Mapping DNA damage‐dependent genetic interactions in yeast via party mating and barcode fusion genetics

Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to mu...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 14; no. 5; pp. e7985 - n/a
Main Authors Díaz‐Mejía, J Javier, Celaj, Albi, Mellor, Joseph C, Coté, Atina, Balint, Attila, Ho, Brandon, Bansal, Pritpal, Shaeri, Fatemeh, Gebbia, Marinella, Weile, Jochen, Verby, Marta, Karkhanina, Anna, Zhang, YiFan, Wong, Cassandra, Rich, Justin, Prendergast, D'Arcy, Gupta, Gaurav, Öztürk, Sedide, Durocher, Daniel, Brown, Grant W, Roth, Frederick P
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2018
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Synopsis A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse . Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. BFG‐GI involves generating double‐mutant‐specific fused barcodes, enabling to measure the abundance of double mutants en masse by next generation sequencing. Once a double mutant BFG‐GI pool has been generated genetic interactions can be tested in new growth conditions. BFG‐GI is applied to 26 genes related to DNA damage repair in nine different conditions, including seven DNA‐damaging agents. A novel relationship is reported between the Shu complex and the checkpoint protein kinase Rad53. Graphical Abstract A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse . Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex.
AbstractList Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions ( BFG ‐ GI ), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG ‐ GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG ‐ GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate ( MMS ), 4‐nitroquinoline 1‐oxide (4 NQO ), bleomycin, zeocin, and three other DNA ‐damaging environments. BFG ‐ GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG 1 , SLX 4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.
Abstract Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Synopsis A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse. Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. BFG‐GI involves generating double‐mutant‐specific fused barcodes, enabling to measure the abundance of double mutants en masse by next generation sequencing. Once a double mutant BFG‐GI pool has been generated genetic interactions can be tested in new growth conditions. BFG‐GI is applied to 26 genes related to DNA damage repair in nine different conditions, including seven DNA‐damaging agents. A novel relationship is reported between the Shu complex and the checkpoint protein kinase Rad53. A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse. Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex.
Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via "party" mating can also be monitored for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving , and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. Synopsis A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse . Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex. BFG‐GI involves generating double‐mutant‐specific fused barcodes, enabling to measure the abundance of double mutants en masse by next generation sequencing. Once a double mutant BFG‐GI pool has been generated genetic interactions can be tested in new growth conditions. BFG‐GI is applied to 26 genes related to DNA damage repair in nine different conditions, including seven DNA‐damaging agents. A novel relationship is reported between the Shu complex and the checkpoint protein kinase Rad53. Graphical Abstract A new method, Barcode Fusion Genetics to Map Genetic Interactions (BFG‐GI) allows generating double mutants and measuring condition‐dependent genetic interactions en masse . Application of BFG‐GI to DNA repair genes reveals a new function for the Shu complex.
Author Gebbia, Marinella
Karkhanina, Anna
Durocher, Daniel
Shaeri, Fatemeh
Celaj, Albi
Verby, Marta
Brown, Grant W
Weile, Jochen
Coté, Atina
Ho, Brandon
Roth, Frederick P
Wong, Cassandra
Balint, Attila
Bansal, Pritpal
Rich, Justin
Öztürk, Sedide
Gupta, Gaurav
Díaz‐Mejía, J Javier
Zhang, YiFan
Mellor, Joseph C
Prendergast, D'Arcy
AuthorAffiliation 7 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology Dana‐Farber Cancer Institute Boston MA USA
1 Donnelly Centre University of Toronto Toronto ON Canada
10 Present address: Department of Cellular and Molecular Medicine Center for Chromosome Stability University of Copenhagen Copenhagen Denmark
3 Lunenfeld‐Tanenbaum Research Institute Mt. Sinai Hospital Toronto ON Canada
6 Department of Biochemistry University of Toronto Toronto ON Canada
5 Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
8 Canadian Institute for Advanced Research Toronto ON Canada
2 Department of Molecular Genetics University of Toronto Toronto ON Canada
4 Department of Computer Science University of Toronto Toronto ON Canada
9 Present address: SeqWell, Inc. Beverly MA USA
11 Present address: Roche Sequencing Solutions Pleasanton CA USA
AuthorAffiliation_xml – name: 9 Present address: SeqWell, Inc. Beverly MA USA
– name: 1 Donnelly Centre University of Toronto Toronto ON Canada
– name: 5 Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
– name: 2 Department of Molecular Genetics University of Toronto Toronto ON Canada
– name: 4 Department of Computer Science University of Toronto Toronto ON Canada
– name: 8 Canadian Institute for Advanced Research Toronto ON Canada
– name: 10 Present address: Department of Cellular and Molecular Medicine Center for Chromosome Stability University of Copenhagen Copenhagen Denmark
– name: 6 Department of Biochemistry University of Toronto Toronto ON Canada
– name: 7 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology Dana‐Farber Cancer Institute Boston MA USA
– name: 11 Present address: Roche Sequencing Solutions Pleasanton CA USA
– name: 3 Lunenfeld‐Tanenbaum Research Institute Mt. Sinai Hospital Toronto ON Canada
Author_xml – sequence: 1
  givenname: J Javier
  surname: Díaz‐Mejía
  fullname: Díaz‐Mejía, J Javier
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto
– sequence: 2
  givenname: Albi
  orcidid: 0000-0002-5888-772X
  surname: Celaj
  fullname: Celaj, Albi
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto
– sequence: 3
  givenname: Joseph C
  surname: Mellor
  fullname: Mellor, Joseph C
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, SeqWell, Inc
– sequence: 4
  givenname: Atina
  surname: Coté
  fullname: Coté, Atina
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 5
  givenname: Attila
  orcidid: 0000-0002-6481-1772
  surname: Balint
  fullname: Balint, Attila
  organization: Donnelly Centre, University of Toronto, Department of Biochemistry, University of Toronto, Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen
– sequence: 6
  givenname: Brandon
  surname: Ho
  fullname: Ho, Brandon
  organization: Donnelly Centre, University of Toronto, Department of Biochemistry, University of Toronto
– sequence: 7
  givenname: Pritpal
  surname: Bansal
  fullname: Bansal, Pritpal
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 8
  givenname: Fatemeh
  surname: Shaeri
  fullname: Shaeri, Fatemeh
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 9
  givenname: Marinella
  surname: Gebbia
  fullname: Gebbia, Marinella
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto
– sequence: 10
  givenname: Jochen
  orcidid: 0000-0003-1628-9390
  surname: Weile
  fullname: Weile, Jochen
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 11
  givenname: Marta
  surname: Verby
  fullname: Verby, Marta
  organization: Donnelly Centre, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 12
  givenname: Anna
  surname: Karkhanina
  fullname: Karkhanina, Anna
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 13
  givenname: YiFan
  surname: Zhang
  fullname: Zhang, YiFan
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 14
  givenname: Cassandra
  surname: Wong
  fullname: Wong, Cassandra
  organization: Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 15
  givenname: Justin
  surname: Rich
  fullname: Rich, Justin
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 16
  givenname: D'Arcy
  surname: Prendergast
  fullname: Prendergast, D'Arcy
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 17
  givenname: Gaurav
  surname: Gupta
  fullname: Gupta, Gaurav
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 18
  givenname: Sedide
  surname: Öztürk
  fullname: Öztürk, Sedide
  organization: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Roche Sequencing Solutions
– sequence: 19
  givenname: Daniel
  surname: Durocher
  fullname: Durocher, Daniel
  organization: Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital
– sequence: 20
  givenname: Grant W
  surname: Brown
  fullname: Brown, Grant W
  organization: Donnelly Centre, University of Toronto, Department of Biochemistry, University of Toronto
– sequence: 21
  givenname: Frederick P
  orcidid: 0000-0002-6628-649X
  surname: Roth
  fullname: Roth, Frederick P
  email: fritz.roth@utoronto.ca
  organization: Donnelly Centre, University of Toronto, Department of Molecular Genetics, University of Toronto, Lunenfeld‐Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Computer Science, University of Toronto, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana‐Farber Cancer Institute, Canadian Institute for Advanced Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29807908$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhiNURC-wZIsssc4QO3Ycb5BKoVCphQWwtnw5Dh7N2MHOFM2OR-gz8iSYpjO0EmLl23c-__Y5rg5CDFBVz3GzwIww8mqd9YI0mHPRs0fVEeaU1pQIcnBvflgd57xsmrbHPXlSHRLRN1w0_VHlr9Q4-jCgtx9PkVVrNcCvnzcWRggWwoQGCDB5g3yYICkz-RhyWaAtqDyha6_QqNK0RWs1_bGoYJFWyUQLyG1yoXeG_LR67NQqw7O78aT6ev7uy9mH-vLT-4uz08vasI6xWhvbYoVB9IYKA4KD6QRmHLeEge51qxl3DnqiXeeEMx1rHSGiNarFGjPWnlQXs9dGtZRj8muVtjIqL283YhpkSezNCiQxhhJtBXWcUIKtUtw2LcG0t11ngRbX69k1bvQarCk_ktTqgfThSfDf5BCvJROcMkyK4OWdIMXvG8iTXMZNCuX9kjS0o7xjuCtUPVMmxZwTuP0NuJG3XZaly3LX5cK_uB9rT-_aWgA6Az_8Crb_t8mrz2_23sVclktFGCD9TfvvIL8BRu_GSw
CitedBy_id crossref_primary_10_1016_j_cels_2019_09_009
crossref_primary_10_15252_msb_20188485
crossref_primary_10_1016_j_tig_2023_04_002
crossref_primary_10_1186_s13059_023_03156_9
crossref_primary_10_3389_ffunb_2021_683414
crossref_primary_10_1016_j_gde_2019_03_004
crossref_primary_10_1016_j_cels_2018_09_004
crossref_primary_10_1007_s00239_023_10098_0
crossref_primary_10_1038_s41540_020_0134_z
crossref_primary_10_1101_gr_246603_118
crossref_primary_10_7554_eLife_40174
crossref_primary_10_15252_msb_20199167
crossref_primary_10_1038_s41467_019_11735_3
crossref_primary_10_13080_z_a_2021_108_040
crossref_primary_10_1016_j_cels_2021_05_012
crossref_primary_10_1126_sciadv_add2793
crossref_primary_10_1016_j_cell_2019_01_033
crossref_primary_10_1042_BST20210285
crossref_primary_10_1016_j_cels_2019_03_005
Cites_doi 10.1002/j.1460-2075.1990.tb07910.x
10.1126/science.aaf1420
10.1016/j.molcel.2004.09.035
10.1016/S0580-9517(06)36016-3
10.1021/cr980449z
10.1093/nar/gkw535
10.1073/pnas.0712255105
10.1186/gb-2001-2-12-research0052
10.1128/MCB.01392-12
10.15252/msb.20156660
10.1385/1-59259-958-3:171
10.1093/nar/gkv004
10.1038/nmeth.1534
10.1038/ncomms2678
10.1186/gb-2006-7-7-r63
10.1073/pnas.0703252104
10.15252/embj.201591190
10.1371/journal.pgen.1006958
10.1038/ncomms15586
10.1091/mbc.E07-05-0490
10.1038/nature00935
10.1038/ng1948
10.1126/science.1195618
10.1091/mbc.E10-08-0691
10.1002/j.1460-2075.1990.tb07909.x
10.1371/journal.pone.0081371
10.1007/s002940050313
10.1093/nar/gkt138
10.1534/g3.116.034207
10.1101/gr.1239303
10.1371/journal.pgen.1004168
10.1038/emboj.2011.345
10.1126/science.1180823
10.1126/science.1250217
10.1126/science.aag0839
10.1016/j.dnarep.2010.02.013
10.1371/journal.pone.0037368
10.1073/pnas.0710533105
10.1111/j.1365-2958.2009.06748.x
10.15252/embj.201490834
10.1128/MCB.00135-07
10.1016/S0076-6879(05)09019-1
10.1038/nature11658
10.1534/genetics.115.181479
10.1101/gad.240515.114
10.1093/nar/gkq1215
10.1101/gad.1105203
10.1128/MCB.00547-12
10.1016/S1097-2765(03)00269-7
10.1093/nar/gkm894
10.1101/gr.137570.112
10.1128/AEM.61.2.630-638.1995
10.1038/ng.123
10.1093/nar/gkp687
10.1038/msb.2011.99
ContentType Journal Article
Copyright The Author(s) 2018
2018 The Authors. Published under the terms of the CC BY 4.0 license
2018 The Authors. Published under the terms of the CC BY 4.0 license.
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
RC3
5PM
DOA
DOI 10.15252/msb.20177985
DatabaseName SpringerOpen
Wiley Open Access Journals
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Databases
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen website
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate J Javier Díaz‐Mejía et al
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2cc42bd94f72421daa7d032148d66de4
10_15252_msb_20177985
29807908
MSB177985
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH/NHGRI
  grantid: HG001715
– fundername: Canada Excellence Research Chairs
– fundername: One Brave Idea Foundation
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR)
  grantid: MOP‐79368; FDN143343
  funderid: 10.13039/501100000024
– fundername: NRSA Award
  grantid: HG004825
  funderid: 10.13039/100009429
– fundername: HHS | NIH | National Human Genome Research Institute (NHGRI)
  grantid: HG004756
  funderid: 10.13039/100000051
– fundername: NIH/NHGRI Center of Excellence in Genomic Science
  grantid: HG004233
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR)
  funderid: MOP‐79368; FDN143343
– fundername: NIH/NHGRI
  funderid: HG001715
– fundername: HHS | NIH | National Human Genome Research Institute (NHGRI)
  funderid: HG004756
– fundername: NIH/NHGRI Center of Excellence in Genomic Science
  funderid: HG004233
– fundername: NRSA Award
  funderid: HG004825
– fundername: CIHR
  grantid: FDN143343
– fundername: NHGRI NIH HHS
  grantid: F32 HG004825
– fundername: CIHR
  grantid: MOP-79368
– fundername: NHGRI NIH HHS
  grantid: U41 HG001715
– fundername: NHGRI NIH HHS
  grantid: R01 HG001715
– fundername: NHGRI NIH HHS
  grantid: R21 HG004756
– fundername: NHGRI NIH HHS
  grantid: U01 HG001715
– fundername: NHGRI NIH HHS
  grantid: P50 HG004233
– fundername: NRSA Award
  grantid: HG004825
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR)
  grantid: MOP‐79368; FDN143343
– fundername: HHS | NIH | National Human Genome Research Institute (NHGRI)
  grantid: HG004756
GroupedDBID ---
-Q-
0R~
123
1OC
24P
29M
2WC
39C
3V.
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAHHS
ABDBF
ABUWG
ACCFJ
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IHR
INH
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
O5R
O5S
O9-
OK1
P2P
PADUT
PIMPY
PQQKQ
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
4.4
88A
ACSMW
COF
EBLON
GODZA
H13
IGS
M0L
PROAC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ITC
7QL
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PQEST
PQUKI
PRINS
Q9U
RC3
5PM
ID FETCH-LOGICAL-c5655-bcd31a1e98c49ce97ec691571325eb8b3b57ffe82bf6f9fc653f2293ca31b1553
IEDL.DBID RPM
ISSN 1744-4292
IngestDate Mon Nov 04 19:56:17 EST 2024
Tue Sep 17 21:33:11 EDT 2024
Thu Oct 10 16:01:40 EDT 2024
Fri Dec 06 02:40:56 EST 2024
Sat Sep 28 08:27:35 EDT 2024
Sat Aug 24 01:04:17 EDT 2024
Fri Oct 25 01:30:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords condition‐dependent
DNA barcode
genetic interaction
sequencing
en masse
Language English
License Attribution
2018 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5655-bcd31a1e98c49ce97ec691571325eb8b3b57ffe82bf6f9fc653f2293ca31b1553
ORCID 0000-0002-5888-772X
0000-0002-6628-649X
0000-0002-6481-1772
0000-0003-1628-9390
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974512/
PMID 29807908
PQID 2046476516
PQPubID 29031
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_2cc42bd94f72421daa7d032148d66de4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5974512
proquest_journals_2046476516
crossref_primary_10_15252_msb_20177985
pubmed_primary_29807908
wiley_primary_10_15252_msb_20177985_MSB177985
springer_journals_10_15252_msb_20177985
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2018
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References Flott, Alabert, Toh, Toth, Sugawara, Campbell, Haber, Pasero, Rouse (CR17) 2007; 27
Gibson (CR21) 2009; 37
Iyer, Rhind (CR29) 2017; 13
Balint, Kim, Gallo, Cussiol, Bastos de Oliveira, Yimit, Ou, Nakato, Gurevich, Shirahige, Smolka, Zhang, Brown (CR1) 2015; 34
Pfander, Diffley (CR40) 2011; 30
Bandyopadhyay, Mehta, Kuo, Sung, Chuang, Jaehnig, Bodenmiller, Licon, Copeland, Shales, Fiedler, Dutkowski, Guénolé, van Attikum, Shokat, Kolodner, Huh, Aebersold, Keogh, Krogan (CR3) 2010; 330
Tong, Boone, Xiao (CR52) 2005
Soellick, Uhrig (CR46) 2001; 2
Hastie, Pruitt (CR26) 2007; 35
Sasanuma, Tawaramoto, Lao, Hosaka, Sanda, Suzuki, Yamashita, Hunter, Shinohara, Nakagawa, Shinohara (CR42) 2013; 4
Giaever, Chu, Ni, Connelly, Riles, Véronneau, Dow, Lucau‐Danila, Anderson, André, Arkin, Astromoff, El‐Bakkoury, Bangham, Benito, Brachat, Campanaro, Curtiss, Davis, Deutschbauer (CR20) 2002; 418
Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (CR45) 2003; 13
Xiao, Chow (CR54) 1998; 33
Xu, Ball, Chen, Tian, Lambrecht, Hanna, Xiao (CR55) 2013; 8
van Leeuwen, Pons, Mellor, Yamaguchi, Friesen, Koschwanez, Ušaj, Pechlaner, Takar, Ušaj, VanderSluis, Andrusiak, Bansal, Baryshnikova, Boone, Cao, Cote, Gebbia, Horecka, Horecka (CR33) 2016; 354
Lee, St Onge, Proctor, Wallace, Nile, Spagnuolo, Jitkova, Gronda, Wu, Kim, Cheung‐Ong, Torres, Spear, Han, Schlecht, Suresh, Duby, Heisler, Surendra, Fung (CR32) 2014; 344
Storici, Resnick (CR48) 2006; 409
Berdal, Bjørås, Bjelland, Seeberg (CR5) 1990; 9
Claussen, Long (CR9) 1999; 99
Garay, Campos, González de la Cruz, Gaspar, Jinich, Deluna (CR19) 2014; 10
Tong, Boone (CR53) 2007; 36
Choi, Batke, Szakal, Lowther, Hao, Sarangi, Branzei, Ulrich, Zhao (CR8) 2015; 43
Cussiol, Jablonowski, Yimit, Brown, Smolka (CR14) 2015; 34
(CR41) 2017
Baryshnikova, Costanzo, Kim, Ding, Koh, Toufighi, Youn, Ou, San Luis, Bandyopadhyay, Hibbs, Hess, Gingras, Bader, Troyanskaya, Brown, Andrews, Boone, Myers (CR4) 2010; 7
Bernstein, Reid, Sunjevaric, Demuth, Burgess, Rothstein (CR6) 2011; 22
Pan, Yuan, Xiang, Wang, Sookhai‐Mahadeo, Bader, Hieter, Spencer, Boeke (CR39) 2004; 16
Ideker, Krogan (CR28) 2012; 8
Godin, Wier, Kabbinavar, Bratton‐Palmer, Ghodke, Van Houten, VanDemark, Bernstein (CR22) 2013; 41
Jablonowski, Cussiol, Oberly, Yimit, Balint, Kim, Zhang, Brown, Smolka (CR30) 2015; 201
Yachie, Petsalaki, Mellor, Weile, Jacob, Verby, Ozturk, Li, Cote, Mosca, Knapp, Ko, Yu, Gebbia, Sahni, Yi, Tyagi, Sheykhkarimli, Roth, Wong (CR56) 2016; 12
Mankouri, Ngo, Hickson (CR35) 2007; 18
Minca, Kowalski (CR36) 2011; 39
Chen, Derfler, Samson (CR7) 1990; 9
Costanzo, Baryshnikova, Bellay, Kim, Spear, Sevier, Ding, Koh, Toufighi, Mostafavi, Prinz, St Onge, VanderSluis, Makhnevych, Vizeacoumar, Alizadeh, Bahr, Brost, Chen, Cokol (CR12) 2010; 327
Jaffe, Sherlock, Levy (CR31) 2017; 7
Ha, Roth, Lai, Bashashati, Ding, Goya, Giuliany, Rosner, Oloumi, Shumansky, Chin, Turashvili, Hirst, Caldas, Marra, Aparicio, Shah (CR25) 2012; 22
Ball, Zhang, Cobb, Boone, Xiao (CR2) 2009; 73
Decourty, Saveanu, Zemam, Hantraye, Frachon, Rousselle, Fromont‐Racine, Jacquier (CR15) 2008; 105
Sugawara, Wang, Haber (CR49) 2003; 12
Collins, Schuldiner, Krogan, Weissman (CR11) 2006; 7
Schwartz, Wright, Ehmsen, Evans, Stahlberg, Heyer (CR44) 2012; 32
Schlecht, Liu, Blundell, St Onge, Levy (CR43) 2017; 8
St Onge, Mani, Oh, Proctor, Fung, Davis, Nislow, Roth, Giaever (CR47) 2007; 39
Huang, Piening, Paulovich (CR27) 2013; 33
Svensson, Fry, Wang, Somoza, Samson (CR50) 2012; 7
Godin, Zhang, Herken, Westmoreland, Lee, Mihalevic, Yu, Sobol, Resnick, Bernstein (CR23) 2016; 44
Codon, Gasent‐Ramirez, Benitez (CR10) 1995; 61
Costanzo, VanderSluis, Koch, Baryshnikova, Pons, Tan, Wang, Usaj, Hanchard, Lee, Pelechano, Styles, Billmann, van Leeuwen, van Dyk, Lin, Kuzmin, Nelson, Piotrowski, Srikumar (CR13) 2016; 353
DeLuna, Vetsigian, Shoresh, Hegreness, Colón‐González, Chao, Kishony (CR16) 2008; 40
Fricke, Brill (CR18) 2003; 17
Toh, Sugawara, Dong, Toth, Lee, Haber, Rouse (CR51) 2010; 9
Mani, St Onge, Hartman, Giaever, Roth (CR34) 2008; 105
Ohouo, Bastos de Oliveira, Liu, Ma, Smolka (CR37) 2013; 493
Gritenaite, Princz, Szakal, Bantele, Wendeler, Schilbach, Habermann, Matos, Lisby, Branzei, Pfander (CR24) 2014; 28
O'Neill, Szyjka, Lis, Bailey, Yates, Aparicio, Romesberg (CR38) 2007; 104
2007; 39
2015; 34
2007; 104
2017; 7
2017; 8
2013; 4
2003; 13
2008; 105
2003; 17
2014; 28
2013; 8
2007; 35
2007; 36
2003; 12
2006; 409
1995; 61
2015; 43
2016; 354
2011; 22
1999; 99
2016; 353
2012; 22
2010; 7
2014; 10
2010; 9
2007; 27
2016; 44
2007; 18
2010; 327
2015; 201
2013; 41
2006; 7
2011; 30
2002; 418
2005
2011; 39
2012; 32
2016; 12
2009; 73
2013; 33
2004; 16
2017; 13
2010; 330
2017
2013; 493
2001; 2
2008; 40
2012; 7
1990; 9
2009; 37
1998; 33
2012; 8
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
R Core Team (e_1_2_8_42_1) 2017
e_1_2_8_50_1
References_xml – volume: 33
  start-page: 1515
  year: 2013
  end-page: 1527
  ident: CR27
  article-title: The preference for error‐free or error‐prone postreplication repair in exposed to low‐dose methyl methanesulfonate is cell cycle dependent
  publication-title: Mol Cell Biol
  contributor:
    fullname: Paulovich
– volume: 9
  start-page: 718
  year: 2010
  end-page: 726
  ident: CR51
  article-title: Mec1/Tel1‐dependent phosphorylation of Slx4 stimulates Rad1‐Rad10‐dependent cleavage of non‐homologous DNA tails
  publication-title: DNA Repair
  contributor:
    fullname: Rouse
– volume: 330
  start-page: 1385
  year: 2010
  end-page: 1389
  ident: CR3
  article-title: Rewiring of genetic networks in response to DNA damage
  publication-title: Science
  contributor:
    fullname: Krogan
– volume: 12
  start-page: 209
  year: 2003
  ident: CR49
  article-title: roles of Rad52, Rad54, and Rad55 proteins in Rad51‐mediated recombination
  publication-title: Mol Cell
  contributor:
    fullname: Haber
– volume: 39
  start-page: 2610
  year: 2011
  ident: CR36
  article-title: Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Kowalski
– start-page: 171
  year: 2005
  end-page: 192
  ident: CR52
  article-title: Synthetic Genetic Array (SGA) analysis in
  publication-title: Yeast protocols
  contributor:
    fullname: Xiao
– volume: 27
  start-page: 6433
  year: 2007
  end-page: 6445
  ident: CR17
  article-title: Phosphorylation of Slx4 by Mec1 and Tel1 regulates the single‐strand annealing mode of DNA repair in budding yeast
  publication-title: Mol Cell Biol
  contributor:
    fullname: Rouse
– volume: 105
  start-page: 3461
  year: 2008
  end-page: 3466
  ident: CR34
  article-title: Defining genetic interaction
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Roth
– volume: 39
  start-page: 199
  year: 2007
  end-page: 206
  ident: CR47
  article-title: Systematic pathway analysis using high‐resolution fitness profiling of combinatorial gene deletions
  publication-title: Nat Genet
  contributor:
    fullname: Giaever
– volume: 13
  start-page: 2498
  year: 2003
  ident: CR45
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
  contributor:
    fullname: Ideker
– volume: 8
  start-page: e81371
  year: 2013
  ident: CR55
  article-title: The yeast Shu complex utilizes homologous recombination machinery for error‐free lesion bypass via physical interaction with a Rad51 paralogue
  publication-title: PLoS ONE
  contributor:
    fullname: Xiao
– volume: 61
  start-page: 1677
  year: 1995
  ident: CR10
  article-title: Factors which affect the frequency of sporulation and tetrad formation in Baker's yeasts
  publication-title: Appl Environ Microbiol
  contributor:
    fullname: Benitez
– volume: 12
  start-page: 863
  year: 2016
  ident: CR56
  article-title: Pooled‐matrix protein interaction screens using barcode fusion genetics
  publication-title: Mol Syst Biol
  contributor:
    fullname: Wong
– volume: 8
  start-page: 565
  year: 2012
  ident: CR28
  article-title: Differential network biology
  publication-title: Mol Syst Biol
  contributor:
    fullname: Krogan
– volume: 327
  start-page: 425
  year: 2010
  end-page: 431
  ident: CR12
  article-title: The genetic landscape of a cell
  publication-title: Science
  contributor:
    fullname: Cokol
– volume: 105
  start-page: 5821
  year: 2008
  end-page: 5826
  ident: CR15
  article-title: Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Jacquier
– volume: 33
  start-page: 92
  year: 1998
  ident: CR54
  article-title: Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage
  publication-title: Curr Genet
  contributor:
    fullname: Chow
– volume: 30
  start-page: 4897
  year: 2011
  end-page: 4907
  ident: CR40
  article-title: Dpb11 coordinates Mec1 kinase activation with cell cycle‐regulated Rad9 recruitment
  publication-title: EMBO J
  contributor:
    fullname: Diffley
– volume: 8
  start-page: 15586
  year: 2017
  ident: CR43
  article-title: A scalable double‐barcode sequencing platform for characterization of dynamic protein‐protein interactions
  publication-title: Nat Commun
  contributor:
    fullname: Levy
– volume: 7
  start-page: 143
  year: 2017
  end-page: 153
  ident: CR31
  article-title: iSeq: a new double‐barcode method for detecting dynamic genetic interactions in yeast
  publication-title: G3
  contributor:
    fullname: Levy
– volume: 104
  start-page: 9290
  year: 2007
  end-page: 9295
  ident: CR38
  article-title: Pph3‐Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Romesberg
– volume: 10
  start-page: e1004168
  year: 2014
  ident: CR19
  article-title: High‐resolution profiling of stationary‐phase survival reveals yeast longevity factors and their genetic interactions
  publication-title: PLoS Genet
  contributor:
    fullname: Deluna
– volume: 409
  start-page: 329
  year: 2006
  end-page: 345
  ident: CR48
  article-title: The delitto perfetto approach to site‐directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast
  publication-title: Methods Enzymol
  contributor:
    fullname: Resnick
– volume: 28
  start-page: 1604
  year: 2014
  end-page: 1619
  ident: CR24
  article-title: A cell cycle‐regulated Slx4‐Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication
  publication-title: Genes Dev
  contributor:
    fullname: Pfander
– volume: 353
  start-page: aaf1420
  year: 2016
  ident: CR13
  article-title: A global genetic interaction network maps a wiring diagram of cellular function
  publication-title: Science
  contributor:
    fullname: Srikumar
– volume: 2
  start-page: RESEARCH0052
  year: 2001
  ident: CR46
  article-title: Development of an optimized interaction‐mating protocol for large‐scale yeast two‐hybrid analyses
  publication-title: Genome Biol
  contributor:
    fullname: Uhrig
– volume: 43
  start-page: 2666
  year: 2015
  ident: CR8
  article-title: Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Zhao
– volume: 4
  start-page: 1676
  year: 2013
  ident: CR42
  article-title: A new protein complex promoting the assembly of Rad51 filaments
  publication-title: Nat Commun
  contributor:
    fullname: Shinohara
– volume: 17
  start-page: 1768
  year: 2003
  end-page: 1778
  ident: CR18
  article-title: Slx1‐Slx4 is a second structure‐specific endonuclease functionally redundant with Sgs1‐Top3
  publication-title: Genes Dev
  contributor:
    fullname: Brill
– volume: 7
  start-page: R63
  year: 2006
  ident: CR11
  article-title: A strategy for extracting and analyzing large‐scale quantitative epistatic interaction data
  publication-title: Genome Biol
  contributor:
    fullname: Weissman
– volume: 22
  start-page: 1599
  year: 2011
  end-page: 1607
  ident: CR6
  article-title: The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti‐recombinase
  publication-title: Mol Biol Cell
  contributor:
    fullname: Rothstein
– volume: 35
  start-page: e141
  year: 2007
  ident: CR26
  article-title: Yeast two‐hybrid interaction partner screening through cre‐mediated binary interaction tag generation
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Pruitt
– volume: 7
  start-page: e37368
  year: 2012
  ident: CR50
  article-title: Identification of novel human damage response proteins targeted through yeast orthology
  publication-title: PLoS ONE
  contributor:
    fullname: Samson
– volume: 37
  start-page: 6984
  year: 2009
  end-page: 6990
  ident: CR21
  article-title: Synthesis of DNA fragments in yeast by one‐step assembly of overlapping oligonucleotides
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Gibson
– volume: 32
  start-page: 3065
  year: 2012
  ident: CR44
  article-title: Mus81‐Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair
  publication-title: Mol Cell Biol
  contributor:
    fullname: Heyer
– volume: 41
  start-page: 4525
  year: 2013
  end-page: 4534
  ident: CR22
  article-title: The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55‐Rad57 to mediate error‐free recombination
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Bernstein
– volume: 40
  start-page: 676
  year: 2008
  end-page: 681
  ident: CR16
  article-title: Exposing the fitness contribution of duplicated genes
  publication-title: Nat Genet
  contributor:
    fullname: Kishony
– volume: 9
  start-page: 4569
  year: 1990
  end-page: 4575
  ident: CR7
  article-title: 3‐methyladenine DNA glycosylase has homology to the AlkA glycosylase of and is induced in response to DNA alkylation damage
  publication-title: EMBO J
  contributor:
    fullname: Samson
– volume: 13
  start-page: e1006958
  year: 2017
  ident: CR29
  article-title: Replication fork slowing and stalling are distinct, checkpoint‐independent consequences of replicating damaged DNA
  publication-title: PLoS Genet
  contributor:
    fullname: Rhind
– volume: 493
  start-page: 120
  year: 2013
  end-page: 124
  ident: CR37
  article-title: DNA‐repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9
  publication-title: Nature
  contributor:
    fullname: Smolka
– volume: 9
  start-page: 4563
  year: 1990
  end-page: 4568
  ident: CR5
  article-title: Cloning and expression in of a gene for an alkylbase DNA glycosylase from ; a homologue to the bacterial alkA gene
  publication-title: EMBO J
  contributor:
    fullname: Seeberg
– volume: 34
  start-page: 1704
  year: 2015
  end-page: 1717
  ident: CR14
  article-title: Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions
  publication-title: EMBO J
  contributor:
    fullname: Smolka
– volume: 16
  start-page: 487
  year: 2004
  end-page: 496
  ident: CR39
  article-title: A robust toolkit for functional profiling of the yeast genome
  publication-title: Mol Cell
  contributor:
    fullname: Boeke
– volume: 99
  start-page: 2797
  year: 1999
  end-page: 2816
  ident: CR9
  article-title: Nucleic acid recognition by metal complexes of bleomycin
  publication-title: Chem Rev
  contributor:
    fullname: Long
– volume: 344
  start-page: 208
  year: 2014
  end-page: 211
  ident: CR32
  article-title: Mapping the cellular response to small molecules using chemogenomic fitness signatures
  publication-title: Science
  contributor:
    fullname: Fung
– volume: 36
  start-page: 369
  year: 2007
  end-page: 707
  ident: CR53
  article-title: High‐throughput strain construction and systematic synthetic lethal screening in
  publication-title: Methods Microbiol
  contributor:
    fullname: Boone
– volume: 7
  start-page: 1017
  year: 2010
  end-page: 1024
  ident: CR4
  article-title: Quantitative analysis of fitness and genetic interactions in yeast on a genome scale
  publication-title: Nat Methods
  contributor:
    fullname: Myers
– volume: 73
  start-page: 89
  year: 2009
  end-page: 102
  ident: CR2
  article-title: The yeast Shu complex couples error‐free post‐replication repair to homologous recombination
  publication-title: Mol Microbiol
  contributor:
    fullname: Xiao
– year: 2017
  ident: CR41
  publication-title: R: a language and environment for statistical computing
– volume: 22
  start-page: 1995
  year: 2012
  end-page: 2007
  ident: CR25
  article-title: Integrative analysis of genome‐wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple‐negative breast cancer
  publication-title: Genome Res
  contributor:
    fullname: Shah
– volume: 18
  start-page: 4062
  year: 2007
  end-page: 4073
  ident: CR35
  article-title: Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1‐Rmi1‐Top3
  publication-title: Mol Biol Cell
  contributor:
    fullname: Hickson
– volume: 34
  start-page: 2182
  year: 2015
  end-page: 2197
  ident: CR1
  article-title: Assembly of Slx4 signaling complexes behind DNA replication forks
  publication-title: EMBO J
  contributor:
    fullname: Brown
– volume: 44
  start-page: 8199
  year: 2016
  end-page: 8215
  ident: CR23
  article-title: The Shu complex promotes error‐free tolerance of alkylation‐induced base excision repair products
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Bernstein
– volume: 418
  start-page: 387
  year: 2002
  end-page: 391
  ident: CR20
  article-title: Functional profiling of the genome
  publication-title: Nature
  contributor:
    fullname: Deutschbauer
– volume: 201
  start-page: 937
  year: 2015
  end-page: 949
  ident: CR30
  article-title: Termination of replication stress signaling via concerted action of the Slx4 scaffold and the PP4 phosphatase
  publication-title: Genetics
  contributor:
    fullname: Smolka
– volume: 354
  start-page: aag0839
  year: 2016
  ident: CR33
  article-title: Exploring genetic suppression interactions on a global scale
  publication-title: Science
  contributor:
    fullname: Horecka
– volume: 39
  start-page: 2610
  year: 2011
  article-title: Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation
  publication-title: Nucleic Acids Res
– volume: 353
  start-page: aaf1420
  year: 2016
  article-title: A global genetic interaction network maps a wiring diagram of cellular function
  publication-title: Science
– volume: 9
  start-page: 4569
  year: 1990
  end-page: 4575
  article-title: 3‐methyladenine DNA glycosylase has homology to the AlkA glycosylase of and is induced in response to DNA alkylation damage
  publication-title: EMBO J
– volume: 40
  start-page: 676
  year: 2008
  end-page: 681
  article-title: Exposing the fitness contribution of duplicated genes
  publication-title: Nat Genet
– volume: 41
  start-page: 4525
  year: 2013
  end-page: 4534
  article-title: The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55‐Rad57 to mediate error‐free recombination
  publication-title: Nucleic Acids Res
– volume: 4
  start-page: 1676
  year: 2013
  article-title: A new protein complex promoting the assembly of Rad51 filaments
  publication-title: Nat Commun
– volume: 2
  start-page: RESEARCH0052
  year: 2001
  article-title: Development of an optimized interaction‐mating protocol for large‐scale yeast two‐hybrid analyses
  publication-title: Genome Biol
– volume: 44
  start-page: 8199
  year: 2016
  end-page: 8215
  article-title: The Shu complex promotes error‐free tolerance of alkylation‐induced base excision repair products
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 1017
  year: 2010
  end-page: 1024
  article-title: Quantitative analysis of fitness and genetic interactions in yeast on a genome scale
  publication-title: Nat Methods
– volume: 30
  start-page: 4897
  year: 2011
  end-page: 4907
  article-title: Dpb11 coordinates Mec1 kinase activation with cell cycle‐regulated Rad9 recruitment
  publication-title: EMBO J
– volume: 73
  start-page: 89
  year: 2009
  end-page: 102
  article-title: The yeast Shu complex couples error‐free post‐replication repair to homologous recombination
  publication-title: Mol Microbiol
– volume: 7
  start-page: 143
  year: 2017
  end-page: 153
  article-title: iSeq: a new double‐barcode method for detecting dynamic genetic interactions in yeast
  publication-title: G3
– volume: 8
  start-page: 15586
  year: 2017
  article-title: A scalable double‐barcode sequencing platform for characterization of dynamic protein‐protein interactions
  publication-title: Nat Commun
– volume: 33
  start-page: 1515
  year: 2013
  end-page: 1527
  article-title: The preference for error‐free or error‐prone postreplication repair in exposed to low‐dose methyl methanesulfonate is cell cycle dependent
  publication-title: Mol Cell Biol
– volume: 105
  start-page: 5821
  year: 2008
  end-page: 5826
  article-title: Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: e141
  year: 2007
  article-title: Yeast two‐hybrid interaction partner screening through cre‐mediated binary interaction tag generation
  publication-title: Nucleic Acids Res
– volume: 104
  start-page: 9290
  year: 2007
  end-page: 9295
  article-title: Pph3‐Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage
  publication-title: Proc Natl Acad Sci USA
– volume: 327
  start-page: 425
  year: 2010
  end-page: 431
  article-title: The genetic landscape of a cell
  publication-title: Science
– volume: 330
  start-page: 1385
  year: 2010
  end-page: 1389
  article-title: Rewiring of genetic networks in response to DNA damage
  publication-title: Science
– volume: 17
  start-page: 1768
  year: 2003
  end-page: 1778
  article-title: Slx1‐Slx4 is a second structure‐specific endonuclease functionally redundant with Sgs1‐Top3
  publication-title: Genes Dev
– volume: 37
  start-page: 6984
  year: 2009
  end-page: 6990
  article-title: Synthesis of DNA fragments in yeast by one‐step assembly of overlapping oligonucleotides
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 1995
  year: 2012
  end-page: 2007
  article-title: Integrative analysis of genome‐wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple‐negative breast cancer
  publication-title: Genome Res
– volume: 13
  start-page: e1006958
  year: 2017
  article-title: Replication fork slowing and stalling are distinct, checkpoint‐independent consequences of replicating damaged DNA
  publication-title: PLoS Genet
– volume: 201
  start-page: 937
  year: 2015
  end-page: 949
  article-title: Termination of replication stress signaling via concerted action of the Slx4 scaffold and the PP4 phosphatase
  publication-title: Genetics
– volume: 8
  start-page: e81371
  year: 2013
  article-title: The yeast Shu complex utilizes homologous recombination machinery for error‐free lesion bypass via physical interaction with a Rad51 paralogue
  publication-title: PLoS ONE
– volume: 61
  start-page: 1677
  year: 1995
  article-title: Factors which affect the frequency of sporulation and tetrad formation in Baker's yeasts
  publication-title: Appl Environ Microbiol
– volume: 493
  start-page: 120
  year: 2013
  end-page: 124
  article-title: DNA‐repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9
  publication-title: Nature
– volume: 105
  start-page: 3461
  year: 2008
  end-page: 3466
  article-title: Defining genetic interaction
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 1604
  year: 2014
  end-page: 1619
  article-title: A cell cycle‐regulated Slx4‐Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication
  publication-title: Genes Dev
– volume: 33
  start-page: 92
  year: 1998
  article-title: Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage
  publication-title: Curr Genet
– volume: 16
  start-page: 487
  year: 2004
  end-page: 496
  article-title: A robust toolkit for functional profiling of the yeast genome
  publication-title: Mol Cell
– volume: 36
  start-page: 369
  year: 2007
  end-page: 707
  article-title: High‐throughput strain construction and systematic synthetic lethal screening in
  publication-title: Methods Microbiol
– volume: 32
  start-page: 3065
  year: 2012
  article-title: Mus81‐Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair
  publication-title: Mol Cell Biol
– volume: 22
  start-page: 1599
  year: 2011
  end-page: 1607
  article-title: The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti‐recombinase
  publication-title: Mol Biol Cell
– volume: 10
  start-page: e1004168
  year: 2014
  article-title: High‐resolution profiling of stationary‐phase survival reveals yeast longevity factors and their genetic interactions
  publication-title: PLoS Genet
– volume: 354
  start-page: aag0839
  year: 2016
  article-title: Exploring genetic suppression interactions on a global scale
  publication-title: Science
– volume: 39
  start-page: 199
  year: 2007
  end-page: 206
  article-title: Systematic pathway analysis using high‐resolution fitness profiling of combinatorial gene deletions
  publication-title: Nat Genet
– volume: 409
  start-page: 329
  year: 2006
  end-page: 345
  article-title: The delitto perfetto approach to site‐directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast
  publication-title: Methods Enzymol
– volume: 34
  start-page: 1704
  year: 2015
  end-page: 1717
  article-title: Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions
  publication-title: EMBO J
– volume: 18
  start-page: 4062
  year: 2007
  end-page: 4073
  article-title: Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1‐Rmi1‐Top3
  publication-title: Mol Biol Cell
– volume: 13
  start-page: 2498
  year: 2003
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
– volume: 7
  start-page: e37368
  year: 2012
  article-title: Identification of novel human damage response proteins targeted through yeast orthology
  publication-title: PLoS ONE
– volume: 8
  start-page: 565
  year: 2012
  article-title: Differential network biology
  publication-title: Mol Syst Biol
– volume: 99
  start-page: 2797
  year: 1999
  end-page: 2816
  article-title: Nucleic acid recognition by metal complexes of bleomycin
  publication-title: Chem Rev
– start-page: 171
  year: 2005
  end-page: 192
– volume: 9
  start-page: 4563
  year: 1990
  end-page: 4568
  article-title: Cloning and expression in of a gene for an alkylbase DNA glycosylase from ; a homologue to the bacterial alkA gene
  publication-title: EMBO J
– volume: 43
  start-page: 2666
  year: 2015
  article-title: Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance
  publication-title: Nucleic Acids Res
– volume: 344
  start-page: 208
  year: 2014
  end-page: 211
  article-title: Mapping the cellular response to small molecules using chemogenomic fitness signatures
  publication-title: Science
– volume: 12
  start-page: 209
  year: 2003
  article-title: roles of Rad52, Rad54, and Rad55 proteins in Rad51‐mediated recombination
  publication-title: Mol Cell
– volume: 12
  start-page: 863
  year: 2016
  article-title: Pooled‐matrix protein interaction screens using barcode fusion genetics
  publication-title: Mol Syst Biol
– volume: 9
  start-page: 718
  year: 2010
  end-page: 726
  article-title: Mec1/Tel1‐dependent phosphorylation of Slx4 stimulates Rad1‐Rad10‐dependent cleavage of non‐homologous DNA tails
  publication-title: DNA Repair
– year: 2017
– volume: 34
  start-page: 2182
  year: 2015
  end-page: 2197
  article-title: Assembly of Slx4 signaling complexes behind DNA replication forks
  publication-title: EMBO J
– volume: 7
  start-page: R63
  year: 2006
  article-title: A strategy for extracting and analyzing large‐scale quantitative epistatic interaction data
  publication-title: Genome Biol
– volume: 418
  start-page: 387
  year: 2002
  end-page: 391
  article-title: Functional profiling of the genome
  publication-title: Nature
– volume: 27
  start-page: 6433
  year: 2007
  end-page: 6445
  article-title: Phosphorylation of Slx4 by Mec1 and Tel1 regulates the single‐strand annealing mode of DNA repair in budding yeast
  publication-title: Mol Cell Biol
– ident: e_1_2_8_8_1
  doi: 10.1002/j.1460-2075.1990.tb07910.x
– ident: e_1_2_8_14_1
  doi: 10.1126/science.aaf1420
– ident: e_1_2_8_40_1
  doi: 10.1016/j.molcel.2004.09.035
– ident: e_1_2_8_54_1
  doi: 10.1016/S0580-9517(06)36016-3
– ident: e_1_2_8_10_1
  doi: 10.1021/cr980449z
– ident: e_1_2_8_24_1
  doi: 10.1093/nar/gkw535
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.0712255105
– ident: e_1_2_8_47_1
  doi: 10.1186/gb-2001-2-12-research0052
– ident: e_1_2_8_28_1
  doi: 10.1128/MCB.01392-12
– ident: e_1_2_8_57_1
  doi: 10.15252/msb.20156660
– ident: e_1_2_8_53_1
  doi: 10.1385/1-59259-958-3:171
– ident: e_1_2_8_9_1
  doi: 10.1093/nar/gkv004
– ident: e_1_2_8_5_1
  doi: 10.1038/nmeth.1534
– ident: e_1_2_8_43_1
  doi: 10.1038/ncomms2678
– volume-title: R: a language and environment for statistical computing
  year: 2017
  ident: e_1_2_8_42_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_8_12_1
  doi: 10.1186/gb-2006-7-7-r63
– ident: e_1_2_8_39_1
  doi: 10.1073/pnas.0703252104
– ident: e_1_2_8_2_1
  doi: 10.15252/embj.201591190
– ident: e_1_2_8_30_1
  doi: 10.1371/journal.pgen.1006958
– ident: e_1_2_8_44_1
  doi: 10.1038/ncomms15586
– ident: e_1_2_8_36_1
  doi: 10.1091/mbc.E07-05-0490
– ident: e_1_2_8_21_1
  doi: 10.1038/nature00935
– ident: e_1_2_8_48_1
  doi: 10.1038/ng1948
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1195618
– ident: e_1_2_8_7_1
  doi: 10.1091/mbc.E10-08-0691
– ident: e_1_2_8_6_1
  doi: 10.1002/j.1460-2075.1990.tb07909.x
– ident: e_1_2_8_56_1
  doi: 10.1371/journal.pone.0081371
– ident: e_1_2_8_55_1
  doi: 10.1007/s002940050313
– ident: e_1_2_8_23_1
  doi: 10.1093/nar/gkt138
– ident: e_1_2_8_32_1
  doi: 10.1534/g3.116.034207
– ident: e_1_2_8_46_1
  doi: 10.1101/gr.1239303
– ident: e_1_2_8_20_1
  doi: 10.1371/journal.pgen.1004168
– ident: e_1_2_8_41_1
  doi: 10.1038/emboj.2011.345
– ident: e_1_2_8_13_1
  doi: 10.1126/science.1180823
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1250217
– ident: e_1_2_8_34_1
  doi: 10.1126/science.aag0839
– ident: e_1_2_8_52_1
  doi: 10.1016/j.dnarep.2010.02.013
– ident: e_1_2_8_51_1
  doi: 10.1371/journal.pone.0037368
– ident: e_1_2_8_16_1
  doi: 10.1073/pnas.0710533105
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1365-2958.2009.06748.x
– ident: e_1_2_8_15_1
  doi: 10.15252/embj.201490834
– ident: e_1_2_8_18_1
  doi: 10.1128/MCB.00135-07
– ident: e_1_2_8_49_1
  doi: 10.1016/S0076-6879(05)09019-1
– ident: e_1_2_8_38_1
  doi: 10.1038/nature11658
– ident: e_1_2_8_31_1
  doi: 10.1534/genetics.115.181479
– ident: e_1_2_8_25_1
  doi: 10.1101/gad.240515.114
– ident: e_1_2_8_37_1
  doi: 10.1093/nar/gkq1215
– ident: e_1_2_8_19_1
  doi: 10.1101/gad.1105203
– ident: e_1_2_8_45_1
  doi: 10.1128/MCB.00547-12
– ident: e_1_2_8_50_1
  doi: 10.1016/S1097-2765(03)00269-7
– ident: e_1_2_8_27_1
  doi: 10.1093/nar/gkm894
– ident: e_1_2_8_26_1
  doi: 10.1101/gr.137570.112
– ident: e_1_2_8_11_1
  doi: 10.1128/AEM.61.2.630-638.1995
– ident: e_1_2_8_17_1
  doi: 10.1038/ng.123
– ident: e_1_2_8_22_1
  doi: 10.1093/nar/gkp687
– ident: e_1_2_8_29_1
  doi: 10.1038/msb.2011.99
SSID ssj0038182
Score 2.3926334
Snippet Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions....
Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions....
Abstract Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions....
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e7985
SubjectTerms Bar codes
Bleomycin
Chromosome Mapping
condition‐dependent
Damage
Deoxyribonucleic acid
DNA
DNA barcode
DNA Barcoding, Taxonomic
DNA Damage
DNA Repair
DNA sequencing
EMBO17
EMBO22
EMBO26
en masse
Epistasis, Genetic
Gene Deletion
Gene mapping
Genes
Genetic engineering
genetic interaction
Genetic Loci
Genetics
Growth conditions
High-Throughput Nucleotide Sequencing
Kinases
Mapping
Mating
Method
Methods
Methyl Methanesulfonate
Models, Theoretical
Mutants
Promoter Regions, Genetic
Protein kinase
Proteins
Recombination
Repair
Reproducibility of Results
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
sequencing
Yeast
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPlFL5gOAUNXHi17GFVhXS9gKVeos8fsAemlbdLdLe-An8Rn4JM3GydAWFCzfnIduZGdvfxONvGHvtGgm1gaqUrm3KNpi6BAQmZUIo642TUns64Dw7VSdn7YdzeX4r1RfFhGV64Cy4feF9KyDYNmnavQzO6VBRdh0TlAoxM4FWYnKm8hxMy5AYGTWlkGL_YgEUxqW1paTJt1aggaj_T-jy9yDJ9U7pJo4dFqLjR-zhiCD5Qe75Y3Yv9k_Y_ZxTcrXN5jNHlAuf-fvTAx7cBc4XP759n3LdLjkaDJ1b5MQTcZ1PNSzwgq8oiQ__Onf8CoWy4oRksRbXBw44GC5D5OmGfq1NNSyesrPjo0_vTsoxn0LpEbbJEnxoaldHa3xrfbQ6emVriW6qkBEMNCB1StEISCrZ5JVskkA44F1TA-UXesa2-ss-vmCcKGiiCA2IxlERUpA-qWAA_SuoUsHeTDLurjJtRkfuBimjQ2V0kzIKdkgaWL9EbNfDDbSBbrSB7l82ULDdSX_dOAQX2EKrWq1krQr2PKty3YqwptK2MgXTG0re6Mbmk37-ZSDfJgcMQVLB3k7m8KvJO76wHKzl73LoZh8Pc2nnf0jkJXuANZscmbnLtpbXN_EVoqcl7A0D5Sff5xgf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Databases
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcUHmnLcgHBKeIxI4fOaFuaVUh7QoBlXqL_Cx7aHbZbCvtjZ_Ab-SX1JPHlhXQm_OyY8_Y_sYezwfwRjNucmWylOuCpYVTeWoiMElDhLJWac6lxQPOk6k4PSs-nfPzfsGt6d0qhzGxHajd3OIaeTTSC1FIwXPxYfEjRdYo3F3tKTTuww7NmVIj2BkfTz9_GcZinI5oH1mTU07fXzYG3bmkLJE8-Y-ZqA3Y_y-U-bez5GbHdBvPthPSyS486pEkOexE_xju-foJPOi4JddPYTbRGHrhgnycHhKnL-O48fvnr4HzdkWi4uD5RYLxIpbd6YYmXpA1kvmQ65kmi6hVa4KINuaia0dM7BRz50m4wiW2IYfmGZydHH87Ok17XoXURvjGU2Mdy3XuS2WL0vpSeivKnEdzlXJvlGGGyxC8oiaIUAYrOAs0wgKrWW6QZ-g5jOp57V8CwVA0njpmKNOYNMFxG4RTJtpZJgsJvB3auFp04TMqNDtQGFUURjUII4ExSmDzEka9bm_MlxdV34kqam1BjSuLIHEn22ktXYZMS8oJ4XyRwMEgv6rvik11qzgJvOhEuSmFliqTZaYSkFtC3vqN7Sf17HsbhBsNsQiWEng3qMNtkf-pYdpqy93tUE2-jrvU3t2V2YeH8RvV-V4ewGi1vPKvIj5amdd9J7gB2acRCQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCIkL4k1KQT4gOAUSx88DQi1QVUjbC6zUW-RnuxLNlt1txd74CfxGfgkzeWwVtSBuziaxE8_Mzjfx-BtCXtpKuFK7IheWVzkPuswdAJM8AZT12gqhPG5wnhzKgyn_fCSOLimF-glcXhvaYT2p6eLbmx_f1-_B4N_11XvY29OlwyQtpYwWN8ktBk4Rs7smfLOggH6J9RSbV24ZuaSWuf86uHk1a3KzdDoGtq1n2r9H7vaQku52OnCf3IjNA3K7KzK5fkhmE4scDMf04-EuDfYU_kB-__w1FL9dUdAg3MhIkThi0W1zWMIBXWNVH3oxs_QM1GtNEdpCL7YJ1IF1zEOk6Ry_tQ09LB-R6f6nrx8O8r7AQu4Bx4nc-VCVtoxGe258NCp6aUoBcSsT0WlXOaFSipq5JJNJXooqMcAH3lalw4JDj8lWM2_iU0KRkyayUDlWWWy6FIRPMmgHAZcrUkZeDXNcn3U8GjXGHyiMGoRRD8LIyB5KYHMR0l-3P8wXx3VvTTXznjMXDE8Kl7SDtSoUWHJJBylD5BnZGeRXDyoFI3DJlRSlzMiTTpSbUZjRhTKFzogaCXn0GOMzzeykZePGiAxQU0ZeD-pwOeRf3jBvteXf81BPvux1re3_7vkZuQNN3eVj7pCt1eI8PgfMtHIvWmv4A2LhFZk
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH6CIiQuFTspBfmA4BSRON5ybAeqCml6gUq9RV5hDk2rzhRpbv0J_Y39JX0vy0BUQNyczU78Pft9jt8C8M5W0pXGFbm0ospFMGXukJjkCamsN1ZK7cnBeX6kDo_FlxN5MhjRkC_M7_v3kkv-8XTpyABL69rI-_AA1a8mQZ6p2Tjhks7hQ_jMO49M1E0Xlf9PVPKuReRmW3RKWjutc_AYtge6yPZ6fJ_Avdg-hYd9Asn1M1jMLcVX-M4-He2xYE9xcri5uh4T264YSgc5KTIKCnHRuzAs8YCtKWMP-7mw7BxFZ82ItmIttg3MoeSfhcjSJf1HG2tYPofjg8_fZof5kDwh98jRZO58qEpbxtp4UftY6-hVjZ2Hq08ZnXGVkzqlaLhLKtXJK1kljrrf26p0lEzoBWy1Z218BYzizUQeKscrS0WXgvRJBeNwMeWKlMH7sY-b8z5GRkNrCwKjQTCaEYwM9gmBzU0U2ro7gYg3w0hpuPeCu1CLpGm7OlirQ0HplExQKkSRwe6IXzOMtyW2IJTQSpYqg5c9lJtWeG0KXRcmAz0BefIa0yvt4kcXaZtWW8iIMvgwisOvJv_yhXknLf_uh2b-db8v7fx3za_hERZNb2u5C1uri8v4BvnQyr3tRsMtTqkHEg
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Open Access Journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL2CIiQ2iDeBgrxAsLJIHD-XLVBVSFMhQaXuIj_LLJqpJlOk2fEJfCNfgm8eAxEPiV2edpJ7r33s-J4D8MLWwlXalVRYXlMedEVdBiY0ZSjrtRVCeUxwXpzI41P-_kycjTqnmAsz8EPsJtwwMvr2GgPcum5S7EHW0IvO4dIspYwW1-FGhjYSJQwY_zA1xdgbsSEjklPUZRpJNrGA17_ePuuUeu7-PwHO39dN7n6ezqFt3zcd3YHbI6gkB4MX3IVrsb0HNweZye19WC4ssjCck7cnByTYi9yEfP_6bZK_3ZDsQ5jKSJA6Yj0kOnR5h2xR14d8WVpymR1sSxDc5lJsG4jL8bEKkaQrnG2bSugewOnRu09vjukosUB9RnKCOh_qylbRaM-Nj0ZFL00l8siViei0q51QKUXNXJLJJC9FnVhGCN7WlUPJoYew167a-BgIstJEFmrHaoubLgXhkwza5SGXK1MBL6dv3FwOTBoNjkDQGE02RjMZo4BDtMDuIiTA7g-s1ufNGE8N854zFwxPCn9qB2tVKFF0SQcpQ-QF7E_2a8ao7HINXHIlRSULeDSYclcLM7pUptQFqJmRZ48xP9MuP_d83Dgmy7ipgFeTO_ys8i9vSHtv-fd3aBYfD4etJ_95_VO4lQ_qYV3mPuxt1lfxWcZOG_e8j48f4rMToQ
  priority: 102
  providerName: Wiley-Blackwell
Title Mapping DNA damage‐dependent genetic interactions in yeast via party mating and barcode fusion genetics
URI https://link.springer.com/article/10.15252/msb.20177985
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20177985
https://www.ncbi.nlm.nih.gov/pubmed/29807908
https://www.proquest.com/docview/2046476516
https://pubmed.ncbi.nlm.nih.gov/PMC5974512
https://doaj.org/article/2cc42bd94f72421daa7d032148d66de4
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa2i5C4IN4ElsoHBKdsG8evHLdlVyukVBWwUm-Rn7uVaFq1XaTe-An8Rn4J4yQuVDwOXCw7iWzHM_Z8Y49nEHqtcqYzqYcpUzRPqZVZqgGYpB6grJGKMWHCBedywi-v6PsZmx0hFu_CNEb7Rs9P68-L03p-09hWrhZmEO3EBtNyHEAwCKpBD_VA_EYVvV1-gwQinTNNRhgZLDY6WHAJUcgQpoYUciiKEE3yFznUuOv_E8b83VRyf156iGYbcXTxAN3vcCQ-a_v7EB25-hG620aW3D1G81IFxwvX-N3kDFu1gFXj-9dvMeLtFgPbhNuLOHiLWLd3GzZQwLsQygd_mSu8gqHY4YBnoRZVW6xhSiytw_42bLDFGjZP0NXF-afxZdpFVUgNgDeWamPzTGWukIYWxhXCGV5kDJRVwpyWOtdMeO8k0Z77whvOck8AFBiVZzpEGXqKjutl7Z4jHBzROGJzTXIVstpbZjy3UoOWpYc-QW_iGFer1nlGFZSOQJcK6FJFuiRoFCiw_yj4vG4eLNfXVUf5ihhDibYF9SKcY1ulhB2GOEvScm4dTdBJpF_VTcQNtEA5FZxlPEHPWlLuW4mskCBxQOSDbhy-AY5sXHB3HJigt5Edfjb5lz9MG2759zhU5cdRm3vx3316ie5BdbI1yjxBx9v1rXsFwGmr-6hH6BRSMRN9dGd0Ppl-gNKYj_vNVgSkJZX9Zjr9AN4-Hqw
link.rule.ids 230,314,727,780,784,864,885,2102,11562,12056,21388,24318,27924,27925,31719,33744,41120,42189,43310,43805,46052,46476,50814,50923,51576,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFL2CVAg2iGcZKOAFgtWIjGf8mBVqoFWAJkLQSt1ZfpYsOgmZFCk7PoFv5EvwnUdKBHQ3b499r-1z_TgH4IXOmcmkGaZMF3laOJmlJgKTNEQoa6VmTFjc4DyZ8vFJ8eGUnXYDbnW3rLJvE5uG2s0tjpHHIL3gheAs428W31JUjcLZ1U5C4zrsIHM6G8DO6GD66XPfFmN3RDtmTUYZfX1eG1zOJUSJ4sl_9EQNYf-_UObfiyU3M6bbeLbpkA7vwO0OSZL91vR34Zqv7sGNVltyfR9mE43UC2fk3XSfOH0e241fP372mrcrEh0H9y8S5ItYtrsb6nhC1ijmQ77PNFlEr1oTRLTxK7pyxMRKMXeehAscYuu_UD-Ak8OD47fjtNNVSG2Ebyw11uWZznwpbVFaXwpveZmxGK5S5o00uWEiBC-pCTyUwXKWBxphgdV5ZlBn6CEMqnnlHwFBKhpPXW5orvHQBMds4E6aGGeZYUjgZV_GatHSZygMO9AYKhpD9cZIYIQW2DyErNfNhfnyTHWVSFFrC2pcWQSBM9lOa-GGqLQkHefOFwns9fZTXVWs1aXjJLDbmnKTCi3lUJRDmYDYMvLWb2zfqWZfGxJuDMQiWErgVe8Ol0n-J4dp4y1Xl4OafBm1R4-vzsxzuDk-nhypo_fTj0_gVnxftusw92CwWl74pxErrcyzrkL8Br88E_E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIhAXxJuUAj4gOEVNHNtxxKndsiqPXSFBpd4iP8seml3tbivtjZ_Ab-SX4EniRVEBcUucxE48M_Y3secbgFeq4DqXOku5YkXKrMxTHYBJ6gOUNVJxXhoMcJ5Mxckp-3DGz3bgbYyFaXe7xyXJLqYBWZqa9cHC-pivhx5crDRuyyrLSvIbcJMF1IB5G0ZiFIdhnIloT6p57ZHBJNRy9f8JYF7fJ7ldLB1C2XYuGt-Duz2IJIed1O_DjmsewK0ureTmIcwmClkXzsnx9JBYdRGGjJ_ff8R0t2sSdAZDFwlSRSy7wIZVOCEbzONDrmaKLIJCbQiC2VCLaizRwR7m1hF_iX_XYg2rR3A6fvd1dJL2KRVSE5AbT7WxRa5yV0nDKuOq0hlR5Tx4qpQ7LXWheem9k1R74StvBC88DYjAqCLXmGLoMew288Y9BYIsNI7aQtNC4aH2lhsvrNTBxdKZT-B17ON60TFn1OhxoDDqIIw6CiOBI5TA9iYkvG4L5svzurefmhrDqLYV8yUuYlulSpthkiVphbCOJbAf5Vf3VrgKLTDBSsFzkcCTTpTbVmgls7LKZALlQMiD1xheaWbfWv5t9MECTkrgTVSH303-5QvTVlv-3Q_15MtRd7T33zW_hNufj8f1p_fTj8_gTiiV3WbMfdhdLy_d8wCY1vpFaxi_AIVpEjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+DNA+damage%E2%80%90dependent+genetic+interactions+in+yeast+via+party+mating+and+barcode+fusion+genetics&rft.jtitle=Molecular+systems+biology&rft.au=D%C3%ADaz%E2%80%90Mej%C3%ADa%2C+J+Javier&rft.au=Celaj%2C+Albi&rft.au=Mellor%2C+Joseph+C&rft.au=Cot%C3%A9%2C+Atina&rft.date=2018-05-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1744-4292&rft.volume=14&rft.issue=5&rft_id=info:doi/10.15252%2Fmsb.20177985&rft.externalDocID=10_15252_msb_20177985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon