BEG (PP2A-B55/ENSA/Greatwall) Pathway Ensures Cytokinesis follows Chromosome Separation
Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14...
Saved in:
Published in | Molecular cell Vol. 52; no. 3; pp. 393 - 405 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.11.2013
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway. |
---|---|
AbstractList | Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway. Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway. • ENSA/Greatwall (EG) timer module delays cytokinesis until after chromosome separation • PP2A-B55 and separase activation occur at discrete cyclin B thresholds • The BEG pathway promotes timely recruitment of PRC1 and Plk1 to anaphase spindles • PP2A-B55 is functionally equivalent to yeast Cdc14 for Ase1/PRC1 regulation Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway. Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway. |
Author | Cundell, Michael J Holder, James Gruneberg, Ulrike Bastos, Ricardo Nunes Barr, Francis A Zhang, Tongli Novak, Bela |
AuthorAffiliation | 1 University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK |
AuthorAffiliation_xml | – name: 1 University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK |
Author_xml | – sequence: 1 fullname: Cundell, Michael J – sequence: 2 fullname: Bastos, Ricardo Nunes – sequence: 3 fullname: Zhang, Tongli – sequence: 4 fullname: Holder, James – sequence: 5 fullname: Gruneberg, Ulrike – sequence: 6 fullname: Novak, Bela – sequence: 7 fullname: Barr, Francis A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24120663$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl-PEyEUxYlZ4_7Rb2B0HteHTi8MMODDJt2mW0022qRrfCTMFLbUmaHC1KbfXrrtGvWlvEDgd07uvZxLdNb5ziD0FkOOAfPhKm99U5smJ4CLHGQOwF6gCwyyHFDM6dnxTErOztFljCsATJmQr9A5oZgA58UF-n47mWbXsxkZDW4ZG06-zEfDaTC63-qm-ZDNdL_c6l026eImmJiNd73_4ToTXcysbxq_TXfL4FsffWuyuVnroHvnu9fopdVNNG-O-xV6uJs8jD8N7r9OP49H94OacdoPFraoJBNGWF4yDDURuqw08FLYBWhLBRUMC6ih1hUR2EpbGSp5IishF7i4QjcH2_Wmas2iNl0fdKPWwbU67JTXTv370rmlevS_VCGkkLA3uD4aBP9zY2KvWhfTVBvdGb-JikBaUvDyNIoZJkVREgqnUcoAC44ZT-i7vzv4U_rzFyXg4wGog48xGKtq1z_NODXkGoVB7fOgVuqQB7XPgwKpUh6SmP4nfvY_IXt_kFntlX4MLqpv8wTwNAxMKOHFb7_yw6o |
CitedBy_id | crossref_primary_10_1038_s41580_019_0208_1 crossref_primary_10_7554_eLife_26233 crossref_primary_10_1002_iub_1404 crossref_primary_10_1083_jcb_202008145 crossref_primary_10_1186_s12885_023_11742_0 crossref_primary_10_3390_biom9020055 crossref_primary_10_1083_jcb_201602038 crossref_primary_10_1083_jcb_201608019 crossref_primary_10_1091_mbc_E18_10_0631 crossref_primary_10_1128_MCB_00657_16 crossref_primary_10_15252_embr_201948503 crossref_primary_10_7554_eLife_01695 crossref_primary_10_1371_journal_pcbi_1005230 crossref_primary_10_1016_j_molcel_2017_11_034 crossref_primary_10_1002_bies_201670905 crossref_primary_10_1016_j_tcb_2017_09_005 crossref_primary_10_1091_mbc_e17_06_0349 crossref_primary_10_1038_s41598_017_12723_7 crossref_primary_10_1038_s41598_018_23246_0 crossref_primary_10_1242_jcs_178855 crossref_primary_10_1371_journal_pgen_1004672 crossref_primary_10_1016_j_semcdb_2016_03_006 