A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnet...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 181; pp. 760 - 774 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2018
Elsevier Limited Academic Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.
•The design and use of bi-planar coils for magnetic field nulling is described.•Field nulling allows large subject movements during onscalp MEG recordings.•Optical tracking shows high quality data can be acquired during these movements.•A novel measurement of retinotopy where the subject moves their head is shown. |
---|---|
AbstractList | Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. •The design and use of bi-planar coils for magnetic field nulling is described.•Field nulling allows large subject movements during onscalp MEG recordings.•Optical tracking shows high quality data can be acquired during these movements.•A novel measurement of retinotopy where the subject moves their head is shown. Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null B x , B y and B z as well as the three dominant field gradients d B x / d z , d B y / d z and d B z / d z . The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm 3 . This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field ( B x ) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient ( d B x / d z ) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. • The design and use of bi-planar coils for magnetic field nulling is described. • Field nulling allows large subject movements during onscalp MEG recordings. • Optical tracking shows high quality data can be acquired during these movements. • A novel measurement of retinotopy where the subject moves their head is shown. Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null B , B and B as well as the three dominant field gradients dB /dz, dB /dz and dB /dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm . This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (B ) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dB /dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. |
Author | Hill, Ryan M. Brookes, Matthew J. Barnes, Gareth R. Bowtell, Richard Shah, Vishal Boto, Elena Tierney, Tim M. Leggett, James Roberts, Gillian Holmes, Niall |
AuthorAffiliation | c QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA b Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK |
AuthorAffiliation_xml | – name: b Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK – name: c QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA – name: a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK |
Author_xml | – sequence: 1 givenname: Niall surname: Holmes fullname: Holmes, Niall organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK – sequence: 2 givenname: James surname: Leggett fullname: Leggett, James organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK – sequence: 3 givenname: Elena surname: Boto fullname: Boto, Elena organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK – sequence: 4 givenname: Gillian surname: Roberts fullname: Roberts, Gillian organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK – sequence: 5 givenname: Ryan M. surname: Hill fullname: Hill, Ryan M. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK – sequence: 6 givenname: Tim M. surname: Tierney fullname: Tierney, Tim M. organization: Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK – sequence: 7 givenname: Vishal surname: Shah fullname: Shah, Vishal organization: QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA – sequence: 8 givenname: Gareth R. surname: Barnes fullname: Barnes, Gareth R. organization: Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK – sequence: 9 givenname: Matthew J. surname: Brookes fullname: Brookes, Matthew J. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK – sequence: 10 givenname: Richard surname: Bowtell fullname: Bowtell, Richard email: richard.bowtell@nottingham.ac.uk organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30031934$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv3CAUha0qVfNo_0KF1E03di9g_NhUTaO-pEjdtGuE4XqGCQMu2JHm35fRJJM2q1mBdA8f99xzL4szHzwWBaFQUaDNh03lcYnBbtUKKwa0q6CtgHUvigsKvSh70bKz_V3wsqO0Py8uU9oAQE_r7lVxzgE47Xl9UYzXZLDl5JRXkehgHUm7NOOWjCESvzhn_YoMSt-tYli8IflHj7PVZLToTCLWk6SVm8g2l2d8FAT0Gqe1cmEV1bTevS5ejsolfPNwXhW_v375dfO9vP357cfN9W2pRVPPJZp26Kimho6iH3sz9ppCO3Cjm6buQChlaGOU7pkWnUBg2LJuAMEGhLERil8VHw_caRm2aDT6OSonp5hHFXcyKCv_r3i7lqtwLxsq8uBoBrx_AMTwZ8E0y61NGl0eEIYlSQZtTRnnFLL03TPpJizRZ3uSUWC85h1vs-rtvx0dW3mMIAu6g0DHkFLE8SihIPdpy418Slvu05bQypz2k9vjU21nNduw92bdKYDPBwDmTO4tRpm03UdnbEQ9SxPsKZBPzyA6b43NW3GHu9MQfwHawuXV |
CitedBy_id | crossref_primary_10_3389_fphys_2021_724755 crossref_primary_10_1016_j_sna_2023_114464 crossref_primary_10_3390_photonics10121302 crossref_primary_10_1016_j_neuroimage_2024_120991 crossref_primary_10_3390_s23125454 crossref_primary_10_7554_eLife_94561 crossref_primary_10_1038_s41598_022_17346_1 crossref_primary_10_1186_s12915_021_01073_6 crossref_primary_10_1109_TIM_2023_3284138 crossref_primary_10_3390_mi14111985 crossref_primary_10_1016_j_neuroimage_2021_118834 crossref_primary_10_3389_fmedt_2025_1515548 crossref_primary_10_1016_j_neuroimage_2019_116192 crossref_primary_10_1007_s13320_023_0684_y crossref_primary_10_1038_s42254_023_00558_3 crossref_primary_10_1113_JP277899 crossref_primary_10_1016_j_neuroimage_2024_120864 crossref_primary_10_1016_j_neuroimage_2022_119084 crossref_primary_10_1109_TIE_2022_3159961 crossref_primary_10_1371_journal_pone_0262669 crossref_primary_10_35848_1347_4065_ad43ce crossref_primary_10_1016_j_measurement_2023_114115 crossref_primary_10_1088_2057_1976_ad974a crossref_primary_10_1109_TIM_2022_3151939 crossref_primary_10_1016_j_measurement_2025_116818 crossref_primary_10_1016_j_measurement_2024_114614 crossref_primary_10_1016_j_neuroimage_2019_05_063 crossref_primary_10_1016_j_neuroimage_2021_118604 crossref_primary_10_1063_5_0167372 crossref_primary_10_1109_TIM_2021_3106677 crossref_primary_10_1016_j_sna_2024_115043 crossref_primary_10_1109_TIM_2025_3527604 crossref_primary_10_1016_j_neuroimage_2023_120252 crossref_primary_10_1016_j_measurement_2024_115410 crossref_primary_10_1016_j_neuroimage_2022_119420 crossref_primary_10_1016_j_neuroimage_2023_120257 crossref_primary_10_1109_JSEN_2024_3438990 crossref_primary_10_1016_j_neuroimage_2022_119027 crossref_primary_10_1016_j_tins_2022_05_008 crossref_primary_10_3389_fnins_2023_1284262 crossref_primary_10_1109_TIM_2023_3265089 crossref_primary_10_1088_1674_1056_ac7e38 crossref_primary_10_1016_j_neuroimage_2020_116995 crossref_primary_10_1016_j_neuroimage_2020_117443 crossref_primary_10_1109_ACCESS_2021_3138748 crossref_primary_10_1088_1361_6501_ad89e6 crossref_primary_10_1016_j_jneumeth_2024_110131 crossref_primary_10_1016_j_neuroimage_2024_120842 crossref_primary_10_3390_s22083093 crossref_primary_10_1016_j_neuroimage_2019_116099 crossref_primary_10_1063_5_0186023 crossref_primary_10_1109_TIM_2024_3394482 crossref_primary_10_1109_JSEN_2024_3488002 crossref_primary_10_1109_TIM_2024_3375985 crossref_primary_10_1109_TIM_2023_3267370 crossref_primary_10_1016_j_neuroimage_2023_120024 crossref_primary_10_1016_j_sna_2023_114591 crossref_primary_10_1109_JSEN_2023_3297109 crossref_primary_10_1016_j_neuroimage_2023_119953 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1109_TIM_2022_3150588 crossref_primary_10_1109_TASE_2024_3358542 crossref_primary_10_1016_j_neuroimage_2021_118818 crossref_primary_10_1016_j_neuroimage_2021_117969 crossref_primary_10_3390_ma15207353 crossref_primary_10_1109_TIM_2022_3162607 crossref_primary_10_1016_j_sna_2022_113928 crossref_primary_10_1016_j_neuroimage_2020_116862 crossref_primary_10_1016_j_neuroimage_2021_118025 crossref_primary_10_3390_machines12050317 crossref_primary_10_1109_TMAG_2021_3133951 crossref_primary_10_1016_j_measurement_2025_117052 crossref_primary_10_1109_TIE_2022_3161799 crossref_primary_10_1016_j_measurement_2025_116845 crossref_primary_10_1063_1_5066250 crossref_primary_10_1109_TIM_2023_3295475 crossref_primary_10_1016_j_measurement_2024_114266 crossref_primary_10_1016_j_neuroimage_2023_120157 crossref_primary_10_1016_j_measurement_2023_113059 crossref_primary_10_1088_1361_6463_ad5f9a crossref_primary_10_1016_j_mri_2024_07_006 crossref_primary_10_1016_j_neuroimage_2019_03_022 crossref_primary_10_1088_1674_1056_ac6163 crossref_primary_10_1109_TIE_2020_3032868 crossref_primary_10_1038_s41598_023_31111_y crossref_primary_10_1016_j_neuroimage_2021_117815 crossref_primary_10_1109_TIM_2024_3413176 crossref_primary_10_1103_PhysRevApplied_14_054004 crossref_primary_10_1162_imag_a_00283 crossref_primary_10_1016_j_clinph_2021_07_007 crossref_primary_10_1016_j_neuroimage_2021_118479 crossref_primary_10_1109_JSEN_2023_3329043 crossref_primary_10_3390_app13053161 crossref_primary_10_1002_hbm_25582 crossref_primary_10_1080_00107514_2023_2182950 crossref_primary_10_1016_j_measurement_2024_115223 crossref_primary_10_1109_TIM_2022_3188525 crossref_primary_10_1109_TIM_2021_3108493 crossref_primary_10_1063_5_0016090 crossref_primary_10_1016_j_neuroimage_2022_119559 crossref_primary_10_1364_BOE_474862 crossref_primary_10_1162_netn_a_00077 crossref_primary_10_1016_j_measurement_2023_113904 crossref_primary_10_1016_j_neuroimage_2021_118401 crossref_primary_10_1038_s41598_021_01894_z crossref_primary_10_1038_s41467_019_12486_x crossref_primary_10_1016_j_neuroimage_2021_118484 crossref_primary_10_1162_imag_a_00179 crossref_primary_10_1088_1741_2552_ad44d8 crossref_primary_10_1002_acn3_50995 crossref_primary_10_3390_s20154241 crossref_primary_10_1109_TII_2024_3353928 crossref_primary_10_1016_j_measurement_2025_116940 crossref_primary_10_1016_j_measurement_2024_115697 crossref_primary_10_3390_s23146537 crossref_primary_10_3390_ma16020681 crossref_primary_10_1016_j_bspc_2024_106236 crossref_primary_10_1109_ACCESS_2019_2891162 crossref_primary_10_1016_j_sna_2025_116260 crossref_primary_10_1162_imag_a_00020 crossref_primary_10_3390_s25020433 crossref_primary_10_1109_JSEN_2021_3075445 crossref_primary_10_3390_s22083059 crossref_primary_10_3390_s20061569 crossref_primary_10_1364_OE_464361 crossref_primary_10_1109_TIM_2022_3192287 crossref_primary_10_1016_j_neuroimage_2019_06_010 crossref_primary_10_1016_j_isci_2024_109250 crossref_primary_10_1109_TIM_2022_3216411 crossref_primary_10_1103_PhysRevApplied_22_064055 crossref_primary_10_1016_j_measurement_2024_114753 crossref_primary_10_1088_1361_6463_ad8241 crossref_primary_10_1109_TIM_2023_3323002 crossref_primary_10_1109_TIM_2022_3214619 crossref_primary_10_1038_s41598_019_50697_w crossref_primary_10_7554_eLife_94561_3 crossref_primary_10_1038_s41598_020_77589_8 crossref_primary_10_1038_s41598_024_56878_6 crossref_primary_10_1109_TBME_2021_3100770 crossref_primary_10_1111_nyas_14890 crossref_primary_10_1002_hbm_24707 crossref_primary_10_1109_JSEN_2024_3509679 crossref_primary_10_1016_j_bbe_2023_11_004 crossref_primary_10_1109_JSEN_2024_3474214 crossref_primary_10_3390_ma17225469 crossref_primary_10_1088_1402_4896_ad7234 crossref_primary_10_1109_TIE_2023_3314921 crossref_primary_10_1109_JSEN_2023_3299690 crossref_primary_10_1109_TBME_2024_3465654 crossref_primary_10_1109_TIM_2025_3545997 |
Cites_doi | 10.1002/mrm.1910260202 10.1016/0375-9601(69)90480-0 10.1103/RevModPhys.65.413 10.1063/1.4919400 10.1063/1.344953 10.1016/j.neuroimage.2018.06.041 10.1126/science.7754376 10.1016/j.neuroimage.2007.12.026 10.1016/j.neuroimage.2009.07.043 10.1364/BOE.3.000981 10.1016/j.clinph.2012.03.080 10.1016/j.neuroimage.2016.12.048 10.1016/j.neuroimage.2017.01.034 10.1016/j.neuron.2010.11.002 10.1117/12.2299197 10.1093/cercor/7.2.181 10.1088/0957-0233/10/12/402 10.1109/42.736052 10.1063/1.1142245 10.1063/1.2392722 10.1007/978-3-642-33045-2_2 10.1371/journal.pone.0157655 10.1088/0031-9155/32/1/004 10.1126/science.161.3843.784 10.1063/1.3522648 10.1016/0029-554X(73)90698-8 10.1016/j.conb.2013.08.014 10.1109/74.739187 10.1088/0031-9155/58/17/6065 10.1016/0730-725X(93)90209-V 10.1016/j.nicl.2015.08.005 10.1088/1361-6560/aa93d1 10.7567/JJAP.54.026601 10.1073/pnas.1207946109 10.1038/nature26147 10.1016/j.cub.2016.09.025 10.1097/00004691-200305000-00002 10.1038/nn1777 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. 2018. The Authors 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2018. The Authors – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2018.07.028 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 774 |
ExternalDocumentID | PMC6150951 30031934 10_1016_j_neuroimage_2018_07_028 S1053811918306438 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R44 MH110288 – fundername: Medical Research Council grantid: MR/M009122/1 – fundername: Medical Research Council grantid: MR/M006301/1 – fundername: Wellcome Trust grantid: 203257/Z/16/Z – fundername: NICHD NIH HHS grantid: R44 HD074495 – fundername: Medical Research Council grantid: MR/K005464/1 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c564t-ed7b81c1d1f59f9df9c107b3dc664805aad16dac92c585e02e728b052be0f65a3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:32:32 EDT 2025 Fri Jul 11 02:10:37 EDT 2025 Wed Aug 13 11:00:56 EDT 2025 Mon Jul 21 06:03:22 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 03:01:58 EDT 2025 Fri Feb 23 02:45:24 EST 2024 Tue Aug 26 20:08:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-ed7b81c1d1f59f9df9c107b3dc664805aad16dac92c585e02e728b052be0f65a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811918306438 |
PMID | 30031934 |
PQID | 2102343837 |
PQPubID | 2031077 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6150951 proquest_miscellaneous_2074123310 proquest_journals_2102343837 pubmed_primary_30031934 crossref_primary_10_1016_j_neuroimage_2018_07_028 crossref_citationtrail_10_1016_j_neuroimage_2018_07_028 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_028 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited Academic Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press |
References | Barratt, Francis, Morris, Brookes (bib3) 2018 Nenonen, Nurminen, Kičić, Bikmullina, Lioumis, Jousmäki, Taulu, Parkkonen, Putaala, Kähkönen (bib26) 2012; 123 Wehner, Hämäläinen, Mody, Ahlfors (bib38) 2008; 40 Johnson, Schwindt, Weisend (bib21) 2013; 58 Yoda (bib40) 1990; 67 Moon, Park, Lee (bib25) 1999; 10 Sarvas (bib29) 1987; 32 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib16) 1993; 65 Sereno, Huang (bib31) 2014; 24 Taulu, Simola, Nenonen, Parkkonen (bib36) 2014 Haiying (bib15) 1998; 17 Johnson, Schwindt, Weisend (bib20) 2010; 97 Borna, Carter, Goldberg, Colombo, Jau, Berry, McKay, Stephen, Weisend, Schwindt (bib5) 2017; 62 Bufacchi, Iannetti (bib10) 2016; 26 Huang, Chen, Tran, Holstein, Sereno (bib17) 2012; 109 Taulu, Simola, Kajola (bib35) 2005; vol. 53 Xia, Ben-Amar Baranga, Hoffman, Romalis (bib39) 2006; 89 Abbott (bib1) 2015; 86 Shah, Hughes (bib33) 2015 Carlson, Derby, Hawryszko, Weideman (bib11) 1992; 26 Sander, Preusser, Mhaskar, Kitching, Trahms, Knappe (bib28) 2012; 3 Sereno, Dale, Reppas, Kwong, Belliveau, Brady, Rosen, Tootell (bib30) 1995; 268 Dupont-Roc, Haroche, Cohen-Tannoudji (bib13) 1969; 28 Shah, Osborne, Orton, Alem (bib34) 2018; XI Barkley, Baumgartner (bib2) 2003; 20 Jin (bib19) 1998; 40 Cohen (bib12) 1968 Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib7) 2018; 555 Kastler (bib23) 1973; 110 Martens, Petropoulos, Brown, Andrews, Morich, Patrick (bib24) 1991; 62 Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib8) 2017; 149 Engel, Glover, Wandell (bib14) 1997; 7 Iivanainen, Stenroos, Parkkonen (bib18) 2017; 147 Boto, Bowtell, Krüger, Fromhold, Morris, Meyer, Barnes, Brookes (bib6) 2016; 11 Bernier, Grafton (bib4) 2010; 68 Robson, Brookes, Hall, Palaniyappan, Kumar, Skelton, Christodoulou, Qureshi, Jan, Katshu, Liddle, Liddle, Morris (bib27) 2016; 12 Turner (bib37) 1993 Sereno, Huang (bib32) 2006; 9 Brookes, Zumer, Stevenson, Hale, Barnes, Vrba, Morris (bib9) 2010; 49 Kamada, Sato, Ito, Natsukawa, Okano, Mizutani, Kobayashi (bib22) 2015; 54 Barratt (10.1016/j.neuroimage.2018.07.028_bib3) 2018 Boto (10.1016/j.neuroimage.2018.07.028_bib8) 2017; 149 Sarvas (10.1016/j.neuroimage.2018.07.028_bib29) 1987; 32 Wehner (10.1016/j.neuroimage.2018.07.028_bib38) 2008; 40 Sereno (10.1016/j.neuroimage.2018.07.028_bib31) 2014; 24 Sereno (10.1016/j.neuroimage.2018.07.028_bib30) 1995; 268 Boto (10.1016/j.neuroimage.2018.07.028_bib6) 2016; 11 Dupont-Roc (10.1016/j.neuroimage.2018.07.028_bib13) 1969; 28 Turner (10.1016/j.neuroimage.2018.07.028_bib37) 1993 Cohen (10.1016/j.neuroimage.2018.07.028_bib12) 1968 Jin (10.1016/j.neuroimage.2018.07.028_bib19) 1998; 40 Shah (10.1016/j.neuroimage.2018.07.028_bib33) 2015 Shah (10.1016/j.neuroimage.2018.07.028_bib34) 2018; XI Taulu (10.1016/j.neuroimage.2018.07.028_bib35) 2005; vol. 53 Huang (10.1016/j.neuroimage.2018.07.028_bib17) 2012; 109 Brookes (10.1016/j.neuroimage.2018.07.028_bib9) 2010; 49 Johnson (10.1016/j.neuroimage.2018.07.028_bib21) 2013; 58 Barkley (10.1016/j.neuroimage.2018.07.028_bib2) 2003; 20 Engel (10.1016/j.neuroimage.2018.07.028_bib14) 1997; 7 Hämäläinen (10.1016/j.neuroimage.2018.07.028_bib16) 1993; 65 Sander (10.1016/j.neuroimage.2018.07.028_bib28) 2012; 3 Nenonen (10.1016/j.neuroimage.2018.07.028_bib26) 2012; 123 Boto (10.1016/j.neuroimage.2018.07.028_bib7) 2018; 555 Sereno (10.1016/j.neuroimage.2018.07.028_bib32) 2006; 9 Yoda (10.1016/j.neuroimage.2018.07.028_bib40) 1990; 67 Iivanainen (10.1016/j.neuroimage.2018.07.028_bib18) 2017; 147 Moon (10.1016/j.neuroimage.2018.07.028_bib25) 1999; 10 Taulu (10.1016/j.neuroimage.2018.07.028_bib36) 2014 Martens (10.1016/j.neuroimage.2018.07.028_bib24) 1991; 62 Borna (10.1016/j.neuroimage.2018.07.028_bib5) 2017; 62 Haiying (10.1016/j.neuroimage.2018.07.028_bib15) 1998; 17 Kastler (10.1016/j.neuroimage.2018.07.028_bib23) 1973; 110 Xia (10.1016/j.neuroimage.2018.07.028_bib39) 2006; 89 Abbott (10.1016/j.neuroimage.2018.07.028_bib1) 2015; 86 Bernier (10.1016/j.neuroimage.2018.07.028_bib4) 2010; 68 Carlson (10.1016/j.neuroimage.2018.07.028_bib11) 1992; 26 Johnson (10.1016/j.neuroimage.2018.07.028_bib20) 2010; 97 Kamada (10.1016/j.neuroimage.2018.07.028_bib22) 2015; 54 Bufacchi (10.1016/j.neuroimage.2018.07.028_bib10) 2016; 26 Robson (10.1016/j.neuroimage.2018.07.028_bib27) 2016; 12 |
References_xml | – volume: 109 start-page: 18114 year: 2012 end-page: 18119 ident: bib17 article-title: Mapping multisensory parietal face and body areas in humans publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 24 start-page: 39 year: 2014 end-page: 46 ident: bib31 article-title: Multisensory maps in parietal cortex publication-title: Curr. Opin. Neurobiol. – year: 1968 ident: bib12 article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents publication-title: Science (Wash. D C) – volume: 40 start-page: 7 year: 1998 end-page: 22 ident: bib19 article-title: Electromagnetics in magnetic resonance imaging publication-title: IEEE Antenn. Propag. Mag. – volume: 49 start-page: 525 year: 2010 end-page: 538 ident: bib9 article-title: Investigating spatial specificity and data averaging in MEG publication-title: Neuroimage – year: 2018 ident: bib3 article-title: Mapping the Topological Organisation of Beta Oscillations in Motor Cortex Using MEG publication-title: NeuroImage – volume: 89 year: 2006 ident: bib39 article-title: Magnetoencephalography with an atomic magnetometer publication-title: Appl. Phys. Lett. – volume: 149 start-page: 404 year: 2017 end-page: 414 ident: bib8 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: Neuroimage – volume: 7 start-page: 181 year: 1997 end-page: 192 ident: bib14 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cerebr. Cortex – volume: 147 start-page: 542 year: 2017 end-page: 553 ident: bib18 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage – volume: 12 start-page: 869 year: 2016 end-page: 878 ident: bib27 article-title: Abnormal visuomotor processing in schizophrenia publication-title: NeuroImage Clin – volume: XI year: 2018 ident: bib34 article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism publication-title: Steep Dispers. Eng. Opto-Atomic Precis. Metrol – volume: 40 start-page: 541 year: 2008 end-page: 550 ident: bib38 article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation publication-title: Neuroimage – volume: 86 year: 2015 ident: bib1 article-title: Parametric design of tri-axial nested Helmholtz coils publication-title: Rev. Sci. Instrum. – volume: 58 start-page: 6065 year: 2013 end-page: 6077 ident: bib21 article-title: Multi-sensor magnetoencephalography with atomic magnetometers publication-title: Phys. Med. Biol. – volume: 20 start-page: 163 year: 2003 end-page: 178 ident: bib2 article-title: MEG and EEG in epilepsy publication-title: J. Clin. Neurophysiol. – volume: 62 start-page: 2639 year: 1991 end-page: 2645 ident: bib24 article-title: Insertable biplanar gradient coils for magnetic resonance imaging publication-title: Rev. Sci. Instrum. – year: 1993 ident: bib37 article-title: Gradient coil design: a review of methods publication-title: Magn. Reson. Imaging – volume: 97 year: 2010 ident: bib20 article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer publication-title: Appl. Phys. Lett. – volume: 110 start-page: 259 year: 1973 end-page: 265 ident: bib23 article-title: The Hanle effect and its use for the measurements of very small magnetic fields publication-title: Nucl. Instrum. Methods – volume: 268 start-page: 889 year: 1995 end-page: 893 ident: bib30 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science – volume: vol. 53 start-page: 3359 year: 2005 end-page: 3372 ident: bib35 publication-title: Applications of the Signal Space Separation Method. October – start-page: 35 year: 2014 end-page: 71 ident: bib36 article-title: Novel noise reduction methods publication-title: Magnetoencephalography – volume: 62 start-page: 8909 year: 2017 end-page: 8923 ident: bib5 article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers publication-title: Phys. Med. Biol. – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib16 article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – volume: 555 start-page: 657 year: 2018 end-page: 661 ident: bib7 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature – volume: 67 start-page: 4349 year: 1990 end-page: 4353 ident: bib40 article-title: Analytical design method of self-shielded planar coils publication-title: J. Appl. Phys. – volume: 26 start-page: 191 year: 1992 end-page: 206 ident: bib11 article-title: Design and evaluation of shielded gradient coils publication-title: Magn. Reson. Med. – volume: 10 year: 1999 ident: bib25 article-title: A design method for minimum-inductance planar magnetic-resonance-imaging gradient coils considering the pole-piece effect publication-title: Meas. Sci. Technol. – volume: 9 start-page: 1337 year: 2006 end-page: 1343 ident: bib32 article-title: A human parietal face area contains aligned head-centered visual and tactile maps publication-title: Nat. Neurosci. – volume: 3 start-page: 981 year: 2012 ident: bib28 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Optic Express – volume: 68 start-page: 776 year: 2010 end-page: 788 ident: bib4 article-title: Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context publication-title: Neuron – volume: 26 start-page: R1133 year: 2016 end-page: R1134 ident: bib10 article-title: Gravitational cues modulate the shape of defensive peripersonal space publication-title: Curr. Biol. – volume: 54 year: 2015 ident: bib22 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. – volume: 123 start-page: 2180 year: 2012 end-page: 2191 ident: bib26 article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography publication-title: Clin. Neurophysiol. – year: 2015 ident: bib33 article-title: Method for Detecting Zero-field Resonance. US 20150212168 A1 – volume: 11 year: 2016 ident: bib6 article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study publication-title: PLoS One – volume: 17 start-page: 826 year: 1998 end-page: 830 ident: bib15 article-title: True energy-minimal and finite-size biplanar gradient coil design for MRI publication-title: Med. Imaging, IEEE Trans. – volume: 32 start-page: 11 year: 1987 end-page: 22 ident: bib29 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. – volume: 28 start-page: 638 year: 1969 end-page: 639 ident: bib13 article-title: Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances publication-title: Phys. Lett. – volume: 26 start-page: 191 year: 1992 ident: 10.1016/j.neuroimage.2018.07.028_bib11 article-title: Design and evaluation of shielded gradient coils publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910260202 – volume: 28 start-page: 638 year: 1969 ident: 10.1016/j.neuroimage.2018.07.028_bib13 article-title: Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances publication-title: Phys. Lett. doi: 10.1016/0375-9601(69)90480-0 – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.neuroimage.2018.07.028_bib16 article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 86 year: 2015 ident: 10.1016/j.neuroimage.2018.07.028_bib1 article-title: Parametric design of tri-axial nested Helmholtz coils publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4919400 – volume: vol. 53 start-page: 3359 year: 2005 ident: 10.1016/j.neuroimage.2018.07.028_bib35 – volume: 67 start-page: 4349 year: 1990 ident: 10.1016/j.neuroimage.2018.07.028_bib40 article-title: Analytical design method of self-shielded planar coils publication-title: J. Appl. Phys. doi: 10.1063/1.344953 – year: 2018 ident: 10.1016/j.neuroimage.2018.07.028_bib3 article-title: Mapping the Topological Organisation of Beta Oscillations in Motor Cortex Using MEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.06.041 – volume: 268 start-page: 889 year: 1995 ident: 10.1016/j.neuroimage.2018.07.028_bib30 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science doi: 10.1126/science.7754376 – volume: 40 start-page: 541 year: 2008 ident: 10.1016/j.neuroimage.2018.07.028_bib38 article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.026 – volume: 49 start-page: 525 year: 2010 ident: 10.1016/j.neuroimage.2018.07.028_bib9 article-title: Investigating spatial specificity and data averaging in MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.043 – volume: 3 start-page: 981 year: 2012 ident: 10.1016/j.neuroimage.2018.07.028_bib28 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Optic Express doi: 10.1364/BOE.3.000981 – volume: 123 start-page: 2180 year: 2012 ident: 10.1016/j.neuroimage.2018.07.028_bib26 article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.03.080 – volume: 147 start-page: 542 year: 2017 ident: 10.1016/j.neuroimage.2018.07.028_bib18 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.048 – volume: 149 start-page: 404 year: 2017 ident: 10.1016/j.neuroimage.2018.07.028_bib8 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.034 – volume: 68 start-page: 776 year: 2010 ident: 10.1016/j.neuroimage.2018.07.028_bib4 article-title: Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context publication-title: Neuron doi: 10.1016/j.neuron.2010.11.002 – volume: XI issue: 51 year: 2018 ident: 10.1016/j.neuroimage.2018.07.028_bib34 article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism publication-title: Steep Dispers. Eng. Opto-Atomic Precis. Metrol doi: 10.1117/12.2299197 – volume: 7 start-page: 181 year: 1997 ident: 10.1016/j.neuroimage.2018.07.028_bib14 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cerebr. Cortex doi: 10.1093/cercor/7.2.181 – volume: 10 year: 1999 ident: 10.1016/j.neuroimage.2018.07.028_bib25 article-title: A design method for minimum-inductance planar magnetic-resonance-imaging gradient coils considering the pole-piece effect publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/10/12/402 – volume: 17 start-page: 826 year: 1998 ident: 10.1016/j.neuroimage.2018.07.028_bib15 article-title: True energy-minimal and finite-size biplanar gradient coil design for MRI publication-title: Med. Imaging, IEEE Trans. doi: 10.1109/42.736052 – volume: 62 start-page: 2639 year: 1991 ident: 10.1016/j.neuroimage.2018.07.028_bib24 article-title: Insertable biplanar gradient coils for magnetic resonance imaging publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1142245 – volume: 89 year: 2006 ident: 10.1016/j.neuroimage.2018.07.028_bib39 article-title: Magnetoencephalography with an atomic magnetometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.2392722 – start-page: 35 year: 2014 ident: 10.1016/j.neuroimage.2018.07.028_bib36 article-title: Novel noise reduction methods publication-title: Magnetoencephalography doi: 10.1007/978-3-642-33045-2_2 – volume: 11 year: 2016 ident: 10.1016/j.neuroimage.2018.07.028_bib6 article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study publication-title: PLoS One doi: 10.1371/journal.pone.0157655 – volume: 32 start-page: 11 year: 1987 ident: 10.1016/j.neuroimage.2018.07.028_bib29 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – year: 1968 ident: 10.1016/j.neuroimage.2018.07.028_bib12 article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents publication-title: Science (Wash. D C) doi: 10.1126/science.161.3843.784 – volume: 97 year: 2010 ident: 10.1016/j.neuroimage.2018.07.028_bib20 article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.3522648 – volume: 110 start-page: 259 year: 1973 ident: 10.1016/j.neuroimage.2018.07.028_bib23 article-title: The Hanle effect and its use for the measurements of very small magnetic fields publication-title: Nucl. Instrum. Methods doi: 10.1016/0029-554X(73)90698-8 – volume: 24 start-page: 39 year: 2014 ident: 10.1016/j.neuroimage.2018.07.028_bib31 article-title: Multisensory maps in parietal cortex publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2013.08.014 – volume: 40 start-page: 7 year: 1998 ident: 10.1016/j.neuroimage.2018.07.028_bib19 article-title: Electromagnetics in magnetic resonance imaging publication-title: IEEE Antenn. Propag. Mag. doi: 10.1109/74.739187 – year: 2015 ident: 10.1016/j.neuroimage.2018.07.028_bib33 – volume: 58 start-page: 6065 year: 2013 ident: 10.1016/j.neuroimage.2018.07.028_bib21 article-title: Multi-sensor magnetoencephalography with atomic magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/6065 – year: 1993 ident: 10.1016/j.neuroimage.2018.07.028_bib37 article-title: Gradient coil design: a review of methods publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(93)90209-V – volume: 12 start-page: 869 year: 2016 ident: 10.1016/j.neuroimage.2018.07.028_bib27 article-title: Abnormal visuomotor processing in schizophrenia publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2015.08.005 – volume: 62 start-page: 8909 year: 2017 ident: 10.1016/j.neuroimage.2018.07.028_bib5 article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa93d1 – volume: 54 year: 2015 ident: 10.1016/j.neuroimage.2018.07.028_bib22 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.026601 – volume: 109 start-page: 18114 year: 2012 ident: 10.1016/j.neuroimage.2018.07.028_bib17 article-title: Mapping multisensory parietal face and body areas in humans publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1207946109 – volume: 555 start-page: 657 year: 2018 ident: 10.1016/j.neuroimage.2018.07.028_bib7 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature doi: 10.1038/nature26147 – volume: 26 start-page: R1133 year: 2016 ident: 10.1016/j.neuroimage.2018.07.028_bib10 article-title: Gravitational cues modulate the shape of defensive peripersonal space publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.09.025 – volume: 20 start-page: 163 year: 2003 ident: 10.1016/j.neuroimage.2018.07.028_bib2 article-title: MEG and EEG in epilepsy publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200305000-00002 – volume: 9 start-page: 1337 year: 2006 ident: 10.1016/j.neuroimage.2018.07.028_bib32 article-title: A human parietal face area contains aligned head-centered visual and tactile maps publication-title: Nat. Neurosci. doi: 10.1038/nn1777 |
SSID | ssj0009148 |
Score | 2.6242108 |
Snippet | Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 760 |
SubjectTerms | Adult Brain - physiology Brain architecture Electromagnetic Phenomena Eye Movement Measurements Head Movements Humans Magnetic Fields Magnetic resonance imaging Magnetoencephalography Magnetoencephalography - instrumentation Magnetoencephalography - methods Magnetoencephalography - standards NMR Nuclear magnetic resonance Scalp Sensors Symmetry Topography Variation Visual field Visual Fields - physiology Visual pathways Visual Perception - physiology Visual stimuli Wire |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhh9JLafq5SVoU6NVd25Ism55CaAiB9JIGchP6JG43WpPdvfa3d8aWnW7bw0KOtjVga0YzT_jNEyGfKmEMVC0ktzKZ8SJAHtTCZoL5OmjhQy6xwfnqW3Vxwy9vxe0eORt7YZBWmXL_kNP7bJ3uzNNszru2nV8DMoByA_uNGlE0w4ZfziVG-edfjzSPpuBDO5xgGY5ObJ6B49VrRrb3sHKR5FX3Mp54Lvv_S9S_EPRvJuUfpen8JXmRMCU9HV77gOz5-Io8u0p_zV-TcEpNm3ULHfUDtct2QQf9ZgqAlcZNr8pNjbY_scUjOgpvGrG3kfb0thVtI12BKzt6jwdL-HHAEieru9Oj6vUbcnP-9fvZRZbOV8isqPg6806aurCFK4JoQuNCY2EzaJizVcXrXGjtispp25QWNhU-L70sa5OL0vg8VEKzt2Q_LqN_Tyh3XueemSAN51Y0tWSGW-OqQnOeBzEjcpxSZZP4OJ6BsVAjy-yHenSGQmeoXCpwxowUk2U3CHDsYNOMXlNjgymkRAVVYgfbL5PtViDuaH08BolKyWClcFfNUBJWzsjJ9BiWMf6b0dEvNzAGoV3JAGzPyLshpqbPZZh5G8ZhEreibRqAEuHbT2J710uFo9w_YOjDJ33UEXmOV0MH5jHZXz9s_AeAYmvzsV9rvwE34jcn priority: 102 providerName: Elsevier |
Title | A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306438 https://dx.doi.org/10.1016/j.neuroimage.2018.07.028 https://www.ncbi.nlm.nih.gov/pubmed/30031934 https://www.proquest.com/docview/2102343837 https://www.proquest.com/docview/2074123310 https://pubmed.ncbi.nlm.nih.gov/PMC6150951 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoKyEuiG8WyspIXANJbMeJOKAFtVpAXSFEpb1Z_lRTtk7o7l757XgSJ0sBoT3lEI-UZMbj5_jNG4ReFUypsGoBuZXwhGYu5EHJdMKILZ1k1qUcCpzPFsX8nH5asmX84baOtMohJ3aJ2jQa_pG_ga0JAV1N_q79kUDXKDhdjS00DtARSJcBpYsv-U50N6N9KRwjSRkGRCZPz-_q9CLrqzBrgeBVdhKe0JP938vT3_DzTxblb8vS6T10N-JJPOsD4D66Zf0DdPssnpg_RG6GVZ20K-nlNdZNvcK9djMOYBX7bafIjZXU36G8wxscntRDXSPuqG1rXHu8Dm5s8RU0lbDDgAYSQnshB8XrR-j89OTbh3kSeyskmhV0k1jDVZnpzGSOVa4yrtJhI6iI0UVBy5RJabLCSF3lOmwobJpbnpcqZbmyqSuYJI_RoW-8fYowNVamlijHFaWaVSUnimplikxSmjo2QXz4pEJH4XHof7ESA8PsUuycIcAZIuUiOGOCstGy7cU39rCpBq-Jobg0pEMRVog9bN-OthGA9MBiT-vjIUhETARrsQvbCXo53g5TGM5lpLfNNowBWJeTALQn6EkfU-PrEsi6FaHhI96ItnEAyIPfvOPri04mHKT-A35-9v_Heo7uwDv05ZXH6HBzvbUvAs7aqCk6eP0zm3ZTaoqOZh8_zxfh-v5k8eXrLyniL84 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEviN8UBhgJHiOS2M4PIYQGbOrYWiG0SXsztuNoYZ2Tra0Q_xR_I3dJ3DJAqC97jq9KfOfPn-u77wh5mQitYdfC5FaWBjwqAQeVMIFgNiuVsGWYYoHzeJKMjvinY3G8QX76WhhMq_SY2AJ1URv8j_w1Hk0Y6mqm75rzALtG4e2qb6HRhcW-_fEdjmyzt3sfwb-v4nh35_DDKOi7CgRGJHwe2CLVWWSiIipFXuZFmRs4AmlWmCThWSiUKqKkUCaPDVBpG8Y2jTMdiljbsEyEYvC718gmZ3CUGZDN9zuTz19WMr8R74rvBAuyKMr73KEuo6xVqKzOACcwpSxrRUOxC_y_N8S_Ce-feZu_bYS7t8mtnsHS7S7k7pAN6-6S6-P-jv4eKbeproJmqpy6oKauprRTi6ZAj6lbtBrgVCtzigUlrqDwpg4rKWmbTDejlaMzCJyGnmEbC-sH1AhBzYnyGtv3ydGVzPsDMnC1s48I5YVVoWW6TDXnRuRZyjQ3ukgixXlYiiFJ_ZRK00udY8eNqfQ5bd_kyhkSnSHDVIIzhiRaWjad3McaNrn3mvTlrADAEvakNWzfLG17ytNRmTWtt3yQyB56ZnK1UIbkxfIxgAbeBCln6wWMQSIZM6D2Q_Kwi6nl5zLE-ZxxmMRL0bYcgILkl5-46qQVJsfmAsDYH___tZ6TG6PD8YE82JvsPyE38Xu64s4tMphfLOxTYHlz_axfWpR8verV_AuC-WrN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDdbChgJjlHj2I4TIYQqyqqltOJApb0Z27HVwDZJu7tC_DV-HTN57FJAaC89xxM5noc_xzPfEPIyldbCroXJrVxFggWIg0a6SHKfBSN9iBUWOB-fpAen4sNETjbIz6EWBtMqh5jYBuqidviPfBePJhx5NdVu6NMiPu2P3zYXEXaQwpvWoZ1GZyJH_sd3OL7N3hzug65fJcn4_ed3B1HfYSByMhXzyBfKZsyxggWZh7wIuYPjkOWFS1ORxdKYgqWFcXniAFb7OPEqyWwsE-vjkErD4b03yE3FJUMfUxO1IvxloivDkzzKGMv7LKIut6zlqizPIWJgclnW0odiP_h_b41_Q98_Mzh_2xLHd8jtHsvSvc747pINX90jW8f9bf19EvaoLaNmaipzSV1dTmnHG00BKNNq0bKBU2vcNywtqQoKM62wppK2aXUzWlZ0BibU0HNsaOGHATUGo-bMDGzbD8jptaz6Q7JZ1ZV_TKgovIk9t0FZIZzMM8WtcLZImREiDnJE1LCk2vWk59h7Y6qH7LaveqUMjcrQsdKgjBFhS8mmI_5YQyYftKaHwlYIxRp2pzVkXy9le_DTgZo1pXcGI9F9EJrplcuMyIvlYwgfeCdkKl8vYAxCyoQDyB-RR51NLT-XY8TPuYBFvGJtywFITX71SVWetRTl2GYAsPv2_6f1nGyBD-uPhydHT8gt_JyuynOHbM4vF_4pwL25fdb6FSVfrtuRfwEKnW2d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bi-planar+coil+system+for+nulling+background+magnetic+fields+in+scalp+mounted+magnetoencephalography&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Holmes%2C+Niall&rft.au=Leggett%2C+James&rft.au=Boto%2C+Elena&rft.au=Roberts%2C+Gillian&rft.date=2018-11-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=181&rft.spage=760&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.028&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |