A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography

Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnet...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 181; pp. 760 - 774
Main Authors Holmes, Niall, Leggett, James, Boto, Elena, Roberts, Gillian, Hill, Ryan M., Tierney, Tim M., Shah, Vishal, Barnes, Gareth R., Brookes, Matthew J., Bowtell, Richard
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. •The design and use of bi-planar coils for magnetic field nulling is described.•Field nulling allows large subject movements during onscalp MEG recordings.•Optical tracking shows high quality data can be acquired during these movements.•A novel measurement of retinotopy where the subject moves their head is shown.
AbstractList Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.
Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. •The design and use of bi-planar coils for magnetic field nulling is described.•Field nulling allows large subject movements during onscalp MEG recordings.•Optical tracking shows high quality data can be acquired during these movements.•A novel measurement of retinotopy where the subject moves their head is shown.
Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null B x , B y and B z as well as the three dominant field gradients d B x / d z , d B y / d z and d B z / d z . The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm 3 . This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field ( B x ) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient ( d B x / d z ) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject. • The design and use of bi-planar coils for magnetic field nulling is described. • Field nulling allows large subject movements during onscalp MEG recordings. • Optical tracking shows high quality data can be acquired during these movements. • A novel measurement of retinotopy where the subject moves their head is shown.
Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null B , B and B as well as the three dominant field gradients dB /dz, dB /dz and dB /dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm . This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (B ) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dB /dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.
Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.
Author Hill, Ryan M.
Brookes, Matthew J.
Barnes, Gareth R.
Bowtell, Richard
Shah, Vishal
Boto, Elena
Tierney, Tim M.
Leggett, James
Roberts, Gillian
Holmes, Niall
AuthorAffiliation c QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
b Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK
a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
AuthorAffiliation_xml – name: b Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK
– name: c QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
– name: a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
Author_xml – sequence: 1
  givenname: Niall
  surname: Holmes
  fullname: Holmes, Niall
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
– sequence: 2
  givenname: James
  surname: Leggett
  fullname: Leggett, James
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
– sequence: 3
  givenname: Elena
  surname: Boto
  fullname: Boto, Elena
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
– sequence: 4
  givenname: Gillian
  surname: Roberts
  fullname: Roberts, Gillian
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
– sequence: 5
  givenname: Ryan M.
  surname: Hill
  fullname: Hill, Ryan M.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
– sequence: 6
  givenname: Tim M.
  surname: Tierney
  fullname: Tierney, Tim M.
  organization: Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK
– sequence: 7
  givenname: Vishal
  surname: Shah
  fullname: Shah, Vishal
  organization: QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
– sequence: 8
  givenname: Gareth R.
  surname: Barnes
  fullname: Barnes, Gareth R.
  organization: Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK
– sequence: 9
  givenname: Matthew J.
  surname: Brookes
  fullname: Brookes, Matthew J.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
– sequence: 10
  givenname: Richard
  surname: Bowtell
  fullname: Bowtell, Richard
  email: richard.bowtell@nottingham.ac.uk
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30031934$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv3CAUha0qVfNo_0KF1E03di9g_NhUTaO-pEjdtGuE4XqGCQMu2JHm35fRJJM2q1mBdA8f99xzL4szHzwWBaFQUaDNh03lcYnBbtUKKwa0q6CtgHUvigsKvSh70bKz_V3wsqO0Py8uU9oAQE_r7lVxzgE47Xl9UYzXZLDl5JRXkehgHUm7NOOWjCESvzhn_YoMSt-tYli8IflHj7PVZLToTCLWk6SVm8g2l2d8FAT0Gqe1cmEV1bTevS5ejsolfPNwXhW_v375dfO9vP357cfN9W2pRVPPJZp26Kimho6iH3sz9ppCO3Cjm6buQChlaGOU7pkWnUBg2LJuAMEGhLERil8VHw_caRm2aDT6OSonp5hHFXcyKCv_r3i7lqtwLxsq8uBoBrx_AMTwZ8E0y61NGl0eEIYlSQZtTRnnFLL03TPpJizRZ3uSUWC85h1vs-rtvx0dW3mMIAu6g0DHkFLE8SihIPdpy418Slvu05bQypz2k9vjU21nNduw92bdKYDPBwDmTO4tRpm03UdnbEQ9SxPsKZBPzyA6b43NW3GHu9MQfwHawuXV
CitedBy_id crossref_primary_10_3389_fphys_2021_724755
crossref_primary_10_1016_j_sna_2023_114464
crossref_primary_10_3390_photonics10121302
crossref_primary_10_1016_j_neuroimage_2024_120991
crossref_primary_10_3390_s23125454
crossref_primary_10_7554_eLife_94561
crossref_primary_10_1038_s41598_022_17346_1
crossref_primary_10_1186_s12915_021_01073_6
crossref_primary_10_1109_TIM_2023_3284138
crossref_primary_10_3390_mi14111985
crossref_primary_10_1016_j_neuroimage_2021_118834
crossref_primary_10_3389_fmedt_2025_1515548
crossref_primary_10_1016_j_neuroimage_2019_116192
crossref_primary_10_1007_s13320_023_0684_y
crossref_primary_10_1038_s42254_023_00558_3
crossref_primary_10_1113_JP277899
crossref_primary_10_1016_j_neuroimage_2024_120864
crossref_primary_10_1016_j_neuroimage_2022_119084
crossref_primary_10_1109_TIE_2022_3159961
crossref_primary_10_1371_journal_pone_0262669
crossref_primary_10_35848_1347_4065_ad43ce
crossref_primary_10_1016_j_measurement_2023_114115
crossref_primary_10_1088_2057_1976_ad974a
crossref_primary_10_1109_TIM_2022_3151939
crossref_primary_10_1016_j_measurement_2025_116818
crossref_primary_10_1016_j_measurement_2024_114614
crossref_primary_10_1016_j_neuroimage_2019_05_063
crossref_primary_10_1016_j_neuroimage_2021_118604
crossref_primary_10_1063_5_0167372
crossref_primary_10_1109_TIM_2021_3106677
crossref_primary_10_1016_j_sna_2024_115043
crossref_primary_10_1109_TIM_2025_3527604
crossref_primary_10_1016_j_neuroimage_2023_120252
crossref_primary_10_1016_j_measurement_2024_115410
crossref_primary_10_1016_j_neuroimage_2022_119420
crossref_primary_10_1016_j_neuroimage_2023_120257
crossref_primary_10_1109_JSEN_2024_3438990
crossref_primary_10_1016_j_neuroimage_2022_119027
crossref_primary_10_1016_j_tins_2022_05_008
crossref_primary_10_3389_fnins_2023_1284262
crossref_primary_10_1109_TIM_2023_3265089
crossref_primary_10_1088_1674_1056_ac7e38
crossref_primary_10_1016_j_neuroimage_2020_116995
crossref_primary_10_1016_j_neuroimage_2020_117443
crossref_primary_10_1109_ACCESS_2021_3138748
crossref_primary_10_1088_1361_6501_ad89e6
crossref_primary_10_1016_j_jneumeth_2024_110131
crossref_primary_10_1016_j_neuroimage_2024_120842
crossref_primary_10_3390_s22083093
crossref_primary_10_1016_j_neuroimage_2019_116099
crossref_primary_10_1063_5_0186023
crossref_primary_10_1109_TIM_2024_3394482
crossref_primary_10_1109_JSEN_2024_3488002
crossref_primary_10_1109_TIM_2024_3375985
crossref_primary_10_1109_TIM_2023_3267370
crossref_primary_10_1016_j_neuroimage_2023_120024
crossref_primary_10_1016_j_sna_2023_114591
crossref_primary_10_1109_JSEN_2023_3297109
crossref_primary_10_1016_j_neuroimage_2023_119953
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1109_TIM_2022_3150588
crossref_primary_10_1109_TASE_2024_3358542
crossref_primary_10_1016_j_neuroimage_2021_118818
crossref_primary_10_1016_j_neuroimage_2021_117969
crossref_primary_10_3390_ma15207353
crossref_primary_10_1109_TIM_2022_3162607
crossref_primary_10_1016_j_sna_2022_113928
crossref_primary_10_1016_j_neuroimage_2020_116862
crossref_primary_10_1016_j_neuroimage_2021_118025
crossref_primary_10_3390_machines12050317
crossref_primary_10_1109_TMAG_2021_3133951
crossref_primary_10_1016_j_measurement_2025_117052
crossref_primary_10_1109_TIE_2022_3161799
crossref_primary_10_1016_j_measurement_2025_116845
crossref_primary_10_1063_1_5066250
crossref_primary_10_1109_TIM_2023_3295475
crossref_primary_10_1016_j_measurement_2024_114266
crossref_primary_10_1016_j_neuroimage_2023_120157
crossref_primary_10_1016_j_measurement_2023_113059
crossref_primary_10_1088_1361_6463_ad5f9a
crossref_primary_10_1016_j_mri_2024_07_006
crossref_primary_10_1016_j_neuroimage_2019_03_022
crossref_primary_10_1088_1674_1056_ac6163
crossref_primary_10_1109_TIE_2020_3032868
crossref_primary_10_1038_s41598_023_31111_y
crossref_primary_10_1016_j_neuroimage_2021_117815
crossref_primary_10_1109_TIM_2024_3413176
crossref_primary_10_1103_PhysRevApplied_14_054004
crossref_primary_10_1162_imag_a_00283
crossref_primary_10_1016_j_clinph_2021_07_007
crossref_primary_10_1016_j_neuroimage_2021_118479
crossref_primary_10_1109_JSEN_2023_3329043
crossref_primary_10_3390_app13053161
crossref_primary_10_1002_hbm_25582
crossref_primary_10_1080_00107514_2023_2182950
crossref_primary_10_1016_j_measurement_2024_115223
crossref_primary_10_1109_TIM_2022_3188525
crossref_primary_10_1109_TIM_2021_3108493
crossref_primary_10_1063_5_0016090
crossref_primary_10_1016_j_neuroimage_2022_119559
crossref_primary_10_1364_BOE_474862
crossref_primary_10_1162_netn_a_00077
crossref_primary_10_1016_j_measurement_2023_113904
crossref_primary_10_1016_j_neuroimage_2021_118401
crossref_primary_10_1038_s41598_021_01894_z
crossref_primary_10_1038_s41467_019_12486_x
crossref_primary_10_1016_j_neuroimage_2021_118484
crossref_primary_10_1162_imag_a_00179
crossref_primary_10_1088_1741_2552_ad44d8
crossref_primary_10_1002_acn3_50995
crossref_primary_10_3390_s20154241
crossref_primary_10_1109_TII_2024_3353928
crossref_primary_10_1016_j_measurement_2025_116940
crossref_primary_10_1016_j_measurement_2024_115697
crossref_primary_10_3390_s23146537
crossref_primary_10_3390_ma16020681
crossref_primary_10_1016_j_bspc_2024_106236
crossref_primary_10_1109_ACCESS_2019_2891162
crossref_primary_10_1016_j_sna_2025_116260
crossref_primary_10_1162_imag_a_00020
crossref_primary_10_3390_s25020433
crossref_primary_10_1109_JSEN_2021_3075445
crossref_primary_10_3390_s22083059
crossref_primary_10_3390_s20061569
crossref_primary_10_1364_OE_464361
crossref_primary_10_1109_TIM_2022_3192287
crossref_primary_10_1016_j_neuroimage_2019_06_010
crossref_primary_10_1016_j_isci_2024_109250
crossref_primary_10_1109_TIM_2022_3216411
crossref_primary_10_1103_PhysRevApplied_22_064055
crossref_primary_10_1016_j_measurement_2024_114753
crossref_primary_10_1088_1361_6463_ad8241
crossref_primary_10_1109_TIM_2023_3323002
crossref_primary_10_1109_TIM_2022_3214619
crossref_primary_10_1038_s41598_019_50697_w
crossref_primary_10_7554_eLife_94561_3
crossref_primary_10_1038_s41598_020_77589_8
crossref_primary_10_1038_s41598_024_56878_6
crossref_primary_10_1109_TBME_2021_3100770
crossref_primary_10_1111_nyas_14890
crossref_primary_10_1002_hbm_24707
crossref_primary_10_1109_JSEN_2024_3509679
crossref_primary_10_1016_j_bbe_2023_11_004
crossref_primary_10_1109_JSEN_2024_3474214
crossref_primary_10_3390_ma17225469
crossref_primary_10_1088_1402_4896_ad7234
crossref_primary_10_1109_TIE_2023_3314921
crossref_primary_10_1109_JSEN_2023_3299690
crossref_primary_10_1109_TBME_2024_3465654
crossref_primary_10_1109_TIM_2025_3545997
Cites_doi 10.1002/mrm.1910260202
10.1016/0375-9601(69)90480-0
10.1103/RevModPhys.65.413
10.1063/1.4919400
10.1063/1.344953
10.1016/j.neuroimage.2018.06.041
10.1126/science.7754376
10.1016/j.neuroimage.2007.12.026
10.1016/j.neuroimage.2009.07.043
10.1364/BOE.3.000981
10.1016/j.clinph.2012.03.080
10.1016/j.neuroimage.2016.12.048
10.1016/j.neuroimage.2017.01.034
10.1016/j.neuron.2010.11.002
10.1117/12.2299197
10.1093/cercor/7.2.181
10.1088/0957-0233/10/12/402
10.1109/42.736052
10.1063/1.1142245
10.1063/1.2392722
10.1007/978-3-642-33045-2_2
10.1371/journal.pone.0157655
10.1088/0031-9155/32/1/004
10.1126/science.161.3843.784
10.1063/1.3522648
10.1016/0029-554X(73)90698-8
10.1016/j.conb.2013.08.014
10.1109/74.739187
10.1088/0031-9155/58/17/6065
10.1016/0730-725X(93)90209-V
10.1016/j.nicl.2015.08.005
10.1088/1361-6560/aa93d1
10.7567/JJAP.54.026601
10.1073/pnas.1207946109
10.1038/nature26147
10.1016/j.cub.2016.09.025
10.1097/00004691-200305000-00002
10.1038/nn1777
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018. The Authors
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018. The Authors
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2018.07.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 774
ExternalDocumentID PMC6150951
30031934
10_1016_j_neuroimage_2018_07_028
S1053811918306438
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R44 MH110288
– fundername: Medical Research Council
  grantid: MR/M009122/1
– fundername: Medical Research Council
  grantid: MR/M006301/1
– fundername: Wellcome Trust
  grantid: 203257/Z/16/Z
– fundername: NICHD NIH HHS
  grantid: R44 HD074495
– fundername: Medical Research Council
  grantid: MR/K005464/1
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c564t-ed7b81c1d1f59f9df9c107b3dc664805aad16dac92c585e02e728b052be0f65a3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:32:32 EDT 2025
Fri Jul 11 02:10:37 EDT 2025
Wed Aug 13 11:00:56 EDT 2025
Mon Jul 21 06:03:22 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 03:01:58 EDT 2025
Fri Feb 23 02:45:24 EST 2024
Tue Aug 26 20:08:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-ed7b81c1d1f59f9df9c107b3dc664805aad16dac92c585e02e728b052be0f65a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811918306438
PMID 30031934
PQID 2102343837
PQPubID 2031077
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6150951
proquest_miscellaneous_2074123310
proquest_journals_2102343837
pubmed_primary_30031934
crossref_primary_10_1016_j_neuroimage_2018_07_028
crossref_citationtrail_10_1016_j_neuroimage_2018_07_028
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_028
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
References Barratt, Francis, Morris, Brookes (bib3) 2018
Nenonen, Nurminen, Kičić, Bikmullina, Lioumis, Jousmäki, Taulu, Parkkonen, Putaala, Kähkönen (bib26) 2012; 123
Wehner, Hämäläinen, Mody, Ahlfors (bib38) 2008; 40
Johnson, Schwindt, Weisend (bib21) 2013; 58
Yoda (bib40) 1990; 67
Moon, Park, Lee (bib25) 1999; 10
Sarvas (bib29) 1987; 32
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib16) 1993; 65
Sereno, Huang (bib31) 2014; 24
Taulu, Simola, Nenonen, Parkkonen (bib36) 2014
Haiying (bib15) 1998; 17
Johnson, Schwindt, Weisend (bib20) 2010; 97
Borna, Carter, Goldberg, Colombo, Jau, Berry, McKay, Stephen, Weisend, Schwindt (bib5) 2017; 62
Bufacchi, Iannetti (bib10) 2016; 26
Huang, Chen, Tran, Holstein, Sereno (bib17) 2012; 109
Taulu, Simola, Kajola (bib35) 2005; vol. 53
Xia, Ben-Amar Baranga, Hoffman, Romalis (bib39) 2006; 89
Abbott (bib1) 2015; 86
Shah, Hughes (bib33) 2015
Carlson, Derby, Hawryszko, Weideman (bib11) 1992; 26
Sander, Preusser, Mhaskar, Kitching, Trahms, Knappe (bib28) 2012; 3
Sereno, Dale, Reppas, Kwong, Belliveau, Brady, Rosen, Tootell (bib30) 1995; 268
Dupont-Roc, Haroche, Cohen-Tannoudji (bib13) 1969; 28
Shah, Osborne, Orton, Alem (bib34) 2018; XI
Barkley, Baumgartner (bib2) 2003; 20
Jin (bib19) 1998; 40
Cohen (bib12) 1968
Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib7) 2018; 555
Kastler (bib23) 1973; 110
Martens, Petropoulos, Brown, Andrews, Morich, Patrick (bib24) 1991; 62
Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib8) 2017; 149
Engel, Glover, Wandell (bib14) 1997; 7
Iivanainen, Stenroos, Parkkonen (bib18) 2017; 147
Boto, Bowtell, Krüger, Fromhold, Morris, Meyer, Barnes, Brookes (bib6) 2016; 11
Bernier, Grafton (bib4) 2010; 68
Robson, Brookes, Hall, Palaniyappan, Kumar, Skelton, Christodoulou, Qureshi, Jan, Katshu, Liddle, Liddle, Morris (bib27) 2016; 12
Turner (bib37) 1993
Sereno, Huang (bib32) 2006; 9
Brookes, Zumer, Stevenson, Hale, Barnes, Vrba, Morris (bib9) 2010; 49
Kamada, Sato, Ito, Natsukawa, Okano, Mizutani, Kobayashi (bib22) 2015; 54
Barratt (10.1016/j.neuroimage.2018.07.028_bib3) 2018
Boto (10.1016/j.neuroimage.2018.07.028_bib8) 2017; 149
Sarvas (10.1016/j.neuroimage.2018.07.028_bib29) 1987; 32
Wehner (10.1016/j.neuroimage.2018.07.028_bib38) 2008; 40
Sereno (10.1016/j.neuroimage.2018.07.028_bib31) 2014; 24
Sereno (10.1016/j.neuroimage.2018.07.028_bib30) 1995; 268
Boto (10.1016/j.neuroimage.2018.07.028_bib6) 2016; 11
Dupont-Roc (10.1016/j.neuroimage.2018.07.028_bib13) 1969; 28
Turner (10.1016/j.neuroimage.2018.07.028_bib37) 1993
Cohen (10.1016/j.neuroimage.2018.07.028_bib12) 1968
Jin (10.1016/j.neuroimage.2018.07.028_bib19) 1998; 40
Shah (10.1016/j.neuroimage.2018.07.028_bib33) 2015
Shah (10.1016/j.neuroimage.2018.07.028_bib34) 2018; XI
Taulu (10.1016/j.neuroimage.2018.07.028_bib35) 2005; vol. 53
Huang (10.1016/j.neuroimage.2018.07.028_bib17) 2012; 109
Brookes (10.1016/j.neuroimage.2018.07.028_bib9) 2010; 49
Johnson (10.1016/j.neuroimage.2018.07.028_bib21) 2013; 58
Barkley (10.1016/j.neuroimage.2018.07.028_bib2) 2003; 20
Engel (10.1016/j.neuroimage.2018.07.028_bib14) 1997; 7
Hämäläinen (10.1016/j.neuroimage.2018.07.028_bib16) 1993; 65
Sander (10.1016/j.neuroimage.2018.07.028_bib28) 2012; 3
Nenonen (10.1016/j.neuroimage.2018.07.028_bib26) 2012; 123
Boto (10.1016/j.neuroimage.2018.07.028_bib7) 2018; 555
Sereno (10.1016/j.neuroimage.2018.07.028_bib32) 2006; 9
Yoda (10.1016/j.neuroimage.2018.07.028_bib40) 1990; 67
Iivanainen (10.1016/j.neuroimage.2018.07.028_bib18) 2017; 147
Moon (10.1016/j.neuroimage.2018.07.028_bib25) 1999; 10
Taulu (10.1016/j.neuroimage.2018.07.028_bib36) 2014
Martens (10.1016/j.neuroimage.2018.07.028_bib24) 1991; 62
Borna (10.1016/j.neuroimage.2018.07.028_bib5) 2017; 62
Haiying (10.1016/j.neuroimage.2018.07.028_bib15) 1998; 17
Kastler (10.1016/j.neuroimage.2018.07.028_bib23) 1973; 110
Xia (10.1016/j.neuroimage.2018.07.028_bib39) 2006; 89
Abbott (10.1016/j.neuroimage.2018.07.028_bib1) 2015; 86
Bernier (10.1016/j.neuroimage.2018.07.028_bib4) 2010; 68
Carlson (10.1016/j.neuroimage.2018.07.028_bib11) 1992; 26
Johnson (10.1016/j.neuroimage.2018.07.028_bib20) 2010; 97
Kamada (10.1016/j.neuroimage.2018.07.028_bib22) 2015; 54
Bufacchi (10.1016/j.neuroimage.2018.07.028_bib10) 2016; 26
Robson (10.1016/j.neuroimage.2018.07.028_bib27) 2016; 12
References_xml – volume: 109
  start-page: 18114
  year: 2012
  end-page: 18119
  ident: bib17
  article-title: Mapping multisensory parietal face and body areas in humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 24
  start-page: 39
  year: 2014
  end-page: 46
  ident: bib31
  article-title: Multisensory maps in parietal cortex
  publication-title: Curr. Opin. Neurobiol.
– year: 1968
  ident: bib12
  article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents
  publication-title: Science (Wash. D C)
– volume: 40
  start-page: 7
  year: 1998
  end-page: 22
  ident: bib19
  article-title: Electromagnetics in magnetic resonance imaging
  publication-title: IEEE Antenn. Propag. Mag.
– volume: 49
  start-page: 525
  year: 2010
  end-page: 538
  ident: bib9
  article-title: Investigating spatial specificity and data averaging in MEG
  publication-title: Neuroimage
– year: 2018
  ident: bib3
  article-title: Mapping the Topological Organisation of Beta Oscillations in Motor Cortex Using MEG
  publication-title: NeuroImage
– volume: 89
  year: 2006
  ident: bib39
  article-title: Magnetoencephalography with an atomic magnetometer
  publication-title: Appl. Phys. Lett.
– volume: 149
  start-page: 404
  year: 2017
  end-page: 414
  ident: bib8
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: Neuroimage
– volume: 7
  start-page: 181
  year: 1997
  end-page: 192
  ident: bib14
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cerebr. Cortex
– volume: 147
  start-page: 542
  year: 2017
  end-page: 553
  ident: bib18
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
– volume: 12
  start-page: 869
  year: 2016
  end-page: 878
  ident: bib27
  article-title: Abnormal visuomotor processing in schizophrenia
  publication-title: NeuroImage Clin
– volume: XI
  year: 2018
  ident: bib34
  article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Steep Dispers. Eng. Opto-Atomic Precis. Metrol
– volume: 40
  start-page: 541
  year: 2008
  end-page: 550
  ident: bib38
  article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation
  publication-title: Neuroimage
– volume: 86
  year: 2015
  ident: bib1
  article-title: Parametric design of tri-axial nested Helmholtz coils
  publication-title: Rev. Sci. Instrum.
– volume: 58
  start-page: 6065
  year: 2013
  end-page: 6077
  ident: bib21
  article-title: Multi-sensor magnetoencephalography with atomic magnetometers
  publication-title: Phys. Med. Biol.
– volume: 20
  start-page: 163
  year: 2003
  end-page: 178
  ident: bib2
  article-title: MEG and EEG in epilepsy
  publication-title: J. Clin. Neurophysiol.
– volume: 62
  start-page: 2639
  year: 1991
  end-page: 2645
  ident: bib24
  article-title: Insertable biplanar gradient coils for magnetic resonance imaging
  publication-title: Rev. Sci. Instrum.
– year: 1993
  ident: bib37
  article-title: Gradient coil design: a review of methods
  publication-title: Magn. Reson. Imaging
– volume: 97
  year: 2010
  ident: bib20
  article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer
  publication-title: Appl. Phys. Lett.
– volume: 110
  start-page: 259
  year: 1973
  end-page: 265
  ident: bib23
  article-title: The Hanle effect and its use for the measurements of very small magnetic fields
  publication-title: Nucl. Instrum. Methods
– volume: 268
  start-page: 889
  year: 1995
  end-page: 893
  ident: bib30
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
– volume: vol. 53
  start-page: 3359
  year: 2005
  end-page: 3372
  ident: bib35
  publication-title: Applications of the Signal Space Separation Method. October
– start-page: 35
  year: 2014
  end-page: 71
  ident: bib36
  article-title: Novel noise reduction methods
  publication-title: Magnetoencephalography
– volume: 62
  start-page: 8909
  year: 2017
  end-page: 8923
  ident: bib5
  article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers
  publication-title: Phys. Med. Biol.
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib16
  article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– volume: 555
  start-page: 657
  year: 2018
  end-page: 661
  ident: bib7
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
– volume: 67
  start-page: 4349
  year: 1990
  end-page: 4353
  ident: bib40
  article-title: Analytical design method of self-shielded planar coils
  publication-title: J. Appl. Phys.
– volume: 26
  start-page: 191
  year: 1992
  end-page: 206
  ident: bib11
  article-title: Design and evaluation of shielded gradient coils
  publication-title: Magn. Reson. Med.
– volume: 10
  year: 1999
  ident: bib25
  article-title: A design method for minimum-inductance planar magnetic-resonance-imaging gradient coils considering the pole-piece effect
  publication-title: Meas. Sci. Technol.
– volume: 9
  start-page: 1337
  year: 2006
  end-page: 1343
  ident: bib32
  article-title: A human parietal face area contains aligned head-centered visual and tactile maps
  publication-title: Nat. Neurosci.
– volume: 3
  start-page: 981
  year: 2012
  ident: bib28
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Optic Express
– volume: 68
  start-page: 776
  year: 2010
  end-page: 788
  ident: bib4
  article-title: Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context
  publication-title: Neuron
– volume: 26
  start-page: R1133
  year: 2016
  end-page: R1134
  ident: bib10
  article-title: Gravitational cues modulate the shape of defensive peripersonal space
  publication-title: Curr. Biol.
– volume: 54
  year: 2015
  ident: bib22
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
– volume: 123
  start-page: 2180
  year: 2012
  end-page: 2191
  ident: bib26
  article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography
  publication-title: Clin. Neurophysiol.
– year: 2015
  ident: bib33
  article-title: Method for Detecting Zero-field Resonance. US 20150212168 A1
– volume: 11
  year: 2016
  ident: bib6
  article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study
  publication-title: PLoS One
– volume: 17
  start-page: 826
  year: 1998
  end-page: 830
  ident: bib15
  article-title: True energy-minimal and finite-size biplanar gradient coil design for MRI
  publication-title: Med. Imaging, IEEE Trans.
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  ident: bib29
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
– volume: 28
  start-page: 638
  year: 1969
  end-page: 639
  ident: bib13
  article-title: Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances
  publication-title: Phys. Lett.
– volume: 26
  start-page: 191
  year: 1992
  ident: 10.1016/j.neuroimage.2018.07.028_bib11
  article-title: Design and evaluation of shielded gradient coils
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910260202
– volume: 28
  start-page: 638
  year: 1969
  ident: 10.1016/j.neuroimage.2018.07.028_bib13
  article-title: Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances
  publication-title: Phys. Lett.
  doi: 10.1016/0375-9601(69)90480-0
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.neuroimage.2018.07.028_bib16
  article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 86
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.028_bib1
  article-title: Parametric design of tri-axial nested Helmholtz coils
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4919400
– volume: vol. 53
  start-page: 3359
  year: 2005
  ident: 10.1016/j.neuroimage.2018.07.028_bib35
– volume: 67
  start-page: 4349
  year: 1990
  ident: 10.1016/j.neuroimage.2018.07.028_bib40
  article-title: Analytical design method of self-shielded planar coils
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.344953
– year: 2018
  ident: 10.1016/j.neuroimage.2018.07.028_bib3
  article-title: Mapping the Topological Organisation of Beta Oscillations in Motor Cortex Using MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.06.041
– volume: 268
  start-page: 889
  year: 1995
  ident: 10.1016/j.neuroimage.2018.07.028_bib30
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 40
  start-page: 541
  year: 2008
  ident: 10.1016/j.neuroimage.2018.07.028_bib38
  article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.026
– volume: 49
  start-page: 525
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.028_bib9
  article-title: Investigating spatial specificity and data averaging in MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.043
– volume: 3
  start-page: 981
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.028_bib28
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Optic Express
  doi: 10.1364/BOE.3.000981
– volume: 123
  start-page: 2180
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.028_bib26
  article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.03.080
– volume: 147
  start-page: 542
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.028_bib18
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.048
– volume: 149
  start-page: 404
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.028_bib8
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.034
– volume: 68
  start-page: 776
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.028_bib4
  article-title: Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.11.002
– volume: XI
  issue: 51
  year: 2018
  ident: 10.1016/j.neuroimage.2018.07.028_bib34
  article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Steep Dispers. Eng. Opto-Atomic Precis. Metrol
  doi: 10.1117/12.2299197
– volume: 7
  start-page: 181
  year: 1997
  ident: 10.1016/j.neuroimage.2018.07.028_bib14
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/7.2.181
– volume: 10
  year: 1999
  ident: 10.1016/j.neuroimage.2018.07.028_bib25
  article-title: A design method for minimum-inductance planar magnetic-resonance-imaging gradient coils considering the pole-piece effect
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/10/12/402
– volume: 17
  start-page: 826
  year: 1998
  ident: 10.1016/j.neuroimage.2018.07.028_bib15
  article-title: True energy-minimal and finite-size biplanar gradient coil design for MRI
  publication-title: Med. Imaging, IEEE Trans.
  doi: 10.1109/42.736052
– volume: 62
  start-page: 2639
  year: 1991
  ident: 10.1016/j.neuroimage.2018.07.028_bib24
  article-title: Insertable biplanar gradient coils for magnetic resonance imaging
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1142245
– volume: 89
  year: 2006
  ident: 10.1016/j.neuroimage.2018.07.028_bib39
  article-title: Magnetoencephalography with an atomic magnetometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2392722
– start-page: 35
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.028_bib36
  article-title: Novel noise reduction methods
  publication-title: Magnetoencephalography
  doi: 10.1007/978-3-642-33045-2_2
– volume: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.028_bib6
  article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157655
– volume: 32
  start-page: 11
  year: 1987
  ident: 10.1016/j.neuroimage.2018.07.028_bib29
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– year: 1968
  ident: 10.1016/j.neuroimage.2018.07.028_bib12
  article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents
  publication-title: Science (Wash. D C)
  doi: 10.1126/science.161.3843.784
– volume: 97
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.028_bib20
  article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3522648
– volume: 110
  start-page: 259
  year: 1973
  ident: 10.1016/j.neuroimage.2018.07.028_bib23
  article-title: The Hanle effect and its use for the measurements of very small magnetic fields
  publication-title: Nucl. Instrum. Methods
  doi: 10.1016/0029-554X(73)90698-8
– volume: 24
  start-page: 39
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.028_bib31
  article-title: Multisensory maps in parietal cortex
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2013.08.014
– volume: 40
  start-page: 7
  year: 1998
  ident: 10.1016/j.neuroimage.2018.07.028_bib19
  article-title: Electromagnetics in magnetic resonance imaging
  publication-title: IEEE Antenn. Propag. Mag.
  doi: 10.1109/74.739187
– year: 2015
  ident: 10.1016/j.neuroimage.2018.07.028_bib33
– volume: 58
  start-page: 6065
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.028_bib21
  article-title: Multi-sensor magnetoencephalography with atomic magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/6065
– year: 1993
  ident: 10.1016/j.neuroimage.2018.07.028_bib37
  article-title: Gradient coil design: a review of methods
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(93)90209-V
– volume: 12
  start-page: 869
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.028_bib27
  article-title: Abnormal visuomotor processing in schizophrenia
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2015.08.005
– volume: 62
  start-page: 8909
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.028_bib5
  article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa93d1
– volume: 54
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.028_bib22
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.026601
– volume: 109
  start-page: 18114
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.028_bib17
  article-title: Mapping multisensory parietal face and body areas in humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1207946109
– volume: 555
  start-page: 657
  year: 2018
  ident: 10.1016/j.neuroimage.2018.07.028_bib7
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
– volume: 26
  start-page: R1133
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.028_bib10
  article-title: Gravitational cues modulate the shape of defensive peripersonal space
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.09.025
– volume: 20
  start-page: 163
  year: 2003
  ident: 10.1016/j.neuroimage.2018.07.028_bib2
  article-title: MEG and EEG in epilepsy
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200305000-00002
– volume: 9
  start-page: 1337
  year: 2006
  ident: 10.1016/j.neuroimage.2018.07.028_bib32
  article-title: A human parietal face area contains aligned head-centered visual and tactile maps
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1777
SSID ssj0009148
Score 2.6242108
Snippet Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 760
SubjectTerms Adult
Brain - physiology
Brain architecture
Electromagnetic Phenomena
Eye Movement Measurements
Head Movements
Humans
Magnetic Fields
Magnetic resonance imaging
Magnetoencephalography
Magnetoencephalography - instrumentation
Magnetoencephalography - methods
Magnetoencephalography - standards
NMR
Nuclear magnetic resonance
Scalp
Sensors
Symmetry
Topography
Variation
Visual field
Visual Fields - physiology
Visual pathways
Visual Perception - physiology
Visual stimuli
Wire
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhh9JLafq5SVoU6NVd25Ism55CaAiB9JIGchP6JG43WpPdvfa3d8aWnW7bw0KOtjVga0YzT_jNEyGfKmEMVC0ktzKZ8SJAHtTCZoL5OmjhQy6xwfnqW3Vxwy9vxe0eORt7YZBWmXL_kNP7bJ3uzNNszru2nV8DMoByA_uNGlE0w4ZfziVG-edfjzSPpuBDO5xgGY5ObJ6B49VrRrb3sHKR5FX3Mp54Lvv_S9S_EPRvJuUfpen8JXmRMCU9HV77gOz5-Io8u0p_zV-TcEpNm3ULHfUDtct2QQf9ZgqAlcZNr8pNjbY_scUjOgpvGrG3kfb0thVtI12BKzt6jwdL-HHAEieru9Oj6vUbcnP-9fvZRZbOV8isqPg6806aurCFK4JoQuNCY2EzaJizVcXrXGjtispp25QWNhU-L70sa5OL0vg8VEKzt2Q_LqN_Tyh3XueemSAN51Y0tWSGW-OqQnOeBzEjcpxSZZP4OJ6BsVAjy-yHenSGQmeoXCpwxowUk2U3CHDsYNOMXlNjgymkRAVVYgfbL5PtViDuaH08BolKyWClcFfNUBJWzsjJ9BiWMf6b0dEvNzAGoV3JAGzPyLshpqbPZZh5G8ZhEreibRqAEuHbT2J710uFo9w_YOjDJ33UEXmOV0MH5jHZXz9s_AeAYmvzsV9rvwE34jcn
  priority: 102
  providerName: Elsevier
Title A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306438
https://dx.doi.org/10.1016/j.neuroimage.2018.07.028
https://www.ncbi.nlm.nih.gov/pubmed/30031934
https://www.proquest.com/docview/2102343837
https://www.proquest.com/docview/2074123310
https://pubmed.ncbi.nlm.nih.gov/PMC6150951
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoKyEuiG8WyspIXANJbMeJOKAFtVpAXSFEpb1Z_lRTtk7o7l757XgSJ0sBoT3lEI-UZMbj5_jNG4ReFUypsGoBuZXwhGYu5EHJdMKILZ1k1qUcCpzPFsX8nH5asmX84baOtMohJ3aJ2jQa_pG_ga0JAV1N_q79kUDXKDhdjS00DtARSJcBpYsv-U50N6N9KRwjSRkGRCZPz-_q9CLrqzBrgeBVdhKe0JP938vT3_DzTxblb8vS6T10N-JJPOsD4D66Zf0DdPssnpg_RG6GVZ20K-nlNdZNvcK9djMOYBX7bafIjZXU36G8wxscntRDXSPuqG1rXHu8Dm5s8RU0lbDDgAYSQnshB8XrR-j89OTbh3kSeyskmhV0k1jDVZnpzGSOVa4yrtJhI6iI0UVBy5RJabLCSF3lOmwobJpbnpcqZbmyqSuYJI_RoW-8fYowNVamlijHFaWaVSUnimplikxSmjo2QXz4pEJH4XHof7ESA8PsUuycIcAZIuUiOGOCstGy7cU39rCpBq-Jobg0pEMRVog9bN-OthGA9MBiT-vjIUhETARrsQvbCXo53g5TGM5lpLfNNowBWJeTALQn6EkfU-PrEsi6FaHhI96ItnEAyIPfvOPri04mHKT-A35-9v_Heo7uwDv05ZXH6HBzvbUvAs7aqCk6eP0zm3ZTaoqOZh8_zxfh-v5k8eXrLyniL84
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEviN8UBhgJHiOS2M4PIYQGbOrYWiG0SXsztuNoYZ2Tra0Q_xR_I3dJ3DJAqC97jq9KfOfPn-u77wh5mQitYdfC5FaWBjwqAQeVMIFgNiuVsGWYYoHzeJKMjvinY3G8QX76WhhMq_SY2AJ1URv8j_w1Hk0Y6mqm75rzALtG4e2qb6HRhcW-_fEdjmyzt3sfwb-v4nh35_DDKOi7CgRGJHwe2CLVWWSiIipFXuZFmRs4AmlWmCThWSiUKqKkUCaPDVBpG8Y2jTMdiljbsEyEYvC718gmZ3CUGZDN9zuTz19WMr8R74rvBAuyKMr73KEuo6xVqKzOACcwpSxrRUOxC_y_N8S_Ce-feZu_bYS7t8mtnsHS7S7k7pAN6-6S6-P-jv4eKbeproJmqpy6oKauprRTi6ZAj6lbtBrgVCtzigUlrqDwpg4rKWmbTDejlaMzCJyGnmEbC-sH1AhBzYnyGtv3ydGVzPsDMnC1s48I5YVVoWW6TDXnRuRZyjQ3ukgixXlYiiFJ_ZRK00udY8eNqfQ5bd_kyhkSnSHDVIIzhiRaWjad3McaNrn3mvTlrADAEvakNWzfLG17ytNRmTWtt3yQyB56ZnK1UIbkxfIxgAbeBCln6wWMQSIZM6D2Q_Kwi6nl5zLE-ZxxmMRL0bYcgILkl5-46qQVJsfmAsDYH___tZ6TG6PD8YE82JvsPyE38Xu64s4tMphfLOxTYHlz_axfWpR8verV_AuC-WrN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDdbChgJjlHj2I4TIYQqyqqltOJApb0Z27HVwDZJu7tC_DV-HTN57FJAaC89xxM5noc_xzPfEPIyldbCroXJrVxFggWIg0a6SHKfBSN9iBUWOB-fpAen4sNETjbIz6EWBtMqh5jYBuqidviPfBePJhx5NdVu6NMiPu2P3zYXEXaQwpvWoZ1GZyJH_sd3OL7N3hzug65fJcn4_ed3B1HfYSByMhXzyBfKZsyxggWZh7wIuYPjkOWFS1ORxdKYgqWFcXniAFb7OPEqyWwsE-vjkErD4b03yE3FJUMfUxO1IvxloivDkzzKGMv7LKIut6zlqizPIWJgclnW0odiP_h_b41_Q98_Mzh_2xLHd8jtHsvSvc747pINX90jW8f9bf19EvaoLaNmaipzSV1dTmnHG00BKNNq0bKBU2vcNywtqQoKM62wppK2aXUzWlZ0BibU0HNsaOGHATUGo-bMDGzbD8jptaz6Q7JZ1ZV_TKgovIk9t0FZIZzMM8WtcLZImREiDnJE1LCk2vWk59h7Y6qH7LaveqUMjcrQsdKgjBFhS8mmI_5YQyYftKaHwlYIxRp2pzVkXy9le_DTgZo1pXcGI9F9EJrplcuMyIvlYwgfeCdkKl8vYAxCyoQDyB-RR51NLT-XY8TPuYBFvGJtywFITX71SVWetRTl2GYAsPv2_6f1nGyBD-uPhydHT8gt_JyuynOHbM4vF_4pwL25fdb6FSVfrtuRfwEKnW2d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bi-planar+coil+system+for+nulling+background+magnetic+fields+in+scalp+mounted+magnetoencephalography&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Holmes%2C+Niall&rft.au=Leggett%2C+James&rft.au=Boto%2C+Elena&rft.au=Roberts%2C+Gillian&rft.date=2018-11-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=181&rft.spage=760&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.028&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon