Mapping DNA damage‐dependent genetic interactions in yeast via party mating and barcode fusion genetics
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to mu...
Saved in:
Published in | Molecular systems biology Vol. 14; no. 5; pp. e7985 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2018
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via
en masse
“party” mating can also be monitored
en masse
for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving
MAG1
,
SLX4,
and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.
Synopsis
A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions
en masse
. Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex.
BFG‐GI involves generating double‐mutant‐specific fused barcodes, enabling to measure the abundance of double mutants
en masse
by next generation sequencing.
Once a double mutant BFG‐GI pool has been generated genetic interactions can be tested in new growth conditions.
BFG‐GI is applied to 26 genes related to DNA damage repair in nine different conditions, including seven DNA‐damaging agents.
A novel relationship is reported between the Shu complex and the checkpoint protein kinase Rad53.
Graphical Abstract
A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions
en masse
. Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. |
---|---|
AbstractList | Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (
BFG
‐
GI
), by which double‐mutant strains generated via
en masse
“party” mating can also be monitored
en masse
for growth to detect genetic interactions. By using site‐specific recombination to fuse two
DNA
barcodes, each representing a specific gene deletion,
BFG
‐
GI
enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied
BFG
‐
GI
to a matrix of
DNA
repair genes under nine different conditions, including methyl methanesulfonate (
MMS
), 4‐nitroquinoline 1‐oxide (4
NQO
), bleomycin, zeocin, and three other
DNA
‐damaging environments.
BFG
‐
GI
recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving
MAG
1
,
SLX
4,
and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Abstract Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Synopsis A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse. Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. BFG‐GI involves generating double‐mutant‐specific fused barcodes, enabling to measure the abundance of double mutants en masse by next generation sequencing. Once a double mutant BFG‐GI pool has been generated genetic interactions can be tested in new growth conditions. BFG‐GI is applied to 26 genes related to DNA damage repair in nine different conditions, including seven DNA‐damaging agents. A novel relationship is reported between the Shu complex and the checkpoint protein kinase Rad53. A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse. Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via "party" mating can also be monitored for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving , and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Synopsis A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse . Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. BFG‐GI involves generating double‐mutant‐specific fused barcodes, enabling to measure the abundance of double mutants en masse by next generation sequencing. Once a double mutant BFG‐GI pool has been generated genetic interactions can be tested in new growth conditions. BFG‐GI is applied to 26 genes related to DNA damage repair in nine different conditions, including seven DNA‐damaging agents. A novel relationship is reported between the Shu complex and the checkpoint protein kinase Rad53. Graphical Abstract A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse . Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. |
Author | Gebbia, Marinella Karkhanina, Anna Durocher, Daniel Shaeri, Fatemeh Celaj, Albi Verby, Marta Brown, Grant W Weile, Jochen Coté, Atina Ho, Brandon Roth, Frederick P Wong, Cassandra Balint, Attila Bansal, Pritpal Rich, Justin Öztürk, Sedide Gupta, Gaurav Díaz‐Mejía, J Javier Zhang, YiFan Mellor, Joseph C Prendergast, D'Arcy |
AuthorAffiliation | 7 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology Dana‐Farber Cancer Institute Boston MA USA 1 Donnelly Centre University of Toronto Toronto ON Canada 10 Present address: Department of Cellular and Molecular Medicine Center for Chromosome Stability University of Copenhagen Copenhagen Denmark 3 Lunenfeld‐Tanenbaum Research Institute Mt. Sinai Hospital Toronto ON Canada 6 Department of Biochemistry University of Toronto Toronto ON Canada 5 Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA 8 Canadian Institute for Advanced Research Toronto ON Canada 2 Department of Molecular Genetics University of Toronto Toronto ON Canada 4 Department of Computer Science University of Toronto Toronto ON Canada 9 Present address: SeqWell, Inc. Beverly MA USA 11 Present address: Roche Sequencing Solutions Pleasanton CA USA |
AuthorAffiliation_xml | – name: 9 Present address: SeqWell, Inc. Beverly MA USA – name: 1 Donnelly Centre University of Toronto Toronto ON Canada – name: 5 Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA – name: 2 Department of Molecular Genetics University of Toronto Toronto ON Canada – name: 4 Department of Computer Science University of Toronto Toronto ON Canada – name: 8 Canadian Institute for Advanced Research Toronto ON Canada – name: 10 Present address: Department of Cellular and Molecular Medicine Center for Chromosome Stability University of Copenhagen Copenhagen Denmark – name: 6 Department of Biochemistry University of Toronto Toronto ON Canada – name: 7 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology Dana‐Farber Cancer Institute Boston MA USA – name: 11 Present address: Roche Sequencing Solutions Pleasanton CA USA – name: 3 Lunenfeld‐Tanenbaum Research Institute Mt. Sinai Hospital Toronto ON Canada |
Author_xml | – sequence: 1 givenname: J Javier surname: Díaz‐Mejía fullname: Díaz‐Mejía, J Javier organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto – sequence: 2 givenname: Albi orcidid: 0000-0002-5888-772X surname: Celaj fullname: Celaj, Albi organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto – sequence: 3 givenname: Joseph C surname: Mellor fullname: Mellor, Joseph C organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, SeqWell, Inc – sequence: 4 givenname: Atina surname: Coté fullname: Coté, Atina organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 5 givenname: Attila orcidid: 0000-0002-6481-1772 surname: Balint fullname: Balint, Attila organization: Donnelly Centre, University of Toronto, Department of Biochemistry, University of Toronto, Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen – sequence: 6 givenname: Brandon surname: Ho fullname: Ho, Brandon organization: Donnelly Centre, University of Toronto, Department of Biochemistry, University of Toronto – sequence: 7 givenname: Pritpal surname: Bansal fullname: Bansal, Pritpal organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 8 givenname: Fatemeh surname: Shaeri fullname: Shaeri, Fatemeh organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 9 givenname: Marinella surname: Gebbia fullname: Gebbia, Marinella organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto – sequence: 10 givenname: Jochen orcidid: 0000-0003-1628-9390 surname: Weile fullname: Weile, Jochen organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 11 givenname: Marta surname: Verby fullname: Verby, Marta organization: Donnelly Centre, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 12 givenname: Anna surname: Karkhanina fullname: Karkhanina, Anna organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 13 givenname: YiFan surname: Zhang fullname: Zhang, YiFan organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 14 givenname: Cassandra surname: Wong fullname: Wong, Cassandra organization: Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 15 givenname: Justin surname: Rich fullname: Rich, Justin organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 16 givenname: D'Arcy surname: Prendergast fullname: Prendergast, D'Arcy organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 17 givenname: Gaurav surname: Gupta fullname: Gupta, Gaurav organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 18 givenname: Sedide surname: Öztürk fullname: Öztürk, Sedide organization: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Roche Sequencing Solutions – sequence: 19 givenname: Daniel surname: Durocher fullname: Durocher, Daniel organization: Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital – sequence: 20 givenname: Grant W surname: Brown fullname: Brown, Grant W organization: Donnelly Centre, University of Toronto, Department of Biochemistry, University of Toronto – sequence: 21 givenname: Frederick P orcidid: 0000-0002-6628-649X surname: Roth fullname: Roth, Frederick P email: fritz.roth@utoronto.ca organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana‐Farber Cancer Institute, Canadian Institute for Advanced Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29807908$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAUhiNURC-wZIsssc4QO3Ycb5BKoVCphQWwtnw5Dh7N2MHOFM2OR-gz8iSYpjO0EmLl23c-__Y5rg5CDFBVz3GzwIww8mqd9YI0mHPRs0fVEeaU1pQIcnBvflgd57xsmrbHPXlSHRLRN1w0_VHlr9Q4-jCgtx9PkVVrNcCvnzcWRggWwoQGCDB5g3yYICkz-RhyWaAtqDyha6_QqNK0RWs1_bGoYJFWyUQLyG1yoXeG_LR67NQqw7O78aT6ev7uy9mH-vLT-4uz08vasI6xWhvbYoVB9IYKA4KD6QRmHLeEge51qxl3DnqiXeeEMx1rHSGiNarFGjPWnlQXs9dGtZRj8muVtjIqL283YhpkSezNCiQxhhJtBXWcUIKtUtw2LcG0t11ngRbX69k1bvQarCk_ktTqgfThSfDf5BCvJROcMkyK4OWdIMXvG8iTXMZNCuX9kjS0o7xjuCtUPVMmxZwTuP0NuJG3XZaly3LX5cK_uB9rT-_aWgA6Az_8Crb_t8mrz2_23sVclktFGCD9TfvvIL8BRu_GSw |
CitedBy_id | crossref_primary_10_1016_j_cels_2019_09_009 crossref_primary_10_15252_msb_20188485 crossref_primary_10_1016_j_tig_2023_04_002 crossref_primary_10_1186_s13059_023_03156_9 crossref_primary_10_3389_ffunb_2021_683414 crossref_primary_10_1016_j_gde_2019_03_004 crossref_primary_10_1016_j_cels_2018_09_004 crossref_primary_10_1007_s00239_023_10098_0 crossref_primary_10_1038_s41540_020_0134_z crossref_primary_10_1101_gr_246603_118 crossref_primary_10_7554_eLife_40174 crossref_primary_10_15252_msb_20199167 crossref_primary_10_1038_s41467_019_11735_3 crossref_primary_10_13080_z_a_2021_108_040 crossref_primary_10_1016_j_cels_2021_05_012 crossref_primary_10_1126_sciadv_add2793 crossref_primary_10_1016_j_cell_2019_01_033 crossref_primary_10_1042_BST20210285 crossref_primary_10_1016_j_cels_2019_03_005 |
Cites_doi | 10.1002/j.1460-2075.1990.tb07910.x 10.1126/science.aaf1420 10.1016/j.molcel.2004.09.035 10.1016/S0580-9517(06)36016-3 10.1021/cr980449z 10.1093/nar/gkw535 10.1073/pnas.0712255105 10.1186/gb-2001-2-12-research0052 10.1128/MCB.01392-12 10.15252/msb.20156660 10.1385/1-59259-958-3:171 10.1093/nar/gkv004 10.1038/nmeth.1534 10.1038/ncomms2678 10.1186/gb-2006-7-7-r63 10.1073/pnas.0703252104 10.15252/embj.201591190 10.1371/journal.pgen.1006958 10.1038/ncomms15586 10.1091/mbc.E07-05-0490 10.1038/nature00935 10.1038/ng1948 10.1126/science.1195618 10.1091/mbc.E10-08-0691 10.1002/j.1460-2075.1990.tb07909.x 10.1371/journal.pone.0081371 10.1007/s002940050313 10.1093/nar/gkt138 10.1534/g3.116.034207 10.1101/gr.1239303 10.1371/journal.pgen.1004168 10.1038/emboj.2011.345 10.1126/science.1180823 10.1126/science.1250217 10.1126/science.aag0839 10.1016/j.dnarep.2010.02.013 10.1371/journal.pone.0037368 10.1073/pnas.0710533105 10.1111/j.1365-2958.2009.06748.x 10.15252/embj.201490834 10.1128/MCB.00135-07 10.1016/S0076-6879(05)09019-1 10.1038/nature11658 10.1534/genetics.115.181479 10.1101/gad.240515.114 10.1093/nar/gkq1215 10.1101/gad.1105203 10.1128/MCB.00547-12 10.1016/S1097-2765(03)00269-7 10.1093/nar/gkm894 10.1101/gr.137570.112 10.1128/AEM.61.2.630-638.1995 10.1038/ng.123 10.1093/nar/gkp687 10.1038/msb.2011.99 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018 The Authors. Published under the terms of the CC BY 4.0 license 2018 The Authors. Published under the terms of the CC BY 4.0 license. 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PIMPY PQEST PQQKQ PQUKI PRINS Q9U RC3 5PM DOA |
DOI | 10.15252/msb.20177985 |
DatabaseName | SpringerOpen Wiley Open Access Journals Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Databases Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen website url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | J Javier Díaz‐Mejía et al |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2cc42bd94f72421daa7d032148d66de4 10_15252_msb_20177985 29807908 MSB177985 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH/NHGRI grantid: HG001715 – fundername: Canada Excellence Research Chairs – fundername: One Brave Idea Foundation – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR) grantid: MOP‐79368; FDN143343 funderid: 10.13039/501100000024 – fundername: NRSA Award grantid: HG004825 funderid: 10.13039/100009429 – fundername: HHS | NIH | National Human Genome Research Institute (NHGRI) grantid: HG004756 funderid: 10.13039/100000051 – fundername: NIH/NHGRI Center of Excellence in Genomic Science grantid: HG004233 – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR) funderid: MOP‐79368; FDN143343 – fundername: NIH/NHGRI funderid: HG001715 – fundername: HHS | NIH | National Human Genome Research Institute (NHGRI) funderid: HG004756 – fundername: NIH/NHGRI Center of Excellence in Genomic Science funderid: HG004233 – fundername: NRSA Award funderid: HG004825 – fundername: CIHR grantid: FDN143343 – fundername: NHGRI NIH HHS grantid: F32 HG004825 – fundername: CIHR grantid: MOP-79368 – fundername: NHGRI NIH HHS grantid: U41 HG001715 – fundername: NHGRI NIH HHS grantid: R01 HG001715 – fundername: NHGRI NIH HHS grantid: R21 HG004756 – fundername: NHGRI NIH HHS grantid: U01 HG001715 – fundername: NHGRI NIH HHS grantid: P50 HG004233 – fundername: NRSA Award grantid: HG004825 – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR) grantid: MOP‐79368; FDN143343 – fundername: HHS | NIH | National Human Genome Research Institute (NHGRI) grantid: HG004756 |
GroupedDBID | --- -Q- 0R~ 123 1OC 24P 29M 2WC 39C 3V. 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAHHS ABDBF ABUWG ACCFJ ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IHR INH KQ8 LK8 M1P M2O M48 M7P ML0 M~E O5R O5S O9- OK1 P2P PADUT PIMPY PQQKQ PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M 4.4 88A ACSMW COF EBLON GODZA H13 IGS M0L PROAC CGR CUY CVF ECM EIF NPM AAYXX CITATION ITC 7QL 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PQEST PQUKI PRINS Q9U RC3 5PM |
ID | FETCH-LOGICAL-c5655-bcd31a1e98c49ce97ec691571325eb8b3b57ffe82bf6f9fc653f2293ca31b1553 |
IEDL.DBID | RPM |
ISSN | 1744-4292 |
IngestDate | Mon Nov 04 19:56:17 EST 2024 Tue Sep 17 21:33:11 EDT 2024 Thu Oct 10 16:01:40 EDT 2024 Fri Dec 06 02:40:56 EST 2024 Sat Sep 28 08:27:35 EDT 2024 Sat Aug 24 01:04:17 EDT 2024 Fri Oct 25 01:30:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | condition‐dependent DNA barcode genetic interaction sequencing en masse |
Language | English |
License | Attribution 2018 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5655-bcd31a1e98c49ce97ec691571325eb8b3b57ffe82bf6f9fc653f2293ca31b1553 |
ORCID | 0000-0002-5888-772X 0000-0002-6628-649X 0000-0002-6481-1772 0000-0003-1628-9390 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974512/ |
PMID | 29807908 |
PQID | 2046476516 |
PQPubID | 29031 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2cc42bd94f72421daa7d032148d66de4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5974512 proquest_journals_2046476516 crossref_primary_10_15252_msb_20177985 pubmed_primary_29807908 wiley_primary_10_15252_msb_20177985_MSB177985 springer_journals_10_15252_msb_20177985 |
PublicationCentury | 2000 |
PublicationDate | May 2018 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | Flott, Alabert, Toh, Toth, Sugawara, Campbell, Haber, Pasero, Rouse (CR17) 2007; 27 Gibson (CR21) 2009; 37 Iyer, Rhind (CR29) 2017; 13 Balint, Kim, Gallo, Cussiol, Bastos de Oliveira, Yimit, Ou, Nakato, Gurevich, Shirahige, Smolka, Zhang, Brown (CR1) 2015; 34 Pfander, Diffley (CR40) 2011; 30 Bandyopadhyay, Mehta, Kuo, Sung, Chuang, Jaehnig, Bodenmiller, Licon, Copeland, Shales, Fiedler, Dutkowski, Guénolé, van Attikum, Shokat, Kolodner, Huh, Aebersold, Keogh, Krogan (CR3) 2010; 330 Tong, Boone, Xiao (CR52) 2005 Soellick, Uhrig (CR46) 2001; 2 Hastie, Pruitt (CR26) 2007; 35 Sasanuma, Tawaramoto, Lao, Hosaka, Sanda, Suzuki, Yamashita, Hunter, Shinohara, Nakagawa, Shinohara (CR42) 2013; 4 Giaever, Chu, Ni, Connelly, Riles, Véronneau, Dow, Lucau‐Danila, Anderson, André, Arkin, Astromoff, El‐Bakkoury, Bangham, Benito, Brachat, Campanaro, Curtiss, Davis, Deutschbauer (CR20) 2002; 418 Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (CR45) 2003; 13 Xiao, Chow (CR54) 1998; 33 Xu, Ball, Chen, Tian, Lambrecht, Hanna, Xiao (CR55) 2013; 8 van Leeuwen, Pons, Mellor, Yamaguchi, Friesen, Koschwanez, Ušaj, Pechlaner, Takar, Ušaj, VanderSluis, Andrusiak, Bansal, Baryshnikova, Boone, Cao, Cote, Gebbia, Horecka, Horecka (CR33) 2016; 354 Lee, St Onge, Proctor, Wallace, Nile, Spagnuolo, Jitkova, Gronda, Wu, Kim, Cheung‐Ong, Torres, Spear, Han, Schlecht, Suresh, Duby, Heisler, Surendra, Fung (CR32) 2014; 344 Storici, Resnick (CR48) 2006; 409 Berdal, Bjørås, Bjelland, Seeberg (CR5) 1990; 9 Claussen, Long (CR9) 1999; 99 Garay, Campos, González de la Cruz, Gaspar, Jinich, Deluna (CR19) 2014; 10 Tong, Boone (CR53) 2007; 36 Choi, Batke, Szakal, Lowther, Hao, Sarangi, Branzei, Ulrich, Zhao (CR8) 2015; 43 Cussiol, Jablonowski, Yimit, Brown, Smolka (CR14) 2015; 34 (CR41) 2017 Baryshnikova, Costanzo, Kim, Ding, Koh, Toufighi, Youn, Ou, San Luis, Bandyopadhyay, Hibbs, Hess, Gingras, Bader, Troyanskaya, Brown, Andrews, Boone, Myers (CR4) 2010; 7 Bernstein, Reid, Sunjevaric, Demuth, Burgess, Rothstein (CR6) 2011; 22 Pan, Yuan, Xiang, Wang, Sookhai‐Mahadeo, Bader, Hieter, Spencer, Boeke (CR39) 2004; 16 Ideker, Krogan (CR28) 2012; 8 Godin, Wier, Kabbinavar, Bratton‐Palmer, Ghodke, Van Houten, VanDemark, Bernstein (CR22) 2013; 41 Jablonowski, Cussiol, Oberly, Yimit, Balint, Kim, Zhang, Brown, Smolka (CR30) 2015; 201 Yachie, Petsalaki, Mellor, Weile, Jacob, Verby, Ozturk, Li, Cote, Mosca, Knapp, Ko, Yu, Gebbia, Sahni, Yi, Tyagi, Sheykhkarimli, Roth, Wong (CR56) 2016; 12 Mankouri, Ngo, Hickson (CR35) 2007; 18 Minca, Kowalski (CR36) 2011; 39 Chen, Derfler, Samson (CR7) 1990; 9 Costanzo, Baryshnikova, Bellay, Kim, Spear, Sevier, Ding, Koh, Toufighi, Mostafavi, Prinz, St Onge, VanderSluis, Makhnevych, Vizeacoumar, Alizadeh, Bahr, Brost, Chen, Cokol (CR12) 2010; 327 Jaffe, Sherlock, Levy (CR31) 2017; 7 Ha, Roth, Lai, Bashashati, Ding, Goya, Giuliany, Rosner, Oloumi, Shumansky, Chin, Turashvili, Hirst, Caldas, Marra, Aparicio, Shah (CR25) 2012; 22 Ball, Zhang, Cobb, Boone, Xiao (CR2) 2009; 73 Decourty, Saveanu, Zemam, Hantraye, Frachon, Rousselle, Fromont‐Racine, Jacquier (CR15) 2008; 105 Sugawara, Wang, Haber (CR49) 2003; 12 Collins, Schuldiner, Krogan, Weissman (CR11) 2006; 7 Schwartz, Wright, Ehmsen, Evans, Stahlberg, Heyer (CR44) 2012; 32 Schlecht, Liu, Blundell, St Onge, Levy (CR43) 2017; 8 St Onge, Mani, Oh, Proctor, Fung, Davis, Nislow, Roth, Giaever (CR47) 2007; 39 Huang, Piening, Paulovich (CR27) 2013; 33 Svensson, Fry, Wang, Somoza, Samson (CR50) 2012; 7 Godin, Zhang, Herken, Westmoreland, Lee, Mihalevic, Yu, Sobol, Resnick, Bernstein (CR23) 2016; 44 Codon, Gasent‐Ramirez, Benitez (CR10) 1995; 61 Costanzo, VanderSluis, Koch, Baryshnikova, Pons, Tan, Wang, Usaj, Hanchard, Lee, Pelechano, Styles, Billmann, van Leeuwen, van Dyk, Lin, Kuzmin, Nelson, Piotrowski, Srikumar (CR13) 2016; 353 DeLuna, Vetsigian, Shoresh, Hegreness, Colón‐González, Chao, Kishony (CR16) 2008; 40 Fricke, Brill (CR18) 2003; 17 Toh, Sugawara, Dong, Toth, Lee, Haber, Rouse (CR51) 2010; 9 Mani, St Onge, Hartman, Giaever, Roth (CR34) 2008; 105 Ohouo, Bastos de Oliveira, Liu, Ma, Smolka (CR37) 2013; 493 Gritenaite, Princz, Szakal, Bantele, Wendeler, Schilbach, Habermann, Matos, Lisby, Branzei, Pfander (CR24) 2014; 28 O'Neill, Szyjka, Lis, Bailey, Yates, Aparicio, Romesberg (CR38) 2007; 104 2007; 39 2015; 34 2007; 104 2017; 7 2017; 8 2013; 4 2003; 13 2008; 105 2003; 17 2014; 28 2013; 8 2007; 35 2007; 36 2003; 12 2006; 409 1995; 61 2015; 43 2016; 354 2011; 22 1999; 99 2016; 353 2012; 22 2010; 7 2014; 10 2010; 9 2007; 27 2016; 44 2007; 18 2010; 327 2015; 201 2013; 41 2006; 7 2011; 30 2002; 418 2005 2011; 39 2012; 32 2016; 12 2009; 73 2013; 33 2004; 16 2017; 13 2010; 330 2017 2013; 493 2001; 2 2008; 40 2012; 7 1990; 9 2009; 37 1998; 33 2012; 8 2014; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 R Core Team (e_1_2_8_42_1) 2017 e_1_2_8_50_1 |
References_xml | – volume: 33 start-page: 1515 year: 2013 end-page: 1527 ident: CR27 article-title: The preference for error‐free or error‐prone postreplication repair in exposed to low‐dose methyl methanesulfonate is cell cycle dependent publication-title: Mol Cell Biol contributor: fullname: Paulovich – volume: 9 start-page: 718 year: 2010 end-page: 726 ident: CR51 article-title: Mec1/Tel1‐dependent phosphorylation of Slx4 stimulates Rad1‐Rad10‐dependent cleavage of non‐homologous DNA tails publication-title: DNA Repair contributor: fullname: Rouse – volume: 330 start-page: 1385 year: 2010 end-page: 1389 ident: CR3 article-title: Rewiring of genetic networks in response to DNA damage publication-title: Science contributor: fullname: Krogan – volume: 12 start-page: 209 year: 2003 ident: CR49 article-title: roles of Rad52, Rad54, and Rad55 proteins in Rad51‐mediated recombination publication-title: Mol Cell contributor: fullname: Haber – volume: 39 start-page: 2610 year: 2011 ident: CR36 article-title: Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation publication-title: Nucleic Acids Res contributor: fullname: Kowalski – start-page: 171 year: 2005 end-page: 192 ident: CR52 article-title: Synthetic Genetic Array (SGA) analysis in publication-title: Yeast protocols contributor: fullname: Xiao – volume: 27 start-page: 6433 year: 2007 end-page: 6445 ident: CR17 article-title: Phosphorylation of Slx4 by Mec1 and Tel1 regulates the single‐strand annealing mode of DNA repair in budding yeast publication-title: Mol Cell Biol contributor: fullname: Rouse – volume: 105 start-page: 3461 year: 2008 end-page: 3466 ident: CR34 article-title: Defining genetic interaction publication-title: Proc Natl Acad Sci USA contributor: fullname: Roth – volume: 39 start-page: 199 year: 2007 end-page: 206 ident: CR47 article-title: Systematic pathway analysis using high‐resolution fitness profiling of combinatorial gene deletions publication-title: Nat Genet contributor: fullname: Giaever – volume: 13 start-page: 2498 year: 2003 ident: CR45 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res contributor: fullname: Ideker – volume: 8 start-page: e81371 year: 2013 ident: CR55 article-title: The yeast Shu complex utilizes homologous recombination machinery for error‐free lesion bypass via physical interaction with a Rad51 paralogue publication-title: PLoS ONE contributor: fullname: Xiao – volume: 61 start-page: 1677 year: 1995 ident: CR10 article-title: Factors which affect the frequency of sporulation and tetrad formation in Baker's yeasts publication-title: Appl Environ Microbiol contributor: fullname: Benitez – volume: 12 start-page: 863 year: 2016 ident: CR56 article-title: Pooled‐matrix protein interaction screens using barcode fusion genetics publication-title: Mol Syst Biol contributor: fullname: Wong – volume: 8 start-page: 565 year: 2012 ident: CR28 article-title: Differential network biology publication-title: Mol Syst Biol contributor: fullname: Krogan – volume: 327 start-page: 425 year: 2010 end-page: 431 ident: CR12 article-title: The genetic landscape of a cell publication-title: Science contributor: fullname: Cokol – volume: 105 start-page: 5821 year: 2008 end-page: 5826 ident: CR15 article-title: Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles publication-title: Proc Natl Acad Sci USA contributor: fullname: Jacquier – volume: 33 start-page: 92 year: 1998 ident: CR54 article-title: Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage publication-title: Curr Genet contributor: fullname: Chow – volume: 30 start-page: 4897 year: 2011 end-page: 4907 ident: CR40 article-title: Dpb11 coordinates Mec1 kinase activation with cell cycle‐regulated Rad9 recruitment publication-title: EMBO J contributor: fullname: Diffley – volume: 8 start-page: 15586 year: 2017 ident: CR43 article-title: A scalable double‐barcode sequencing platform for characterization of dynamic protein‐protein interactions publication-title: Nat Commun contributor: fullname: Levy – volume: 7 start-page: 143 year: 2017 end-page: 153 ident: CR31 article-title: iSeq: a new double‐barcode method for detecting dynamic genetic interactions in yeast publication-title: G3 contributor: fullname: Levy – volume: 104 start-page: 9290 year: 2007 end-page: 9295 ident: CR38 article-title: Pph3‐Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage publication-title: Proc Natl Acad Sci USA contributor: fullname: Romesberg – volume: 10 start-page: e1004168 year: 2014 ident: CR19 article-title: High‐resolution profiling of stationary‐phase survival reveals yeast longevity factors and their genetic interactions publication-title: PLoS Genet contributor: fullname: Deluna – volume: 409 start-page: 329 year: 2006 end-page: 345 ident: CR48 article-title: The delitto perfetto approach to site‐directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast publication-title: Methods Enzymol contributor: fullname: Resnick – volume: 28 start-page: 1604 year: 2014 end-page: 1619 ident: CR24 article-title: A cell cycle‐regulated Slx4‐Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication publication-title: Genes Dev contributor: fullname: Pfander – volume: 353 start-page: aaf1420 year: 2016 ident: CR13 article-title: A global genetic interaction network maps a wiring diagram of cellular function publication-title: Science contributor: fullname: Srikumar – volume: 2 start-page: RESEARCH0052 year: 2001 ident: CR46 article-title: Development of an optimized interaction‐mating protocol for large‐scale yeast two‐hybrid analyses publication-title: Genome Biol contributor: fullname: Uhrig – volume: 43 start-page: 2666 year: 2015 ident: CR8 article-title: Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance publication-title: Nucleic Acids Res contributor: fullname: Zhao – volume: 4 start-page: 1676 year: 2013 ident: CR42 article-title: A new protein complex promoting the assembly of Rad51 filaments publication-title: Nat Commun contributor: fullname: Shinohara – volume: 17 start-page: 1768 year: 2003 end-page: 1778 ident: CR18 article-title: Slx1‐Slx4 is a second structure‐specific endonuclease functionally redundant with Sgs1‐Top3 publication-title: Genes Dev contributor: fullname: Brill – volume: 7 start-page: R63 year: 2006 ident: CR11 article-title: A strategy for extracting and analyzing large‐scale quantitative epistatic interaction data publication-title: Genome Biol contributor: fullname: Weissman – volume: 22 start-page: 1599 year: 2011 end-page: 1607 ident: CR6 article-title: The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti‐recombinase publication-title: Mol Biol Cell contributor: fullname: Rothstein – volume: 35 start-page: e141 year: 2007 ident: CR26 article-title: Yeast two‐hybrid interaction partner screening through cre‐mediated binary interaction tag generation publication-title: Nucleic Acids Res contributor: fullname: Pruitt – volume: 7 start-page: e37368 year: 2012 ident: CR50 article-title: Identification of novel human damage response proteins targeted through yeast orthology publication-title: PLoS ONE contributor: fullname: Samson – volume: 37 start-page: 6984 year: 2009 end-page: 6990 ident: CR21 article-title: Synthesis of DNA fragments in yeast by one‐step assembly of overlapping oligonucleotides publication-title: Nucleic Acids Res contributor: fullname: Gibson – volume: 32 start-page: 3065 year: 2012 ident: CR44 article-title: Mus81‐Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair publication-title: Mol Cell Biol contributor: fullname: Heyer – volume: 41 start-page: 4525 year: 2013 end-page: 4534 ident: CR22 article-title: The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55‐Rad57 to mediate error‐free recombination publication-title: Nucleic Acids Res contributor: fullname: Bernstein – volume: 40 start-page: 676 year: 2008 end-page: 681 ident: CR16 article-title: Exposing the fitness contribution of duplicated genes publication-title: Nat Genet contributor: fullname: Kishony – volume: 9 start-page: 4569 year: 1990 end-page: 4575 ident: CR7 article-title: 3‐methyladenine DNA glycosylase has homology to the AlkA glycosylase of and is induced in response to DNA alkylation damage publication-title: EMBO J contributor: fullname: Samson – volume: 13 start-page: e1006958 year: 2017 ident: CR29 article-title: Replication fork slowing and stalling are distinct, checkpoint‐independent consequences of replicating damaged DNA publication-title: PLoS Genet contributor: fullname: Rhind – volume: 493 start-page: 120 year: 2013 end-page: 124 ident: CR37 article-title: DNA‐repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9 publication-title: Nature contributor: fullname: Smolka – volume: 9 start-page: 4563 year: 1990 end-page: 4568 ident: CR5 article-title: Cloning and expression in of a gene for an alkylbase DNA glycosylase from ; a homologue to the bacterial alkA gene publication-title: EMBO J contributor: fullname: Seeberg – volume: 34 start-page: 1704 year: 2015 end-page: 1717 ident: CR14 article-title: Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions publication-title: EMBO J contributor: fullname: Smolka – volume: 16 start-page: 487 year: 2004 end-page: 496 ident: CR39 article-title: A robust toolkit for functional profiling of the yeast genome publication-title: Mol Cell contributor: fullname: Boeke – volume: 99 start-page: 2797 year: 1999 end-page: 2816 ident: CR9 article-title: Nucleic acid recognition by metal complexes of bleomycin publication-title: Chem Rev contributor: fullname: Long – volume: 344 start-page: 208 year: 2014 end-page: 211 ident: CR32 article-title: Mapping the cellular response to small molecules using chemogenomic fitness signatures publication-title: Science contributor: fullname: Fung – volume: 36 start-page: 369 year: 2007 end-page: 707 ident: CR53 article-title: High‐throughput strain construction and systematic synthetic lethal screening in publication-title: Methods Microbiol contributor: fullname: Boone – volume: 7 start-page: 1017 year: 2010 end-page: 1024 ident: CR4 article-title: Quantitative analysis of fitness and genetic interactions in yeast on a genome scale publication-title: Nat Methods contributor: fullname: Myers – volume: 73 start-page: 89 year: 2009 end-page: 102 ident: CR2 article-title: The yeast Shu complex couples error‐free post‐replication repair to homologous recombination publication-title: Mol Microbiol contributor: fullname: Xiao – year: 2017 ident: CR41 publication-title: R: a language and environment for statistical computing – volume: 22 start-page: 1995 year: 2012 end-page: 2007 ident: CR25 article-title: Integrative analysis of genome‐wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple‐negative breast cancer publication-title: Genome Res contributor: fullname: Shah – volume: 18 start-page: 4062 year: 2007 end-page: 4073 ident: CR35 article-title: Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1‐Rmi1‐Top3 publication-title: Mol Biol Cell contributor: fullname: Hickson – volume: 34 start-page: 2182 year: 2015 end-page: 2197 ident: CR1 article-title: Assembly of Slx4 signaling complexes behind DNA replication forks publication-title: EMBO J contributor: fullname: Brown – volume: 44 start-page: 8199 year: 2016 end-page: 8215 ident: CR23 article-title: The Shu complex promotes error‐free tolerance of alkylation‐induced base excision repair products publication-title: Nucleic Acids Res contributor: fullname: Bernstein – volume: 418 start-page: 387 year: 2002 end-page: 391 ident: CR20 article-title: Functional profiling of the genome publication-title: Nature contributor: fullname: Deutschbauer – volume: 201 start-page: 937 year: 2015 end-page: 949 ident: CR30 article-title: Termination of replication stress signaling via concerted action of the Slx4 scaffold and the PP4 phosphatase publication-title: Genetics contributor: fullname: Smolka – volume: 354 start-page: aag0839 year: 2016 ident: CR33 article-title: Exploring genetic suppression interactions on a global scale publication-title: Science contributor: fullname: Horecka – volume: 39 start-page: 2610 year: 2011 article-title: Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation publication-title: Nucleic Acids Res – volume: 353 start-page: aaf1420 year: 2016 article-title: A global genetic interaction network maps a wiring diagram of cellular function publication-title: Science – volume: 9 start-page: 4569 year: 1990 end-page: 4575 article-title: 3‐methyladenine DNA glycosylase has homology to the AlkA glycosylase of and is induced in response to DNA alkylation damage publication-title: EMBO J – volume: 40 start-page: 676 year: 2008 end-page: 681 article-title: Exposing the fitness contribution of duplicated genes publication-title: Nat Genet – volume: 41 start-page: 4525 year: 2013 end-page: 4534 article-title: The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55‐Rad57 to mediate error‐free recombination publication-title: Nucleic Acids Res – volume: 4 start-page: 1676 year: 2013 article-title: A new protein complex promoting the assembly of Rad51 filaments publication-title: Nat Commun – volume: 2 start-page: RESEARCH0052 year: 2001 article-title: Development of an optimized interaction‐mating protocol for large‐scale yeast two‐hybrid analyses publication-title: Genome Biol – volume: 44 start-page: 8199 year: 2016 end-page: 8215 article-title: The Shu complex promotes error‐free tolerance of alkylation‐induced base excision repair products publication-title: Nucleic Acids Res – volume: 7 start-page: 1017 year: 2010 end-page: 1024 article-title: Quantitative analysis of fitness and genetic interactions in yeast on a genome scale publication-title: Nat Methods – volume: 30 start-page: 4897 year: 2011 end-page: 4907 article-title: Dpb11 coordinates Mec1 kinase activation with cell cycle‐regulated Rad9 recruitment publication-title: EMBO J – volume: 73 start-page: 89 year: 2009 end-page: 102 article-title: The yeast Shu complex couples error‐free post‐replication repair to homologous recombination publication-title: Mol Microbiol – volume: 7 start-page: 143 year: 2017 end-page: 153 article-title: iSeq: a new double‐barcode method for detecting dynamic genetic interactions in yeast publication-title: G3 – volume: 8 start-page: 15586 year: 2017 article-title: A scalable double‐barcode sequencing platform for characterization of dynamic protein‐protein interactions publication-title: Nat Commun – volume: 33 start-page: 1515 year: 2013 end-page: 1527 article-title: The preference for error‐free or error‐prone postreplication repair in exposed to low‐dose methyl methanesulfonate is cell cycle dependent publication-title: Mol Cell Biol – volume: 105 start-page: 5821 year: 2008 end-page: 5826 article-title: Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles publication-title: Proc Natl Acad Sci USA – volume: 35 start-page: e141 year: 2007 article-title: Yeast two‐hybrid interaction partner screening through cre‐mediated binary interaction tag generation publication-title: Nucleic Acids Res – volume: 104 start-page: 9290 year: 2007 end-page: 9295 article-title: Pph3‐Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage publication-title: Proc Natl Acad Sci USA – volume: 327 start-page: 425 year: 2010 end-page: 431 article-title: The genetic landscape of a cell publication-title: Science – volume: 330 start-page: 1385 year: 2010 end-page: 1389 article-title: Rewiring of genetic networks in response to DNA damage publication-title: Science – volume: 17 start-page: 1768 year: 2003 end-page: 1778 article-title: Slx1‐Slx4 is a second structure‐specific endonuclease functionally redundant with Sgs1‐Top3 publication-title: Genes Dev – volume: 37 start-page: 6984 year: 2009 end-page: 6990 article-title: Synthesis of DNA fragments in yeast by one‐step assembly of overlapping oligonucleotides publication-title: Nucleic Acids Res – volume: 22 start-page: 1995 year: 2012 end-page: 2007 article-title: Integrative analysis of genome‐wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple‐negative breast cancer publication-title: Genome Res – volume: 13 start-page: e1006958 year: 2017 article-title: Replication fork slowing and stalling are distinct, checkpoint‐independent consequences of replicating damaged DNA publication-title: PLoS Genet – volume: 201 start-page: 937 year: 2015 end-page: 949 article-title: Termination of replication stress signaling via concerted action of the Slx4 scaffold and the PP4 phosphatase publication-title: Genetics – volume: 8 start-page: e81371 year: 2013 article-title: The yeast Shu complex utilizes homologous recombination machinery for error‐free lesion bypass via physical interaction with a Rad51 paralogue publication-title: PLoS ONE – volume: 61 start-page: 1677 year: 1995 article-title: Factors which affect the frequency of sporulation and tetrad formation in Baker's yeasts publication-title: Appl Environ Microbiol – volume: 493 start-page: 120 year: 2013 end-page: 124 article-title: DNA‐repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9 publication-title: Nature – volume: 105 start-page: 3461 year: 2008 end-page: 3466 article-title: Defining genetic interaction publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 1604 year: 2014 end-page: 1619 article-title: A cell cycle‐regulated Slx4‐Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication publication-title: Genes Dev – volume: 33 start-page: 92 year: 1998 article-title: Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage publication-title: Curr Genet – volume: 16 start-page: 487 year: 2004 end-page: 496 article-title: A robust toolkit for functional profiling of the yeast genome publication-title: Mol Cell – volume: 36 start-page: 369 year: 2007 end-page: 707 article-title: High‐throughput strain construction and systematic synthetic lethal screening in publication-title: Methods Microbiol – volume: 32 start-page: 3065 year: 2012 article-title: Mus81‐Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair publication-title: Mol Cell Biol – volume: 22 start-page: 1599 year: 2011 end-page: 1607 article-title: The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti‐recombinase publication-title: Mol Biol Cell – volume: 10 start-page: e1004168 year: 2014 article-title: High‐resolution profiling of stationary‐phase survival reveals yeast longevity factors and their genetic interactions publication-title: PLoS Genet – volume: 354 start-page: aag0839 year: 2016 article-title: Exploring genetic suppression interactions on a global scale publication-title: Science – volume: 39 start-page: 199 year: 2007 end-page: 206 article-title: Systematic pathway analysis using high‐resolution fitness profiling of combinatorial gene deletions publication-title: Nat Genet – volume: 409 start-page: 329 year: 2006 end-page: 345 article-title: The delitto perfetto approach to site‐directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast publication-title: Methods Enzymol – volume: 34 start-page: 1704 year: 2015 end-page: 1717 article-title: Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions publication-title: EMBO J – volume: 18 start-page: 4062 year: 2007 end-page: 4073 article-title: Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1‐Rmi1‐Top3 publication-title: Mol Biol Cell – volume: 13 start-page: 2498 year: 2003 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res – volume: 7 start-page: e37368 year: 2012 article-title: Identification of novel human damage response proteins targeted through yeast orthology publication-title: PLoS ONE – volume: 8 start-page: 565 year: 2012 article-title: Differential network biology publication-title: Mol Syst Biol – volume: 99 start-page: 2797 year: 1999 end-page: 2816 article-title: Nucleic acid recognition by metal complexes of bleomycin publication-title: Chem Rev – start-page: 171 year: 2005 end-page: 192 – volume: 9 start-page: 4563 year: 1990 end-page: 4568 article-title: Cloning and expression in of a gene for an alkylbase DNA glycosylase from ; a homologue to the bacterial alkA gene publication-title: EMBO J – volume: 43 start-page: 2666 year: 2015 article-title: Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance publication-title: Nucleic Acids Res – volume: 344 start-page: 208 year: 2014 end-page: 211 article-title: Mapping the cellular response to small molecules using chemogenomic fitness signatures publication-title: Science – volume: 12 start-page: 209 year: 2003 article-title: roles of Rad52, Rad54, and Rad55 proteins in Rad51‐mediated recombination publication-title: Mol Cell – volume: 12 start-page: 863 year: 2016 article-title: Pooled‐matrix protein interaction screens using barcode fusion genetics publication-title: Mol Syst Biol – volume: 9 start-page: 718 year: 2010 end-page: 726 article-title: Mec1/Tel1‐dependent phosphorylation of Slx4 stimulates Rad1‐Rad10‐dependent cleavage of non‐homologous DNA tails publication-title: DNA Repair – year: 2017 – volume: 34 start-page: 2182 year: 2015 end-page: 2197 article-title: Assembly of Slx4 signaling complexes behind DNA replication forks publication-title: EMBO J – volume: 7 start-page: R63 year: 2006 article-title: A strategy for extracting and analyzing large‐scale quantitative epistatic interaction data publication-title: Genome Biol – volume: 418 start-page: 387 year: 2002 end-page: 391 article-title: Functional profiling of the genome publication-title: Nature – volume: 27 start-page: 6433 year: 2007 end-page: 6445 article-title: Phosphorylation of Slx4 by Mec1 and Tel1 regulates the single‐strand annealing mode of DNA repair in budding yeast publication-title: Mol Cell Biol – ident: e_1_2_8_8_1 doi: 10.1002/j.1460-2075.1990.tb07910.x – ident: e_1_2_8_14_1 doi: 10.1126/science.aaf1420 – ident: e_1_2_8_40_1 doi: 10.1016/j.molcel.2004.09.035 – ident: e_1_2_8_54_1 doi: 10.1016/S0580-9517(06)36016-3 – ident: e_1_2_8_10_1 doi: 10.1021/cr980449z – ident: e_1_2_8_24_1 doi: 10.1093/nar/gkw535 – ident: e_1_2_8_35_1 doi: 10.1073/pnas.0712255105 – ident: e_1_2_8_47_1 doi: 10.1186/gb-2001-2-12-research0052 – ident: e_1_2_8_28_1 doi: 10.1128/MCB.01392-12 – ident: e_1_2_8_57_1 doi: 10.15252/msb.20156660 – ident: e_1_2_8_53_1 doi: 10.1385/1-59259-958-3:171 – ident: e_1_2_8_9_1 doi: 10.1093/nar/gkv004 – ident: e_1_2_8_5_1 doi: 10.1038/nmeth.1534 – ident: e_1_2_8_43_1 doi: 10.1038/ncomms2678 – volume-title: R: a language and environment for statistical computing year: 2017 ident: e_1_2_8_42_1 contributor: fullname: R Core Team – ident: e_1_2_8_12_1 doi: 10.1186/gb-2006-7-7-r63 – ident: e_1_2_8_39_1 doi: 10.1073/pnas.0703252104 – ident: e_1_2_8_2_1 doi: 10.15252/embj.201591190 – ident: e_1_2_8_30_1 doi: 10.1371/journal.pgen.1006958 – ident: e_1_2_8_44_1 doi: 10.1038/ncomms15586 – ident: e_1_2_8_36_1 doi: 10.1091/mbc.E07-05-0490 – ident: e_1_2_8_21_1 doi: 10.1038/nature00935 – ident: e_1_2_8_48_1 doi: 10.1038/ng1948 – ident: e_1_2_8_4_1 doi: 10.1126/science.1195618 – ident: e_1_2_8_7_1 doi: 10.1091/mbc.E10-08-0691 – ident: e_1_2_8_6_1 doi: 10.1002/j.1460-2075.1990.tb07909.x – ident: e_1_2_8_56_1 doi: 10.1371/journal.pone.0081371 – ident: e_1_2_8_55_1 doi: 10.1007/s002940050313 – ident: e_1_2_8_23_1 doi: 10.1093/nar/gkt138 – ident: e_1_2_8_32_1 doi: 10.1534/g3.116.034207 – ident: e_1_2_8_46_1 doi: 10.1101/gr.1239303 – ident: e_1_2_8_20_1 doi: 10.1371/journal.pgen.1004168 – ident: e_1_2_8_41_1 doi: 10.1038/emboj.2011.345 – ident: e_1_2_8_13_1 doi: 10.1126/science.1180823 – ident: e_1_2_8_33_1 doi: 10.1126/science.1250217 – ident: e_1_2_8_34_1 doi: 10.1126/science.aag0839 – ident: e_1_2_8_52_1 doi: 10.1016/j.dnarep.2010.02.013 – ident: e_1_2_8_51_1 doi: 10.1371/journal.pone.0037368 – ident: e_1_2_8_16_1 doi: 10.1073/pnas.0710533105 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-2958.2009.06748.x – ident: e_1_2_8_15_1 doi: 10.15252/embj.201490834 – ident: e_1_2_8_18_1 doi: 10.1128/MCB.00135-07 – ident: e_1_2_8_49_1 doi: 10.1016/S0076-6879(05)09019-1 – ident: e_1_2_8_38_1 doi: 10.1038/nature11658 – ident: e_1_2_8_31_1 doi: 10.1534/genetics.115.181479 – ident: e_1_2_8_25_1 doi: 10.1101/gad.240515.114 – ident: e_1_2_8_37_1 doi: 10.1093/nar/gkq1215 – ident: e_1_2_8_19_1 doi: 10.1101/gad.1105203 – ident: e_1_2_8_45_1 doi: 10.1128/MCB.00547-12 – ident: e_1_2_8_50_1 doi: 10.1016/S1097-2765(03)00269-7 – ident: e_1_2_8_27_1 doi: 10.1093/nar/gkm894 – ident: e_1_2_8_26_1 doi: 10.1101/gr.137570.112 – ident: e_1_2_8_11_1 doi: 10.1128/AEM.61.2.630-638.1995 – ident: e_1_2_8_17_1 doi: 10.1038/ng.123 – ident: e_1_2_8_22_1 doi: 10.1093/nar/gkp687 – ident: e_1_2_8_29_1 doi: 10.1038/msb.2011.99 |
SSID | ssj0038182 |
Score | 2.3926334 |
Snippet | Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions.... Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions.... Abstract Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions.... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e7985 |
SubjectTerms | Bar codes Bleomycin Chromosome Mapping condition‐dependent Damage Deoxyribonucleic acid DNA DNA barcode DNA Barcoding, Taxonomic DNA Damage DNA Repair DNA sequencing EMBO17 EMBO22 EMBO26 en masse Epistasis, Genetic Gene Deletion Gene mapping Genes Genetic engineering genetic interaction Genetic Loci Genetics Growth conditions High-Throughput Nucleotide Sequencing Kinases Mapping Mating Method Methods Methyl Methanesulfonate Models, Theoretical Mutants Promoter Regions, Genetic Protein kinase Proteins Recombination Repair Reproducibility of Results Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics sequencing Yeast |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPlFL5gOAUNXHi17GFVhXS9gKVeos8fsAemlbdLdLe-An8Rn4JM3GydAWFCzfnIduZGdvfxONvGHvtGgm1gaqUrm3KNpi6BAQmZUIo642TUns64Dw7VSdn7YdzeX4r1RfFhGV64Cy4feF9KyDYNmnavQzO6VBRdh0TlAoxM4FWYnKm8hxMy5AYGTWlkGL_YgEUxqW1paTJt1aggaj_T-jy9yDJ9U7pJo4dFqLjR-zhiCD5Qe75Y3Yv9k_Y_ZxTcrXN5jNHlAuf-fvTAx7cBc4XP759n3LdLjkaDJ1b5MQTcZ1PNSzwgq8oiQ__Onf8CoWy4oRksRbXBw44GC5D5OmGfq1NNSyesrPjo0_vTsoxn0LpEbbJEnxoaldHa3xrfbQ6emVriW6qkBEMNCB1StEISCrZ5JVskkA44F1TA-UXesa2-ss-vmCcKGiiCA2IxlERUpA-qWAA_SuoUsHeTDLurjJtRkfuBimjQ2V0kzIKdkgaWL9EbNfDDbSBbrSB7l82ULDdSX_dOAQX2EKrWq1krQr2PKty3YqwptK2MgXTG0re6Mbmk37-ZSDfJgcMQVLB3k7m8KvJO76wHKzl73LoZh8Pc2nnf0jkJXuANZscmbnLtpbXN_EVoqcl7A0D5Sff5xgf priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcUHmnLcgHBKeIxI4fOaFuaVUh7QoBlXqL_Cx7aHbZbCvtjZ_Ab-SX1JPHlhXQm_OyY8_Y_sYezwfwRjNucmWylOuCpYVTeWoiMElDhLJWac6lxQPOk6k4PSs-nfPzfsGt6d0qhzGxHajd3OIaeTTSC1FIwXPxYfEjRdYo3F3tKTTuww7NmVIj2BkfTz9_GcZinI5oH1mTU07fXzYG3bmkLJE8-Y-ZqA3Y_y-U-bez5GbHdBvPthPSyS486pEkOexE_xju-foJPOi4JddPYTbRGHrhgnycHhKnL-O48fvnr4HzdkWi4uD5RYLxIpbd6YYmXpA1kvmQ65kmi6hVa4KINuaia0dM7BRz50m4wiW2IYfmGZydHH87Ok17XoXURvjGU2Mdy3XuS2WL0vpSeivKnEdzlXJvlGGGyxC8oiaIUAYrOAs0wgKrWW6QZ-g5jOp57V8CwVA0njpmKNOYNMFxG4RTJtpZJgsJvB3auFp04TMqNDtQGFUURjUII4ExSmDzEka9bm_MlxdV34kqam1BjSuLIHEn22ktXYZMS8oJ4XyRwMEgv6rvik11qzgJvOhEuSmFliqTZaYSkFtC3vqN7Sf17HsbhBsNsQiWEng3qMNtkf-pYdpqy93tUE2-jrvU3t2V2YeH8RvV-V4ewGi1vPKvIj5amdd9J7gB2acRCQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCIkL4k1KQT4gOAUSx88DQi1QVUjbC6zUW-RnuxLNlt1txd74CfxGfgkzeWwVtSBuziaxE8_Mzjfx-BtCXtpKuFK7IheWVzkPuswdAJM8AZT12gqhPG5wnhzKgyn_fCSOLimF-glcXhvaYT2p6eLbmx_f1-_B4N_11XvY29OlwyQtpYwWN8ktBk4Rs7smfLOggH6J9RSbV24ZuaSWuf86uHk1a3KzdDoGtq1n2r9H7vaQku52OnCf3IjNA3K7KzK5fkhmE4scDMf04-EuDfYU_kB-__w1FL9dUdAg3MhIkThi0W1zWMIBXWNVH3oxs_QM1GtNEdpCL7YJ1IF1zEOk6Ry_tQ09LB-R6f6nrx8O8r7AQu4Bx4nc-VCVtoxGe258NCp6aUoBcSsT0WlXOaFSipq5JJNJXooqMcAH3lalw4JDj8lWM2_iU0KRkyayUDlWWWy6FIRPMmgHAZcrUkZeDXNcn3U8GjXGHyiMGoRRD8LIyB5KYHMR0l-3P8wXx3VvTTXznjMXDE8Kl7SDtSoUWHJJBylD5BnZGeRXDyoFI3DJlRSlzMiTTpSbUZjRhTKFzogaCXn0GOMzzeykZePGiAxQU0ZeD-pwOeRf3jBvteXf81BPvux1re3_7vkZuQNN3eVj7pCt1eI8PgfMtHIvWmv4A2LhFZk priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH6CIiQuFTspBfmA4BSRON5ybAeqCml6gUq9RV5hDk2rzhRpbv0J_Y39JX0vy0BUQNyczU78Pft9jt8C8M5W0pXGFbm0ospFMGXukJjkCamsN1ZK7cnBeX6kDo_FlxN5MhjRkC_M7_v3kkv-8XTpyABL69rI-_AA1a8mQZ6p2Tjhks7hQ_jMO49M1E0Xlf9PVPKuReRmW3RKWjutc_AYtge6yPZ6fJ_Avdg-hYd9Asn1M1jMLcVX-M4-He2xYE9xcri5uh4T264YSgc5KTIKCnHRuzAs8YCtKWMP-7mw7BxFZ82ItmIttg3MoeSfhcjSJf1HG2tYPofjg8_fZof5kDwh98jRZO58qEpbxtp4UftY6-hVjZ2Hq08ZnXGVkzqlaLhLKtXJK1kljrrf26p0lEzoBWy1Z218BYzizUQeKscrS0WXgvRJBeNwMeWKlMH7sY-b8z5GRkNrCwKjQTCaEYwM9gmBzU0U2ro7gYg3w0hpuPeCu1CLpGm7OlirQ0HplExQKkSRwe6IXzOMtyW2IJTQSpYqg5c9lJtWeG0KXRcmAz0BefIa0yvt4kcXaZtWW8iIMvgwisOvJv_yhXknLf_uh2b-db8v7fx3za_hERZNb2u5C1uri8v4BvnQyr3tRsMtTqkHEg priority: 102 providerName: Springer Nature – databaseName: Wiley Open Access Journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL2CIiQ2iDeBgrxAsLJIHD-XLVBVSFMhQaXuIj_LLJqpJlOk2fEJfCNfgm8eAxEPiV2edpJ7r33s-J4D8MLWwlXalVRYXlMedEVdBiY0ZSjrtRVCeUxwXpzI41P-_kycjTqnmAsz8EPsJtwwMvr2GgPcum5S7EHW0IvO4dIspYwW1-FGhjYSJQwY_zA1xdgbsSEjklPUZRpJNrGA17_ePuuUeu7-PwHO39dN7n6ezqFt3zcd3YHbI6gkB4MX3IVrsb0HNweZye19WC4ssjCck7cnByTYi9yEfP_6bZK_3ZDsQ5jKSJA6Yj0kOnR5h2xR14d8WVpymR1sSxDc5lJsG4jL8bEKkaQrnG2bSugewOnRu09vjukosUB9RnKCOh_qylbRaM-Nj0ZFL00l8siViei0q51QKUXNXJLJJC9FnVhGCN7WlUPJoYew167a-BgIstJEFmrHaoubLgXhkwza5SGXK1MBL6dv3FwOTBoNjkDQGE02RjMZo4BDtMDuIiTA7g-s1ufNGE8N854zFwxPCn9qB2tVKFF0SQcpQ-QF7E_2a8ao7HINXHIlRSULeDSYclcLM7pUptQFqJmRZ48xP9MuP_d83Dgmy7ipgFeTO_ys8i9vSHtv-fd3aBYfD4etJ_95_VO4lQ_qYV3mPuxt1lfxWcZOG_e8j48f4rMToQ priority: 102 providerName: Wiley-Blackwell |
Title | Mapping DNA damage‐dependent genetic interactions in yeast via party mating and barcode fusion genetics |
URI | https://link.springer.com/article/10.15252/msb.20177985 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20177985 https://www.ncbi.nlm.nih.gov/pubmed/29807908 https://www.proquest.com/docview/2046476516 https://pubmed.ncbi.nlm.nih.gov/PMC5974512 https://doaj.org/article/2cc42bd94f72421daa7d032148d66de4 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa2i5C4IN4ElsoHBKdsG8evHLdlVyukVBWwUm-Rn7uVaFq1XaTe-An8Rn4J4yQuVDwOXCw7iWzHM_Z8Y49nEHqtcqYzqYcpUzRPqZVZqgGYpB6grJGKMWHCBedywi-v6PsZmx0hFu_CNEb7Rs9P68-L03p-09hWrhZmEO3EBtNyHEAwCKpBD_VA_EYVvV1-gwQinTNNRhgZLDY6WHAJUcgQpoYUciiKEE3yFznUuOv_E8b83VRyf156iGYbcXTxAN3vcCQ-a_v7EB25-hG620aW3D1G81IFxwvX-N3kDFu1gFXj-9dvMeLtFgPbhNuLOHiLWLd3GzZQwLsQygd_mSu8gqHY4YBnoRZVW6xhSiytw_42bLDFGjZP0NXF-afxZdpFVUgNgDeWamPzTGWukIYWxhXCGV5kDJRVwpyWOtdMeO8k0Z77whvOck8AFBiVZzpEGXqKjutl7Z4jHBzROGJzTXIVstpbZjy3UoOWpYc-QW_iGFer1nlGFZSOQJcK6FJFuiRoFCiw_yj4vG4eLNfXVUf5ihhDibYF9SKcY1ulhB2GOEvScm4dTdBJpF_VTcQNtEA5FZxlPEHPWlLuW4mskCBxQOSDbhy-AY5sXHB3HJigt5Edfjb5lz9MG2759zhU5cdRm3vx3316ie5BdbI1yjxBx9v1rXsFwGmr-6hH6BRSMRN9dGd0Ppl-gNKYj_vNVgSkJZX9Zjr9AN4-Hqw |
link.rule.ids | 230,314,727,780,784,864,885,2102,11562,12056,21388,24318,27924,27925,31719,33744,41120,42189,43310,43805,46052,46476,50814,50923,51576,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFL2CVAg2iGcZKOAFgtWIjGf8mBVqoFWAJkLQSt1ZfpYsOgmZFCk7PoFv5EvwnUdKBHQ3b499r-1z_TgH4IXOmcmkGaZMF3laOJmlJgKTNEQoa6VmTFjc4DyZ8vFJ8eGUnXYDbnW3rLJvE5uG2s0tjpHHIL3gheAs428W31JUjcLZ1U5C4zrsIHM6G8DO6GD66XPfFmN3RDtmTUYZfX1eG1zOJUSJ4sl_9EQNYf-_UObfiyU3M6bbeLbpkA7vwO0OSZL91vR34Zqv7sGNVltyfR9mE43UC2fk3XSfOH0e241fP372mrcrEh0H9y8S5ItYtrsb6nhC1ijmQ77PNFlEr1oTRLTxK7pyxMRKMXeehAscYuu_UD-Ak8OD47fjtNNVSG2Ebyw11uWZznwpbVFaXwpveZmxGK5S5o00uWEiBC-pCTyUwXKWBxphgdV5ZlBn6CEMqnnlHwFBKhpPXW5orvHQBMds4E6aGGeZYUjgZV_GatHSZygMO9AYKhpD9cZIYIQW2DyErNfNhfnyTHWVSFFrC2pcWQSBM9lOa-GGqLQkHefOFwns9fZTXVWs1aXjJLDbmnKTCi3lUJRDmYDYMvLWb2zfqWZfGxJuDMQiWErgVe8Ol0n-J4dp4y1Xl4OafBm1R4-vzsxzuDk-nhypo_fTj0_gVnxftusw92CwWl74pxErrcyzrkL8Br88E_E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIhAXxJuUAj4gOEVNHNtxxKndsiqPXSFBpd4iP8seml3tbivtjZ_Ab-SX4EniRVEBcUucxE48M_Y3secbgFeq4DqXOku5YkXKrMxTHYBJ6gOUNVJxXhoMcJ5Mxckp-3DGz3bgbYyFaXe7xyXJLqYBWZqa9cHC-pivhx5crDRuyyrLSvIbcJMF1IB5G0ZiFIdhnIloT6p57ZHBJNRy9f8JYF7fJ7ldLB1C2XYuGt-Duz2IJIed1O_DjmsewK0ureTmIcwmClkXzsnx9JBYdRGGjJ_ff8R0t2sSdAZDFwlSRSy7wIZVOCEbzONDrmaKLIJCbQiC2VCLaizRwR7m1hF_iX_XYg2rR3A6fvd1dJL2KRVSE5AbT7WxRa5yV0nDKuOq0hlR5Tx4qpQ7LXWheem9k1R74StvBC88DYjAqCLXmGLoMew288Y9BYIsNI7aQtNC4aH2lhsvrNTBxdKZT-B17ON60TFn1OhxoDDqIIw6CiOBI5TA9iYkvG4L5svzurefmhrDqLYV8yUuYlulSpthkiVphbCOJbAf5Vf3VrgKLTDBSsFzkcCTTpTbVmgls7LKZALlQMiD1xheaWbfWv5t9MECTkrgTVSH303-5QvTVlv-3Q_15MtRd7T33zW_hNufj8f1p_fTj8_gTiiV3WbMfdhdLy_d8wCY1vpFaxi_AIVpEjo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+DNA+damage%E2%80%90dependent+genetic+interactions+in+yeast+via+party+mating+and+barcode+fusion+genetics&rft.jtitle=Molecular+systems+biology&rft.au=D%C3%ADaz%E2%80%90Mej%C3%ADa%2C+J+Javier&rft.au=Celaj%2C+Albi&rft.au=Mellor%2C+Joseph+C&rft.au=Cot%C3%A9%2C+Atina&rft.date=2018-05-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1744-4292&rft.volume=14&rft.issue=5&rft_id=info:doi/10.15252%2Fmsb.20177985&rft.externalDocID=10_15252_msb_20177985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |