Solute-Induced Retardation of Water Dynamics Probed Directly by Terahertz Spectroscopy
The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence o...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 103; no. 33; pp. 12301 - 12306 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.08.2006
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. |
---|---|
AbstractList | The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002)
J. Phys. Chem. B
106, 12376–12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. and Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 +/- 0.24 A from the surface corresponding to approximately 123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376–12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to ≈123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. hydration water dynamics molecular dynamics simulations of biomolecules solvated lactose The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. & Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 ± 0.24 Å from the surface corresponding to [asymptotically =]123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. [PUBLICATION ABSTRACT] The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. and Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 +/- 0.24 A from the surface corresponding to approximately 123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network.The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a bio-molecule have been the subject of numerous, sometimes controversial experimental and theoretical studies, with some suggesting the existence of rather rigid water structures around carbohydrates and proteins [Pal, S. K., Peon, J., Bagchi, B. and Zewail A. H. (2002) J. Phys. Chem. B 106, 12376-12395]. Hydrogen bond rearrangement in water occurs on the picosecond time scale, so relevant experiments must access these times. Here, we show that terahertz spectroscopy can directly investigate hydration layers. By a precise measurement of absorption coefficients between 2.3 THz and 2.9 THz we could determine the size and the characteristics of the hydration shell. The hydration layer around a carbohydrate (lactose) is determined to extend to 5.13 +/- 0.24 A from the surface corresponding to approximately 123 water molecules beyond the first solvation shell. Accompanying molecular modeling calculations support this result and provide a microscopic visualization. Terahertz spectroscopy is shown to probe the collective modes in the water network. The observed increase of the terahertz absorption of the water in the hydration layer is explained in terms of coherent oscillations of the hydration water and solute. Simulations also reveal a slowing down of the hydrogen bond rearrangement dynamics for water molecules near lactose, which occur on the picosecond time scale. The present study demonstrates that terahertz spectroscopy is a sensitive tool to detect solute-induced changes in the water network. |
Author | Leitner, D. M. Bründermann, E. Yu, X. Heyden, M. Heugen, U. Havenith, M. Schwaab, G. |
Author_xml | – sequence: 1 givenname: U. surname: Heugen fullname: Heugen, U. – sequence: 2 givenname: G. surname: Schwaab fullname: Schwaab, G. – sequence: 3 givenname: E. surname: Bründermann fullname: Bründermann, E. – sequence: 4 givenname: M. surname: Heyden fullname: Heyden, M. – sequence: 5 givenname: X. surname: Yu fullname: Yu, X. – sequence: 6 givenname: D. M. surname: Leitner fullname: Leitner, D. M. – sequence: 7 givenname: M. surname: Havenith fullname: Havenith, M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16895986$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMydQxKESh7TjzziXSqjlo1IlEC1wtBzHoVll7WA7qOGvx8suXegBTpZmfvP8Zt4B2nPeWYSeYjjGUNGT0el4DAKYrCsM9AFaYKhxKVgNe2gBQKpSMsL20UGMSwCouYRHaB8LWfNaigX6fOWHKdnywrWTsW3x0SYdWp167wrfFV90sqE4n51e9SYWH4JvMnTeB2vSMBfNXFzboG9sSD-KqzEXg4_Gj_Nj9LDTQ7RPtu8h-vTm9fXZu_Ly_duLs1eXpeGCpxIDNrLTRkhgxEKLgRnBmTWkASM5kRyaFlNCWkK11VSQljWVIbjjBBOO6SE63eiOU7OyrbEuBT2oMfQrHWblda_-7rj-Rn313xXmopIVzwJHW4Hgv002JrXqo7HDoJ31U1RCVgIkiAy-uAcu_RRcXk4RwBQwYyRDz_-0c-fj970zcLIBTD5UDLbbIaDWiap1omqXaJ7g9yZMn37lk_fph3_MFVsr68buF6ooVZhkwxl5-R9EddMwJHubMvtswy5j8uEOpgAcOK_pTzTkx3k |
CitedBy_id | crossref_primary_10_3390_app10217736 crossref_primary_10_1002_anie_201305991 crossref_primary_10_1021_acs_jpcb_8b02438 crossref_primary_10_1021_jp900488c crossref_primary_10_1039_c000985g crossref_primary_10_1103_PhysRevE_92_032718 crossref_primary_10_1021_acs_jpcb_6b06859 crossref_primary_10_1039_C7CP06127G crossref_primary_10_1021_cr2000948 crossref_primary_10_1155_2012_125071 crossref_primary_10_1140_epjst_e2015_50263_y crossref_primary_10_1002_jrs_4165 crossref_primary_10_1016_j_chemolab_2013_01_009 crossref_primary_10_1016_j_bpj_2011_05_011 crossref_primary_10_1016_j_cplett_2013_02_002 crossref_primary_10_1016_j_optcom_2018_12_057 crossref_primary_10_1021_ja808997y crossref_primary_10_1016_j_molliq_2022_119886 crossref_primary_10_1021_acs_jpcb_3c03241 crossref_primary_10_1021_jz500023e crossref_primary_10_1038_s41598_018_35833_2 crossref_primary_10_1016_j_bpc_2019_106215 crossref_primary_10_1021_jp308699w crossref_primary_10_1039_C2FD20097J crossref_primary_10_1039_C5CP07562A crossref_primary_10_7566_JPSJ_83_044801 crossref_primary_10_1155_2012_279650 crossref_primary_10_1016_j_cplett_2015_03_054 crossref_primary_10_1002_cphc_200900430 crossref_primary_10_1021_jp112178c crossref_primary_10_1007_s10762_020_00684_4 crossref_primary_10_1063_1_4964857 crossref_primary_10_1021_jz501737q crossref_primary_10_1021_jz300748s crossref_primary_10_3390_bios14120568 crossref_primary_10_1021_acs_langmuir_5b03884 crossref_primary_10_3390_liquids3030018 crossref_primary_10_1103_PhysRevLett_102_198303 crossref_primary_10_1016_j_foodchem_2013_02_066 crossref_primary_10_1016_j_bpj_2009_08_024 crossref_primary_10_1021_acs_jpcb_1c05018 crossref_primary_10_3389_fchem_2023_1131935 crossref_primary_10_1016_j_bbabio_2009_01_006 crossref_primary_10_1142_S1793545813500478 crossref_primary_10_5650_oleoscience_20_321 crossref_primary_10_1063_1_2748852 crossref_primary_10_1021_acs_jpca_9b05165 crossref_primary_10_1039_C5CP01813G crossref_primary_10_1016_j_jnoncrysol_2010_06_042 crossref_primary_10_1016_j_cplett_2008_11_041 crossref_primary_10_1002_cphc_201000205 crossref_primary_10_1039_C4CP03273J crossref_primary_10_1021_acs_jpcb_8b04632 crossref_primary_10_1063_1_3552964 crossref_primary_10_1080_09205071_2024_2380386 crossref_primary_10_1134_S0036024424700067 crossref_primary_10_3390_ijms222111969 crossref_primary_10_1366_14_07707 crossref_primary_10_1039_c0cp02512g crossref_primary_10_1039_D2CP01061E crossref_primary_10_1021_ja504441h crossref_primary_10_1039_C4CP05268D crossref_primary_10_1134_S0006350912060036 crossref_primary_10_1016_j_foodcont_2015_11_032 crossref_primary_10_1016_j_bpj_2010_11_020 crossref_primary_10_1364_OE_18_027431 crossref_primary_10_1016_j_molliq_2016_12_064 crossref_primary_10_1038_s41598_020_67179_z crossref_primary_10_1016_j_isci_2022_103788 crossref_primary_10_1117_1_3570648 crossref_primary_10_1021_acs_jpcb_7b08563 crossref_primary_10_1021_jacs_7b02969 crossref_primary_10_1109_TTHZ_2016_2557724 crossref_primary_10_1021_jp9004983 crossref_primary_10_1007_s00723_020_01240_y crossref_primary_10_1039_B804734K crossref_primary_10_3367_UFNr_0178_200803b_0243 crossref_primary_10_1002_jrs_2212 crossref_primary_10_1016_j_chemphys_2007_08_001 crossref_primary_10_1063_1_5008448 crossref_primary_10_1007_s00249_007_0249_9 crossref_primary_10_1039_c1cp21110b crossref_primary_10_1063_1_3273218 crossref_primary_10_1063_1_3456175 crossref_primary_10_1007_s10762_009_9514_6 crossref_primary_10_1021_acs_jpcb_3c02109 crossref_primary_10_3390_photonics11080766 crossref_primary_10_1007_s11483_010_9197_5 crossref_primary_10_1021_jp710904c crossref_primary_10_1016_j_foodhyd_2020_106034 crossref_primary_10_1021_jp072350e crossref_primary_10_1039_C5CP01132A crossref_primary_10_1016_j_jnoncrysol_2010_05_092 crossref_primary_10_1364_JOSAB_26_00A113 crossref_primary_10_1002_cphc_201201057 crossref_primary_10_1039_C7RA08903A crossref_primary_10_1039_C4CP05431H crossref_primary_10_1080_00268970902744334 crossref_primary_10_1021_bm300848c crossref_primary_10_1021_jp3079869 crossref_primary_10_1088_0953_8984_24_28_284113 crossref_primary_10_1021_la2051564 crossref_primary_10_1063_1_5007681 crossref_primary_10_3390_s23135853 crossref_primary_10_1021_jp508547y crossref_primary_10_1070_QE2014v044n07ABEH015565 crossref_primary_10_1021_ja9083545 crossref_primary_10_1039_C9NR01572H crossref_primary_10_2530_jslsm_jslsm_39_0025 crossref_primary_10_1002_bem_21916 crossref_primary_10_1088_1478_3975_9_5_053001 crossref_primary_10_1364_OL_42_000470 crossref_primary_10_1002_jsfa_12658 crossref_primary_10_1016_j_cej_2024_151995 crossref_primary_10_1021_la101927g crossref_primary_10_3390_s24092742 crossref_primary_10_1063_1_4903237 crossref_primary_10_1016_j_cplett_2013_09_026 crossref_primary_10_1021_ja4129857 crossref_primary_10_1021_jp305225r crossref_primary_10_1021_ja0781083 crossref_primary_10_1063_1_4907271 crossref_primary_10_1117_1_JBO_20_3_037006 crossref_primary_10_1039_c3cp50865j crossref_primary_10_1039_c1cp20912d crossref_primary_10_1021_acs_jpcb_9b07086 crossref_primary_10_1016_j_cplett_2008_02_084 crossref_primary_10_1021_acs_jpcb_3c03654 crossref_primary_10_1021_jp305356d crossref_primary_10_1021_acs_jpcc_8b08464 crossref_primary_10_1063_1_2743401 crossref_primary_10_1073_pnas_0914885107 crossref_primary_10_1134_S1054660X10010019 crossref_primary_10_1016_j_cocis_2011_04_010 crossref_primary_10_1021_jp7106445 crossref_primary_10_1134_S0030400X10060056 crossref_primary_10_1002_lpor_201000011 crossref_primary_10_1080_01442350600862117 crossref_primary_10_1039_C1CS15277G crossref_primary_10_1007_s10762_018_0489_z crossref_primary_10_3390_s19030534 crossref_primary_10_1016_j_rio_2022_100211 crossref_primary_10_1364_OE_23_009440 crossref_primary_10_1002_cphc_200700332 crossref_primary_10_1002_cphc_201601217 crossref_primary_10_7498_aps_68_20181273 crossref_primary_10_3103_S1541308X19020110 crossref_primary_10_1016_j_ymeth_2010_05_007 crossref_primary_10_1088_2515_7647_ac691d crossref_primary_10_1529_biophysj_106_097451 crossref_primary_10_1016_j_molliq_2022_119981 crossref_primary_10_1021_acs_jpcb_2c01496 crossref_primary_10_1039_C8CP07489E crossref_primary_10_1021_acs_jctc_2c01256 crossref_primary_10_1063_1_2748405 crossref_primary_10_3390_app14072872 crossref_primary_10_1021_acs_langmuir_0c00870 crossref_primary_10_1021_jp4128012 crossref_primary_10_1063_1_3116140 crossref_primary_10_1073_pnas_0709207104 crossref_primary_10_1021_jp106423a crossref_primary_10_1039_C6RA28754A crossref_primary_10_1103_PhysRevLett_116_027801 crossref_primary_10_1021_jp4124327 crossref_primary_10_1038_s41467_019_09811_9 crossref_primary_10_1016_j_cplett_2011_04_103 crossref_primary_10_1109_TTHZ_2015_2504782 crossref_primary_10_1007_s13361_011_0175_z crossref_primary_10_1002_anie_201204532 crossref_primary_10_1007_s12648_009_0003_5 crossref_primary_10_1016_j_chemphys_2008_01_008 crossref_primary_10_1007_s10762_021_00792_9 crossref_primary_10_3390_bios12111029 crossref_primary_10_3390_chemosensors11010037 crossref_primary_10_1063_5_0068979 crossref_primary_10_1021_jp111852s crossref_primary_10_1246_bcsj_20220290 crossref_primary_10_1063_1_2754689 crossref_primary_10_1007_s12551_023_01131_z crossref_primary_10_1016_j_foodchem_2019_03_132 crossref_primary_10_1063_1_4922482 crossref_primary_10_1103_PhysRevLett_106_158102 crossref_primary_10_1039_C9CC00141G crossref_primary_10_1016_j_snb_2021_131003 crossref_primary_10_1021_jp9016932 crossref_primary_10_1002_anie_200907114 crossref_primary_10_1016_j_colsurfa_2019_123822 crossref_primary_10_1002_asia_201402696 crossref_primary_10_1080_00268976_2016_1177219 crossref_primary_10_1016_j_carres_2015_01_002 crossref_primary_10_1021_jp204473d crossref_primary_10_1063_1_4960775 crossref_primary_10_1002_jbio_202000315 crossref_primary_10_1021_acs_jpcb_7b06442 crossref_primary_10_1039_c0fd00007h crossref_primary_10_1039_C5CP06324H crossref_primary_10_1109_JSTQE_2007_913424 crossref_primary_10_1063_1_4764304 crossref_primary_10_7498_aps_68_20181742 crossref_primary_10_1088_0256_307X_33_1_013101 crossref_primary_10_1021_acs_jpcb_5b06584 crossref_primary_10_1039_C4CP03989K crossref_primary_10_1007_s10762_014_0054_3 crossref_primary_10_1063_1_2873147 crossref_primary_10_1080_08927022_2018_1496246 crossref_primary_10_1186_s13007_017_0197_z crossref_primary_10_1039_b807551b crossref_primary_10_1007_s10762_018_0478_2 crossref_primary_10_1016_j_chemphys_2007_07_052 crossref_primary_10_1039_b926977k crossref_primary_10_1063_1_5080381 crossref_primary_10_1007_s10762_019_00642_9 crossref_primary_10_1002_pssc_200779109 crossref_primary_10_1063_5_0011392 crossref_primary_10_1021_acs_jpcb_7b08030 crossref_primary_10_1063_1_3645635 crossref_primary_10_3390_molecules27185897 crossref_primary_10_1021_acs_jpcb_9b01053 crossref_primary_10_1021_jp5045332 crossref_primary_10_1039_D2CP01949C crossref_primary_10_1002_adpr_202000024 crossref_primary_10_1021_jp109173t crossref_primary_10_1364_BOE_400487 crossref_primary_10_1063_1_4989641 crossref_primary_10_1366_000370210792434422 crossref_primary_10_1039_C7CP07003A crossref_primary_10_1007_s10953_014_0279_8 crossref_primary_10_1103_PhysRevLett_117_185501 crossref_primary_10_1021_jp508089t crossref_primary_10_3390_molecules18089735 crossref_primary_10_1016_j_sna_2013_03_024 crossref_primary_10_1021_acs_jpcb_3c05228 crossref_primary_10_1002_lpor_201300224 crossref_primary_10_1016_j_saa_2017_09_035 crossref_primary_10_1021_ja0746520 crossref_primary_10_1016_j_pnmrs_2009_06_003 crossref_primary_10_1021_jp9116886 crossref_primary_10_1038_nsmb_2120 crossref_primary_10_1002_cite_200800111 crossref_primary_10_2976_1_2976661 crossref_primary_10_31857_S0044453724060133 crossref_primary_10_1002_nadc_200751938 crossref_primary_10_1039_C5CP00090D crossref_primary_10_1016_j_memsci_2013_06_042 crossref_primary_10_1021_jacs_9b06862 crossref_primary_10_1063_1_4826699 crossref_primary_10_1021_jp301988f crossref_primary_10_1039_C5CP05891K crossref_primary_10_1016_j_bios_2009_06_029 crossref_primary_10_1039_C3CP54043J crossref_primary_10_1016_j_saa_2019_117183 crossref_primary_10_1109_JBHI_2013_2255306 crossref_primary_10_1002_cphc_202200337 crossref_primary_10_1021_jp8000724 crossref_primary_10_1021_acs_jpclett_8b03188 crossref_primary_10_1021_jp0746401 crossref_primary_10_1039_b901209e crossref_primary_10_1002_prot_21924 crossref_primary_10_1016_j_cplett_2017_03_002 crossref_primary_10_1021_ja805581n crossref_primary_10_1021_la902003y crossref_primary_10_1103_PhysRevE_81_031915 crossref_primary_10_1002_ange_200907114 crossref_primary_10_1016_j_cplett_2008_03_062 crossref_primary_10_1021_acs_jpclett_2c00886 crossref_primary_10_1016_j_saa_2020_118330 crossref_primary_10_1063_1_5094570 crossref_primary_10_1016_j_bpc_2019_106240 crossref_primary_10_1016_j_bpj_2019_06_028 crossref_primary_10_1039_C4CP03102D crossref_primary_10_1063_1_3488832 crossref_primary_10_1002_ange_201204532 crossref_primary_10_1021_jp2074539 crossref_primary_10_1371_journal_pone_0191515 crossref_primary_10_1021_acs_jpcb_7b01508 crossref_primary_10_1039_C5CP06791J crossref_primary_10_1039_D1CP01841H crossref_primary_10_1002_anie_202212063 crossref_primary_10_1007_s10762_009_9561_z crossref_primary_10_1038_s43586_023_00232_z crossref_primary_10_1063_1_4882697 crossref_primary_10_1063_1_4899070 crossref_primary_10_1186_s13007_019_0492_y crossref_primary_10_1364_OE_452416 crossref_primary_10_1002_ange_202212063 crossref_primary_10_2139_ssrn_4191726 crossref_primary_10_1021_acs_jpcb_5b03836 crossref_primary_10_3390_ijms16048454 crossref_primary_10_1007_s12551_019_00601_7 crossref_primary_10_3390_e15093822 crossref_primary_10_1002_jrs_6399 crossref_primary_10_1529_biophysj_107_115956 crossref_primary_10_1021_acs_jpcb_0c10036 crossref_primary_10_1021_acs_jpcb_6b05546 crossref_primary_10_1039_c2cp42229h crossref_primary_10_1021_jp406730a crossref_primary_10_1039_C6RA18912A crossref_primary_10_1021_acs_cgd_2c00352 crossref_primary_10_1021_acs_jpcb_6b06996 crossref_primary_10_1140_epje_i2011_11087_6 crossref_primary_10_1021_jm501511f crossref_primary_10_1021_ja207929u crossref_primary_10_1016_j_bios_2020_112935 crossref_primary_10_1038_s41598_021_92656_4 crossref_primary_10_1002_anie_200802281 crossref_primary_10_1039_b807458p crossref_primary_10_1109_TTHZ_2013_2267414 crossref_primary_10_1021_jp301000c crossref_primary_10_1039_C9CP06808B crossref_primary_10_1039_C6CP02399A crossref_primary_10_1039_c2ra21320f crossref_primary_10_1002_ange_200802281 crossref_primary_10_1111_cpr_12788 crossref_primary_10_3390_photonics6010012 crossref_primary_10_1039_D3CP03357K crossref_primary_10_1016_j_molliq_2019_112395 crossref_primary_10_1021_jp906784t crossref_primary_10_1016_j_colsurfb_2016_01_031 crossref_primary_10_1002_ange_201305991 crossref_primary_10_3390_e14081399 crossref_primary_10_1039_C6CP07388C crossref_primary_10_1109_TTHZ_2016_2575450 crossref_primary_10_3390_ijms252413420 crossref_primary_10_1002_nadc_200743720 crossref_primary_10_1039_b800278a crossref_primary_10_1021_acs_jpcb_7b05892 crossref_primary_10_1063_5_0046817 crossref_primary_10_1002_ijch_201300139 crossref_primary_10_1021_jp5083467 crossref_primary_10_1080_01442350701416888 crossref_primary_10_1021_acsomega_4c00798 |
Cites_doi | 10.1073/pnas.0505206102 10.1021/ja031679k 10.1063/1.1917745 10.1021/jp030943t 10.1063/1.474242 10.1103/PhysRevLett.88.138101 10.1021/ja053627w 10.1016/S0006-3495(03)74562-7 10.1063/1.105235 10.1098/rstb.2004.1499 10.1073/pnas.041611998 10.1021/jp971879g 10.1063/1.126555 10.1002/pro.5560050222 10.1021/jp035574f 10.1021/cr980127v 10.1103/PhysRevLett.82.2888 10.1021/jp002155z 10.1146/annurev.pc.44.100193.002003 10.1021/cr990368i 10.1103/PhysRevB.46.7189 10.1021/ja038325d 10.1002/jcc.540040211 10.1016/S0076-6879(02)38220-X 10.1146/annurev.physchem.47.1.109 10.1021/jp051837p 10.1021/jp0213506 10.1103/PhysRevB.56.12069 10.1021/jp040622x 10.1126/science.223.4637.701 10.1080/00222930500190384 10.1016/0010-4655(95)00047-J 10.1073/pnas.212637899 10.1016/S0079-6565(97)00012-5 10.1016/S0301-4622(01)00260-5 10.1021/jp020579i 10.1063/1.1928427 10.1038/nature03383 10.1021/jp020100m 10.1073/pnas.042697899 10.1073/pnas.95.5.2267 10.1103/PhysRevLett.95.083201 10.1016/S0009-2614(00)01271-9 10.1021/jp960141g 10.1016/S0006-3495(04)74252-6 10.1007/s00706-002-0530-7 10.1103/PhysRevA.34.493 10.1073/pnas.95.26.15315 10.1103/PhysRevLett.76.928 10.1126/science.7539156 10.1063/1.1328072 10.1063/1.122581 10.1063/1.100958 |
ContentType | Journal Article |
Copyright | Copyright 2006 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Aug 15, 2006 2006 by The National Academy of Sciences of the USA 2006 |
Copyright_xml | – notice: Copyright 2006 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Aug 15, 2006 – notice: 2006 by The National Academy of Sciences of the USA 2006 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0604897103 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12306 |
ExternalDocumentID | PMC1567875 1150974491 16895986 10_1073_pnas_0604897103 103_33_12301 30050559 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c565t-101c8fac68042e0d104c654ec2b0c852850bd1322d23aea362d4b7c21f5212513 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:40:08 EDT 2025 Thu Jul 10 22:24:45 EDT 2025 Mon Jun 30 08:44:33 EDT 2025 Mon Jul 21 06:05:06 EDT 2025 Tue Jul 01 03:50:20 EDT 2025 Thu Apr 24 23:00:29 EDT 2025 Thu May 30 08:49:40 EDT 2019 Wed Nov 11 00:29:51 EST 2020 Thu May 29 08:42:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c565t-101c8fac68042e0d104c654ec2b0c852850bd1322d23aea362d4b7c21f5212513 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: D.M.L. and M. Havenith designed research; U.H., E.B., X.Y., and D.M.L. performed research; E.B. contributed new reagents/analytic tools; G.S., M. Heyden, and M. Havenith analyzed data; and X.Y., D.M.L., and M. Havenith wrote the paper. Communicated by Joshua Jortner, Tel Aviv University, Tel Aviv, Israel, June 14, 2006 |
OpenAccessLink | http://doi.org/10.1073/pnas.0604897103 |
PMID | 16895986 |
PQID | 201301442 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_103_33_12301 proquest_miscellaneous_68760806 crossref_primary_10_1073_pnas_0604897103 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1567875 pubmed_primary_16895986 proquest_journals_201301442 crossref_citationtrail_10_1073_pnas_0604897103 pnas_primary_103_33_12301_fulltext jstor_primary_30050559 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-08-15 |
PublicationDateYYYYMMDD | 2006-08-15 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2006 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Abragam A. (e_1_3_3_13_2) 1982 e_1_3_3_5_2 Sivia D. (e_1_3_3_39_2) 1996 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 Grant E. H. (e_1_3_3_14_2) 1978 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 Jaetaek O. (e_1_3_3_54_2) 1995; 16 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_22_2 doi: 10.1073/pnas.0505206102 – ident: e_1_3_3_26_2 doi: 10.1021/ja031679k – ident: e_1_3_3_7_2 doi: 10.1063/1.1917745 – ident: e_1_3_3_16_2 doi: 10.1021/jp030943t – ident: e_1_3_3_46_2 doi: 10.1063/1.474242 – ident: e_1_3_3_56_2 doi: 10.1103/PhysRevLett.88.138101 – ident: e_1_3_3_31_2 doi: 10.1021/ja053627w – ident: e_1_3_3_45_2 doi: 10.1016/S0006-3495(03)74562-7 – ident: e_1_3_3_49_2 doi: 10.1063/1.105235 – ident: e_1_3_3_4_2 doi: 10.1098/rstb.2004.1499 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.041611998 – ident: e_1_3_3_6_2 doi: 10.1021/jp971879g – ident: e_1_3_3_50_2 doi: 10.1063/1.126555 – ident: e_1_3_3_30_2 doi: 10.1002/pro.5560050222 – ident: e_1_3_3_27_2 doi: 10.1021/jp035574f – ident: e_1_3_3_38_2 doi: 10.1021/cr980127v – ident: e_1_3_3_47_2 doi: 10.1103/PhysRevLett.82.2888 – volume-title: Nuclear Magnetism: Order and Disorder year: 1982 ident: e_1_3_3_13_2 – ident: e_1_3_3_32_2 doi: 10.1021/jp002155z – ident: e_1_3_3_8_2 doi: 10.1146/annurev.pc.44.100193.002003 – ident: e_1_3_3_28_2 doi: 10.1021/cr990368i – ident: e_1_3_3_43_2 doi: 10.1103/PhysRevB.46.7189 – volume-title: Data Analysis: A Bayesian Tutorial year: 1996 ident: e_1_3_3_39_2 – ident: e_1_3_3_3_2 doi: 10.1021/ja038325d – volume-title: Dielectric Behaviour of Biological Molecules in Solutions year: 1978 ident: e_1_3_3_14_2 – ident: e_1_3_3_55_2 doi: 10.1002/jcc.540040211 – ident: e_1_3_3_11_2 doi: 10.1016/S0076-6879(02)38220-X – ident: e_1_3_3_19_2 doi: 10.1146/annurev.physchem.47.1.109 – ident: e_1_3_3_23_2 doi: 10.1021/jp051837p – ident: e_1_3_3_48_2 doi: 10.1021/jp0213506 – ident: e_1_3_3_52_2 doi: 10.1103/PhysRevB.56.12069 – ident: e_1_3_3_40_2 doi: 10.1021/jp040622x – ident: e_1_3_3_29_2 doi: 10.1126/science.223.4637.701 – ident: e_1_3_3_44_2 doi: 10.1080/00222930500190384 – ident: e_1_3_3_42_2 – ident: e_1_3_3_53_2 doi: 10.1016/0010-4655(95)00047-J – ident: e_1_3_3_1_2 doi: 10.1073/pnas.212637899 – ident: e_1_3_3_12_2 doi: 10.1016/S0079-6565(97)00012-5 – ident: e_1_3_3_10_2 doi: 10.1016/S0301-4622(01)00260-5 – ident: e_1_3_3_25_2 doi: 10.1021/jp020579i – ident: e_1_3_3_37_2 doi: 10.1063/1.1928427 – ident: e_1_3_3_20_2 doi: 10.1038/nature03383 – ident: e_1_3_3_5_2 doi: 10.1021/jp020100m – ident: e_1_3_3_17_2 doi: 10.1073/pnas.042697899 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.95.5.2267 – ident: e_1_3_3_21_2 doi: 10.1103/PhysRevLett.95.083201 – ident: e_1_3_3_33_2 doi: 10.1016/S0009-2614(00)01271-9 – ident: e_1_3_3_36_2 doi: 10.1021/jp960141g – ident: e_1_3_3_15_2 doi: 10.1016/S0006-3495(04)74252-6 – volume: 16 start-page: 1153 year: 1995 ident: e_1_3_3_54_2 publication-title: Bull. Korean Chem. Soc. – ident: e_1_3_3_41_2 doi: 10.1007/s00706-002-0530-7 – ident: e_1_3_3_34_2 doi: 10.1103/PhysRevA.34.493 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.95.26.15315 – ident: e_1_3_3_57_2 doi: 10.1103/PhysRevLett.76.928 – ident: e_1_3_3_58_2 doi: 10.1126/science.7539156 – ident: e_1_3_3_35_2 doi: 10.1063/1.1328072 – ident: e_1_3_3_51_2 doi: 10.1063/1.122581 – ident: e_1_3_3_24_2 doi: 10.1063/1.100958 |
SSID | ssj0009580 |
Score | 2.4010851 |
Snippet | The dynamics of water surrounding a solute is of fundamental importance in chemistry and biology. The properties of water molecules near the surface of a... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12301 |
SubjectTerms | Absorption Absorption spectra Absorptivity Carbohydrates Carbohydrates - chemistry Computer Simulation Fluid dynamics Frequency ranges Hydration Hydrogen Bonding Hydrogen bonds Models, Molecular Molecular biology Molecules Physical Sciences Proteins - chemistry Solutes Solutions - chemistry Solvation Solvents Spectroscopy Spectrum analysis Spectrum Analysis - methods Studies Surface water Time Factors Water Water - chemistry |
Title | Solute-Induced Retardation of Water Dynamics Probed Directly by Terahertz Spectroscopy |
URI | https://www.jstor.org/stable/30050559 http://www.pnas.org/content/103/33/12301.abstract https://www.ncbi.nlm.nih.gov/pubmed/16895986 https://www.proquest.com/docview/201301442 https://www.proquest.com/docview/68760806 https://pubmed.ncbi.nlm.nih.gov/PMC1567875 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAw5bFCHIoiG9trrzfHNipUSI1yaFBv1tq7bpFaJ8pDVfr3-GPMPrx2olSCXqzEXj_i-TKP3ZlvEPoiGAEjGXI_Frz0kyrlPmc89YnIhACLWxKhsy1G9GyS_LxML3u9P52spdWyCMr7nXUlj5Eq7AO5qirZ_5CsuyjsgM8gX9iChGH7TzLWc1rSh7B6pZbxVergXDgf8I7r9t-m5fxCZWIVMMjYsJu19jslqBo5X973dcGlIraczjbWecfOvi2abIJRM3143BajWA2x6Pv98ahtbXwmV1dGrU2CdsXn-o5zvQr0w-080Qv2J0NVaXNr2zafBu1l1lY7ngfbsxTMN3WaXZLvnY_WVc8xmMzEFFUH0mhkcGh8mpieok5lh6SDTUI6GhgssZ0dke473WkrQLmpBsc1XwSKQYgNMnvZDnJmtxo6EWUDRWTfGk2Xyjg-H0IIDGovfYKexhCrxNo6dJmfmamDsr-t4ZfKyLeteysCW3ujDS_JJMoq9l0YvysS2k7o7XhIFy_Qcxva4GOD033Uk_VLtN-8f3xkGc6_vkK_NoGLO8DF0wpr4OIGuNgAFzfAxcUaO-DiLnBfo8n304vhmW8bfPglxBFLcAGiklW8pAxMhwxFFCYlTRNZxkVYsjRmaVgINV0iYsIlB19LJEVWxlGlKs7TiBygvXpay7cIU0G5YIxKqULsmBchy2KZSUIHVRFGlYeC5oXmpWW_V01YbnKdhZGRXL3cvBWGh47cCTND_PLw0AMtITeO6P6Q6cBDnh7ank9yQnINUQ99fvBYXtnELw8dNsLOrd5Z5LFKNoiSJPbQJ3cUjIJa6eO1nK4WOQUfB0JB6qE3BhjtbSzAPJRtQMYNUHTzm0fq39eadt7C_N2jzzxEz1rV8B7tLecr-QFc-mXxUf9l_gIAx_Zb |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solute-induced+retardation+of+water+dynamics+probed+directly+by+terahertz+spectroscopy&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Heugen%2C+U.&rft.au=Schwaab%2C+G.&rft.au=Br%C3%BCndermann%2C+E.&rft.au=Heyden%2C+M.&rft.date=2006-08-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=33&rft.spage=12301&rft.epage=12306&rft_id=info:doi/10.1073%2Fpnas.0604897103&rft_id=info%3Apmid%2F16895986&rft.externalDocID=PMC1567875 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F33.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F33.cover.gif |