Solute-Induced Retardation of Water Dynamics Probed Directly by Terahertz Spectroscopy

The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence o...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 33; pp. 12301 - 12306
Main Authors Heugen, U., Schwaab, G., Bründermann, E., Heyden, M., Yu, X., Leitner, D. M., Havenith, M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.08.2006
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network.
AbstractList The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376–12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network.
The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. and Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 +/- 0.24 A from the surface corresponding to approximately 123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network.
The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network.
The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376–12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. hydration water dynamics molecular dynamics simulations of biomolecules solvated lactose
The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to [asymptotically =]123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. [PUBLICATION ABSTRACT]
The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. and Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 +/- 0.24 A from the surface corresponding to approximately 123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network.The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. and Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 +/- 0.24 A from the surface corresponding to approximately 123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network.
Author Leitner, D. M.
Bründermann, E.
Yu, X.
Heyden, M.
Heugen, U.
Havenith, M.
Schwaab, G.
Author_xml – sequence: 1
  givenname: U.
  surname: Heugen
  fullname: Heugen, U.
– sequence: 2
  givenname: G.
  surname: Schwaab
  fullname: Schwaab, G.
– sequence: 3
  givenname: E.
  surname: Bründermann
  fullname: Bründermann, E.
– sequence: 4
  givenname: M.
  surname: Heyden
  fullname: Heyden, M.
– sequence: 5
  givenname: X.
  surname: Yu
  fullname: Yu, X.
– sequence: 6
  givenname: D. M.
  surname: Leitner
  fullname: Leitner, D. M.
– sequence: 7
  givenname: M.
  surname: Havenith
  fullname: Havenith, M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16895986$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMydQxKESh7TjzziXSqjlo1IlEC1wtBzHoVll7WA7qOGvx8suXegBTpZmfvP8Zt4B2nPeWYSeYjjGUNGT0el4DAKYrCsM9AFaYKhxKVgNe2gBQKpSMsL20UGMSwCouYRHaB8LWfNaigX6fOWHKdnywrWTsW3x0SYdWp167wrfFV90sqE4n51e9SYWH4JvMnTeB2vSMBfNXFzboG9sSD-KqzEXg4_Gj_Nj9LDTQ7RPtu8h-vTm9fXZu_Ly_duLs1eXpeGCpxIDNrLTRkhgxEKLgRnBmTWkASM5kRyaFlNCWkK11VSQljWVIbjjBBOO6SE63eiOU7OyrbEuBT2oMfQrHWblda_-7rj-Rn313xXmopIVzwJHW4Hgv002JrXqo7HDoJ31U1RCVgIkiAy-uAcu_RRcXk4RwBQwYyRDz_-0c-fj970zcLIBTD5UDLbbIaDWiap1omqXaJ7g9yZMn37lk_fph3_MFVsr68buF6ooVZhkwxl5-R9EddMwJHubMvtswy5j8uEOpgAcOK_pTzTkx3k
CitedBy_id crossref_primary_10_3390_app10217736
crossref_primary_10_1002_anie_201305991
crossref_primary_10_1021_acs_jpcb_8b02438
crossref_primary_10_1021_jp900488c
crossref_primary_10_1039_c000985g
crossref_primary_10_1103_PhysRevE_92_032718
crossref_primary_10_1021_acs_jpcb_6b06859
crossref_primary_10_1039_C7CP06127G
crossref_primary_10_1021_cr2000948
crossref_primary_10_1155_2012_125071
crossref_primary_10_1140_epjst_e2015_50263_y
crossref_primary_10_1002_jrs_4165
crossref_primary_10_1016_j_chemolab_2013_01_009
crossref_primary_10_1016_j_bpj_2011_05_011
crossref_primary_10_1016_j_cplett_2013_02_002
crossref_primary_10_1016_j_optcom_2018_12_057
crossref_primary_10_1021_ja808997y
crossref_primary_10_1016_j_molliq_2022_119886
crossref_primary_10_1021_acs_jpcb_3c03241
crossref_primary_10_1021_jz500023e
crossref_primary_10_1038_s41598_018_35833_2
crossref_primary_10_1016_j_bpc_2019_106215
crossref_primary_10_1021_jp308699w
crossref_primary_10_1039_C2FD20097J
crossref_primary_10_1039_C5CP07562A
crossref_primary_10_7566_JPSJ_83_044801
crossref_primary_10_1155_2012_279650
crossref_primary_10_1016_j_cplett_2015_03_054
crossref_primary_10_1002_cphc_200900430
crossref_primary_10_1021_jp112178c
crossref_primary_10_1007_s10762_020_00684_4
crossref_primary_10_1063_1_4964857
crossref_primary_10_1021_jz501737q
crossref_primary_10_1021_jz300748s
crossref_primary_10_3390_bios14120568
crossref_primary_10_1021_acs_langmuir_5b03884
crossref_primary_10_3390_liquids3030018
crossref_primary_10_1103_PhysRevLett_102_198303
crossref_primary_10_1016_j_foodchem_2013_02_066
crossref_primary_10_1016_j_bpj_2009_08_024
crossref_primary_10_1021_acs_jpcb_1c05018
crossref_primary_10_3389_fchem_2023_1131935
crossref_primary_10_1016_j_bbabio_2009_01_006
crossref_primary_10_1142_S1793545813500478
crossref_primary_10_5650_oleoscience_20_321
crossref_primary_10_1063_1_2748852
crossref_primary_10_1021_acs_jpca_9b05165
crossref_primary_10_1039_C5CP01813G
crossref_primary_10_1016_j_jnoncrysol_2010_06_042
crossref_primary_10_1016_j_cplett_2008_11_041
crossref_primary_10_1002_cphc_201000205
crossref_primary_10_1039_C4CP03273J
crossref_primary_10_1021_acs_jpcb_8b04632
crossref_primary_10_1063_1_3552964
crossref_primary_10_1080_09205071_2024_2380386
crossref_primary_10_1134_S0036024424700067
crossref_primary_10_3390_ijms222111969
crossref_primary_10_1366_14_07707
crossref_primary_10_1039_c0cp02512g
crossref_primary_10_1039_D2CP01061E
crossref_primary_10_1021_ja504441h
crossref_primary_10_1039_C4CP05268D
crossref_primary_10_1134_S0006350912060036
crossref_primary_10_1016_j_foodcont_2015_11_032
crossref_primary_10_1016_j_bpj_2010_11_020
crossref_primary_10_1364_OE_18_027431
crossref_primary_10_1016_j_molliq_2016_12_064
crossref_primary_10_1038_s41598_020_67179_z
crossref_primary_10_1016_j_isci_2022_103788
crossref_primary_10_1117_1_3570648
crossref_primary_10_1021_acs_jpcb_7b08563
crossref_primary_10_1021_jacs_7b02969
crossref_primary_10_1109_TTHZ_2016_2557724
crossref_primary_10_1021_jp9004983
crossref_primary_10_1007_s00723_020_01240_y
crossref_primary_10_1039_B804734K
crossref_primary_10_3367_UFNr_0178_200803b_0243
crossref_primary_10_1002_jrs_2212
crossref_primary_10_1016_j_chemphys_2007_08_001
crossref_primary_10_1063_1_5008448
crossref_primary_10_1007_s00249_007_0249_9
crossref_primary_10_1039_c1cp21110b
crossref_primary_10_1063_1_3273218
crossref_primary_10_1063_1_3456175
crossref_primary_10_1007_s10762_009_9514_6
crossref_primary_10_1021_acs_jpcb_3c02109
crossref_primary_10_3390_photonics11080766
crossref_primary_10_1007_s11483_010_9197_5
crossref_primary_10_1021_jp710904c
crossref_primary_10_1016_j_foodhyd_2020_106034
crossref_primary_10_1021_jp072350e
crossref_primary_10_1039_C5CP01132A
crossref_primary_10_1016_j_jnoncrysol_2010_05_092
crossref_primary_10_1364_JOSAB_26_00A113
crossref_primary_10_1002_cphc_201201057
crossref_primary_10_1039_C7RA08903A
crossref_primary_10_1039_C4CP05431H
crossref_primary_10_1080_00268970902744334
crossref_primary_10_1021_bm300848c
crossref_primary_10_1021_jp3079869
crossref_primary_10_1088_0953_8984_24_28_284113
crossref_primary_10_1021_la2051564
crossref_primary_10_1063_1_5007681
crossref_primary_10_3390_s23135853
crossref_primary_10_1021_jp508547y
crossref_primary_10_1070_QE2014v044n07ABEH015565
crossref_primary_10_1021_ja9083545
crossref_primary_10_1039_C9NR01572H
crossref_primary_10_2530_jslsm_jslsm_39_0025
crossref_primary_10_1002_bem_21916
crossref_primary_10_1088_1478_3975_9_5_053001
crossref_primary_10_1364_OL_42_000470
crossref_primary_10_1002_jsfa_12658
crossref_primary_10_1016_j_cej_2024_151995
crossref_primary_10_1021_la101927g
crossref_primary_10_3390_s24092742
crossref_primary_10_1063_1_4903237
crossref_primary_10_1016_j_cplett_2013_09_026
crossref_primary_10_1021_ja4129857
crossref_primary_10_1021_jp305225r
crossref_primary_10_1021_ja0781083
crossref_primary_10_1063_1_4907271
crossref_primary_10_1117_1_JBO_20_3_037006
crossref_primary_10_1039_c3cp50865j
crossref_primary_10_1039_c1cp20912d
crossref_primary_10_1021_acs_jpcb_9b07086
crossref_primary_10_1016_j_cplett_2008_02_084
crossref_primary_10_1021_acs_jpcb_3c03654
crossref_primary_10_1021_jp305356d
crossref_primary_10_1021_acs_jpcc_8b08464
crossref_primary_10_1063_1_2743401
crossref_primary_10_1073_pnas_0914885107
crossref_primary_10_1134_S1054660X10010019
crossref_primary_10_1016_j_cocis_2011_04_010
crossref_primary_10_1021_jp7106445
crossref_primary_10_1134_S0030400X10060056
crossref_primary_10_1002_lpor_201000011
crossref_primary_10_1080_01442350600862117
crossref_primary_10_1039_C1CS15277G
crossref_primary_10_1007_s10762_018_0489_z
crossref_primary_10_3390_s19030534
crossref_primary_10_1016_j_rio_2022_100211
crossref_primary_10_1364_OE_23_009440
crossref_primary_10_1002_cphc_200700332
crossref_primary_10_1002_cphc_201601217
crossref_primary_10_7498_aps_68_20181273
crossref_primary_10_3103_S1541308X19020110
crossref_primary_10_1016_j_ymeth_2010_05_007
crossref_primary_10_1088_2515_7647_ac691d
crossref_primary_10_1529_biophysj_106_097451
crossref_primary_10_1016_j_molliq_2022_119981
crossref_primary_10_1021_acs_jpcb_2c01496
crossref_primary_10_1039_C8CP07489E
crossref_primary_10_1021_acs_jctc_2c01256
crossref_primary_10_1063_1_2748405
crossref_primary_10_3390_app14072872
crossref_primary_10_1021_acs_langmuir_0c00870
crossref_primary_10_1021_jp4128012
crossref_primary_10_1063_1_3116140
crossref_primary_10_1073_pnas_0709207104
crossref_primary_10_1021_jp106423a
crossref_primary_10_1039_C6RA28754A
crossref_primary_10_1103_PhysRevLett_116_027801
crossref_primary_10_1021_jp4124327
crossref_primary_10_1038_s41467_019_09811_9
crossref_primary_10_1016_j_cplett_2011_04_103
crossref_primary_10_1109_TTHZ_2015_2504782
crossref_primary_10_1007_s13361_011_0175_z
crossref_primary_10_1002_anie_201204532
crossref_primary_10_1007_s12648_009_0003_5
crossref_primary_10_1016_j_chemphys_2008_01_008
crossref_primary_10_1007_s10762_021_00792_9
crossref_primary_10_3390_bios12111029
crossref_primary_10_3390_chemosensors11010037
crossref_primary_10_1063_5_0068979
crossref_primary_10_1021_jp111852s
crossref_primary_10_1246_bcsj_20220290
crossref_primary_10_1063_1_2754689
crossref_primary_10_1007_s12551_023_01131_z
crossref_primary_10_1016_j_foodchem_2019_03_132
crossref_primary_10_1063_1_4922482
crossref_primary_10_1103_PhysRevLett_106_158102
crossref_primary_10_1039_C9CC00141G
crossref_primary_10_1016_j_snb_2021_131003
crossref_primary_10_1021_jp9016932
crossref_primary_10_1002_anie_200907114
crossref_primary_10_1016_j_colsurfa_2019_123822
crossref_primary_10_1002_asia_201402696
crossref_primary_10_1080_00268976_2016_1177219
crossref_primary_10_1016_j_carres_2015_01_002
crossref_primary_10_1021_jp204473d
crossref_primary_10_1063_1_4960775
crossref_primary_10_1002_jbio_202000315
crossref_primary_10_1021_acs_jpcb_7b06442
crossref_primary_10_1039_c0fd00007h
crossref_primary_10_1039_C5CP06324H
crossref_primary_10_1109_JSTQE_2007_913424
crossref_primary_10_1063_1_4764304
crossref_primary_10_7498_aps_68_20181742
crossref_primary_10_1088_0256_307X_33_1_013101
crossref_primary_10_1021_acs_jpcb_5b06584
crossref_primary_10_1039_C4CP03989K
crossref_primary_10_1007_s10762_014_0054_3
crossref_primary_10_1063_1_2873147
crossref_primary_10_1080_08927022_2018_1496246
crossref_primary_10_1186_s13007_017_0197_z
crossref_primary_10_1039_b807551b
crossref_primary_10_1007_s10762_018_0478_2
crossref_primary_10_1016_j_chemphys_2007_07_052
crossref_primary_10_1039_b926977k
crossref_primary_10_1063_1_5080381
crossref_primary_10_1007_s10762_019_00642_9
crossref_primary_10_1002_pssc_200779109
crossref_primary_10_1063_5_0011392
crossref_primary_10_1021_acs_jpcb_7b08030
crossref_primary_10_1063_1_3645635
crossref_primary_10_3390_molecules27185897
crossref_primary_10_1021_acs_jpcb_9b01053
crossref_primary_10_1021_jp5045332
crossref_primary_10_1039_D2CP01949C
crossref_primary_10_1002_adpr_202000024
crossref_primary_10_1021_jp109173t
crossref_primary_10_1364_BOE_400487
crossref_primary_10_1063_1_4989641
crossref_primary_10_1366_000370210792434422
crossref_primary_10_1039_C7CP07003A
crossref_primary_10_1007_s10953_014_0279_8
crossref_primary_10_1103_PhysRevLett_117_185501
crossref_primary_10_1021_jp508089t
crossref_primary_10_3390_molecules18089735
crossref_primary_10_1016_j_sna_2013_03_024
crossref_primary_10_1021_acs_jpcb_3c05228
crossref_primary_10_1002_lpor_201300224
crossref_primary_10_1016_j_saa_2017_09_035
crossref_primary_10_1021_ja0746520
crossref_primary_10_1016_j_pnmrs_2009_06_003
crossref_primary_10_1021_jp9116886
crossref_primary_10_1038_nsmb_2120
crossref_primary_10_1002_cite_200800111
crossref_primary_10_2976_1_2976661
crossref_primary_10_31857_S0044453724060133
crossref_primary_10_1002_nadc_200751938
crossref_primary_10_1039_C5CP00090D
crossref_primary_10_1016_j_memsci_2013_06_042
crossref_primary_10_1021_jacs_9b06862
crossref_primary_10_1063_1_4826699
crossref_primary_10_1021_jp301988f
crossref_primary_10_1039_C5CP05891K
crossref_primary_10_1016_j_bios_2009_06_029
crossref_primary_10_1039_C3CP54043J
crossref_primary_10_1016_j_saa_2019_117183
crossref_primary_10_1109_JBHI_2013_2255306
crossref_primary_10_1002_cphc_202200337
crossref_primary_10_1021_jp8000724
crossref_primary_10_1021_acs_jpclett_8b03188
crossref_primary_10_1021_jp0746401
crossref_primary_10_1039_b901209e
crossref_primary_10_1002_prot_21924
crossref_primary_10_1016_j_cplett_2017_03_002
crossref_primary_10_1021_ja805581n
crossref_primary_10_1021_la902003y
crossref_primary_10_1103_PhysRevE_81_031915
crossref_primary_10_1002_ange_200907114
crossref_primary_10_1016_j_cplett_2008_03_062
crossref_primary_10_1021_acs_jpclett_2c00886
crossref_primary_10_1016_j_saa_2020_118330
crossref_primary_10_1063_1_5094570
crossref_primary_10_1016_j_bpc_2019_106240
crossref_primary_10_1016_j_bpj_2019_06_028
crossref_primary_10_1039_C4CP03102D
crossref_primary_10_1063_1_3488832
crossref_primary_10_1002_ange_201204532
crossref_primary_10_1021_jp2074539
crossref_primary_10_1371_journal_pone_0191515
crossref_primary_10_1021_acs_jpcb_7b01508
crossref_primary_10_1039_C5CP06791J
crossref_primary_10_1039_D1CP01841H
crossref_primary_10_1002_anie_202212063
crossref_primary_10_1007_s10762_009_9561_z
crossref_primary_10_1038_s43586_023_00232_z
crossref_primary_10_1063_1_4882697
crossref_primary_10_1063_1_4899070
crossref_primary_10_1186_s13007_019_0492_y
crossref_primary_10_1364_OE_452416
crossref_primary_10_1002_ange_202212063
crossref_primary_10_2139_ssrn_4191726
crossref_primary_10_1021_acs_jpcb_5b03836
crossref_primary_10_3390_ijms16048454
crossref_primary_10_1007_s12551_019_00601_7
crossref_primary_10_3390_e15093822
crossref_primary_10_1002_jrs_6399
crossref_primary_10_1529_biophysj_107_115956
crossref_primary_10_1021_acs_jpcb_0c10036
crossref_primary_10_1021_acs_jpcb_6b05546
crossref_primary_10_1039_c2cp42229h
crossref_primary_10_1021_jp406730a
crossref_primary_10_1039_C6RA18912A
crossref_primary_10_1021_acs_cgd_2c00352
crossref_primary_10_1021_acs_jpcb_6b06996
crossref_primary_10_1140_epje_i2011_11087_6
crossref_primary_10_1021_jm501511f
crossref_primary_10_1021_ja207929u
crossref_primary_10_1016_j_bios_2020_112935
crossref_primary_10_1038_s41598_021_92656_4
crossref_primary_10_1002_anie_200802281
crossref_primary_10_1039_b807458p
crossref_primary_10_1109_TTHZ_2013_2267414
crossref_primary_10_1021_jp301000c
crossref_primary_10_1039_C9CP06808B
crossref_primary_10_1039_C6CP02399A
crossref_primary_10_1039_c2ra21320f
crossref_primary_10_1002_ange_200802281
crossref_primary_10_1111_cpr_12788
crossref_primary_10_3390_photonics6010012
crossref_primary_10_1039_D3CP03357K
crossref_primary_10_1016_j_molliq_2019_112395
crossref_primary_10_1021_jp906784t
crossref_primary_10_1016_j_colsurfb_2016_01_031
crossref_primary_10_1002_ange_201305991
crossref_primary_10_3390_e14081399
crossref_primary_10_1039_C6CP07388C
crossref_primary_10_1109_TTHZ_2016_2575450
crossref_primary_10_3390_ijms252413420
crossref_primary_10_1002_nadc_200743720
crossref_primary_10_1039_b800278a
crossref_primary_10_1021_acs_jpcb_7b05892
crossref_primary_10_1063_5_0046817
crossref_primary_10_1002_ijch_201300139
crossref_primary_10_1021_jp5083467
crossref_primary_10_1080_01442350701416888
crossref_primary_10_1021_acsomega_4c00798
Cites_doi 10.1073/pnas.0505206102
10.1021/ja031679k
10.1063/1.1917745
10.1021/jp030943t
10.1063/1.474242
10.1103/PhysRevLett.88.138101
10.1021/ja053627w
10.1016/S0006-3495(03)74562-7
10.1063/1.105235
10.1098/rstb.2004.1499
10.1073/pnas.041611998
10.1021/jp971879g
10.1063/1.126555
10.1002/pro.5560050222
10.1021/jp035574f
10.1021/cr980127v
10.1103/PhysRevLett.82.2888
10.1021/jp002155z
10.1146/annurev.pc.44.100193.002003
10.1021/cr990368i
10.1103/PhysRevB.46.7189
10.1021/ja038325d
10.1002/jcc.540040211
10.1016/S0076-6879(02)38220-X
10.1146/annurev.physchem.47.1.109
10.1021/jp051837p
10.1021/jp0213506
10.1103/PhysRevB.56.12069
10.1021/jp040622x
10.1126/science.223.4637.701
10.1080/00222930500190384
10.1016/0010-4655(95)00047-J
10.1073/pnas.212637899
10.1016/S0079-6565(97)00012-5
10.1016/S0301-4622(01)00260-5
10.1021/jp020579i
10.1063/1.1928427
10.1038/nature03383
10.1021/jp020100m
10.1073/pnas.042697899
10.1073/pnas.95.5.2267
10.1103/PhysRevLett.95.083201
10.1016/S0009-2614(00)01271-9
10.1021/jp960141g
10.1016/S0006-3495(04)74252-6
10.1007/s00706-002-0530-7
10.1103/PhysRevA.34.493
10.1073/pnas.95.26.15315
10.1103/PhysRevLett.76.928
10.1126/science.7539156
10.1063/1.1328072
10.1063/1.122581
10.1063/1.100958
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Aug 15, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Aug 15, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0604897103
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE


Virology and AIDS Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12306
ExternalDocumentID PMC1567875
1150974491
16895986
10_1073_pnas_0604897103
103_33_12301
30050559
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c565t-101c8fac68042e0d104c654ec2b0c852850bd1322d23aea362d4b7c21f5212513
ISSN 0027-8424
IngestDate Thu Aug 21 18:40:08 EDT 2025
Thu Jul 10 22:24:45 EDT 2025
Mon Jun 30 08:44:33 EDT 2025
Mon Jul 21 06:05:06 EDT 2025
Tue Jul 01 03:50:20 EDT 2025
Thu Apr 24 23:00:29 EDT 2025
Thu May 30 08:49:40 EDT 2019
Wed Nov 11 00:29:51 EST 2020
Thu May 29 08:42:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c565t-101c8fac68042e0d104c654ec2b0c852850bd1322d23aea362d4b7c21f5212513
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: D.M.L. and M. Havenith designed research; U.H., E.B., X.Y., and D.M.L. performed research; E.B. contributed new reagents/analytic tools; G.S., M. Heyden, and M. Havenith analyzed data; and X.Y., D.M.L., and M. Havenith wrote the paper.
Communicated by Joshua Jortner, Tel Aviv University, Tel Aviv, Israel, June 14, 2006
OpenAccessLink http://doi.org/10.1073/pnas.0604897103
PMID 16895986
PQID 201301442
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_103_33_12301
proquest_miscellaneous_68760806
crossref_primary_10_1073_pnas_0604897103
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1567875
pubmed_primary_16895986
proquest_journals_201301442
crossref_citationtrail_10_1073_pnas_0604897103
pnas_primary_103_33_12301_fulltext
jstor_primary_30050559
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-15
PublicationDateYYYYMMDD 2006-08-15
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Abragam A. (e_1_3_3_13_2) 1982
e_1_3_3_5_2
Sivia D. (e_1_3_3_39_2) 1996
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Grant E. H. (e_1_3_3_14_2) 1978
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
Jaetaek O. (e_1_3_3_54_2) 1995; 16
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_22_2
  doi: 10.1073/pnas.0505206102
– ident: e_1_3_3_26_2
  doi: 10.1021/ja031679k
– ident: e_1_3_3_7_2
  doi: 10.1063/1.1917745
– ident: e_1_3_3_16_2
  doi: 10.1021/jp030943t
– ident: e_1_3_3_46_2
  doi: 10.1063/1.474242
– ident: e_1_3_3_56_2
  doi: 10.1103/PhysRevLett.88.138101
– ident: e_1_3_3_31_2
  doi: 10.1021/ja053627w
– ident: e_1_3_3_45_2
  doi: 10.1016/S0006-3495(03)74562-7
– ident: e_1_3_3_49_2
  doi: 10.1063/1.105235
– ident: e_1_3_3_4_2
  doi: 10.1098/rstb.2004.1499
– ident: e_1_3_3_2_2
  doi: 10.1073/pnas.041611998
– ident: e_1_3_3_6_2
  doi: 10.1021/jp971879g
– ident: e_1_3_3_50_2
  doi: 10.1063/1.126555
– ident: e_1_3_3_30_2
  doi: 10.1002/pro.5560050222
– ident: e_1_3_3_27_2
  doi: 10.1021/jp035574f
– ident: e_1_3_3_38_2
  doi: 10.1021/cr980127v
– ident: e_1_3_3_47_2
  doi: 10.1103/PhysRevLett.82.2888
– volume-title: Nuclear Magnetism: Order and Disorder
  year: 1982
  ident: e_1_3_3_13_2
– ident: e_1_3_3_32_2
  doi: 10.1021/jp002155z
– ident: e_1_3_3_8_2
  doi: 10.1146/annurev.pc.44.100193.002003
– ident: e_1_3_3_28_2
  doi: 10.1021/cr990368i
– ident: e_1_3_3_43_2
  doi: 10.1103/PhysRevB.46.7189
– volume-title: Data Analysis: A Bayesian Tutorial
  year: 1996
  ident: e_1_3_3_39_2
– ident: e_1_3_3_3_2
  doi: 10.1021/ja038325d
– volume-title: Dielectric Behaviour of Biological Molecules in Solutions
  year: 1978
  ident: e_1_3_3_14_2
– ident: e_1_3_3_55_2
  doi: 10.1002/jcc.540040211
– ident: e_1_3_3_11_2
  doi: 10.1016/S0076-6879(02)38220-X
– ident: e_1_3_3_19_2
  doi: 10.1146/annurev.physchem.47.1.109
– ident: e_1_3_3_23_2
  doi: 10.1021/jp051837p
– ident: e_1_3_3_48_2
  doi: 10.1021/jp0213506
– ident: e_1_3_3_52_2
  doi: 10.1103/PhysRevB.56.12069
– ident: e_1_3_3_40_2
  doi: 10.1021/jp040622x
– ident: e_1_3_3_29_2
  doi: 10.1126/science.223.4637.701
– ident: e_1_3_3_44_2
  doi: 10.1080/00222930500190384
– ident: e_1_3_3_42_2
– ident: e_1_3_3_53_2
  doi: 10.1016/0010-4655(95)00047-J
– ident: e_1_3_3_1_2
  doi: 10.1073/pnas.212637899
– ident: e_1_3_3_12_2
  doi: 10.1016/S0079-6565(97)00012-5
– ident: e_1_3_3_10_2
  doi: 10.1016/S0301-4622(01)00260-5
– ident: e_1_3_3_25_2
  doi: 10.1021/jp020579i
– ident: e_1_3_3_37_2
  doi: 10.1063/1.1928427
– ident: e_1_3_3_20_2
  doi: 10.1038/nature03383
– ident: e_1_3_3_5_2
  doi: 10.1021/jp020100m
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.042697899
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.95.5.2267
– ident: e_1_3_3_21_2
  doi: 10.1103/PhysRevLett.95.083201
– ident: e_1_3_3_33_2
  doi: 10.1016/S0009-2614(00)01271-9
– ident: e_1_3_3_36_2
  doi: 10.1021/jp960141g
– ident: e_1_3_3_15_2
  doi: 10.1016/S0006-3495(04)74252-6
– volume: 16
  start-page: 1153
  year: 1995
  ident: e_1_3_3_54_2
  publication-title: Bull. Korean Chem. Soc.
– ident: e_1_3_3_41_2
  doi: 10.1007/s00706-002-0530-7
– ident: e_1_3_3_34_2
  doi: 10.1103/PhysRevA.34.493
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.95.26.15315
– ident: e_1_3_3_57_2
  doi: 10.1103/PhysRevLett.76.928
– ident: e_1_3_3_58_2
  doi: 10.1126/science.7539156
– ident: e_1_3_3_35_2
  doi: 10.1063/1.1328072
– ident: e_1_3_3_51_2
  doi: 10.1063/1.122581
– ident: e_1_3_3_24_2
  doi: 10.1063/1.100958
SSID ssj0009580
Score 2.4010851
Snippet The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12301
SubjectTerms Absorption
Absorption spectra
Absorptivity
Carbohydrates
Carbohydrates - chemistry
Computer Simulation
Fluid dynamics
Frequency ranges
Hydration
Hydrogen Bonding
Hydrogen bonds
Models, Molecular
Molecular biology
Molecules
Physical Sciences
Proteins - chemistry
Solutes
Solutions - chemistry
Solvation
Solvents
Spectroscopy
Spectrum analysis
Spectrum Analysis - methods
Studies
Surface water
Time Factors
Water
Water - chemistry
Title Solute-Induced Retardation of Water Dynamics Probed Directly by Terahertz Spectroscopy
URI https://www.jstor.org/stable/30050559
http://www.pnas.org/content/103/33/12301.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16895986
https://www.proquest.com/docview/201301442
https://www.proquest.com/docview/68760806
https://pubmed.ncbi.nlm.nih.gov/PMC1567875
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAw5bFCHIoiG9trrzfHNipUSI1yaFBv1tq7bpFaJ8pDVfr3-GPMPrx2olSCXqzEXj_i-TKP3ZlvEPoiGAEjGXI_Frz0kyrlPmc89YnIhACLWxKhsy1G9GyS_LxML3u9P52spdWyCMr7nXUlj5Eq7AO5qirZ_5CsuyjsgM8gX9iChGH7TzLWc1rSh7B6pZbxVergXDgf8I7r9t-m5fxCZWIVMMjYsJu19jslqBo5X973dcGlIraczjbWecfOvi2abIJRM3143BajWA2x6Pv98ahtbXwmV1dGrU2CdsXn-o5zvQr0w-080Qv2J0NVaXNr2zafBu1l1lY7ngfbsxTMN3WaXZLvnY_WVc8xmMzEFFUH0mhkcGh8mpieok5lh6SDTUI6GhgssZ0dke473WkrQLmpBsc1XwSKQYgNMnvZDnJmtxo6EWUDRWTfGk2Xyjg-H0IIDGovfYKexhCrxNo6dJmfmamDsr-t4ZfKyLeteysCW3ujDS_JJMoq9l0YvysS2k7o7XhIFy_Qcxva4GOD033Uk_VLtN-8f3xkGc6_vkK_NoGLO8DF0wpr4OIGuNgAFzfAxcUaO-DiLnBfo8n304vhmW8bfPglxBFLcAGiklW8pAxMhwxFFCYlTRNZxkVYsjRmaVgINV0iYsIlB19LJEVWxlGlKs7TiBygvXpay7cIU0G5YIxKqULsmBchy2KZSUIHVRFGlYeC5oXmpWW_V01YbnKdhZGRXL3cvBWGh47cCTND_PLw0AMtITeO6P6Q6cBDnh7ank9yQnINUQ99fvBYXtnELw8dNsLOrd5Z5LFKNoiSJPbQJ3cUjIJa6eO1nK4WOQUfB0JB6qE3BhjtbSzAPJRtQMYNUHTzm0fq39eadt7C_N2jzzxEz1rV8B7tLecr-QFc-mXxUf9l_gIAx_Zb
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solute-induced+retardation+of+water+dynamics+probed+directly+by+terahertz+spectroscopy&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Heugen%2C+U.&rft.au=Schwaab%2C+G.&rft.au=Br%C3%BCndermann%2C+E.&rft.au=Heyden%2C+M.&rft.date=2006-08-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=33&rft.spage=12301&rft.epage=12306&rft_id=info:doi/10.1073%2Fpnas.0604897103&rft_id=info%3Apmid%2F16895986&rft.externalDocID=PMC1567875
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F33.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F33.cover.gif