Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential

Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 2; pp. 385 - 398
Main Authors Wang, Xiang, Ji, Zhaoxia, Chang, Chong Hyun, Zhang, Haiyuan, Wang, Meiying, Liao, Yu-Pei, Lin, Sijie, Meng, Huan, Li, Ruibin, Sun, Bingbing, Winkle, Laura Van, Pinkerton, Kent E., Zink, Jeffrey I., Xia, Tian, Nel, André E.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 29.01.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.201301597

Cover

Loading…
Abstract Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential. Twenty and 110 nm Ag nanoparticles coated with PVP or citrate are used to determine their toxicity in vitro and in vivo. Small particles (20 nm) generate higher acute lung toxicity than big particles because of their high dissolution rate. However, large particles (110 nm) induce chronic lung fibrosis due to their slow dissolution rate and persistence in lungs.
AbstractList Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential.
Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential. Twenty and 110 nm Ag nanoparticles coated with PVP or citrate are used to determine their toxicity in vitro and in vivo. Small particles (20 nm) generate higher acute lung toxicity than big particles because of their high dissolution rate. However, large particles (110 nm) induce chronic lung fibrosis due to their slow dissolution rate and persistence in lungs.
Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag super(+). In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag super(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential. Twenty and 110 nm Ag nanoparticles coated with PVP or citrate are used to determine their toxicity in vitro and in vivo. Small particles (20 nm) generate higher acute lung toxicity than big particles because of their high dissolution rate. However, large particles (110 nm) induce chronic lung fibrosis due to their slow dissolution rate and persistence in lungs.
Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential. [PUBLICATION ABSTRACT]
Since more than 30 % of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, we used Ag nanoparticles (NPs) to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there was also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 had less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag + . In contrast to the more intense acute pulmonary effects of C20, C110 induced mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag + release leading to a sub-chronic injury response. Interestingly, the released metallic Ag gets incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential.
Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag + . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag + release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential.
Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential.Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential.
Author Sun, Bingbing
Zink, Jeffrey I.
Wang, Meiying
Liao, Yu-Pei
Chang, Chong Hyun
Meng, Huan
Pinkerton, Kent E.
Wang, Xiang
Ji, Zhaoxia
Winkle, Laura Van
Lin, Sijie
Li, Ruibin
Xia, Tian
Zhang, Haiyuan
Nel, André E.
Author_xml – sequence: 1
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA
– sequence: 2
  givenname: Zhaoxia
  surname: Ji
  fullname: Ji, Zhaoxia
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA
– sequence: 3
  givenname: Chong Hyun
  surname: Chang
  fullname: Chang, Chong Hyun
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA
– sequence: 4
  givenname: Haiyuan
  surname: Zhang
  fullname: Zhang, Haiyuan
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA
– sequence: 5
  givenname: Meiying
  surname: Wang
  fullname: Wang, Meiying
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
– sequence: 6
  givenname: Yu-Pei
  surname: Liao
  fullname: Liao, Yu-Pei
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
– sequence: 7
  givenname: Sijie
  surname: Lin
  fullname: Lin, Sijie
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA
– sequence: 8
  givenname: Huan
  surname: Meng
  fullname: Meng, Huan
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
– sequence: 9
  givenname: Ruibin
  surname: Li
  fullname: Li, Ruibin
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
– sequence: 10
  givenname: Bingbing
  surname: Sun
  fullname: Sun, Bingbing
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
– sequence: 11
  givenname: Laura Van
  surname: Winkle
  fullname: Winkle, Laura Van
  organization: Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, CA, 95616, Davis, USA
– sequence: 12
  givenname: Kent E.
  surname: Pinkerton
  fullname: Pinkerton, Kent E.
  organization: Center for Health and the Environmen, University of California at Davis, CA, 95616, Davis, USA
– sequence: 13
  givenname: Jeffrey I.
  surname: Zink
  fullname: Zink, Jeffrey I.
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
– sequence: 14
  givenname: Tian
  surname: Xia
  fullname: Xia, Tian
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
– sequence: 15
  givenname: André E.
  surname: Nel
  fullname: Nel, André E.
  email: anel@mednet.ucla.edu
  organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24039004$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiH7AlSOyxIXLhvHHruMLEqRQkEIJtFGPltfrJC6OHdbe0PwRfi-7TRqVSqinXWme5_WMPcfZgQ_eZNlLDAMMQN7GpXMDApgCLgR_kh3hEtO8HBJxsP_HcJgdx3gNQDFh_Fl2SBhQAcCOsj_TaFCYoVFQydTowrq1adC58mGlmmS1MxGlgKa-Nk1MytcoLQz6YZxKNvi4sKvenuxYdGpjDK7ta6iHP9ig1so6VVln06aPGhnnbmvj1s_RZbixOrgwt1o5NAnJ-GSVe549nSkXzYvd9ySbfvp4Ofqcj7-dfRm9H-e6KAueY9MNx0rFC0GLklYEQCjKgCgzA8YrXWgDRGvFaDnkUFNc0ErUilVVSXk5pCfZu23uqq2Wptbd6Y1yctXYpWo2Migr_614u5DzsJYMAHPKuoA3u4Am_GpNTHJpo-5GVN6ENkpc8u5MIFA8jjJBOAgieIe-foBeh7bx3U30FMZkyIu--Vf3m993ffe6HcC2gG5CjI2ZSW3T7cN1s1gnMch-iWS_RHK_RJ02eKDdJf9XEFvht3Vm8wgtL76Ox_fdfOvamMzN3lXNT1lyygt5dX4mv4urybA4BcnpX7Zx6r0
CitedBy_id crossref_primary_10_1038_s41598_022_17712_z
crossref_primary_10_1016_j_jre_2023_04_009
crossref_primary_10_1289_EHP234
crossref_primary_10_1016_j_ecoenv_2018_09_077
crossref_primary_10_1080_17435390_2016_1177744
crossref_primary_10_1021_acs_est_5b01214
crossref_primary_10_1016_j_jddst_2021_103069
crossref_primary_10_1089_adt_2019_920
crossref_primary_10_1016_j_envpol_2017_12_014
crossref_primary_10_1186_s12989_015_0100_x
crossref_primary_10_1016_j_jhazmat_2020_122442
crossref_primary_10_1002_jat_3104
crossref_primary_10_1186_s12989_014_0065_1
crossref_primary_10_1016_j_desal_2019_114072
crossref_primary_10_3390_nano11102656
crossref_primary_10_1002_smll_201901642
crossref_primary_10_1021_acsnano_6b07895
crossref_primary_10_1021_acsabm_2c00014
crossref_primary_10_1021_acsnano_6b04143
crossref_primary_10_1021_acs_est_7b03918
crossref_primary_10_1016_j_scitotenv_2019_134816
crossref_primary_10_1039_C6RA03917K
crossref_primary_10_1002_smll_201700776
crossref_primary_10_1116_1_4953792
crossref_primary_10_1016_j_freeradbiomed_2021_02_008
crossref_primary_10_1021_acsami_6b04216
crossref_primary_10_1088_1361_6528_ab7d72
crossref_primary_10_1021_ac501691z
crossref_primary_10_1016_j_colsurfb_2021_112173
crossref_primary_10_1039_C5RA05863E
crossref_primary_10_1039_c7tx00242d
crossref_primary_10_1007_s10439_020_02449_5
crossref_primary_10_1186_s12931_016_0407_7
crossref_primary_10_1007_s11051_014_2616_7
crossref_primary_10_1039_C9EN00407F
crossref_primary_10_3109_17435390_2015_1012184
crossref_primary_10_1016_j_scitotenv_2015_11_090
crossref_primary_10_1016_j_enmm_2023_100872
crossref_primary_10_1021_acsnano_7b01873
crossref_primary_10_2174_1568026619666191023123407
crossref_primary_10_3390_nano8121028
crossref_primary_10_1002_VIW_20200105
crossref_primary_10_1021_nn5012754
crossref_primary_10_1038_s41598_018_25085_5
crossref_primary_10_1016_j_inoche_2023_110682
crossref_primary_10_1186_s12951_018_0334_5
crossref_primary_10_1186_s12989_014_0049_1
crossref_primary_10_17352_atte_000018
crossref_primary_10_1021_acsnano_5b03443
crossref_primary_10_1016_j_jes_2017_10_010
crossref_primary_10_1186_s12989_016_0159_z
crossref_primary_10_1186_s12989_018_0283_z
crossref_primary_10_3390_magnetochemistry6040072
crossref_primary_10_1016_j_tiv_2017_09_003
crossref_primary_10_1007_s11356_020_09671_7
crossref_primary_10_1038_s41598_021_01177_7
crossref_primary_10_1016_j_ejpb_2019_09_020
crossref_primary_10_1007_s00216_018_0967_0
crossref_primary_10_3390_ijms21072375
crossref_primary_10_1016_j_cis_2023_102903
crossref_primary_10_1021_nn507216f
crossref_primary_10_1039_C6NR04381J
crossref_primary_10_1016_j_impact_2017_01_003
crossref_primary_10_3945_an_114_007443
crossref_primary_10_1016_j_ecoenv_2023_115057
crossref_primary_10_1016_j_procbio_2017_11_003
crossref_primary_10_1016_j_addr_2022_114615
crossref_primary_10_3390_nano11082086
crossref_primary_10_1080_1547691X_2016_1203379
crossref_primary_10_1515_zpch_2016_0874
crossref_primary_10_1080_17435390_2017_1388863
crossref_primary_10_1186_s12989_016_0124_x
crossref_primary_10_3390_ijms24010702
crossref_primary_10_1016_j_scitotenv_2023_165875
crossref_primary_10_1371_journal_pone_0154447
crossref_primary_10_1016_j_aca_2021_338540
crossref_primary_10_3390_microorganisms11010102
crossref_primary_10_1515_aep_2016_0038
crossref_primary_10_1007_s11051_017_3855_1
crossref_primary_10_1039_D1TB01770E
crossref_primary_10_1177_1091581815616602
crossref_primary_10_1016_j_taap_2019_01_006
crossref_primary_10_1016_j_yrtph_2020_104690
crossref_primary_10_1002_smll_201503316
crossref_primary_10_1016_j_pedsph_2023_05_004
crossref_primary_10_1007_s11356_016_8131_x
crossref_primary_10_3109_17435390_2015_1078854
crossref_primary_10_1016_j_taap_2018_04_017
crossref_primary_10_1016_j_smim_2017_10_001
crossref_primary_10_1002_tox_24045
crossref_primary_10_1186_s12989_022_00495_6
crossref_primary_10_1002_adfm_201910021
crossref_primary_10_1049_nbt2_12054
crossref_primary_10_20935_AcadEng7302
crossref_primary_10_1096_fj_201700187R
crossref_primary_10_1116_1_4926547
crossref_primary_10_1371_journal_pone_0102108
crossref_primary_10_3390_pharmaceutics13122034
crossref_primary_10_1007_s11356_016_8240_6
crossref_primary_10_1016_j_addr_2016_08_007
crossref_primary_10_1016_j_actbio_2019_05_042
crossref_primary_10_1016_j_jes_2016_05_028
crossref_primary_10_3389_fmicb_2020_563821
crossref_primary_10_1039_C6TB01131D
crossref_primary_10_1016_j_toxlet_2016_12_005
crossref_primary_10_1016_j_scitotenv_2018_12_444
crossref_primary_10_1039_C6BM00688D
crossref_primary_10_1371_journal_pone_0143077
crossref_primary_10_1016_j_nantod_2021_101267
crossref_primary_10_1021_acsnano_5b04583
crossref_primary_10_1016_j_fmre_2025_02_016
crossref_primary_10_1002_smll_201500251
crossref_primary_10_1016_j_scitotenv_2021_152010
crossref_primary_10_1007_s12274_021_3949_z
crossref_primary_10_3109_17435390_2014_958116
crossref_primary_10_1080_17435390_2025_2450372
crossref_primary_10_1038_srep36465
crossref_primary_10_1007_s11051_014_2761_z
crossref_primary_10_1002_smll_202000299
crossref_primary_10_1016_j_dsx_2020_07_022
crossref_primary_10_1002_wnan_1707
crossref_primary_10_1021_acs_est_4c00141
crossref_primary_10_3390_nano7100296
crossref_primary_10_3390_nano7120441
crossref_primary_10_1007_s13762_019_02509_x
crossref_primary_10_1016_j_memsci_2016_04_013
crossref_primary_10_1007_s10565_020_09526_4
crossref_primary_10_1177_0192623316629804
crossref_primary_10_3389_fimmu_2017_00970
crossref_primary_10_1002_tox_22330
crossref_primary_10_1016_j_impact_2016_08_002
crossref_primary_10_3109_17435390_2014_907457
crossref_primary_10_3390_ijms151223936
crossref_primary_10_1002_smll_201402859
crossref_primary_10_3390_nano9081087
crossref_primary_10_1039_C5CS00699F
crossref_primary_10_3390_toxics9080195
crossref_primary_10_15212_bioi_2021_0028
crossref_primary_10_1080_10826068_2020_1789992
crossref_primary_10_3390_ijms15046815
crossref_primary_10_1186_s12989_024_00616_3
crossref_primary_10_1007_s00216_018_1289_y
crossref_primary_10_1093_mutage_gew030
crossref_primary_10_1016_j_lfs_2015_12_046
crossref_primary_10_3390_nano14201642
crossref_primary_10_1021_acsnano_8b06003
crossref_primary_10_1080_17435390_2017_1367047
crossref_primary_10_1080_17435390_2016_1214764
crossref_primary_10_1016_j_ecoenv_2023_114869
crossref_primary_10_1039_C8EN00890F
crossref_primary_10_1080_17435390_2019_1640908
crossref_primary_10_1016_j_eurpolymj_2020_110159
crossref_primary_10_1016_j_clay_2023_106968
crossref_primary_10_1007_s12011_020_02489_x
crossref_primary_10_1038_srep43570
crossref_primary_10_1016_j_impact_2019_100205
crossref_primary_10_1021_acs_jpcb_5b07656
crossref_primary_10_1039_C8EN00701B
crossref_primary_10_1016_j_tiv_2016_09_003
crossref_primary_10_1021_acs_jpcc_5b03634
crossref_primary_10_3892_wasj_2020_46
crossref_primary_10_1186_s12989_014_0052_6
crossref_primary_10_1016_j_aca_2019_08_035
crossref_primary_10_1016_j_jallcom_2017_02_214
crossref_primary_10_1016_j_ibneur_2022_06_003
crossref_primary_10_3389_fcell_2021_696668
crossref_primary_10_1016_j_memsci_2014_10_051
crossref_primary_10_1016_j_watres_2015_10_025
crossref_primary_10_1116_1_4964867
crossref_primary_10_1016_j_fct_2021_112606
crossref_primary_10_1039_C5CS00217F
crossref_primary_10_1016_j_etap_2016_04_007
crossref_primary_10_1016_j_jaci_2016_02_023
crossref_primary_10_1021_acsnano_5b02483
crossref_primary_10_1016_j_jare_2017_10_008
crossref_primary_10_3389_fphar_2018_00213
crossref_primary_10_1039_C6TC05000J
crossref_primary_10_3390_chemosensors9070152
crossref_primary_10_1021_acsbiomaterials_7b00479
crossref_primary_10_1093_toxsci_kfv005
crossref_primary_10_1080_17435390_2020_1755470
crossref_primary_10_1631_jzus_B1600555
crossref_primary_10_1021_cr400714j
crossref_primary_10_1016_j_toxlet_2016_03_005
crossref_primary_10_1016_j_jhazmat_2024_133800
crossref_primary_10_3389_fbioe_2022_1083232
crossref_primary_10_1007_s11356_020_10563_z
crossref_primary_10_1080_15459624_2017_1376252
crossref_primary_10_3390_nano5031223
crossref_primary_10_1016_j_jconrel_2021_11_040
crossref_primary_10_1016_j_polymer_2021_123511
crossref_primary_10_1021_jp510103m
crossref_primary_10_1039_C5NR01133G
crossref_primary_10_1093_toxsci_kfu265
crossref_primary_10_1021_acs_iecr_6b02300
crossref_primary_10_1021_acs_analchem_6b00100
crossref_primary_10_1021_acs_langmuir_2c03388
crossref_primary_10_1021_acsami_5b01603
crossref_primary_10_1039_C5EN00051C
crossref_primary_10_1007_s10904_017_0545_5
crossref_primary_10_3109_17435390_2015_1127443
crossref_primary_10_1007_s11051_016_3515_x
crossref_primary_10_1016_j_jconrel_2021_05_048
crossref_primary_10_1080_1061186X_2024_2356147
crossref_primary_10_1016_j_ymthe_2017_03_011
crossref_primary_10_1016_j_biopha_2018_08_029
crossref_primary_10_1038_srep24982
crossref_primary_10_1177_01926233221107607
crossref_primary_10_1021_acs_langmuir_7b03126
crossref_primary_10_1021_ac504230j
crossref_primary_10_1155_2019_6090259
crossref_primary_10_1016_j_rechem_2024_101555
crossref_primary_10_1007_s00204_017_2015_9
crossref_primary_10_1186_s12903_023_03552_4
crossref_primary_10_1007_s00204_022_03415_x
crossref_primary_10_3389_fbioe_2022_1056419
crossref_primary_10_1080_17435390_2018_1465142
crossref_primary_10_1016_j_reprotox_2017_11_002
crossref_primary_10_1039_C8EN00959G
crossref_primary_10_1080_17435390_2018_1465140
crossref_primary_10_3109_17435390_2015_1072588
Cites_doi 10.1016/j.toxlet.2008.08.003
10.1021/nn305567s
10.1179/his.1988.11.4.213
10.1021/nl301934w
10.1016/0273-2300(92)90040-G
10.1016/j.colsurfa.2004.12.058
10.1016/j.proghi.2006.06.001
10.1165/rcmb.2008-0276OC
10.1080/15287390903212287
10.1021/nn2033055
10.1080/08958370701874671
10.1021/nn102272n
10.1021/nn3010087
10.1021/jp9925334
10.1289/ehp.01109s4547
10.1021/jp002435e
10.1093/toxsci/kfn246
10.1021/nn102112b
10.1021/es202417t
10.1016/j.matchemphys.2005.05.005
10.1093/jb/mvg111
10.1016/j.tox.2009.10.017
10.1186/1743-8977-8-5
10.3109/17435390.2011.648223
10.1016/j.materresbull.2007.02.013
10.1126/science.1114397
10.1021/nn2031319
10.1021/nn200328m
10.1021/es104205a
10.1002/anie.201205923
10.1021/nl300895y
10.1016/j.cca.2010.08.016
10.1021/jp037018r
10.1186/1743-8977-6-35
10.1021/nn3012114
10.1165/ajrcmb/6.2.235
10.1021/nn901503q
10.1006/faat.1995.1022
10.1021/cm100023p
10.1002/bip.20689
10.1021/nn1028482
10.1080/08958370701874663
10.1021/es201918f
10.1080/17435390902725914
10.1021/nn204671v
10.1021/nn9005973
10.1002/ar.22509
10.3109/01902149209020653
ContentType Journal Article
Copyright 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
5PM
DOI 10.1002/smll.201301597
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE

Materials Research Database
Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 398
ExternalDocumentID PMC4001734
3188711931
24039004
10_1002_smll_201301597
SMLL201301597
ark_67375_WNG_Q9WP85D0_7
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Environmental Protection Agency under Cooperative Agreement
  funderid: DBI 0830117
– fundername: US Public Health Service
  funderid: U19 ES019528
– fundername: NIEHS NIH HHS
  grantid: U19 ES019528
– fundername: NIEHS NIH HHS
  grantid: U01 ES020127
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
LH4
F28
FR3
5PM
ID FETCH-LOGICAL-c5657-1e81046a7593563b2009a3402aef047bc5ce02cca436870d3153b9da4bb637683
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Aug 21 18:06:03 EDT 2025
Fri Sep 05 06:30:42 EDT 2025
Thu Sep 04 22:43:07 EDT 2025
Fri Jul 25 12:07:28 EDT 2025
Mon Jul 21 05:56:37 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Tue Jul 01 02:10:10 EDT 2025
Wed Jan 22 17:05:45 EST 2025
Wed Oct 30 09:57:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nanoparticle
silver
cytotoxicity
dissolution
lung inflammation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5657-1e81046a7593563b2009a3402aef047bc5ce02cca436870d3153b9da4bb637683
Notes US Public Health Service - No. U19 ES019528
ArticleID:SMLL201301597
istex:7ACA7FB7F3F803DF9D444E91648520D5BF5E79A3
ark:/67375/WNG-Q9WP85D0-7
Environmental Protection Agency under Cooperative Agreement - No. DBI 0830117
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24039004
PQID 1491128758
PQPubID 1046358
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4001734
proquest_miscellaneous_1671530205
proquest_miscellaneous_1492709297
proquest_journals_1491128758
pubmed_primary_24039004
crossref_citationtrail_10_1002_smll_201301597
crossref_primary_10_1002_smll_201301597
wiley_primary_10_1002_smll_201301597_SMLL201301597
istex_primary_ark_67375_WNG_Q9WP85D0_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 29, 2014
PublicationDateYYYYMMDD 2014-01-29
PublicationDate_xml – month: 01
  year: 2014
  text: January 29, 2014
  day: 29
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, A. Posada-Amarillas, Mater. Res. Bull. 2008, 43, 90-96.
M. Ahamed, M. S. AlSalhi, M. K. J. Siddiqui, Clin Chim Acta 2010, 411, 1841-1848.
H. S. Wang, X. L. Qiao, J. G. Chen, X. J. Wang, S. Y. Ding, Mater. Chem. Phys. 2005, 94, 449-453.
J. Y. Liu, D. A. Sonshine, S. Shervani, R. H. Hurt, Acs Nano 2010, 4, 6903-6913.
K. C. Stone, R. R. Mercer, P. Gehr, B. Stockstill, J. D. Crapo, Am. J. Resp. Cell. Mol. 1992, 6, 235-243.
T. R. Jensen, M. D. Malinsky, C. L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 2000, 104, 10549-10556.
H. Meng, T. Xia, S. George, A. E. Nel, ACS Nano 2009, 3, 1620-1627.
D. M. Galer, H. W. Leung, R. G. Sussman, R. J. Trzos, Regul. Toxicol. Pharm. 1992, 15, 291-306.
Y. S. Kim, J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, B. S. Choi, R. Lim, H. K. Chang, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, I. J. Yu, Inhal. Toxicol. 2008, 20, 575-583.
Z. M. Xiu, J. Ma, P. J. J. Alvarez, Environ. Sci. Technol. 2011, 45, 9003-9008.
R. F. Henderson, K. E. Driscoll, J. R. Harkema, R. C. Lindenschmidt, I. Y. Chang, K. R. Maples, E. B. Barr, Fund. Appl. Toxicol. 1995, 24, 183-197.
J. H. Lee, K. Ahn, S. M. Kim, K. S. Jeon, J. S. Lee, I. J. Yu, J. Nanopart. Res. 2012, 14.
Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Nano Lett. 2012, 12, 4271-4275.
L. M. Jia, Z. J. Xie, J. H. Zheng, L. Liu, Y. He, F. Liu, Y. C. He, Anat. Rec. 2012, 295, 1291-1301.
L. V. Stebounova, A. Adamcakova-Dodd, J. S. Kim, H. Park, P. T. O'Shaughnessy, V. H. Grassian, P. S. Thorne, Part. Fibre Toxicol. 2011, 8.
S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W.H. De Jong, M. Van Zijverden, A. J. A. M. Sips, R. E. Geertsma, Nanotoxicology 2009, 3, 109-U178.
X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. George, H. Meng, H. Y. Zhang, V. Castranova, S. Mitra, A. E. Nel, ACS Nano 2010, 4, 7241-7252.
M. R. Almofti, T. Ichikawa, K. Yamashita, H. Terada, Y. Shinohara, J. Biochem. 2003, 134, 43-49.
G. Danscher, M. Stoltenberg, Prog. Histochem. Cyto. 2006, 41, 57-139.
J. P. Ryman-Rasmussen, E. W. Tewksbury, O. R. Moss, M. F. Cesta, B. A. Wong, J. C. Bonner, Am. J. Respir. Cell. Mol. Biol. 2009, 40, 349-358.
W. Zhang, Y. Yao, N. Sullivan, Y. S. Chen, Environ. Sci. Technol. 2011, 45, 4422-4428.
X. Y. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Environ. Sci. Technol. 2012, 46, 1119-1127.
X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. J. Lin, H. Meng, C. H. Chung, S. George, H. Y. Zhang, M. Y. Wang, N. Li, Y. Yang, V. Castranova, S. Mitra, J. C. Bonner, A. E. Nel, Acs Nano 2011, 5, 9772-9787.
S. Chernousova, M. Epple, Angew. Chem. Int. Ed. 2013, 52, 1636-1653.
G. Oberdorster, J. Ferin, P. E. Morrow, Exp. Lung Res. 1992, 18, 87-104.
Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A. E. Nel, J. I. Zink, ACS Nano 2012, 6, 5366-5380.
S. George, S. J. Lin, Z. X. Jo, C. R. Thomas, L. J. Li, M. Mecklenburg, H. Meng, X. Wang, H. Y. Zhang, T. Xia, J. N. Hohman, S. Lin, J. I. Zink, P. S. Weiss, A. E. Nel, ACS Nano 2012, 6, 3745-3759.
H. Y. Zhang, Z. X. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. J. Lin, X. Wang, Y. P. Liao, M. Y. Wang, L. J. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J. I. Zink, A. E. Nel, Acs Nano 2012, 6, 4349-4368.
R. B. Li, X. Wang, Z. X. Ji, B. B. Sun, H. Y. Zhang, C. H. Chang, S. J. Lin, H. Meng, Y.-P. Liao, M. Y. Wang, Z. X. Li, A. A. Hwang, T.-B. Song, R. Xu, Y. Yang, J. I. Zink, A. E. Nel, T. Xia, ACS Nano 2013, 7, 2352-2368.
K. S. Song, J. H. Sung, J. H. Ji, J. H. Lee, J. S. Lee, H. R. Ryu, J. K. Lee, Y. H. Chung, H. M. Park, B. S. Shin, H. K. Chang, B. Kelman, I. J. Yu, Nanotoxicology 2013, 7, 169-180.
H. S. Wang, X. L. Qiao, J. G. Chen, S. Y. Ding, Colloid Surf., A 2005, 256, 111-115.
S. Kameyama, M. Horie, T. Kikuchi, T. Omura, A. Tadokoro, T. Takeuchi, I. Nakase, Y. Sugiura, S. Futaki, Biopolymers 2007, 88, 98-107.
R. F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, A. Holian, Part. Fibre Toxicol. 2009, 6, 35.
G. W. Hacker, L. Grimelius, G. Danscher, G. Bernatzky, W. Muss, H. Adam, J. Thurner, J Histotechnol. 1988, 11, 213-221.
R. D. Glover, J. M. Miller, J. E. Hutchison, Acs Nano 2011, 5, 8950-8957.
W. Y. Kim, J. Kim, J. D. Park, H. Y. Ryu, I. J. Yu, J. Toxicol. Environ. Health Part A 2009, 72, 1279-1284.
V. Castranova, P. A. Schulte, R. D. Zumwalde, Accounts Chem Res. 2012.
A. Nel, T. Xia, L. Madler, N. Li, Science 2006, 311, 622-627.
S. Takenaka, E. Karg, C. Roth, H. Schulz, A. Ziesenis, U. Heinzmann, P. Schramel, J. Heyder, Environ. Health Persp. 2001, 109, 547-551.
T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. A. Meng, S. J. Lin, X. Wang, M. Y. Wang, Z. X. Ji, J. I. Zink, L. Madler, V. Castranova, S. Lin, A. E. Nel, ACS Nano 2011, 5, 1223-1235.
S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. X. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Madler, A. E. Nel, ACS Nano 2010, 4, 15-29.
S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Chem. Mater. 2010, 22, 4548-4554.
J. H. Sung, J. H. Ji, J. U. Yoon, D. S. Kim, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, J. Kim, T. S. Kim, H. K. Chang, E. J. Lee, J. H. Lee, I. J. Yu, Inhal. Toxicol. 2008, 20, 567-574.
J. S. Hyun, B. S. Lee, H. Y. Ryu, J. H. Sung, K. H. Chung, I. J. Yu, Toxicol. lett. 2008, 182, 24-28.
A. Henglein, M. Giersig, J. Phys. Chem. B 1999, 103, 9533-9539.
Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945-951.
X. Wang, T. Xia, M. C. Duch, Z. X. Ji, H. Y. Zhang, R. B. Li, B. B. Sun, S. J. Lin, H. Meng, Y. P. Liao, M. Y. Wang, T. B. Song, Y. Yang, M. C. Hersam, A. E. Nel, Nano Lett. 2012, 12, 3050-3061.
D. W. Porter, A. F. Hubbs, R. R. Mercer, N. Q. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B. T. Chen, S. Tsuruoka, M. Endo, V. Castranova, Toxicology 2010, 269, 136-147.
H. Y. Zhang, T. Xia, H. Meng, M. Xue, S. George, Z. X. Ji, X. Wang, R. Liu, M. Y. Wang, B. France, R. Rallo, R. Damoiseaux, Y. Cohen, K. A. Bradley, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 2756-2769.
J. H. Sung, J. H. Ji, J. D. Park, J. U. Yoon, D. S. Kim, K. S. Jeon, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, H. K. Chang, J. H. Lee, M. H. Cho, B. J. Kelman, I. J. Yu, Toxicol. Sci. 2009, 108, 452-461.
2009; 40
2012
2005; 256
2010; 269
1988; 11
1992; 18
1999; 103
1992; 15
2013; 7
2012; 14
2004; 108
2012; 12
2011; 5
2001; 109
2003; 134
2011; 8
2006; 311
2008; 182
1992; 6
2010; 22
2012; 295
2006; 41
2001
2009; 72
2000; 104
2010; 411
1995; 24
2013; 52
2008; 43
2011; 45
2009; 6
1981
2008; 20
2005; 94
2009; 3
2012; 6
2009; 108
2012; 46
2007; 88
2010; 4
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
Lee J. H. (e_1_2_7_9_1) 2012; 14
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
Castranova V. (e_1_2_7_43_1) 2012
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68
21950450 - Environ Sci Technol. 2011 Oct 15;45(20):9003-8
22482460 - ACS Nano. 2012 May 22;6(5):3745-59
22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61
11544161 - Environ Health Perspect. 2001 Aug;109 Suppl 4:547-51
22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87
16456071 - Science. 2006 Feb 3;311(5761):622-7
21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
21985489 - ACS Nano. 2011 Nov 22;5(11):8950-7
22264098 - Nanotoxicology. 2013 Mar;7(2):169-80
1572327 - Exp Lung Res. 1992 Jan-Mar;18(1):87-104
20719239 - Clin Chim Acta. 2010 Dec 14;411(23-24):1841-8
16949439 - Prog Histochem Cytochem. 2006;41(2):57-139
20043640 - ACS Nano. 2010 Jan 26;4(1):15-29
22148238 - Environ Sci Technol. 2012 Jan 17;46(2):1119-27
20043844 - Part Fibre Toxicol. 2009 Dec 31;6:35
21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52
23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9
21266073 - Part Fibre Toxicol. 2011;8(1):5
19033393 - Toxicol Sci. 2009 Apr;108(2):452-61
23255416 - Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53
18444010 - Inhal Toxicol. 2008 Apr;20(6):575-83
22765771 - Nano Lett. 2012 Aug 8;12(8):4271-5
1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43
21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7
21513312 - Environ Sci Technol. 2011 May 15;45(10):4422-8
7737430 - Fundam Appl Toxicol. 1995 Feb;24(2):183-97
12944369 - J Biochem. 2003 Jul;134(1):43-9
17252560 - Biopolymers. 2007;88(2):98-107
18787175 - Am J Respir Cell Mol Biol. 2009 Mar;40(3):349-58
20968290 - ACS Nano. 2010 Nov 23;4(11):6903-13
18782608 - Toxicol Lett. 2008 Nov 10;182(1-3):24-8
1509122 - Regul Toxicol Pharmacol. 1992 Jun;15(3):291-306
21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35
18444009 - Inhal Toxicol. 2008 Apr;20(6):567-74
22502734 - ACS Nano. 2012 May 22;6(5):4349-68
22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80
22678756 - Anat Rec (Hoboken). 2012 Aug;295(8):1291-301
20077197 - J Toxicol Environ Health A. 2009;72(21-22):1279-84
19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47
References_xml – reference: X. Y. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Environ. Sci. Technol. 2012, 46, 1119-1127.
– reference: R. B. Li, X. Wang, Z. X. Ji, B. B. Sun, H. Y. Zhang, C. H. Chang, S. J. Lin, H. Meng, Y.-P. Liao, M. Y. Wang, Z. X. Li, A. A. Hwang, T.-B. Song, R. Xu, Y. Yang, J. I. Zink, A. E. Nel, T. Xia, ACS Nano 2013, 7, 2352-2368.
– reference: J. H. Lee, K. Ahn, S. M. Kim, K. S. Jeon, J. S. Lee, I. J. Yu, J. Nanopart. Res. 2012, 14.
– reference: H. Y. Zhang, Z. X. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. J. Lin, X. Wang, Y. P. Liao, M. Y. Wang, L. J. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J. I. Zink, A. E. Nel, Acs Nano 2012, 6, 4349-4368.
– reference: X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. J. Lin, H. Meng, C. H. Chung, S. George, H. Y. Zhang, M. Y. Wang, N. Li, Y. Yang, V. Castranova, S. Mitra, J. C. Bonner, A. E. Nel, Acs Nano 2011, 5, 9772-9787.
– reference: J. H. Sung, J. H. Ji, J. D. Park, J. U. Yoon, D. S. Kim, K. S. Jeon, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, H. K. Chang, J. H. Lee, M. H. Cho, B. J. Kelman, I. J. Yu, Toxicol. Sci. 2009, 108, 452-461.
– reference: J. Y. Liu, D. A. Sonshine, S. Shervani, R. H. Hurt, Acs Nano 2010, 4, 6903-6913.
– reference: M. R. Almofti, T. Ichikawa, K. Yamashita, H. Terada, Y. Shinohara, J. Biochem. 2003, 134, 43-49.
– reference: Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A. E. Nel, J. I. Zink, ACS Nano 2012, 6, 5366-5380.
– reference: Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945-951.
– reference: W. Y. Kim, J. Kim, J. D. Park, H. Y. Ryu, I. J. Yu, J. Toxicol. Environ. Health Part A 2009, 72, 1279-1284.
– reference: T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. A. Meng, S. J. Lin, X. Wang, M. Y. Wang, Z. X. Ji, J. I. Zink, L. Madler, V. Castranova, S. Lin, A. E. Nel, ACS Nano 2011, 5, 1223-1235.
– reference: Y. S. Kim, J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, B. S. Choi, R. Lim, H. K. Chang, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, I. J. Yu, Inhal. Toxicol. 2008, 20, 575-583.
– reference: J. S. Hyun, B. S. Lee, H. Y. Ryu, J. H. Sung, K. H. Chung, I. J. Yu, Toxicol. lett. 2008, 182, 24-28.
– reference: R. F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, A. Holian, Part. Fibre Toxicol. 2009, 6, 35.
– reference: M. Ahamed, M. S. AlSalhi, M. K. J. Siddiqui, Clin Chim Acta 2010, 411, 1841-1848.
– reference: A. Nel, T. Xia, L. Madler, N. Li, Science 2006, 311, 622-627.
– reference: S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. X. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Madler, A. E. Nel, ACS Nano 2010, 4, 15-29.
– reference: R. D. Glover, J. M. Miller, J. E. Hutchison, Acs Nano 2011, 5, 8950-8957.
– reference: R. F. Henderson, K. E. Driscoll, J. R. Harkema, R. C. Lindenschmidt, I. Y. Chang, K. R. Maples, E. B. Barr, Fund. Appl. Toxicol. 1995, 24, 183-197.
– reference: W. Zhang, Y. Yao, N. Sullivan, Y. S. Chen, Environ. Sci. Technol. 2011, 45, 4422-4428.
– reference: S. George, S. J. Lin, Z. X. Jo, C. R. Thomas, L. J. Li, M. Mecklenburg, H. Meng, X. Wang, H. Y. Zhang, T. Xia, J. N. Hohman, S. Lin, J. I. Zink, P. S. Weiss, A. E. Nel, ACS Nano 2012, 6, 3745-3759.
– reference: X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. George, H. Meng, H. Y. Zhang, V. Castranova, S. Mitra, A. E. Nel, ACS Nano 2010, 4, 7241-7252.
– reference: H. S. Wang, X. L. Qiao, J. G. Chen, X. J. Wang, S. Y. Ding, Mater. Chem. Phys. 2005, 94, 449-453.
– reference: A. Henglein, M. Giersig, J. Phys. Chem. B 1999, 103, 9533-9539.
– reference: D. W. Porter, A. F. Hubbs, R. R. Mercer, N. Q. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B. T. Chen, S. Tsuruoka, M. Endo, V. Castranova, Toxicology 2010, 269, 136-147.
– reference: A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, A. Posada-Amarillas, Mater. Res. Bull. 2008, 43, 90-96.
– reference: H. Y. Zhang, T. Xia, H. Meng, M. Xue, S. George, Z. X. Ji, X. Wang, R. Liu, M. Y. Wang, B. France, R. Rallo, R. Damoiseaux, Y. Cohen, K. A. Bradley, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 2756-2769.
– reference: Z. M. Xiu, J. Ma, P. J. J. Alvarez, Environ. Sci. Technol. 2011, 45, 9003-9008.
– reference: S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Chem. Mater. 2010, 22, 4548-4554.
– reference: D. M. Galer, H. W. Leung, R. G. Sussman, R. J. Trzos, Regul. Toxicol. Pharm. 1992, 15, 291-306.
– reference: H. S. Wang, X. L. Qiao, J. G. Chen, S. Y. Ding, Colloid Surf., A 2005, 256, 111-115.
– reference: K. C. Stone, R. R. Mercer, P. Gehr, B. Stockstill, J. D. Crapo, Am. J. Resp. Cell. Mol. 1992, 6, 235-243.
– reference: L. V. Stebounova, A. Adamcakova-Dodd, J. S. Kim, H. Park, P. T. O'Shaughnessy, V. H. Grassian, P. S. Thorne, Part. Fibre Toxicol. 2011, 8.
– reference: X. Wang, T. Xia, M. C. Duch, Z. X. Ji, H. Y. Zhang, R. B. Li, B. B. Sun, S. J. Lin, H. Meng, Y. P. Liao, M. Y. Wang, T. B. Song, Y. Yang, M. C. Hersam, A. E. Nel, Nano Lett. 2012, 12, 3050-3061.
– reference: G. W. Hacker, L. Grimelius, G. Danscher, G. Bernatzky, W. Muss, H. Adam, J. Thurner, J Histotechnol. 1988, 11, 213-221.
– reference: S. Takenaka, E. Karg, C. Roth, H. Schulz, A. Ziesenis, U. Heinzmann, P. Schramel, J. Heyder, Environ. Health Persp. 2001, 109, 547-551.
– reference: J. H. Sung, J. H. Ji, J. U. Yoon, D. S. Kim, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, J. Kim, T. S. Kim, H. K. Chang, E. J. Lee, J. H. Lee, I. J. Yu, Inhal. Toxicol. 2008, 20, 567-574.
– reference: H. Meng, T. Xia, S. George, A. E. Nel, ACS Nano 2009, 3, 1620-1627.
– reference: V. Castranova, P. A. Schulte, R. D. Zumwalde, Accounts Chem Res. 2012.
– reference: L. M. Jia, Z. J. Xie, J. H. Zheng, L. Liu, Y. He, F. Liu, Y. C. He, Anat. Rec. 2012, 295, 1291-1301.
– reference: G. Oberdorster, J. Ferin, P. E. Morrow, Exp. Lung Res. 1992, 18, 87-104.
– reference: S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W.H. De Jong, M. Van Zijverden, A. J. A. M. Sips, R. E. Geertsma, Nanotoxicology 2009, 3, 109-U178.
– reference: S. Kameyama, M. Horie, T. Kikuchi, T. Omura, A. Tadokoro, T. Takeuchi, I. Nakase, Y. Sugiura, S. Futaki, Biopolymers 2007, 88, 98-107.
– reference: G. Danscher, M. Stoltenberg, Prog. Histochem. Cyto. 2006, 41, 57-139.
– reference: Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Nano Lett. 2012, 12, 4271-4275.
– reference: T. R. Jensen, M. D. Malinsky, C. L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 2000, 104, 10549-10556.
– reference: K. S. Song, J. H. Sung, J. H. Ji, J. H. Lee, J. S. Lee, H. R. Ryu, J. K. Lee, Y. H. Chung, H. M. Park, B. S. Shin, H. K. Chang, B. Kelman, I. J. Yu, Nanotoxicology 2013, 7, 169-180.
– reference: J. P. Ryman-Rasmussen, E. W. Tewksbury, O. R. Moss, M. F. Cesta, B. A. Wong, J. C. Bonner, Am. J. Respir. Cell. Mol. Biol. 2009, 40, 349-358.
– reference: S. Chernousova, M. Epple, Angew. Chem. Int. Ed. 2013, 52, 1636-1653.
– volume: 109
  start-page: 547
  year: 2001
  end-page: 551
  publication-title: Environ. Health Persp.
– year: 1981
– volume: 12
  start-page: 4271
  year: 2012
  end-page: 4275
  publication-title: Nano Lett.
– year: 2001
– volume: 6
  start-page: 3745
  year: 2012
  end-page: 3759
  publication-title: ACS Nano
– volume: 311
  start-page: 622
  year: 2006
  end-page: 627
  publication-title: Science
– volume: 18
  start-page: 87
  year: 1992
  end-page: 104
  publication-title: Exp. Lung Res.
– volume: 45
  start-page: 4422
  year: 2011
  end-page: 4428
  publication-title: Environ. Sci. Technol.
– volume: 94
  start-page: 449
  year: 2005
  end-page: 453
  publication-title: Mater. Chem. Phys.
– volume: 269
  start-page: 136
  year: 2010
  end-page: 147
  publication-title: Toxicology
– volume: 46
  start-page: 1119
  year: 2012
  end-page: 1127
  publication-title: Environ. Sci. Technol.
– year: 2012
  publication-title: Accounts Chem Res.
– volume: 3
  start-page: 109
  year: 2009
  end-page: U178
  publication-title: Nanotoxicology
– volume: 104
  start-page: 10549
  year: 2000
  end-page: 10556
  publication-title: J. Phys. Chem. B
– volume: 88
  start-page: 98
  year: 2007
  end-page: 107
  publication-title: Biopolymers
– volume: 6
  start-page: 5366
  year: 2012
  end-page: 5380
  publication-title: ACS Nano
– volume: 5
  start-page: 1223
  year: 2011
  end-page: 1235
  publication-title: ACS Nano
– volume: 295
  start-page: 1291
  year: 2012
  end-page: 1301
  publication-title: Anat. Rec.
– volume: 103
  start-page: 9533
  year: 1999
  end-page: 9539
  publication-title: J. Phys. Chem. B
– volume: 52
  start-page: 1636
  year: 2013
  end-page: 1653
  publication-title: Angew. Chem. Int. Ed.
– volume: 256
  start-page: 111
  year: 2005
  end-page: 115
  publication-title: Colloid Surf., A
– volume: 4
  start-page: 15
  year: 2010
  end-page: 29
  publication-title: ACS Nano
– volume: 11
  start-page: 213
  year: 1988
  end-page: 221
  publication-title: J Histotechnol.
– volume: 108
  start-page: 945
  year: 2004
  end-page: 951
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 2756
  year: 2011
  end-page: 2769
  publication-title: ACS Nano
– volume: 5
  start-page: 9772
  year: 2011
  end-page: 9787
  publication-title: Acs Nano
– volume: 7
  start-page: 2352
  year: 2013
  end-page: 2368
  publication-title: ACS Nano
– volume: 108
  start-page: 452
  year: 2009
  end-page: 461
  publication-title: Toxicol. Sci.
– volume: 22
  start-page: 4548
  year: 2010
  end-page: 4554
  publication-title: Chem. Mater.
– volume: 14
  year: 2012
  publication-title: J. Nanopart. Res.
– volume: 3
  start-page: 1620
  year: 2009
  end-page: 1627
  publication-title: ACS Nano
– volume: 5
  start-page: 8950
  year: 2011
  end-page: 8957
  publication-title: Acs Nano
– volume: 182
  start-page: 24
  year: 2008
  end-page: 28
  publication-title: Toxicol. lett.
– volume: 43
  start-page: 90
  year: 2008
  end-page: 96
  publication-title: Mater. Res. Bull.
– volume: 20
  start-page: 575
  year: 2008
  end-page: 583
  publication-title: Inhal. Toxicol.
– volume: 6
  start-page: 235
  year: 1992
  end-page: 243
  publication-title: Am. J. Resp. Cell. Mol.
– volume: 6
  start-page: 35
  year: 2009
  publication-title: Part. Fibre Toxicol.
– volume: 4
  start-page: 6903
  year: 2010
  end-page: 6913
  publication-title: Acs Nano
– volume: 411
  start-page: 1841
  year: 2010
  end-page: 1848
  publication-title: Clin Chim Acta
– volume: 134
  start-page: 43
  year: 2003
  end-page: 49
  publication-title: J. Biochem.
– volume: 45
  start-page: 9003
  year: 2011
  end-page: 9008
  publication-title: Environ. Sci. Technol.
– volume: 8
  year: 2011
  publication-title: Part. Fibre Toxicol.
– volume: 20
  start-page: 567
  year: 2008
  end-page: 574
  publication-title: Inhal. Toxicol.
– volume: 7
  start-page: 169
  year: 2013
  end-page: 180
  publication-title: Nanotoxicology
– volume: 40
  start-page: 349
  year: 2009
  end-page: 358
  publication-title: Am. J. Respir. Cell. Mol. Biol.
– volume: 72
  start-page: 1279
  year: 2009
  end-page: 1284
  publication-title: J. Toxicol. Environ. Health Part A
– volume: 6
  start-page: 4349
  year: 2012
  end-page: 4368
  publication-title: Acs Nano
– volume: 41
  start-page: 57
  year: 2006
  end-page: 139
  publication-title: Prog. Histochem. Cyto.
– volume: 12
  start-page: 3050
  year: 2012
  end-page: 3061
  publication-title: Nano Lett.
– volume: 4
  start-page: 7241
  year: 2010
  end-page: 7252
  publication-title: ACS Nano
– volume: 15
  start-page: 291
  year: 1992
  end-page: 306
  publication-title: Regul. Toxicol. Pharm.
– volume: 24
  start-page: 183
  year: 1995
  end-page: 197
  publication-title: Fund. Appl. Toxicol.
– ident: e_1_2_7_38_1
  doi: 10.1016/j.toxlet.2008.08.003
– ident: e_1_2_7_50_1
  doi: 10.1021/nn305567s
– ident: e_1_2_7_34_1
  doi: 10.1179/his.1988.11.4.213
– ident: e_1_2_7_14_1
  doi: 10.1021/nl301934w
– ident: e_1_2_7_28_1
  doi: 10.1016/0273-2300(92)90040-G
– ident: e_1_2_7_17_1
  doi: 10.1016/j.colsurfa.2004.12.058
– ident: e_1_2_7_32_1
  doi: 10.1016/j.proghi.2006.06.001
– ident: e_1_2_7_48_1
  doi: 10.1165/rcmb.2008-0276OC
– ident: e_1_2_7_4_1
  doi: 10.1080/15287390903212287
– ident: e_1_2_7_30_1
  doi: 10.1021/nn2033055
– ident: e_1_2_7_5_1
  doi: 10.1080/08958370701874671
– ident: e_1_2_7_3_1
  doi: 10.1021/nn102272n
– ident: e_1_2_7_23_1
  doi: 10.1021/nn3010087
– ident: e_1_2_7_36_1
  doi: 10.1021/jp9925334
– ident: e_1_2_7_27_1
– ident: e_1_2_7_11_1
  doi: 10.1289/ehp.01109s4547
– ident: e_1_2_7_18_1
  doi: 10.1021/jp002435e
– ident: e_1_2_7_6_1
  doi: 10.1093/toxsci/kfn246
– ident: e_1_2_7_51_1
  doi: 10.1021/nn102112b
– ident: e_1_2_7_13_1
  doi: 10.1021/es202417t
– ident: e_1_2_7_26_1
  doi: 10.1016/j.matchemphys.2005.05.005
– ident: e_1_2_7_45_1
  doi: 10.1093/jb/mvg111
– ident: e_1_2_7_47_1
  doi: 10.1016/j.tox.2009.10.017
– ident: e_1_2_7_39_1
  doi: 10.1186/1743-8977-8-5
– ident: e_1_2_7_8_1
  doi: 10.3109/17435390.2011.648223
– volume: 14
  year: 2012
  ident: e_1_2_7_9_1
  publication-title: J. Nanopart. Res.
– ident: e_1_2_7_16_1
  doi: 10.1016/j.materresbull.2007.02.013
– ident: e_1_2_7_40_1
– ident: e_1_2_7_22_1
  doi: 10.1126/science.1114397
– ident: e_1_2_7_2_1
  doi: 10.1021/nn2031319
– ident: e_1_2_7_24_1
  doi: 10.1021/nn200328m
– ident: e_1_2_7_15_1
  doi: 10.1021/es104205a
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201205923
– ident: e_1_2_7_31_1
  doi: 10.1021/nl300895y
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cca.2010.08.016
– year: 2012
  ident: e_1_2_7_43_1
  publication-title: Accounts Chem Res.
– ident: e_1_2_7_37_1
  doi: 10.1021/jp037018r
– ident: e_1_2_7_46_1
  doi: 10.1186/1743-8977-6-35
– ident: e_1_2_7_49_1
  doi: 10.1021/nn3012114
– ident: e_1_2_7_29_1
  doi: 10.1165/ajrcmb/6.2.235
– ident: e_1_2_7_19_1
  doi: 10.1021/nn901503q
– ident: e_1_2_7_42_1
  doi: 10.1006/faat.1995.1022
– ident: e_1_2_7_44_1
  doi: 10.1021/cm100023p
– ident: e_1_2_7_25_1
  doi: 10.1002/bip.20689
– ident: e_1_2_7_52_1
  doi: 10.1021/nn1028482
– ident: e_1_2_7_7_1
  doi: 10.1080/08958370701874663
– ident: e_1_2_7_35_1
  doi: 10.1021/es201918f
– ident: e_1_2_7_1_1
  doi: 10.1080/17435390902725914
– ident: e_1_2_7_20_1
  doi: 10.1021/nn204671v
– ident: e_1_2_7_21_1
  doi: 10.1021/nn9005973
– ident: e_1_2_7_33_1
  doi: 10.1002/ar.22509
– ident: e_1_2_7_41_1
  doi: 10.3109/01902149209020653
– reference: 19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47
– reference: 12944369 - J Biochem. 2003 Jul;134(1):43-9
– reference: 18782608 - Toxicol Lett. 2008 Nov 10;182(1-3):24-8
– reference: 20719239 - Clin Chim Acta. 2010 Dec 14;411(23-24):1841-8
– reference: 20043844 - Part Fibre Toxicol. 2009 Dec 31;6:35
– reference: 19033393 - Toxicol Sci. 2009 Apr;108(2):452-61
– reference: 22482460 - ACS Nano. 2012 May 22;6(5):3745-59
– reference: 23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9
– reference: 21513312 - Environ Sci Technol. 2011 May 15;45(10):4422-8
– reference: 22148238 - Environ Sci Technol. 2012 Jan 17;46(2):1119-27
– reference: 1572327 - Exp Lung Res. 1992 Jan-Mar;18(1):87-104
– reference: 22264098 - Nanotoxicology. 2013 Mar;7(2):169-80
– reference: 20968290 - ACS Nano. 2010 Nov 23;4(11):6903-13
– reference: 17252560 - Biopolymers. 2007;88(2):98-107
– reference: 21950450 - Environ Sci Technol. 2011 Oct 15;45(20):9003-8
– reference: 20077197 - J Toxicol Environ Health A. 2009;72(21-22):1279-84
– reference: 20043640 - ACS Nano. 2010 Jan 26;4(1):15-29
– reference: 18787175 - Am J Respir Cell Mol Biol. 2009 Mar;40(3):349-58
– reference: 21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7
– reference: 1509122 - Regul Toxicol Pharmacol. 1992 Jun;15(3):291-306
– reference: 16456071 - Science. 2006 Feb 3;311(5761):622-7
– reference: 7737430 - Fundam Appl Toxicol. 1995 Feb;24(2):183-97
– reference: 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61
– reference: 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
– reference: 16949439 - Prog Histochem Cytochem. 2006;41(2):57-139
– reference: 18444010 - Inhal Toxicol. 2008 Apr;20(6):575-83
– reference: 23255416 - Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53
– reference: 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80
– reference: 21266073 - Part Fibre Toxicol. 2011;8(1):5
– reference: 21985489 - ACS Nano. 2011 Nov 22;5(11):8950-7
– reference: 1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43
– reference: 23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68
– reference: 21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52
– reference: 22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87
– reference: 11544161 - Environ Health Perspect. 2001 Aug;109 Suppl 4:547-51
– reference: 18444009 - Inhal Toxicol. 2008 Apr;20(6):567-74
– reference: 22678756 - Anat Rec (Hoboken). 2012 Aug;295(8):1291-301
– reference: 21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35
– reference: 22765771 - Nano Lett. 2012 Aug 8;12(8):4271-5
– reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68
SSID ssj0031247
Score 2.5424197
Snippet Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern....
Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern....
Since more than 30 % of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms Animals
Biocompatibility
Biological Availability
Cell Line
Citrates
cytotoxicity
Dissolution
Female
Humans
Lung - drug effects
lung inflammation
Lungs
Male
Metal Nanoparticles - chemistry
Metal Nanoparticles - toxicity
Mice
Microscopy, Electron, Transmission
nanoparticle
Nanoparticles
Nanostructure
Nanotechnology
Rats
Silver
Silver - chemistry
Silver - pharmacokinetics
Silver - toxicity
Solubility
Toxicity
Toxicity Tests, Subchronic
Title Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential
URI https://api.istex.fr/ark:/67375/WNG-Q9WP85D0-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201301597
https://www.ncbi.nlm.nih.gov/pubmed/24039004
https://www.proquest.com/docview/1491128758
https://www.proquest.com/docview/1492709297
https://www.proquest.com/docview/1671530205
https://pubmed.ncbi.nlm.nih.gov/PMC4001734
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQeIEHYFwDGzISgqdsSezEyePoGBPqpsJWbW-WHbtatJBMa4oGP2S_l3NyMS1XCd5a-bhq3HP5Ts_xdwh5Gc9UZg1PfQ3xA0eYZT4Ws3zAplyIFIJciPedDw6T_Sl_fxqfLt3i7_gh3B9uaBmtv0YDV3q-_Z00dP6pxNIB-GCIyHidHBu2EBV9dPxRDIJXO10FYpaPxFsDa2MQba9uX4lKN_GAr34FOX_unFxGtG1I2rtL1PAwXSfK-dai0Vv51x94Hv_nae-ROz1epTudgq2TG7a6T24vsRg-INfTuaX1jI5qwK2GHhXYbE3BbUM-3rfd0aamU3eNhgLopK4L76y4wN2TXpbuFs4eKAq_KWr1WRVlRyj-BT9qZMuyXRuDq6LH9VWRDz6cTuoGG6BU-ZBM994ej_b9ftyDn2Pt1Q9tigVnJeKMxQnTWLdRDPJbZWcBFzqPcxtEoHFImi8Cw8BZ68wornUCbjJlj8haVVf2CaGRSbg2TFsOSbcxqbIsDI2JuMkClc-sR_zh55Z5z4WOIzlK2bE4RxLPW7rz9shrJ3_RsYD8VvJVqz1OTF2eY--ciOXJ4Tv5ITuZpPFuIEFwY1Av2buNOeRhEHsgh41Tj7xwy2DwWMVRla0XrUwkAkC14g8yiQhxHFQQe-Rxp7HuCyEBYwau0SNiRZedABKOr65UxVlLPM4R0zDYGbWq-pejkEcH47F79_RfNj0jt-A1tkn5UbZB1prLhd0EENjo562hfwNSV1XK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPUAPvKGBAkZCcEqbt5Mj7FIWyK4Wuqv2ZtmxV40akqqbRYUfwu9lJg_T5SnBMfE4Spx5esbfEPI0XIhEqyC2JdgPbGGW2JjMssE3DRiLwci5eN55PIlG8-DtUdhXE-JZmBYfwmy4oWQ0-hoFHDek976jhi4_Fpg7ACUMJpldJpvY1htlc_jBIEj5YL6a_ipgtWyE3upxGx1vb33-ml3axCU-_5XT-XPt5EWftjFK-9eJ7D-nrUU52V3Vcjf78gPS43997w1yrXNZ6YuWx26SS7q8RbYuABneJl_nS02rBR1U4LoqepBjvTUFzQ0heVd5R-uKzs1JGgp-JzWFeMf5Kc6edrR0mBuRoEj8Mq_EJ5EXLab4Z3zUQBdFM5aCtqKz6jzPejVOp1WNNVCiuEPm-69mg5HddXywM0y_2q6OMecsWJj4YeRLTN0IH0JcoRdOwGQWZtrxgOkQN585ygd9LRMlAikj0JSxf5dslFWptwn1VBRI5UsdQNytVCy077pKeYFKHJEttEXs_n_zrINDx64cBW-BnD2O683NelvkuaE_bYFAfkv5rGEfQybOTrB8joX8cPKav08Op3E4dDgQ7vT8xTvNsYRQDMwPhLFhbJEnZhhkHhM5otTVqqHxmAOOLfsDTcRc7AjlhBa517KseSHEYExAO1qErTGzIUDM8fWRMj9usMcDdGt8mOk1vPqXpeAH4zQ1V_f_ZdJjcmU0G6c8fTN594BchftYNWV7yQ7ZqM9W-iH4hLV81Ej9N3VOWeM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BKyE4lDcYCiwSgpNbv9c-QkIokEaBNmpvq13vWrXq2lHjoMIP4fcy48eS8JTgmOxsFG9mvpnJzH5DyLMwE4lWQWxL8B84wiyxsZhlQ2waMBaDk3PxvvP-JNqbBe-Ow-OVW_wtP4T5ww0to8FrNPC5yna_k4YuzgosHQAGg0dml8lmEDkxpl_Dj4ZAygfv1YxXAadlI_NWT9voeLvr-9fc0iae8MWvYs6fWydXQ9rGJ42uE9E_TduKcrqzrOVO-uUHosf_edwbZKsLWOnLVsNukku6vEWurdAY3iZfZwtNq4wOKghcFT3IsduaAm5DQt713dG6ojNzj4ZC1ElNG95JPsfd006WDnNjEBSFX-WV-CTyomUU_4wfNdBF0ayNAavoYXWRpz2I02lVYweUKO6Q2ej14WDP7uY92CkWX21Xx1hxFixM_DDyJRZuhA8JrtCZEzCZhql2PFA5ZM1njvIBrWWiRCBlBDgZ-3fJRlmV-j6hnooCqXypA8i6lYqF9l1XKS9QiSPSTFvE7n9unnZk6DiTo-AtjbPH8by5OW-LvDDy85YG5LeSzxvtMWLi_BSb51jIjyZv-IfkaBqHQ4eD4HavXrzDjQUkYuB8IIkNY4s8Nctg8VjGEaWulo2MxxwIa9kfZCLm4jwoJ7TIvVZjzRdCBsYEsNEibE2XjQAyjq-vlPlJwzweYFDjw06vUdW_HAU_2B-PzasH_7LpCbkyHY74-O3k_UNyFd7GlinbS7bJRn2-1I8gIKzl48bmvwFE_lib
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+coated+silver+nanoparticles+to+understand+the+relationship+of+particle+dissolution+and+bioavailability+to+cell+and+lung+toxicological+potential&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Xiang&rft.au=Ji%2C+Zhaoxia&rft.au=Chang%2C+Chong+Hyun&rft.au=Zhang%2C+Haiyuan&rft.date=2014-01-29&rft.eissn=1613-6829&rft.volume=10&rft.issue=2&rft.spage=385&rft_id=info:doi/10.1002%2Fsmll.201301597&rft_id=info%3Apmid%2F24039004&rft.externalDocID=24039004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon