Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential
Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 2; pp. 385 - 398 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
29.01.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.201301597 |
Cover
Loading…
Abstract | Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential.
Twenty and 110 nm Ag nanoparticles coated with PVP or citrate are used to determine their toxicity in vitro and in vivo. Small particles (20 nm) generate higher acute lung toxicity than big particles because of their high dissolution rate. However, large particles (110 nm) induce chronic lung fibrosis due to their slow dissolution rate and persistence in lungs. |
---|---|
AbstractList | Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential. Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential. Twenty and 110 nm Ag nanoparticles coated with PVP or citrate are used to determine their toxicity in vitro and in vivo. Small particles (20 nm) generate higher acute lung toxicity than big particles because of their high dissolution rate. However, large particles (110 nm) induce chronic lung fibrosis due to their slow dissolution rate and persistence in lungs. Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag super(+). In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag super(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential. Twenty and 110 nm Ag nanoparticles coated with PVP or citrate are used to determine their toxicity in vitro and in vivo. Small particles (20 nm) generate higher acute lung toxicity than big particles because of their high dissolution rate. However, large particles (110 nm) induce chronic lung fibrosis due to their slow dissolution rate and persistence in lungs. Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential. [PUBLICATION ABSTRACT] Since more than 30 % of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, we used Ag nanoparticles (NPs) to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there was also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 had less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag + . In contrast to the more intense acute pulmonary effects of C20, C110 induced mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag + release leading to a sub-chronic injury response. Interestingly, the released metallic Ag gets incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential. Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag + . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag + release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential. Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential.Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential. |
Author | Sun, Bingbing Zink, Jeffrey I. Wang, Meiying Liao, Yu-Pei Chang, Chong Hyun Meng, Huan Pinkerton, Kent E. Wang, Xiang Ji, Zhaoxia Winkle, Laura Van Lin, Sijie Li, Ruibin Xia, Tian Zhang, Haiyuan Nel, André E. |
Author_xml | – sequence: 1 givenname: Xiang surname: Wang fullname: Wang, Xiang organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA – sequence: 2 givenname: Zhaoxia surname: Ji fullname: Ji, Zhaoxia organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA – sequence: 3 givenname: Chong Hyun surname: Chang fullname: Chang, Chong Hyun organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA – sequence: 4 givenname: Haiyuan surname: Zhang fullname: Zhang, Haiyuan organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA – sequence: 5 givenname: Meiying surname: Wang fullname: Wang, Meiying organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA – sequence: 6 givenname: Yu-Pei surname: Liao fullname: Liao, Yu-Pei organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA – sequence: 7 givenname: Sijie surname: Lin fullname: Lin, Sijie organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, CA, 90095, Los Angeles, USA – sequence: 8 givenname: Huan surname: Meng fullname: Meng, Huan organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA – sequence: 9 givenname: Ruibin surname: Li fullname: Li, Ruibin organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA – sequence: 10 givenname: Bingbing surname: Sun fullname: Sun, Bingbing organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA – sequence: 11 givenname: Laura Van surname: Winkle fullname: Winkle, Laura Van organization: Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, CA, 95616, Davis, USA – sequence: 12 givenname: Kent E. surname: Pinkerton fullname: Pinkerton, Kent E. organization: Center for Health and the Environmen, University of California at Davis, CA, 95616, Davis, USA – sequence: 13 givenname: Jeffrey I. surname: Zink fullname: Zink, Jeffrey I. organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA – sequence: 14 givenname: Tian surname: Xia fullname: Xia, Tian organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA – sequence: 15 givenname: André E. surname: Nel fullname: Nel, André E. email: anel@mednet.ucla.edu organization: Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California at Los Angeles, 90095, Los Angeles, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24039004$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiH7AlSOyxIXLhvHHruMLEqRQkEIJtFGPltfrJC6OHdbe0PwRfi-7TRqVSqinXWme5_WMPcfZgQ_eZNlLDAMMQN7GpXMDApgCLgR_kh3hEtO8HBJxsP_HcJgdx3gNQDFh_Fl2SBhQAcCOsj_TaFCYoVFQydTowrq1adC58mGlmmS1MxGlgKa-Nk1MytcoLQz6YZxKNvi4sKvenuxYdGpjDK7ta6iHP9ig1so6VVln06aPGhnnbmvj1s_RZbixOrgwt1o5NAnJ-GSVe549nSkXzYvd9ySbfvp4Ofqcj7-dfRm9H-e6KAueY9MNx0rFC0GLklYEQCjKgCgzA8YrXWgDRGvFaDnkUFNc0ErUilVVSXk5pCfZu23uqq2Wptbd6Y1yctXYpWo2Migr_614u5DzsJYMAHPKuoA3u4Am_GpNTHJpo-5GVN6ENkpc8u5MIFA8jjJBOAgieIe-foBeh7bx3U30FMZkyIu--Vf3m993ffe6HcC2gG5CjI2ZSW3T7cN1s1gnMch-iWS_RHK_RJ02eKDdJf9XEFvht3Vm8wgtL76Ox_fdfOvamMzN3lXNT1lyygt5dX4mv4urybA4BcnpX7Zx6r0 |
CitedBy_id | crossref_primary_10_1038_s41598_022_17712_z crossref_primary_10_1016_j_jre_2023_04_009 crossref_primary_10_1289_EHP234 crossref_primary_10_1016_j_ecoenv_2018_09_077 crossref_primary_10_1080_17435390_2016_1177744 crossref_primary_10_1021_acs_est_5b01214 crossref_primary_10_1016_j_jddst_2021_103069 crossref_primary_10_1089_adt_2019_920 crossref_primary_10_1016_j_envpol_2017_12_014 crossref_primary_10_1186_s12989_015_0100_x crossref_primary_10_1016_j_jhazmat_2020_122442 crossref_primary_10_1002_jat_3104 crossref_primary_10_1186_s12989_014_0065_1 crossref_primary_10_1016_j_desal_2019_114072 crossref_primary_10_3390_nano11102656 crossref_primary_10_1002_smll_201901642 crossref_primary_10_1021_acsnano_6b07895 crossref_primary_10_1021_acsabm_2c00014 crossref_primary_10_1021_acsnano_6b04143 crossref_primary_10_1021_acs_est_7b03918 crossref_primary_10_1016_j_scitotenv_2019_134816 crossref_primary_10_1039_C6RA03917K crossref_primary_10_1002_smll_201700776 crossref_primary_10_1116_1_4953792 crossref_primary_10_1016_j_freeradbiomed_2021_02_008 crossref_primary_10_1021_acsami_6b04216 crossref_primary_10_1088_1361_6528_ab7d72 crossref_primary_10_1021_ac501691z crossref_primary_10_1016_j_colsurfb_2021_112173 crossref_primary_10_1039_C5RA05863E crossref_primary_10_1039_c7tx00242d crossref_primary_10_1007_s10439_020_02449_5 crossref_primary_10_1186_s12931_016_0407_7 crossref_primary_10_1007_s11051_014_2616_7 crossref_primary_10_1039_C9EN00407F crossref_primary_10_3109_17435390_2015_1012184 crossref_primary_10_1016_j_scitotenv_2015_11_090 crossref_primary_10_1016_j_enmm_2023_100872 crossref_primary_10_1021_acsnano_7b01873 crossref_primary_10_2174_1568026619666191023123407 crossref_primary_10_3390_nano8121028 crossref_primary_10_1002_VIW_20200105 crossref_primary_10_1021_nn5012754 crossref_primary_10_1038_s41598_018_25085_5 crossref_primary_10_1016_j_inoche_2023_110682 crossref_primary_10_1186_s12951_018_0334_5 crossref_primary_10_1186_s12989_014_0049_1 crossref_primary_10_17352_atte_000018 crossref_primary_10_1021_acsnano_5b03443 crossref_primary_10_1016_j_jes_2017_10_010 crossref_primary_10_1186_s12989_016_0159_z crossref_primary_10_1186_s12989_018_0283_z crossref_primary_10_3390_magnetochemistry6040072 crossref_primary_10_1016_j_tiv_2017_09_003 crossref_primary_10_1007_s11356_020_09671_7 crossref_primary_10_1038_s41598_021_01177_7 crossref_primary_10_1016_j_ejpb_2019_09_020 crossref_primary_10_1007_s00216_018_0967_0 crossref_primary_10_3390_ijms21072375 crossref_primary_10_1016_j_cis_2023_102903 crossref_primary_10_1021_nn507216f crossref_primary_10_1039_C6NR04381J crossref_primary_10_1016_j_impact_2017_01_003 crossref_primary_10_3945_an_114_007443 crossref_primary_10_1016_j_ecoenv_2023_115057 crossref_primary_10_1016_j_procbio_2017_11_003 crossref_primary_10_1016_j_addr_2022_114615 crossref_primary_10_3390_nano11082086 crossref_primary_10_1080_1547691X_2016_1203379 crossref_primary_10_1515_zpch_2016_0874 crossref_primary_10_1080_17435390_2017_1388863 crossref_primary_10_1186_s12989_016_0124_x crossref_primary_10_3390_ijms24010702 crossref_primary_10_1016_j_scitotenv_2023_165875 crossref_primary_10_1371_journal_pone_0154447 crossref_primary_10_1016_j_aca_2021_338540 crossref_primary_10_3390_microorganisms11010102 crossref_primary_10_1515_aep_2016_0038 crossref_primary_10_1007_s11051_017_3855_1 crossref_primary_10_1039_D1TB01770E crossref_primary_10_1177_1091581815616602 crossref_primary_10_1016_j_taap_2019_01_006 crossref_primary_10_1016_j_yrtph_2020_104690 crossref_primary_10_1002_smll_201503316 crossref_primary_10_1016_j_pedsph_2023_05_004 crossref_primary_10_1007_s11356_016_8131_x crossref_primary_10_3109_17435390_2015_1078854 crossref_primary_10_1016_j_taap_2018_04_017 crossref_primary_10_1016_j_smim_2017_10_001 crossref_primary_10_1002_tox_24045 crossref_primary_10_1186_s12989_022_00495_6 crossref_primary_10_1002_adfm_201910021 crossref_primary_10_1049_nbt2_12054 crossref_primary_10_20935_AcadEng7302 crossref_primary_10_1096_fj_201700187R crossref_primary_10_1116_1_4926547 crossref_primary_10_1371_journal_pone_0102108 crossref_primary_10_3390_pharmaceutics13122034 crossref_primary_10_1007_s11356_016_8240_6 crossref_primary_10_1016_j_addr_2016_08_007 crossref_primary_10_1016_j_actbio_2019_05_042 crossref_primary_10_1016_j_jes_2016_05_028 crossref_primary_10_3389_fmicb_2020_563821 crossref_primary_10_1039_C6TB01131D crossref_primary_10_1016_j_toxlet_2016_12_005 crossref_primary_10_1016_j_scitotenv_2018_12_444 crossref_primary_10_1039_C6BM00688D crossref_primary_10_1371_journal_pone_0143077 crossref_primary_10_1016_j_nantod_2021_101267 crossref_primary_10_1021_acsnano_5b04583 crossref_primary_10_1016_j_fmre_2025_02_016 crossref_primary_10_1002_smll_201500251 crossref_primary_10_1016_j_scitotenv_2021_152010 crossref_primary_10_1007_s12274_021_3949_z crossref_primary_10_3109_17435390_2014_958116 crossref_primary_10_1080_17435390_2025_2450372 crossref_primary_10_1038_srep36465 crossref_primary_10_1007_s11051_014_2761_z crossref_primary_10_1002_smll_202000299 crossref_primary_10_1016_j_dsx_2020_07_022 crossref_primary_10_1002_wnan_1707 crossref_primary_10_1021_acs_est_4c00141 crossref_primary_10_3390_nano7100296 crossref_primary_10_3390_nano7120441 crossref_primary_10_1007_s13762_019_02509_x crossref_primary_10_1016_j_memsci_2016_04_013 crossref_primary_10_1007_s10565_020_09526_4 crossref_primary_10_1177_0192623316629804 crossref_primary_10_3389_fimmu_2017_00970 crossref_primary_10_1002_tox_22330 crossref_primary_10_1016_j_impact_2016_08_002 crossref_primary_10_3109_17435390_2014_907457 crossref_primary_10_3390_ijms151223936 crossref_primary_10_1002_smll_201402859 crossref_primary_10_3390_nano9081087 crossref_primary_10_1039_C5CS00699F crossref_primary_10_3390_toxics9080195 crossref_primary_10_15212_bioi_2021_0028 crossref_primary_10_1080_10826068_2020_1789992 crossref_primary_10_3390_ijms15046815 crossref_primary_10_1186_s12989_024_00616_3 crossref_primary_10_1007_s00216_018_1289_y crossref_primary_10_1093_mutage_gew030 crossref_primary_10_1016_j_lfs_2015_12_046 crossref_primary_10_3390_nano14201642 crossref_primary_10_1021_acsnano_8b06003 crossref_primary_10_1080_17435390_2017_1367047 crossref_primary_10_1080_17435390_2016_1214764 crossref_primary_10_1016_j_ecoenv_2023_114869 crossref_primary_10_1039_C8EN00890F crossref_primary_10_1080_17435390_2019_1640908 crossref_primary_10_1016_j_eurpolymj_2020_110159 crossref_primary_10_1016_j_clay_2023_106968 crossref_primary_10_1007_s12011_020_02489_x crossref_primary_10_1038_srep43570 crossref_primary_10_1016_j_impact_2019_100205 crossref_primary_10_1021_acs_jpcb_5b07656 crossref_primary_10_1039_C8EN00701B crossref_primary_10_1016_j_tiv_2016_09_003 crossref_primary_10_1021_acs_jpcc_5b03634 crossref_primary_10_3892_wasj_2020_46 crossref_primary_10_1186_s12989_014_0052_6 crossref_primary_10_1016_j_aca_2019_08_035 crossref_primary_10_1016_j_jallcom_2017_02_214 crossref_primary_10_1016_j_ibneur_2022_06_003 crossref_primary_10_3389_fcell_2021_696668 crossref_primary_10_1016_j_memsci_2014_10_051 crossref_primary_10_1016_j_watres_2015_10_025 crossref_primary_10_1116_1_4964867 crossref_primary_10_1016_j_fct_2021_112606 crossref_primary_10_1039_C5CS00217F crossref_primary_10_1016_j_etap_2016_04_007 crossref_primary_10_1016_j_jaci_2016_02_023 crossref_primary_10_1021_acsnano_5b02483 crossref_primary_10_1016_j_jare_2017_10_008 crossref_primary_10_3389_fphar_2018_00213 crossref_primary_10_1039_C6TC05000J crossref_primary_10_3390_chemosensors9070152 crossref_primary_10_1021_acsbiomaterials_7b00479 crossref_primary_10_1093_toxsci_kfv005 crossref_primary_10_1080_17435390_2020_1755470 crossref_primary_10_1631_jzus_B1600555 crossref_primary_10_1021_cr400714j crossref_primary_10_1016_j_toxlet_2016_03_005 crossref_primary_10_1016_j_jhazmat_2024_133800 crossref_primary_10_3389_fbioe_2022_1083232 crossref_primary_10_1007_s11356_020_10563_z crossref_primary_10_1080_15459624_2017_1376252 crossref_primary_10_3390_nano5031223 crossref_primary_10_1016_j_jconrel_2021_11_040 crossref_primary_10_1016_j_polymer_2021_123511 crossref_primary_10_1021_jp510103m crossref_primary_10_1039_C5NR01133G crossref_primary_10_1093_toxsci_kfu265 crossref_primary_10_1021_acs_iecr_6b02300 crossref_primary_10_1021_acs_analchem_6b00100 crossref_primary_10_1021_acs_langmuir_2c03388 crossref_primary_10_1021_acsami_5b01603 crossref_primary_10_1039_C5EN00051C crossref_primary_10_1007_s10904_017_0545_5 crossref_primary_10_3109_17435390_2015_1127443 crossref_primary_10_1007_s11051_016_3515_x crossref_primary_10_1016_j_jconrel_2021_05_048 crossref_primary_10_1080_1061186X_2024_2356147 crossref_primary_10_1016_j_ymthe_2017_03_011 crossref_primary_10_1016_j_biopha_2018_08_029 crossref_primary_10_1038_srep24982 crossref_primary_10_1177_01926233221107607 crossref_primary_10_1021_acs_langmuir_7b03126 crossref_primary_10_1021_ac504230j crossref_primary_10_1155_2019_6090259 crossref_primary_10_1016_j_rechem_2024_101555 crossref_primary_10_1007_s00204_017_2015_9 crossref_primary_10_1186_s12903_023_03552_4 crossref_primary_10_1007_s00204_022_03415_x crossref_primary_10_3389_fbioe_2022_1056419 crossref_primary_10_1080_17435390_2018_1465142 crossref_primary_10_1016_j_reprotox_2017_11_002 crossref_primary_10_1039_C8EN00959G crossref_primary_10_1080_17435390_2018_1465140 crossref_primary_10_3109_17435390_2015_1072588 |
Cites_doi | 10.1016/j.toxlet.2008.08.003 10.1021/nn305567s 10.1179/his.1988.11.4.213 10.1021/nl301934w 10.1016/0273-2300(92)90040-G 10.1016/j.colsurfa.2004.12.058 10.1016/j.proghi.2006.06.001 10.1165/rcmb.2008-0276OC 10.1080/15287390903212287 10.1021/nn2033055 10.1080/08958370701874671 10.1021/nn102272n 10.1021/nn3010087 10.1021/jp9925334 10.1289/ehp.01109s4547 10.1021/jp002435e 10.1093/toxsci/kfn246 10.1021/nn102112b 10.1021/es202417t 10.1016/j.matchemphys.2005.05.005 10.1093/jb/mvg111 10.1016/j.tox.2009.10.017 10.1186/1743-8977-8-5 10.3109/17435390.2011.648223 10.1016/j.materresbull.2007.02.013 10.1126/science.1114397 10.1021/nn2031319 10.1021/nn200328m 10.1021/es104205a 10.1002/anie.201205923 10.1021/nl300895y 10.1016/j.cca.2010.08.016 10.1021/jp037018r 10.1186/1743-8977-6-35 10.1021/nn3012114 10.1165/ajrcmb/6.2.235 10.1021/nn901503q 10.1006/faat.1995.1022 10.1021/cm100023p 10.1002/bip.20689 10.1021/nn1028482 10.1080/08958370701874663 10.1021/es201918f 10.1080/17435390902725914 10.1021/nn204671v 10.1021/nn9005973 10.1002/ar.22509 10.3109/01902149209020653 |
ContentType | Journal Article |
Copyright | 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 5PM |
DOI | 10.1002/smll.201301597 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE Materials Research Database Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 398 |
ExternalDocumentID | PMC4001734 3188711931 24039004 10_1002_smll_201301597 SMLL201301597 ark_67375_WNG_Q9WP85D0_7 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Environmental Protection Agency under Cooperative Agreement funderid: DBI 0830117 – fundername: US Public Health Service funderid: U19 ES019528 – fundername: NIEHS NIH HHS grantid: U19 ES019528 – fundername: NIEHS NIH HHS grantid: U01 ES020127 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 LH4 F28 FR3 5PM |
ID | FETCH-LOGICAL-c5657-1e81046a7593563b2009a3402aef047bc5ce02cca436870d3153b9da4bb637683 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Aug 21 18:06:03 EDT 2025 Fri Sep 05 06:30:42 EDT 2025 Thu Sep 04 22:43:07 EDT 2025 Fri Jul 25 12:07:28 EDT 2025 Mon Jul 21 05:56:37 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Tue Jul 01 02:10:10 EDT 2025 Wed Jan 22 17:05:45 EST 2025 Wed Oct 30 09:57:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | nanoparticle silver cytotoxicity dissolution lung inflammation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5657-1e81046a7593563b2009a3402aef047bc5ce02cca436870d3153b9da4bb637683 |
Notes | US Public Health Service - No. U19 ES019528 ArticleID:SMLL201301597 istex:7ACA7FB7F3F803DF9D444E91648520D5BF5E79A3 ark:/67375/WNG-Q9WP85D0-7 Environmental Protection Agency under Cooperative Agreement - No. DBI 0830117 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24039004 |
PQID | 1491128758 |
PQPubID | 1046358 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4001734 proquest_miscellaneous_1671530205 proquest_miscellaneous_1492709297 proquest_journals_1491128758 pubmed_primary_24039004 crossref_citationtrail_10_1002_smll_201301597 crossref_primary_10_1002_smll_201301597 wiley_primary_10_1002_smll_201301597_SMLL201301597 istex_primary_ark_67375_WNG_Q9WP85D0_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 29, 2014 |
PublicationDateYYYYMMDD | 2014-01-29 |
PublicationDate_xml | – month: 01 year: 2014 text: January 29, 2014 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, A. Posada-Amarillas, Mater. Res. Bull. 2008, 43, 90-96. M. Ahamed, M. S. AlSalhi, M. K. J. Siddiqui, Clin Chim Acta 2010, 411, 1841-1848. H. S. Wang, X. L. Qiao, J. G. Chen, X. J. Wang, S. Y. Ding, Mater. Chem. Phys. 2005, 94, 449-453. J. Y. Liu, D. A. Sonshine, S. Shervani, R. H. Hurt, Acs Nano 2010, 4, 6903-6913. K. C. Stone, R. R. Mercer, P. Gehr, B. Stockstill, J. D. Crapo, Am. J. Resp. Cell. Mol. 1992, 6, 235-243. T. R. Jensen, M. D. Malinsky, C. L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 2000, 104, 10549-10556. H. Meng, T. Xia, S. George, A. E. Nel, ACS Nano 2009, 3, 1620-1627. D. M. Galer, H. W. Leung, R. G. Sussman, R. J. Trzos, Regul. Toxicol. Pharm. 1992, 15, 291-306. Y. S. Kim, J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, B. S. Choi, R. Lim, H. K. Chang, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, I. J. Yu, Inhal. Toxicol. 2008, 20, 575-583. Z. M. Xiu, J. Ma, P. J. J. Alvarez, Environ. Sci. Technol. 2011, 45, 9003-9008. R. F. Henderson, K. E. Driscoll, J. R. Harkema, R. C. Lindenschmidt, I. Y. Chang, K. R. Maples, E. B. Barr, Fund. Appl. Toxicol. 1995, 24, 183-197. J. H. Lee, K. Ahn, S. M. Kim, K. S. Jeon, J. S. Lee, I. J. Yu, J. Nanopart. Res. 2012, 14. Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Nano Lett. 2012, 12, 4271-4275. L. M. Jia, Z. J. Xie, J. H. Zheng, L. Liu, Y. He, F. Liu, Y. C. He, Anat. Rec. 2012, 295, 1291-1301. L. V. Stebounova, A. Adamcakova-Dodd, J. S. Kim, H. Park, P. T. O'Shaughnessy, V. H. Grassian, P. S. Thorne, Part. Fibre Toxicol. 2011, 8. S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W.H. De Jong, M. Van Zijverden, A. J. A. M. Sips, R. E. Geertsma, Nanotoxicology 2009, 3, 109-U178. X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. George, H. Meng, H. Y. Zhang, V. Castranova, S. Mitra, A. E. Nel, ACS Nano 2010, 4, 7241-7252. M. R. Almofti, T. Ichikawa, K. Yamashita, H. Terada, Y. Shinohara, J. Biochem. 2003, 134, 43-49. G. Danscher, M. Stoltenberg, Prog. Histochem. Cyto. 2006, 41, 57-139. J. P. Ryman-Rasmussen, E. W. Tewksbury, O. R. Moss, M. F. Cesta, B. A. Wong, J. C. Bonner, Am. J. Respir. Cell. Mol. Biol. 2009, 40, 349-358. W. Zhang, Y. Yao, N. Sullivan, Y. S. Chen, Environ. Sci. Technol. 2011, 45, 4422-4428. X. Y. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Environ. Sci. Technol. 2012, 46, 1119-1127. X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. J. Lin, H. Meng, C. H. Chung, S. George, H. Y. Zhang, M. Y. Wang, N. Li, Y. Yang, V. Castranova, S. Mitra, J. C. Bonner, A. E. Nel, Acs Nano 2011, 5, 9772-9787. S. Chernousova, M. Epple, Angew. Chem. Int. Ed. 2013, 52, 1636-1653. G. Oberdorster, J. Ferin, P. E. Morrow, Exp. Lung Res. 1992, 18, 87-104. Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A. E. Nel, J. I. Zink, ACS Nano 2012, 6, 5366-5380. S. George, S. J. Lin, Z. X. Jo, C. R. Thomas, L. J. Li, M. Mecklenburg, H. Meng, X. Wang, H. Y. Zhang, T. Xia, J. N. Hohman, S. Lin, J. I. Zink, P. S. Weiss, A. E. Nel, ACS Nano 2012, 6, 3745-3759. H. Y. Zhang, Z. X. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. J. Lin, X. Wang, Y. P. Liao, M. Y. Wang, L. J. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J. I. Zink, A. E. Nel, Acs Nano 2012, 6, 4349-4368. R. B. Li, X. Wang, Z. X. Ji, B. B. Sun, H. Y. Zhang, C. H. Chang, S. J. Lin, H. Meng, Y.-P. Liao, M. Y. Wang, Z. X. Li, A. A. Hwang, T.-B. Song, R. Xu, Y. Yang, J. I. Zink, A. E. Nel, T. Xia, ACS Nano 2013, 7, 2352-2368. K. S. Song, J. H. Sung, J. H. Ji, J. H. Lee, J. S. Lee, H. R. Ryu, J. K. Lee, Y. H. Chung, H. M. Park, B. S. Shin, H. K. Chang, B. Kelman, I. J. Yu, Nanotoxicology 2013, 7, 169-180. H. S. Wang, X. L. Qiao, J. G. Chen, S. Y. Ding, Colloid Surf., A 2005, 256, 111-115. S. Kameyama, M. Horie, T. Kikuchi, T. Omura, A. Tadokoro, T. Takeuchi, I. Nakase, Y. Sugiura, S. Futaki, Biopolymers 2007, 88, 98-107. R. F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, A. Holian, Part. Fibre Toxicol. 2009, 6, 35. G. W. Hacker, L. Grimelius, G. Danscher, G. Bernatzky, W. Muss, H. Adam, J. Thurner, J Histotechnol. 1988, 11, 213-221. R. D. Glover, J. M. Miller, J. E. Hutchison, Acs Nano 2011, 5, 8950-8957. W. Y. Kim, J. Kim, J. D. Park, H. Y. Ryu, I. J. Yu, J. Toxicol. Environ. Health Part A 2009, 72, 1279-1284. V. Castranova, P. A. Schulte, R. D. Zumwalde, Accounts Chem Res. 2012. A. Nel, T. Xia, L. Madler, N. Li, Science 2006, 311, 622-627. S. Takenaka, E. Karg, C. Roth, H. Schulz, A. Ziesenis, U. Heinzmann, P. Schramel, J. Heyder, Environ. Health Persp. 2001, 109, 547-551. T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. A. Meng, S. J. Lin, X. Wang, M. Y. Wang, Z. X. Ji, J. I. Zink, L. Madler, V. Castranova, S. Lin, A. E. Nel, ACS Nano 2011, 5, 1223-1235. S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. X. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Madler, A. E. Nel, ACS Nano 2010, 4, 15-29. S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Chem. Mater. 2010, 22, 4548-4554. J. H. Sung, J. H. Ji, J. U. Yoon, D. S. Kim, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, J. Kim, T. S. Kim, H. K. Chang, E. J. Lee, J. H. Lee, I. J. Yu, Inhal. Toxicol. 2008, 20, 567-574. J. S. Hyun, B. S. Lee, H. Y. Ryu, J. H. Sung, K. H. Chung, I. J. Yu, Toxicol. lett. 2008, 182, 24-28. A. Henglein, M. Giersig, J. Phys. Chem. B 1999, 103, 9533-9539. Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945-951. X. Wang, T. Xia, M. C. Duch, Z. X. Ji, H. Y. Zhang, R. B. Li, B. B. Sun, S. J. Lin, H. Meng, Y. P. Liao, M. Y. Wang, T. B. Song, Y. Yang, M. C. Hersam, A. E. Nel, Nano Lett. 2012, 12, 3050-3061. D. W. Porter, A. F. Hubbs, R. R. Mercer, N. Q. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B. T. Chen, S. Tsuruoka, M. Endo, V. Castranova, Toxicology 2010, 269, 136-147. H. Y. Zhang, T. Xia, H. Meng, M. Xue, S. George, Z. X. Ji, X. Wang, R. Liu, M. Y. Wang, B. France, R. Rallo, R. Damoiseaux, Y. Cohen, K. A. Bradley, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 2756-2769. J. H. Sung, J. H. Ji, J. D. Park, J. U. Yoon, D. S. Kim, K. S. Jeon, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, H. K. Chang, J. H. Lee, M. H. Cho, B. J. Kelman, I. J. Yu, Toxicol. Sci. 2009, 108, 452-461. 2009; 40 2012 2005; 256 2010; 269 1988; 11 1992; 18 1999; 103 1992; 15 2013; 7 2012; 14 2004; 108 2012; 12 2011; 5 2001; 109 2003; 134 2011; 8 2006; 311 2008; 182 1992; 6 2010; 22 2012; 295 2006; 41 2001 2009; 72 2000; 104 2010; 411 1995; 24 2013; 52 2008; 43 2011; 45 2009; 6 1981 2008; 20 2005; 94 2009; 3 2012; 6 2009; 108 2012; 46 2007; 88 2010; 4 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 Lee J. H. (e_1_2_7_9_1) 2012; 14 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 Castranova V. (e_1_2_7_43_1) 2012 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68 21950450 - Environ Sci Technol. 2011 Oct 15;45(20):9003-8 22482460 - ACS Nano. 2012 May 22;6(5):3745-59 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61 11544161 - Environ Health Perspect. 2001 Aug;109 Suppl 4:547-51 22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87 16456071 - Science. 2006 Feb 3;311(5761):622-7 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69 21985489 - ACS Nano. 2011 Nov 22;5(11):8950-7 22264098 - Nanotoxicology. 2013 Mar;7(2):169-80 1572327 - Exp Lung Res. 1992 Jan-Mar;18(1):87-104 20719239 - Clin Chim Acta. 2010 Dec 14;411(23-24):1841-8 16949439 - Prog Histochem Cytochem. 2006;41(2):57-139 20043640 - ACS Nano. 2010 Jan 26;4(1):15-29 22148238 - Environ Sci Technol. 2012 Jan 17;46(2):1119-27 20043844 - Part Fibre Toxicol. 2009 Dec 31;6:35 21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52 23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9 21266073 - Part Fibre Toxicol. 2011;8(1):5 19033393 - Toxicol Sci. 2009 Apr;108(2):452-61 23255416 - Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53 18444010 - Inhal Toxicol. 2008 Apr;20(6):575-83 22765771 - Nano Lett. 2012 Aug 8;12(8):4271-5 1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43 21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7 21513312 - Environ Sci Technol. 2011 May 15;45(10):4422-8 7737430 - Fundam Appl Toxicol. 1995 Feb;24(2):183-97 12944369 - J Biochem. 2003 Jul;134(1):43-9 17252560 - Biopolymers. 2007;88(2):98-107 18787175 - Am J Respir Cell Mol Biol. 2009 Mar;40(3):349-58 20968290 - ACS Nano. 2010 Nov 23;4(11):6903-13 18782608 - Toxicol Lett. 2008 Nov 10;182(1-3):24-8 1509122 - Regul Toxicol Pharmacol. 1992 Jun;15(3):291-306 21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35 18444009 - Inhal Toxicol. 2008 Apr;20(6):567-74 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80 22678756 - Anat Rec (Hoboken). 2012 Aug;295(8):1291-301 20077197 - J Toxicol Environ Health A. 2009;72(21-22):1279-84 19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47 |
References_xml | – reference: X. Y. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Environ. Sci. Technol. 2012, 46, 1119-1127. – reference: R. B. Li, X. Wang, Z. X. Ji, B. B. Sun, H. Y. Zhang, C. H. Chang, S. J. Lin, H. Meng, Y.-P. Liao, M. Y. Wang, Z. X. Li, A. A. Hwang, T.-B. Song, R. Xu, Y. Yang, J. I. Zink, A. E. Nel, T. Xia, ACS Nano 2013, 7, 2352-2368. – reference: J. H. Lee, K. Ahn, S. M. Kim, K. S. Jeon, J. S. Lee, I. J. Yu, J. Nanopart. Res. 2012, 14. – reference: H. Y. Zhang, Z. X. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. J. Lin, X. Wang, Y. P. Liao, M. Y. Wang, L. J. Li, R. Rallo, R. Damoiseaux, D. Telesca, L. Madler, Y. Cohen, J. I. Zink, A. E. Nel, Acs Nano 2012, 6, 4349-4368. – reference: X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. J. Lin, H. Meng, C. H. Chung, S. George, H. Y. Zhang, M. Y. Wang, N. Li, Y. Yang, V. Castranova, S. Mitra, J. C. Bonner, A. E. Nel, Acs Nano 2011, 5, 9772-9787. – reference: J. H. Sung, J. H. Ji, J. D. Park, J. U. Yoon, D. S. Kim, K. S. Jeon, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, H. K. Chang, J. H. Lee, M. H. Cho, B. J. Kelman, I. J. Yu, Toxicol. Sci. 2009, 108, 452-461. – reference: J. Y. Liu, D. A. Sonshine, S. Shervani, R. H. Hurt, Acs Nano 2010, 4, 6903-6913. – reference: M. R. Almofti, T. Ichikawa, K. Yamashita, H. Terada, Y. Shinohara, J. Biochem. 2003, 134, 43-49. – reference: Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A. E. Nel, J. I. Zink, ACS Nano 2012, 6, 5366-5380. – reference: Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945-951. – reference: W. Y. Kim, J. Kim, J. D. Park, H. Y. Ryu, I. J. Yu, J. Toxicol. Environ. Health Part A 2009, 72, 1279-1284. – reference: T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. A. Meng, S. J. Lin, X. Wang, M. Y. Wang, Z. X. Ji, J. I. Zink, L. Madler, V. Castranova, S. Lin, A. E. Nel, ACS Nano 2011, 5, 1223-1235. – reference: Y. S. Kim, J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, B. S. Choi, R. Lim, H. K. Chang, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, I. J. Yu, Inhal. Toxicol. 2008, 20, 575-583. – reference: J. S. Hyun, B. S. Lee, H. Y. Ryu, J. H. Sung, K. H. Chung, I. J. Yu, Toxicol. lett. 2008, 182, 24-28. – reference: R. F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, A. Holian, Part. Fibre Toxicol. 2009, 6, 35. – reference: M. Ahamed, M. S. AlSalhi, M. K. J. Siddiqui, Clin Chim Acta 2010, 411, 1841-1848. – reference: A. Nel, T. Xia, L. Madler, N. Li, Science 2006, 311, 622-627. – reference: S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. X. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Madler, A. E. Nel, ACS Nano 2010, 4, 15-29. – reference: R. D. Glover, J. M. Miller, J. E. Hutchison, Acs Nano 2011, 5, 8950-8957. – reference: R. F. Henderson, K. E. Driscoll, J. R. Harkema, R. C. Lindenschmidt, I. Y. Chang, K. R. Maples, E. B. Barr, Fund. Appl. Toxicol. 1995, 24, 183-197. – reference: W. Zhang, Y. Yao, N. Sullivan, Y. S. Chen, Environ. Sci. Technol. 2011, 45, 4422-4428. – reference: S. George, S. J. Lin, Z. X. Jo, C. R. Thomas, L. J. Li, M. Mecklenburg, H. Meng, X. Wang, H. Y. Zhang, T. Xia, J. N. Hohman, S. Lin, J. I. Zink, P. S. Weiss, A. E. Nel, ACS Nano 2012, 6, 3745-3759. – reference: X. Wang, T. Xia, S. A. Ntim, Z. X. Ji, S. George, H. Meng, H. Y. Zhang, V. Castranova, S. Mitra, A. E. Nel, ACS Nano 2010, 4, 7241-7252. – reference: H. S. Wang, X. L. Qiao, J. G. Chen, X. J. Wang, S. Y. Ding, Mater. Chem. Phys. 2005, 94, 449-453. – reference: A. Henglein, M. Giersig, J. Phys. Chem. B 1999, 103, 9533-9539. – reference: D. W. Porter, A. F. Hubbs, R. R. Mercer, N. Q. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B. T. Chen, S. Tsuruoka, M. Endo, V. Castranova, Toxicology 2010, 269, 136-147. – reference: A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, A. Posada-Amarillas, Mater. Res. Bull. 2008, 43, 90-96. – reference: H. Y. Zhang, T. Xia, H. Meng, M. Xue, S. George, Z. X. Ji, X. Wang, R. Liu, M. Y. Wang, B. France, R. Rallo, R. Damoiseaux, Y. Cohen, K. A. Bradley, J. I. Zink, A. E. Nel, ACS Nano 2011, 5, 2756-2769. – reference: Z. M. Xiu, J. Ma, P. J. J. Alvarez, Environ. Sci. Technol. 2011, 45, 9003-9008. – reference: S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, Chem. Mater. 2010, 22, 4548-4554. – reference: D. M. Galer, H. W. Leung, R. G. Sussman, R. J. Trzos, Regul. Toxicol. Pharm. 1992, 15, 291-306. – reference: H. S. Wang, X. L. Qiao, J. G. Chen, S. Y. Ding, Colloid Surf., A 2005, 256, 111-115. – reference: K. C. Stone, R. R. Mercer, P. Gehr, B. Stockstill, J. D. Crapo, Am. J. Resp. Cell. Mol. 1992, 6, 235-243. – reference: L. V. Stebounova, A. Adamcakova-Dodd, J. S. Kim, H. Park, P. T. O'Shaughnessy, V. H. Grassian, P. S. Thorne, Part. Fibre Toxicol. 2011, 8. – reference: X. Wang, T. Xia, M. C. Duch, Z. X. Ji, H. Y. Zhang, R. B. Li, B. B. Sun, S. J. Lin, H. Meng, Y. P. Liao, M. Y. Wang, T. B. Song, Y. Yang, M. C. Hersam, A. E. Nel, Nano Lett. 2012, 12, 3050-3061. – reference: G. W. Hacker, L. Grimelius, G. Danscher, G. Bernatzky, W. Muss, H. Adam, J. Thurner, J Histotechnol. 1988, 11, 213-221. – reference: S. Takenaka, E. Karg, C. Roth, H. Schulz, A. Ziesenis, U. Heinzmann, P. Schramel, J. Heyder, Environ. Health Persp. 2001, 109, 547-551. – reference: J. H. Sung, J. H. Ji, J. U. Yoon, D. S. Kim, M. Y. Song, J. Jeong, B. S. Han, J. H. Han, Y. H. Chung, J. Kim, T. S. Kim, H. K. Chang, E. J. Lee, J. H. Lee, I. J. Yu, Inhal. Toxicol. 2008, 20, 567-574. – reference: H. Meng, T. Xia, S. George, A. E. Nel, ACS Nano 2009, 3, 1620-1627. – reference: V. Castranova, P. A. Schulte, R. D. Zumwalde, Accounts Chem Res. 2012. – reference: L. M. Jia, Z. J. Xie, J. H. Zheng, L. Liu, Y. He, F. Liu, Y. C. He, Anat. Rec. 2012, 295, 1291-1301. – reference: G. Oberdorster, J. Ferin, P. E. Morrow, Exp. Lung Res. 1992, 18, 87-104. – reference: S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W.H. De Jong, M. Van Zijverden, A. J. A. M. Sips, R. E. Geertsma, Nanotoxicology 2009, 3, 109-U178. – reference: S. Kameyama, M. Horie, T. Kikuchi, T. Omura, A. Tadokoro, T. Takeuchi, I. Nakase, Y. Sugiura, S. Futaki, Biopolymers 2007, 88, 98-107. – reference: G. Danscher, M. Stoltenberg, Prog. Histochem. Cyto. 2006, 41, 57-139. – reference: Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Nano Lett. 2012, 12, 4271-4275. – reference: T. R. Jensen, M. D. Malinsky, C. L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 2000, 104, 10549-10556. – reference: K. S. Song, J. H. Sung, J. H. Ji, J. H. Lee, J. S. Lee, H. R. Ryu, J. K. Lee, Y. H. Chung, H. M. Park, B. S. Shin, H. K. Chang, B. Kelman, I. J. Yu, Nanotoxicology 2013, 7, 169-180. – reference: J. P. Ryman-Rasmussen, E. W. Tewksbury, O. R. Moss, M. F. Cesta, B. A. Wong, J. C. Bonner, Am. J. Respir. Cell. Mol. Biol. 2009, 40, 349-358. – reference: S. Chernousova, M. Epple, Angew. Chem. Int. Ed. 2013, 52, 1636-1653. – volume: 109 start-page: 547 year: 2001 end-page: 551 publication-title: Environ. Health Persp. – year: 1981 – volume: 12 start-page: 4271 year: 2012 end-page: 4275 publication-title: Nano Lett. – year: 2001 – volume: 6 start-page: 3745 year: 2012 end-page: 3759 publication-title: ACS Nano – volume: 311 start-page: 622 year: 2006 end-page: 627 publication-title: Science – volume: 18 start-page: 87 year: 1992 end-page: 104 publication-title: Exp. Lung Res. – volume: 45 start-page: 4422 year: 2011 end-page: 4428 publication-title: Environ. Sci. Technol. – volume: 94 start-page: 449 year: 2005 end-page: 453 publication-title: Mater. Chem. Phys. – volume: 269 start-page: 136 year: 2010 end-page: 147 publication-title: Toxicology – volume: 46 start-page: 1119 year: 2012 end-page: 1127 publication-title: Environ. Sci. Technol. – year: 2012 publication-title: Accounts Chem Res. – volume: 3 start-page: 109 year: 2009 end-page: U178 publication-title: Nanotoxicology – volume: 104 start-page: 10549 year: 2000 end-page: 10556 publication-title: J. Phys. Chem. B – volume: 88 start-page: 98 year: 2007 end-page: 107 publication-title: Biopolymers – volume: 6 start-page: 5366 year: 2012 end-page: 5380 publication-title: ACS Nano – volume: 5 start-page: 1223 year: 2011 end-page: 1235 publication-title: ACS Nano – volume: 295 start-page: 1291 year: 2012 end-page: 1301 publication-title: Anat. Rec. – volume: 103 start-page: 9533 year: 1999 end-page: 9539 publication-title: J. Phys. Chem. B – volume: 52 start-page: 1636 year: 2013 end-page: 1653 publication-title: Angew. Chem. Int. Ed. – volume: 256 start-page: 111 year: 2005 end-page: 115 publication-title: Colloid Surf., A – volume: 4 start-page: 15 year: 2010 end-page: 29 publication-title: ACS Nano – volume: 11 start-page: 213 year: 1988 end-page: 221 publication-title: J Histotechnol. – volume: 108 start-page: 945 year: 2004 end-page: 951 publication-title: J. Phys. Chem. B – volume: 5 start-page: 2756 year: 2011 end-page: 2769 publication-title: ACS Nano – volume: 5 start-page: 9772 year: 2011 end-page: 9787 publication-title: Acs Nano – volume: 7 start-page: 2352 year: 2013 end-page: 2368 publication-title: ACS Nano – volume: 108 start-page: 452 year: 2009 end-page: 461 publication-title: Toxicol. Sci. – volume: 22 start-page: 4548 year: 2010 end-page: 4554 publication-title: Chem. Mater. – volume: 14 year: 2012 publication-title: J. Nanopart. Res. – volume: 3 start-page: 1620 year: 2009 end-page: 1627 publication-title: ACS Nano – volume: 5 start-page: 8950 year: 2011 end-page: 8957 publication-title: Acs Nano – volume: 182 start-page: 24 year: 2008 end-page: 28 publication-title: Toxicol. lett. – volume: 43 start-page: 90 year: 2008 end-page: 96 publication-title: Mater. Res. Bull. – volume: 20 start-page: 575 year: 2008 end-page: 583 publication-title: Inhal. Toxicol. – volume: 6 start-page: 235 year: 1992 end-page: 243 publication-title: Am. J. Resp. Cell. Mol. – volume: 6 start-page: 35 year: 2009 publication-title: Part. Fibre Toxicol. – volume: 4 start-page: 6903 year: 2010 end-page: 6913 publication-title: Acs Nano – volume: 411 start-page: 1841 year: 2010 end-page: 1848 publication-title: Clin Chim Acta – volume: 134 start-page: 43 year: 2003 end-page: 49 publication-title: J. Biochem. – volume: 45 start-page: 9003 year: 2011 end-page: 9008 publication-title: Environ. Sci. Technol. – volume: 8 year: 2011 publication-title: Part. Fibre Toxicol. – volume: 20 start-page: 567 year: 2008 end-page: 574 publication-title: Inhal. Toxicol. – volume: 7 start-page: 169 year: 2013 end-page: 180 publication-title: Nanotoxicology – volume: 40 start-page: 349 year: 2009 end-page: 358 publication-title: Am. J. Respir. Cell. Mol. Biol. – volume: 72 start-page: 1279 year: 2009 end-page: 1284 publication-title: J. Toxicol. Environ. Health Part A – volume: 6 start-page: 4349 year: 2012 end-page: 4368 publication-title: Acs Nano – volume: 41 start-page: 57 year: 2006 end-page: 139 publication-title: Prog. Histochem. Cyto. – volume: 12 start-page: 3050 year: 2012 end-page: 3061 publication-title: Nano Lett. – volume: 4 start-page: 7241 year: 2010 end-page: 7252 publication-title: ACS Nano – volume: 15 start-page: 291 year: 1992 end-page: 306 publication-title: Regul. Toxicol. Pharm. – volume: 24 start-page: 183 year: 1995 end-page: 197 publication-title: Fund. Appl. Toxicol. – ident: e_1_2_7_38_1 doi: 10.1016/j.toxlet.2008.08.003 – ident: e_1_2_7_50_1 doi: 10.1021/nn305567s – ident: e_1_2_7_34_1 doi: 10.1179/his.1988.11.4.213 – ident: e_1_2_7_14_1 doi: 10.1021/nl301934w – ident: e_1_2_7_28_1 doi: 10.1016/0273-2300(92)90040-G – ident: e_1_2_7_17_1 doi: 10.1016/j.colsurfa.2004.12.058 – ident: e_1_2_7_32_1 doi: 10.1016/j.proghi.2006.06.001 – ident: e_1_2_7_48_1 doi: 10.1165/rcmb.2008-0276OC – ident: e_1_2_7_4_1 doi: 10.1080/15287390903212287 – ident: e_1_2_7_30_1 doi: 10.1021/nn2033055 – ident: e_1_2_7_5_1 doi: 10.1080/08958370701874671 – ident: e_1_2_7_3_1 doi: 10.1021/nn102272n – ident: e_1_2_7_23_1 doi: 10.1021/nn3010087 – ident: e_1_2_7_36_1 doi: 10.1021/jp9925334 – ident: e_1_2_7_27_1 – ident: e_1_2_7_11_1 doi: 10.1289/ehp.01109s4547 – ident: e_1_2_7_18_1 doi: 10.1021/jp002435e – ident: e_1_2_7_6_1 doi: 10.1093/toxsci/kfn246 – ident: e_1_2_7_51_1 doi: 10.1021/nn102112b – ident: e_1_2_7_13_1 doi: 10.1021/es202417t – ident: e_1_2_7_26_1 doi: 10.1016/j.matchemphys.2005.05.005 – ident: e_1_2_7_45_1 doi: 10.1093/jb/mvg111 – ident: e_1_2_7_47_1 doi: 10.1016/j.tox.2009.10.017 – ident: e_1_2_7_39_1 doi: 10.1186/1743-8977-8-5 – ident: e_1_2_7_8_1 doi: 10.3109/17435390.2011.648223 – volume: 14 year: 2012 ident: e_1_2_7_9_1 publication-title: J. Nanopart. Res. – ident: e_1_2_7_16_1 doi: 10.1016/j.materresbull.2007.02.013 – ident: e_1_2_7_40_1 – ident: e_1_2_7_22_1 doi: 10.1126/science.1114397 – ident: e_1_2_7_2_1 doi: 10.1021/nn2031319 – ident: e_1_2_7_24_1 doi: 10.1021/nn200328m – ident: e_1_2_7_15_1 doi: 10.1021/es104205a – ident: e_1_2_7_12_1 doi: 10.1002/anie.201205923 – ident: e_1_2_7_31_1 doi: 10.1021/nl300895y – ident: e_1_2_7_10_1 doi: 10.1016/j.cca.2010.08.016 – year: 2012 ident: e_1_2_7_43_1 publication-title: Accounts Chem Res. – ident: e_1_2_7_37_1 doi: 10.1021/jp037018r – ident: e_1_2_7_46_1 doi: 10.1186/1743-8977-6-35 – ident: e_1_2_7_49_1 doi: 10.1021/nn3012114 – ident: e_1_2_7_29_1 doi: 10.1165/ajrcmb/6.2.235 – ident: e_1_2_7_19_1 doi: 10.1021/nn901503q – ident: e_1_2_7_42_1 doi: 10.1006/faat.1995.1022 – ident: e_1_2_7_44_1 doi: 10.1021/cm100023p – ident: e_1_2_7_25_1 doi: 10.1002/bip.20689 – ident: e_1_2_7_52_1 doi: 10.1021/nn1028482 – ident: e_1_2_7_7_1 doi: 10.1080/08958370701874663 – ident: e_1_2_7_35_1 doi: 10.1021/es201918f – ident: e_1_2_7_1_1 doi: 10.1080/17435390902725914 – ident: e_1_2_7_20_1 doi: 10.1021/nn204671v – ident: e_1_2_7_21_1 doi: 10.1021/nn9005973 – ident: e_1_2_7_33_1 doi: 10.1002/ar.22509 – ident: e_1_2_7_41_1 doi: 10.3109/01902149209020653 – reference: 19857541 - Toxicology. 2010 Mar 10;269(2-3):136-47 – reference: 12944369 - J Biochem. 2003 Jul;134(1):43-9 – reference: 18782608 - Toxicol Lett. 2008 Nov 10;182(1-3):24-8 – reference: 20719239 - Clin Chim Acta. 2010 Dec 14;411(23-24):1841-8 – reference: 20043844 - Part Fibre Toxicol. 2009 Dec 31;6:35 – reference: 19033393 - Toxicol Sci. 2009 Apr;108(2):452-61 – reference: 22482460 - ACS Nano. 2012 May 22;6(5):3745-59 – reference: 23210709 - Acc Chem Res. 2013 Mar 19;46(3):642-9 – reference: 21513312 - Environ Sci Technol. 2011 May 15;45(10):4422-8 – reference: 22148238 - Environ Sci Technol. 2012 Jan 17;46(2):1119-27 – reference: 1572327 - Exp Lung Res. 1992 Jan-Mar;18(1):87-104 – reference: 22264098 - Nanotoxicology. 2013 Mar;7(2):169-80 – reference: 20968290 - ACS Nano. 2010 Nov 23;4(11):6903-13 – reference: 17252560 - Biopolymers. 2007;88(2):98-107 – reference: 21950450 - Environ Sci Technol. 2011 Oct 15;45(20):9003-8 – reference: 20077197 - J Toxicol Environ Health A. 2009;72(21-22):1279-84 – reference: 20043640 - ACS Nano. 2010 Jan 26;4(1):15-29 – reference: 18787175 - Am J Respir Cell Mol Biol. 2009 Mar;40(3):349-58 – reference: 21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7 – reference: 1509122 - Regul Toxicol Pharmacol. 1992 Jun;15(3):291-306 – reference: 16456071 - Science. 2006 Feb 3;311(5761):622-7 – reference: 7737430 - Fundam Appl Toxicol. 1995 Feb;24(2):183-97 – reference: 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61 – reference: 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69 – reference: 16949439 - Prog Histochem Cytochem. 2006;41(2):57-139 – reference: 18444010 - Inhal Toxicol. 2008 Apr;20(6):575-83 – reference: 23255416 - Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53 – reference: 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80 – reference: 21266073 - Part Fibre Toxicol. 2011;8(1):5 – reference: 21985489 - ACS Nano. 2011 Nov 22;5(11):8950-7 – reference: 1540387 - Am J Respir Cell Mol Biol. 1992 Feb;6(2):235-43 – reference: 23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68 – reference: 21067152 - ACS Nano. 2010 Dec 28;4(12):7241-52 – reference: 22047207 - ACS Nano. 2011 Dec 27;5(12):9772-87 – reference: 11544161 - Environ Health Perspect. 2001 Aug;109 Suppl 4:547-51 – reference: 18444009 - Inhal Toxicol. 2008 Apr;20(6):567-74 – reference: 22678756 - Anat Rec (Hoboken). 2012 Aug;295(8):1291-301 – reference: 21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35 – reference: 22765771 - Nano Lett. 2012 Aug 8;12(8):4271-5 – reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 |
SSID | ssj0031247 |
Score | 2.5424197 |
Snippet | Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern.... Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern.... Since more than 30 % of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern.... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 385 |
SubjectTerms | Animals Biocompatibility Biological Availability Cell Line Citrates cytotoxicity Dissolution Female Humans Lung - drug effects lung inflammation Lungs Male Metal Nanoparticles - chemistry Metal Nanoparticles - toxicity Mice Microscopy, Electron, Transmission nanoparticle Nanoparticles Nanostructure Nanotechnology Rats Silver Silver - chemistry Silver - pharmacokinetics Silver - toxicity Solubility Toxicity Toxicity Tests, Subchronic |
Title | Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential |
URI | https://api.istex.fr/ark:/67375/WNG-Q9WP85D0-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201301597 https://www.ncbi.nlm.nih.gov/pubmed/24039004 https://www.proquest.com/docview/1491128758 https://www.proquest.com/docview/1492709297 https://www.proquest.com/docview/1671530205 https://pubmed.ncbi.nlm.nih.gov/PMC4001734 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQeIEHYFwDGzISgqdsSezEyePoGBPqpsJWbW-WHbtatJBMa4oGP2S_l3NyMS1XCd5a-bhq3HP5Ts_xdwh5Gc9UZg1PfQ3xA0eYZT4Ws3zAplyIFIJciPedDw6T_Sl_fxqfLt3i7_gh3B9uaBmtv0YDV3q-_Z00dP6pxNIB-GCIyHidHBu2EBV9dPxRDIJXO10FYpaPxFsDa2MQba9uX4lKN_GAr34FOX_unFxGtG1I2rtL1PAwXSfK-dai0Vv51x94Hv_nae-ROz1epTudgq2TG7a6T24vsRg-INfTuaX1jI5qwK2GHhXYbE3BbUM-3rfd0aamU3eNhgLopK4L76y4wN2TXpbuFs4eKAq_KWr1WRVlRyj-BT9qZMuyXRuDq6LH9VWRDz6cTuoGG6BU-ZBM994ej_b9ftyDn2Pt1Q9tigVnJeKMxQnTWLdRDPJbZWcBFzqPcxtEoHFImi8Cw8BZ68wornUCbjJlj8haVVf2CaGRSbg2TFsOSbcxqbIsDI2JuMkClc-sR_zh55Z5z4WOIzlK2bE4RxLPW7rz9shrJ3_RsYD8VvJVqz1OTF2eY--ciOXJ4Tv5ITuZpPFuIEFwY1Av2buNOeRhEHsgh41Tj7xwy2DwWMVRla0XrUwkAkC14g8yiQhxHFQQe-Rxp7HuCyEBYwau0SNiRZedABKOr65UxVlLPM4R0zDYGbWq-pejkEcH47F79_RfNj0jt-A1tkn5UbZB1prLhd0EENjo562hfwNSV1XK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPUAPvKGBAkZCcEqbt5Mj7FIWyK4Wuqv2ZtmxV40akqqbRYUfwu9lJg_T5SnBMfE4Spx5esbfEPI0XIhEqyC2JdgPbGGW2JjMssE3DRiLwci5eN55PIlG8-DtUdhXE-JZmBYfwmy4oWQ0-hoFHDek976jhi4_Fpg7ACUMJpldJpvY1htlc_jBIEj5YL6a_ipgtWyE3upxGx1vb33-ml3axCU-_5XT-XPt5EWftjFK-9eJ7D-nrUU52V3Vcjf78gPS43997w1yrXNZ6YuWx26SS7q8RbYuABneJl_nS02rBR1U4LoqepBjvTUFzQ0heVd5R-uKzs1JGgp-JzWFeMf5Kc6edrR0mBuRoEj8Mq_EJ5EXLab4Z3zUQBdFM5aCtqKz6jzPejVOp1WNNVCiuEPm-69mg5HddXywM0y_2q6OMecsWJj4YeRLTN0IH0JcoRdOwGQWZtrxgOkQN585ygd9LRMlAikj0JSxf5dslFWptwn1VBRI5UsdQNytVCy077pKeYFKHJEttEXs_n_zrINDx64cBW-BnD2O683NelvkuaE_bYFAfkv5rGEfQybOTrB8joX8cPKav08Op3E4dDgQ7vT8xTvNsYRQDMwPhLFhbJEnZhhkHhM5otTVqqHxmAOOLfsDTcRc7AjlhBa517KseSHEYExAO1qErTGzIUDM8fWRMj9usMcDdGt8mOk1vPqXpeAH4zQ1V_f_ZdJjcmU0G6c8fTN594BchftYNWV7yQ7ZqM9W-iH4hLV81Ej9N3VOWeM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BKyE4lDcYCiwSgpNbv9c-QkIokEaBNmpvq13vWrXq2lHjoMIP4fcy48eS8JTgmOxsFG9mvpnJzH5DyLMwE4lWQWxL8B84wiyxsZhlQ2waMBaDk3PxvvP-JNqbBe-Ow-OVW_wtP4T5ww0to8FrNPC5yna_k4YuzgosHQAGg0dml8lmEDkxpl_Dj4ZAygfv1YxXAadlI_NWT9voeLvr-9fc0iae8MWvYs6fWydXQ9rGJ42uE9E_TduKcrqzrOVO-uUHosf_edwbZKsLWOnLVsNukku6vEWurdAY3iZfZwtNq4wOKghcFT3IsduaAm5DQt713dG6ojNzj4ZC1ElNG95JPsfd006WDnNjEBSFX-WV-CTyomUU_4wfNdBF0ayNAavoYXWRpz2I02lVYweUKO6Q2ej14WDP7uY92CkWX21Xx1hxFixM_DDyJRZuhA8JrtCZEzCZhql2PFA5ZM1njvIBrWWiRCBlBDgZ-3fJRlmV-j6hnooCqXypA8i6lYqF9l1XKS9QiSPSTFvE7n9unnZk6DiTo-AtjbPH8by5OW-LvDDy85YG5LeSzxvtMWLi_BSb51jIjyZv-IfkaBqHQ4eD4HavXrzDjQUkYuB8IIkNY4s8Nctg8VjGEaWulo2MxxwIa9kfZCLm4jwoJ7TIvVZjzRdCBsYEsNEibE2XjQAyjq-vlPlJwzweYFDjw06vUdW_HAU_2B-PzasH_7LpCbkyHY74-O3k_UNyFd7GlinbS7bJRn2-1I8gIKzl48bmvwFE_lib |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+coated+silver+nanoparticles+to+understand+the+relationship+of+particle+dissolution+and+bioavailability+to+cell+and+lung+toxicological+potential&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Xiang&rft.au=Ji%2C+Zhaoxia&rft.au=Chang%2C+Chong+Hyun&rft.au=Zhang%2C+Haiyuan&rft.date=2014-01-29&rft.eissn=1613-6829&rft.volume=10&rft.issue=2&rft.spage=385&rft_id=info:doi/10.1002%2Fsmll.201301597&rft_id=info%3Apmid%2F24039004&rft.externalDocID=24039004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |