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_926504952 pubmed_primary_22182799 pascalfrancis_primary_25867268 crossref_primary_10_1016_j_ophtha_2011_09_017 crossref_citationtrail_10_1016_j_ophtha_2011_09_017 elsevier_sciencedirect_doi_10_1016_j_ophtha_2011_09_017 elsevier_clinicalkeyesjournals_1_s2_0_S0161642011008736 elsevier_clinicalkey_doi_10_1016_j_ophtha_2011_09_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Ophthalmology (Rochester, Minn.) |
PublicationTitleAlternate | Ophthalmology |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Shen, Hennig, Hohenester (bib7) 1998; 277 Peltola, Nanto-Salonen, Heinonen (bib4) 2001; 108 Zweifel, Engelbert, Laud (bib30) 2009; 127 de Kok, Vossenaar, Cremers (bib38) 1996; 5 Rohrschneider, Bultmann, Springer (bib25) 2008; 27 Takki (bib2) 1974; 58 Wilson, Weleber, Green (bib15) 1991; 111 Takki, Milton (bib3) 1981; 88 Wang, Milam, Steel, Valle (bib11) 1996; 97 Brody, Mitchell, Obie (bib32) 1992; 267 Kaiser-Kupfer, Caruso, Valle (bib9) 2002; 120 Adzhubei, Schmidt, Peshkin (bib29) 2010; 7 Ramesh, McClatchey, Ramesh (bib40) 1988; 85 Meyer, Hoerauf, Schmidt-Erfurth (bib16) 2000; 97 Rao, Cotlier (bib10) 1984; 9 Michaud, Thompson, Brody (bib41) 1995; 56 Simell, Takki (bib1) 1973; 1 Valle, Boison, Jezyk, Aguirre (bib20) 1981; 20 Oliveira, Andrade, Muccioli (bib17) 2005; 140 Srinivasan, Monson, Wojtkowski (bib26) 2008; 49 Schmitz-Valckenberg, Holz, Bird, Spaide (bib24) 2008; 28 Kaiser-Kupfer, Kuwabara, Uga (bib33) 1983; 24 Caruso, Nussenblatt, Csaky (bib12) 2001; 119 Ohkubo, Ueta, Ito (bib42) 2005; 205 Liu, Tuo, Chan (bib13) 2011; 95 Kaufman, Ramesh, McClatchey (bib31) 1990; 8 Delori, Dorey, Staurenghi (bib23) 1995; 36 Howden, Gore, Li (bib14) 2011; 108 Valle, Walser, Brusilow, Kaiser-Kupfer (bib8) 1980; 65 Ma, Streilein (bib37) 1998; 39 Vasconcelos-Santos, Magalhaes, Nehemy (bib18) 2007; 70 Mashima, Weleber, Kennaway, Inana (bib21) 1999; 20 Ho, Kumar, Min (bib35) 2009; 50 Sharma, Singh, Azad, Pal (bib19) 2006; 20 Drexler, Fujimoto (bib22) 2008; 27 Kumar, Henikoff, Ng (bib28) 2009; 4 Midena (bib27) 2007 den Hollander, Koenekoop, Yzer (bib39) 2006; 79 O'Donnell, Sandman, Martin (bib5) 1978; 200 Takki (bib34) 1974; 58 Volpe, Sawamura, Strecker (bib6) 1969; 244 Fujiwara, Imamura, Giovinazzo, Spaide (bib36) 2010; 30 Zweifel (10.1016/j.ophtha.2011.09.017_bib30) 2009; 127 Ramesh (10.1016/j.ophtha.2011.09.017_bib40) 1988; 85 Fujiwara (10.1016/j.ophtha.2011.09.017_bib36) 2010; 30 Meyer (10.1016/j.ophtha.2011.09.017_bib16) 2000; 97 Peltola (10.1016/j.ophtha.2011.09.017_bib4) 2001; 108 Adzhubei (10.1016/j.ophtha.2011.09.017_bib29) 2010; 7 Valle (10.1016/j.ophtha.2011.09.017_bib8) 1980; 65 Wilson (10.1016/j.ophtha.2011.09.017_bib15) 1991; 111 Kaufman (10.1016/j.ophtha.2011.09.017_bib31) 1990; 8 O'Donnell (10.1016/j.ophtha.2011.09.017_bib5) 1978; 200 Ohkubo (10.1016/j.ophtha.2011.09.017_bib42) 2005; 205 Kaiser-Kupfer (10.1016/j.ophtha.2011.09.017_bib33) 1983; 24 Schmitz-Valckenberg (10.1016/j.ophtha.2011.09.017_bib24) 2008; 28 Valle (10.1016/j.ophtha.2011.09.017_bib20) 1981; 20 Takki (10.1016/j.ophtha.2011.09.017_bib3) 1981; 88 Midena (10.1016/j.ophtha.2011.09.017_bib27) 2007 Volpe (10.1016/j.ophtha.2011.09.017_bib6) 1969; 244 de Kok (10.1016/j.ophtha.2011.09.017_bib38) 1996; 5 Ho (10.1016/j.ophtha.2011.09.017_bib35) 2009; 50 Delori (10.1016/j.ophtha.2011.09.017_bib23) 1995; 36 Srinivasan (10.1016/j.ophtha.2011.09.017_bib26) 2008; 49 Takki (10.1016/j.ophtha.2011.09.017_bib34) 1974; 58 Michaud (10.1016/j.ophtha.2011.09.017_bib41) 1995; 56 Kumar (10.1016/j.ophtha.2011.09.017_bib28) 2009; 4 Shen (10.1016/j.ophtha.2011.09.017_bib7) 1998; 277 Oliveira (10.1016/j.ophtha.2011.09.017_bib17) 2005; 140 Caruso (10.1016/j.ophtha.2011.09.017_bib12) 2001; 119 Mashima (10.1016/j.ophtha.2011.09.017_bib21) 1999; 20 Wang (10.1016/j.ophtha.2011.09.017_bib11) 1996; 97 Kaiser-Kupfer (10.1016/j.ophtha.2011.09.017_bib9) 2002; 120 Liu (10.1016/j.ophtha.2011.09.017_bib13) 2011; 95 Drexler (10.1016/j.ophtha.2011.09.017_bib22) 2008; 27 Vasconcelos-Santos (10.1016/j.ophtha.2011.09.017_bib18) 2007; 70 Brody (10.1016/j.ophtha.2011.09.017_bib32) 1992; 267 Ma (10.1016/j.ophtha.2011.09.017_bib37) 1998; 39 Rao (10.1016/j.ophtha.2011.09.017_bib10) 1984; 9 Howden (10.1016/j.ophtha.2011.09.017_bib14) 2011; 108 den Hollander (10.1016/j.ophtha.2011.09.017_bib39) 2006; 79 Rohrschneider (10.1016/j.ophtha.2011.09.017_bib25) 2008; 27 Sharma (10.1016/j.ophtha.2011.09.017_bib19) 2006; 20 Simell (10.1016/j.ophtha.2011.09.017_bib1) 1973; 1 Takki (10.1016/j.ophtha.2011.09.017_bib2) 1974; 58 |
References_xml | – volume: 267 start-page: 3302 year: 1992 end-page: 3307 ident: bib32 article-title: Ornithine delta-aminotransferase mutations in gyrate atrophy: allelic heterogeneity and functional consequences publication-title: J Biol Chem – volume: 205 start-page: 335 year: 2005 end-page: 342 ident: bib42 article-title: Vitamin B6-responsive ornithine aminotransferase deficiency with a novel mutation G237D publication-title: Tohoku J Exp Med – volume: 28 start-page: 385 year: 2008 end-page: 409 ident: bib24 article-title: Fundus autofluorescence imaging: review and perspectives publication-title: Retina – volume: 140 start-page: 147 year: 2005 end-page: 149 ident: bib17 article-title: Cystoid macular edema in gyrate atrophy of the choroid and retina: a fluorescein angiography and optical coherence tomography evaluation publication-title: Am J Ophthalmol – volume: 20 start-page: 219 year: 1999 end-page: 224 ident: bib21 article-title: Genotype-phenotype correlation of a pyridoxine-responsive form of gyrate atrophy publication-title: Ophthalmic Genet – volume: 88 start-page: 292 year: 1981 end-page: 301 ident: bib3 article-title: The natural history of gyrate atrophy of the choroid and retina publication-title: Ophthalmology – volume: 108 start-page: 6537 year: 2011 end-page: 6542 ident: bib14 article-title: Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy publication-title: Proc Natl Acad Sci U S A – volume: 120 start-page: 146 year: 2002 end-page: 153 ident: bib9 article-title: Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children publication-title: Arch Ophthalmol – volume: 1 start-page: 1031 year: 1973 end-page: 1033 ident: bib1 article-title: Raised plasma-ornithine and gyrate atrophy of the choroid and retina publication-title: Lancet – volume: 36 start-page: 718 year: 1995 end-page: 729 ident: bib23 article-title: In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics publication-title: Invest Ophthalmol Vis Sci – volume: 7 start-page: 248 year: 2010 end-page: 249 ident: bib29 article-title: A method and server for predicting damaging missense mutations [letter] publication-title: Nat Methods – volume: 30 start-page: 1206 year: 2010 end-page: 1216 ident: bib36 article-title: Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy publication-title: Retina – volume: 277 start-page: 81 year: 1998 end-page: 102 ident: bib7 article-title: Crystal structure of human recombinant ornithine aminotransferase publication-title: J Mol Biol – volume: 20 start-page: 745 year: 2006 end-page: 747 ident: bib19 article-title: Gyrate atrophy with bilateral full thickness macular hole [letter] publication-title: Eye (Lond) – volume: 50 start-page: 2459 year: 2009 end-page: 2464 ident: bib35 article-title: Molecular imaging of retinal gliosis in transgenic mice induced by kainic acid neurotoxicity publication-title: Invest Ophthalmol Vis Sci – volume: 200 start-page: 200 year: 1978 end-page: 201 ident: bib5 article-title: Gyrate atrophy of the retina: inborn error of L-ornithin:2-oxoacid aminotransferase publication-title: Science – volume: 70 start-page: 858 year: 2007 end-page: 861 ident: bib18 article-title: Macular edema associated with gyrate atrophy managed with intravitreal triamcinolone: a case report publication-title: Arq Bras Oftalmol – volume: 244 start-page: 719 year: 1969 end-page: 726 ident: bib6 article-title: Control of ornithin delta-transaminase in rat liver and kidney publication-title: J Biol Chem – volume: 58 start-page: 24 year: 1974 end-page: 35 ident: bib34 article-title: Differential diagnosis between the primary total choroidal vascular atrophies publication-title: Br J Ophthalmol – volume: 111 start-page: 24 year: 1991 end-page: 33 ident: bib15 article-title: Ocular clinicopathologic study of gyrate atrophy publication-title: Am J Ophthalmol – volume: 65 start-page: 371 year: 1980 end-page: 378 ident: bib8 article-title: Gyrate atrophy of the choroid and retina: amino acid metabolism and correction of hyperornithinemia with an arginine-deficient diet publication-title: J Clin Invest – volume: 127 start-page: 1596 year: 2009 end-page: 1602 ident: bib30 article-title: Outer retinal tubulation: a novel optical coherence tomography finding publication-title: Arch Ophthalmol – volume: 97 start-page: 41 year: 2000 end-page: 46 ident: bib16 article-title: Correlation of morphologic changes between optical coherence tomography and topographic angiography in a case of gyrate atrophy [in German] publication-title: Ophthalmologe – volume: 24 start-page: 432 year: 1983 end-page: 436 ident: bib33 article-title: Cataract in gyrate atrophy: clinical and morphologic studies publication-title: Invest Ophthalmol Vis Sci – volume: 119 start-page: 667 year: 2001 end-page: 669 ident: bib12 article-title: Assessment of visual function in patients with gyrate atrophy who are considered candidates for gene replacement publication-title: Arch Ophthalmol – volume: 108 start-page: 721 year: 2001 end-page: 729 ident: bib4 article-title: Ophthalmologic heterogeneity in subjects with gyrate atrophy of choroid and retina harboring the L402P mutation of ornithine aminotransferase publication-title: Ophthalmology – volume: 56 start-page: 616 year: 1995 end-page: 622 ident: bib41 article-title: Pyridoxine-responsive gyrate atrophy of the choroid and retina: clinical and biochemical correlates of the mutation A226V publication-title: Am J Hum Genet – volume: 4 start-page: 1073 year: 2009 end-page: 1081 ident: bib28 article-title: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm publication-title: Nat Protoc – volume: 97 start-page: 2753 year: 1996 end-page: 2762 ident: bib11 article-title: A mouse model of gyrate atrophy of the choroid and retina: early retinal pigment epithelium damage and progressive retinal degeneration publication-title: J Clin Invest – volume: 20 start-page: 251 year: 1981 end-page: 255 ident: bib20 article-title: Gyrate atrophy of the choroid and retina in a cat publication-title: Invest Ophthalmol Vis Sci – volume: 49 start-page: 1571 year: 2008 end-page: 1579 ident: bib26 article-title: Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography publication-title: Invest Ophthalmol Vis Sci – volume: 95 start-page: 604 year: 2011 end-page: 612 ident: bib13 article-title: Gene therapy for ocular diseases publication-title: Br J Ophthalmol – volume: 27 start-page: 45 year: 2008 end-page: 88 ident: bib22 article-title: State-of-the-art retinal optical coherence tomography publication-title: Prog Retin Eye Res – volume: 85 start-page: 3777 year: 1988 end-page: 3780 ident: bib40 article-title: Molecular basis of ornithine aminotransferase deficiency in B-6-responsive and -nonresponsive forms of gyrate atrophy publication-title: Proc Natl Acad Sci U S A – start-page: 160 year: 2007 ident: bib27 article-title: Perimetry and the Fundus: An Introduction to Microperimetry – volume: 79 start-page: 556 year: 2006 end-page: 561 ident: bib39 article-title: Mutations in the publication-title: Am J Hum Genet – volume: 5 start-page: 1229 year: 1996 end-page: 1235 ident: bib38 article-title: Identification of a hot spot for microdeletions in patients with X-linked deafness type 3 publication-title: Hum Mol Genet – volume: 58 start-page: 3 year: 1974 end-page: 23 ident: bib2 article-title: Gyrate atrophy of the choroid and retina associated with hyperornithinaemia publication-title: Br J Ophthalmol – volume: 9 start-page: 555 year: 1984 end-page: 562 ident: bib10 article-title: Ornithine delta-aminotransferase activity in retina and other tissues publication-title: Neurochem Res – volume: 27 start-page: 536 year: 2008 end-page: 548 ident: bib25 article-title: Use of fundus perimetry (microperimetry) to quantify macular sensitivity publication-title: Prog Retin Eye Res – volume: 8 start-page: 656 year: 1990 end-page: 663 ident: bib31 article-title: Detection of point mutations associated with genetic diseases by an exon scanning technique publication-title: Genomics – volume: 39 start-page: 2384 year: 1998 end-page: 2393 ident: bib37 article-title: Contribution of microglia as passenger leukocytes to the fate of intraocular neuronal retinal grafts publication-title: Invest Ophthalmol Vis Sci – volume: 30 start-page: 1206 year: 2010 ident: 10.1016/j.ophtha.2011.09.017_bib36 article-title: Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy publication-title: Retina doi: 10.1097/IAE.0b013e3181e097f0 – volume: 36 start-page: 718 year: 1995 ident: 10.1016/j.ophtha.2011.09.017_bib23 article-title: In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics publication-title: Invest Ophthalmol Vis Sci – volume: 20 start-page: 251 year: 1981 ident: 10.1016/j.ophtha.2011.09.017_bib20 article-title: Gyrate atrophy of the choroid and retina in a cat publication-title: Invest Ophthalmol Vis Sci – volume: 85 start-page: 3777 year: 1988 ident: 10.1016/j.ophtha.2011.09.017_bib40 article-title: Molecular basis of ornithine aminotransferase deficiency in B-6-responsive and -nonresponsive forms of gyrate atrophy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.85.11.3777 – volume: 140 start-page: 147 year: 2005 ident: 10.1016/j.ophtha.2011.09.017_bib17 article-title: Cystoid macular edema in gyrate atrophy of the choroid and retina: a fluorescein angiography and optical coherence tomography evaluation publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2004.12.083 – start-page: 160 year: 2007 ident: 10.1016/j.ophtha.2011.09.017_bib27 article-title: Perimetry and the Fundus: An Introduction to Microperimetry – volume: 108 start-page: 6537 year: 2011 ident: 10.1016/j.ophtha.2011.09.017_bib14 article-title: Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1103388108 – volume: 205 start-page: 335 year: 2005 ident: 10.1016/j.ophtha.2011.09.017_bib42 article-title: Vitamin B6-responsive ornithine aminotransferase deficiency with a novel mutation G237D publication-title: Tohoku J Exp Med doi: 10.1620/tjem.205.335 – volume: 1 start-page: 1031 year: 1973 ident: 10.1016/j.ophtha.2011.09.017_bib1 article-title: Raised plasma-ornithine and gyrate atrophy of the choroid and retina publication-title: Lancet doi: 10.1016/S0140-6736(73)90667-3 – volume: 79 start-page: 556 year: 2006 ident: 10.1016/j.ophtha.2011.09.017_bib39 article-title: Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis publication-title: Am J Hum Genet doi: 10.1086/507318 – volume: 200 start-page: 200 year: 1978 ident: 10.1016/j.ophtha.2011.09.017_bib5 article-title: Gyrate atrophy of the retina: inborn error of L-ornithin:2-oxoacid aminotransferase publication-title: Science doi: 10.1126/science.635581 – volume: 8 start-page: 656 year: 1990 ident: 10.1016/j.ophtha.2011.09.017_bib31 article-title: Detection of point mutations associated with genetic diseases by an exon scanning technique publication-title: Genomics doi: 10.1016/0888-7543(90)90252-P – volume: 267 start-page: 3302 year: 1992 ident: 10.1016/j.ophtha.2011.09.017_bib32 article-title: Ornithine delta-aminotransferase mutations in gyrate atrophy: allelic heterogeneity and functional consequences publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50731-1 – volume: 49 start-page: 1571 year: 2008 ident: 10.1016/j.ophtha.2011.09.017_bib26 article-title: Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.07-0838 – volume: 7 start-page: 248 year: 2010 ident: 10.1016/j.ophtha.2011.09.017_bib29 article-title: A method and server for predicting damaging missense mutations [letter] publication-title: Nat Methods doi: 10.1038/nmeth0410-248 – volume: 9 start-page: 555 year: 1984 ident: 10.1016/j.ophtha.2011.09.017_bib10 article-title: Ornithine delta-aminotransferase activity in retina and other tissues publication-title: Neurochem Res doi: 10.1007/BF00964382 – volume: 95 start-page: 604 year: 2011 ident: 10.1016/j.ophtha.2011.09.017_bib13 article-title: Gene therapy for ocular diseases publication-title: Br J Ophthalmol doi: 10.1136/bjo.2009.174912 – volume: 108 start-page: 721 year: 2001 ident: 10.1016/j.ophtha.2011.09.017_bib4 article-title: Ophthalmologic heterogeneity in subjects with gyrate atrophy of choroid and retina harboring the L402P mutation of ornithine aminotransferase publication-title: Ophthalmology doi: 10.1016/S0161-6420(00)00587-X – volume: 70 start-page: 858 year: 2007 ident: 10.1016/j.ophtha.2011.09.017_bib18 article-title: Macular edema associated with gyrate atrophy managed with intravitreal triamcinolone: a case report publication-title: Arq Bras Oftalmol doi: 10.1590/S0004-27492007000500024 – volume: 119 start-page: 667 year: 2001 ident: 10.1016/j.ophtha.2011.09.017_bib12 article-title: Assessment of visual function in patients with gyrate atrophy who are considered candidates for gene replacement publication-title: Arch Ophthalmol doi: 10.1001/archopht.119.5.667 – volume: 65 start-page: 371 year: 1980 ident: 10.1016/j.ophtha.2011.09.017_bib8 article-title: Gyrate atrophy of the choroid and retina: amino acid metabolism and correction of hyperornithinemia with an arginine-deficient diet publication-title: J Clin Invest doi: 10.1172/JCI109680 – volume: 20 start-page: 745 year: 2006 ident: 10.1016/j.ophtha.2011.09.017_bib19 article-title: Gyrate atrophy with bilateral full thickness macular hole [letter] publication-title: Eye (Lond) doi: 10.1038/sj.eye.6702009 – volume: 27 start-page: 536 year: 2008 ident: 10.1016/j.ophtha.2011.09.017_bib25 article-title: Use of fundus perimetry (microperimetry) to quantify macular sensitivity publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2008.07.003 – volume: 27 start-page: 45 year: 2008 ident: 10.1016/j.ophtha.2011.09.017_bib22 article-title: State-of-the-art retinal optical coherence tomography publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2007.07.005 – volume: 50 start-page: 2459 year: 2009 ident: 10.1016/j.ophtha.2011.09.017_bib35 article-title: Molecular imaging of retinal gliosis in transgenic mice induced by kainic acid neurotoxicity publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.08-2133 – volume: 97 start-page: 41 year: 2000 ident: 10.1016/j.ophtha.2011.09.017_bib16 article-title: Correlation of morphologic changes between optical coherence tomography and topographic angiography in a case of gyrate atrophy [in German] publication-title: Ophthalmologe doi: 10.1007/s003470050009 – volume: 24 start-page: 432 year: 1983 ident: 10.1016/j.ophtha.2011.09.017_bib33 article-title: Cataract in gyrate atrophy: clinical and morphologic studies publication-title: Invest Ophthalmol Vis Sci – volume: 111 start-page: 24 year: 1991 ident: 10.1016/j.ophtha.2011.09.017_bib15 article-title: Ocular clinicopathologic study of gyrate atrophy publication-title: Am J Ophthalmol doi: 10.1016/S0002-9394(14)76892-8 – volume: 56 start-page: 616 year: 1995 ident: 10.1016/j.ophtha.2011.09.017_bib41 article-title: Pyridoxine-responsive gyrate atrophy of the choroid and retina: clinical and biochemical correlates of the mutation A226V publication-title: Am J Hum Genet – volume: 5 start-page: 1229 year: 1996 ident: 10.1016/j.ophtha.2011.09.017_bib38 article-title: Identification of a hot spot for microdeletions in patients with X-linked deafness type 3(DFN3) 900 kb proximal to the DFN3 gene POU3F4 publication-title: Hum Mol Genet doi: 10.1093/hmg/5.9.1229 – volume: 28 start-page: 385 year: 2008 ident: 10.1016/j.ophtha.2011.09.017_bib24 article-title: Fundus autofluorescence imaging: review and perspectives publication-title: Retina doi: 10.1097/IAE.0b013e318164a907 – volume: 4 start-page: 1073 year: 2009 ident: 10.1016/j.ophtha.2011.09.017_bib28 article-title: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm publication-title: Nat Protoc doi: 10.1038/nprot.2009.86 – volume: 58 start-page: 24 year: 1974 ident: 10.1016/j.ophtha.2011.09.017_bib34 article-title: Differential diagnosis between the primary total choroidal vascular atrophies publication-title: Br J Ophthalmol doi: 10.1136/bjo.58.1.24 – volume: 244 start-page: 719 year: 1969 ident: 10.1016/j.ophtha.2011.09.017_bib6 article-title: Control of ornithin delta-transaminase in rat liver and kidney publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)94412-1 – volume: 58 start-page: 3 year: 1974 ident: 10.1016/j.ophtha.2011.09.017_bib2 article-title: Gyrate atrophy of the choroid and retina associated with hyperornithinaemia publication-title: Br J Ophthalmol doi: 10.1136/bjo.58.1.3 – volume: 97 start-page: 2753 year: 1996 ident: 10.1016/j.ophtha.2011.09.017_bib11 article-title: A mouse model of gyrate atrophy of the choroid and retina: early retinal pigment epithelium damage and progressive retinal degeneration publication-title: J Clin Invest doi: 10.1172/JCI118730 – volume: 20 start-page: 219 year: 1999 ident: 10.1016/j.ophtha.2011.09.017_bib21 article-title: Genotype-phenotype correlation of a pyridoxine-responsive form of gyrate atrophy publication-title: Ophthalmic Genet doi: 10.1076/opge.20.4.219.2271 – volume: 127 start-page: 1596 year: 2009 ident: 10.1016/j.ophtha.2011.09.017_bib30 article-title: Outer retinal tubulation: a novel optical coherence tomography finding publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2009.326 – volume: 120 start-page: 146 year: 2002 ident: 10.1016/j.ophtha.2011.09.017_bib9 article-title: Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children publication-title: Arch Ophthalmol doi: 10.1001/archopht.120.2.146 – volume: 39 start-page: 2384 year: 1998 ident: 10.1016/j.ophtha.2011.09.017_bib37 article-title: Contribution of microglia as passenger leukocytes to the fate of intraocular neuronal retinal grafts publication-title: Invest Ophthalmol Vis Sci – volume: 88 start-page: 292 year: 1981 ident: 10.1016/j.ophtha.2011.09.017_bib3 article-title: The natural history of gyrate atrophy of the choroid and retina publication-title: Ophthalmology doi: 10.1016/S0161-6420(81)35031-3 – volume: 277 start-page: 81 year: 1998 ident: 10.1016/j.ophtha.2011.09.017_bib7 article-title: Crystal structure of human recombinant ornithine aminotransferase publication-title: J Mol Biol doi: 10.1006/jmbi.1997.1583 |
SSID | ssj0006634 |
Score | 2.3419883 |
Snippet | To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy.
Retrospective case series.
Seven unrelated patients (10... Purpose To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy. Design Retrospective case series. Participants... To describe phenotypic variability and to report novel mutational data in patients with gyrate atrophy.PURPOSETo describe phenotypic variability and to report... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 596 |
SubjectTerms | Adolescent Adult Biological and medical sciences Child Computational Biology Contrast Sensitivity - physiology DNA Mutational Analysis Female Fluorescein Angiography Gyrate Atrophy - enzymology Gyrate Atrophy - genetics Gyrate Atrophy - physiopathology Humans Male Medical sciences Middle Aged Miscellaneous Mutation, Missense Ophthalmology Ophthalmoscopy Ornithine-Oxo-Acid Transaminase - blood Ornithine-Oxo-Acid Transaminase - genetics Phenotype Retina - enzymology Retina - physiopathology Retrospective Studies Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics Tomography, Optical Coherence Visual Acuity - physiology Visual Field Tests Visual Fields |
Title | Retinal Structure, Function, and Molecular Pathologic Features in Gyrate Atrophy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0161642011008736 https://www.clinicalkey.es/playcontent/1-s2.0-S0161642011008736 https://dx.doi.org/10.1016/j.ophtha.2011.09.017 https://www.ncbi.nlm.nih.gov/pubmed/22182799 https://www.proquest.com/docview/926504952 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZKJyEkhHinvEz-wLcuUZrEcfyxQoPBKKCyiX2znMTeMpW0oikS_Af-M-eXpCndtDGpito0blzf47vnnLszQq-DnLAiSHMvJ0HuxYIlnqCF8NI8VInMBcBIO4qTT8nBcfzhhJz0en86UUurOvPz3xfmldxEqnAO5KqzZP9Dsu2Pwgl4D_KFI0gYjteS8VTnKwvzaHllHgUYKgqWykRsuLjMSbMBri7H73TdUDM_uN4Ew777pctFDMf1j3lTu9qx1c-Ls_pMzL7bOk1mscHtr2Uj7qvK76wkgNo5Bd1RzuvSVf_XWyDpT8P3_npF_GfZZHmNZ6Clhvvtdx9lBVTehBcAwW9bSJCLjUiD_pVyOPW7SxU65iPqLlW0OTQbIZ6ac3rgBQUbOtnp0bLrsxsNS1jSMdaJydnetgN2SeLcn5txcpVamR_YPNF_Kmx_1V3QPdDl81IaJbfQTgheR9BHO-PD6bfD1rQDPXPF4m2Xm1xMEzC4fa_LuM7dhVjCDFR265TLfRvDcY7uo3vOOcFji7QHqCerh-j2xIVfPEJfHOBwC7g93MBtDwPYcAs2vAYbbsCGywpbsGEHtsfo-O3-0ZsDz23JAXM5IbUXRlSCgyySLB6xVFGiwkAVakRHQgHzjaOcgUmQMcuKQoCoigBeIiM5kB6liiJ6gvrVvJLPEI6BmmcBBY4mRrEK84xmcayEXhjNqIrIAEXN4PHc1avX26bMeBOYeM7tkHM95DxgHIZ8gLy21cLWa7nietLIhTe5yGA9OQDpinb0onZy6dTDko_4MuQB3wJXt6VjuZa9XuOeuxvAaf9gSNKEhkk6QLhBEgcroR_9iUrOV0vOQvDEYkbCAXpqEbZurPdwoIw9v-FIvEB31nP9JeoDAOUrIOp1tuumz18jg-jh |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+Structure%2C+Function%2C+and+Molecular+Pathologic+Features+in+Gyrate+Atrophy&rft.jtitle=Ophthalmology+%28Rochester%2C+Minn.%29&rft.au=Sergouniotis%2C+Panagiotis+I.&rft.au=Davidson%2C+Alice+E.&rft.au=Lenassi%2C+Eva&rft.au=Devery%2C+Sophie+R.&rft.date=2012-03-01&rft.pub=Elsevier+Inc&rft.issn=0161-6420&rft.volume=119&rft.issue=3&rft.spage=596&rft.epage=605&rft_id=info:doi/10.1016%2Fj.ophtha.2011.09.017&rft.externalDocID=S0161642011008736 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01616420%2FS0161642011X00143%2Fcov150h.gif |