crossref_primary_10_1186_s12943_018_0848_3 crossref_primary_10_1111_febs_12685 crossref_primary_10_1002_bies_201600057 crossref_primary_10_1080_15384101_2017_1371885 crossref_primary_10_3390_cimb46120826 crossref_primary_10_7554_eLife_10399 crossref_primary_10_1038_s41388_021_02068_x crossref_primary_10_3892_ol_2019_9983 crossref_primary_10_18632_oncotarget_23329 crossref_primary_10_1038_s41467_017_01391_w crossref_primary_10_1074_mcp_M114_046938 crossref_primary_10_1038_s41388_020_01470_1 crossref_primary_10_1091_mbc_E19_05_0254 crossref_primary_10_1016_j_tcb_2016_07_008 crossref_primary_10_2220_biomedres_39_75 crossref_primary_10_3390_ijms20246228 crossref_primary_10_3389_fcell_2018_00162 crossref_primary_10_1038_s41419_018_0561_6 crossref_primary_10_1038_s41467_019_12507_9 crossref_primary_10_1038_ncb3634 crossref_primary_10_1083_jcb_201406033 crossref_primary_10_1083_jcb_201905194 crossref_primary_10_1002_stem_2456 crossref_primary_10_1098_rsob_240065 crossref_primary_10_3390_cells8080814 crossref_primary_10_1038_s41598_022_14933_0 crossref_primary_10_1242_jcs_222364 crossref_primary_10_3389_fcell_2020_00358 crossref_primary_10_1098_rsob_160248 crossref_primary_10_1016_j_cub_2018_09_059 crossref_primary_10_1083_jcb_201808014 crossref_primary_10_1038_s44318_024_00054_z crossref_primary_10_4161_cc_28401 crossref_primary_10_1002_cam4_3141 crossref_primary_10_1371_journal_pgen_1006310 crossref_primary_10_1038_s41467_021_23657_0 crossref_primary_10_15252_embr_201540876 crossref_primary_10_1016_j_molcel_2015_03_025 crossref_primary_10_7554_eLife_59885 crossref_primary_10_1016_j_devcel_2018_09_011 crossref_primary_10_1002_bies_201400040 crossref_primary_10_1051_medsci_2019104 crossref_primary_10_1083_jcb_201606033 crossref_primary_10_1242_jcs_255950 crossref_primary_10_1016_j_bbamcr_2018_08_010 crossref_primary_10_1038_s41467_024_53500_1 crossref_primary_10_1091_mbc_E20_04_0252 crossref_primary_10_1016_j_cub_2024_11_046 crossref_primary_10_1242_jcs_179754 crossref_primary_10_15252_embj_2023114364 crossref_primary_10_1016_j_febslet_2015_02_007 crossref_primary_10_1083_jcb_201409129 crossref_primary_10_1242_jcs_243857 crossref_primary_10_3390_cells10092336 crossref_primary_10_1016_j_molcel_2015_09_022 crossref_primary_10_3389_fcell_2022_1012768 crossref_primary_10_1080_15384101_2015_1127476 crossref_primary_10_1083_jcb_202205117 crossref_primary_10_1021_acs_jmedchem_4c01659 crossref_primary_10_1515_tjb_2022_0191 crossref_primary_10_7554_eLife_47646 crossref_primary_10_1007_s00412_015_0508_y crossref_primary_10_1038_s41467_018_04671_1 crossref_primary_10_18632_oncotarget_11511 crossref_primary_10_1016_j_celrep_2024_114494 crossref_primary_10_1242_jcs_258831 crossref_primary_10_1016_j_devcel_2014_11_006 crossref_primary_10_1186_s13008_024_00141_x crossref_primary_10_1242_bio_20149415 crossref_primary_10_3389_fcell_2024_1375655 crossref_primary_10_1083_jcb_201708105 crossref_primary_10_1016_j_semcancer_2022_11_013 crossref_primary_10_1083_jcb_201307160 crossref_primary_10_1083_jcb_201809138 crossref_primary_10_18632_oncotarget_27201 crossref_primary_10_3389_fcell_2022_967909 crossref_primary_10_1016_j_trecan_2017_11_002 crossref_primary_10_26508_lsa_202101222 crossref_primary_10_1098_rsob_230104 crossref_primary_10_1002_bies_202000021 crossref_primary_10_3390_biom7030059 crossref_primary_10_1111_brv_12547 crossref_primary_10_1016_j_celrep_2023_113495 crossref_primary_10_1083_jcb_201804018 crossref_primary_10_1186_s12915_015_0158_9 crossref_primary_10_3390_biom10111586 crossref_primary_10_3389_fcell_2024_1451027 crossref_primary_10_1152_ajpgi_00260_2023 crossref_primary_10_1016_j_cub_2016_10_022 crossref_primary_10_1002_1873_3468_13591 crossref_primary_10_1083_jcb_201406109 crossref_primary_10_4161_cc_28606 crossref_primary_10_1038_srep14798 crossref_primary_10_1002_1873_3468_13595 crossref_primary_10_1002_1873_3468_13635 |
Cites_doi | 10.1083/jcb.200310059 10.1371/journal.pgen.0030200 10.1083/jcb.200202054 10.1074/jbc.M706748200 10.1038/embor.2011.263 10.1016/j.molcel.2006.02.022 10.1083/jcb.201002133 10.1016/j.tcb.2009.06.005 10.1091/mbc.E12-01-0058 10.4161/cc.9.17.12832 10.1016/j.devcel.2012.06.015 10.1038/nrm3149 10.1016/j.cell.2011.09.047 10.1016/S0962-8924(01)02142-0 10.1016/j.devcel.2009.06.011 10.1091/mbc.E09-07-0643 10.1083/jcb.200704117 10.1016/S1097-2765(00)80302-0 10.1016/j.cell.2010.07.023 10.1038/nature04663 10.1038/ncb2092 10.1083/jcb.200508154 10.1091/mbc.E07-05-0517 10.1038/sj.emboj.7601163 10.1016/S0092-8674(01)00603-1 10.1126/science.1197048 10.1073/pnas.0914191107 10.1093/emboj/cdg348 10.1126/science.1195689 10.1016/j.cub.2011.03.047 10.1083/jcb.200111052 10.1083/jcb.200111001 10.1242/jcs.03083 10.1016/j.molcel.2011.10.007 10.1038/nrm1988 10.1038/nature04664 10.1242/jcs.074815 10.1083/jcb.201008106 10.1038/ncb1871 10.1038/ncb1475 10.1038/nature02767 10.1083/jcb.200910057 10.1038/nature04652 10.1083/jcb.201008108 10.1016/j.devcel.2007.03.013 10.1371/journal.pone.0014711 10.1083/jcb.200702145 10.1038/ncb1557 10.1016/j.devcel.2010.11.011 10.1371/journal.pbio.1000110 10.1098/rsob.120023 10.1016/S0960-9822(02)01073-4 10.1038/emboj.2009.238 10.1146/annurev.cellbio.13.1.261 10.1016/j.ccr.2010.10.028 10.1074/jbc.M702545200 10.1038/nrm3494 10.1038/ncb2327 10.1016/S0962-8924(00)01901-2 10.1091/mbc.E10-07-0599 10.1038/emboj.2009.228 10.1371/journal.pgen.1002225 10.1242/jcs.128397 10.1083/jcb.149.2.341 10.1038/35099020 10.1016/j.molcel.2005.05.022 |
ContentType | Journal Article |
Copyright | Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. 2013 The Authors 2013 |
Copyright_xml | – notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2013 The Authors 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2013.09.005 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 405 |
ExternalDocumentID | PMC3898901 24120663 10_1016_j_molcel_2013_09_005 US201600012426 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Cancer Research UK grantid: C24085/A8296 – fundername: Cancer Research UK grantid: C20079/A15940 – fundername: Wellcome Trust grantid: 091911 – fundername: Cancer Research UK grantid: 15940 |
GroupedDBID | --- --K -DZ -~X .55 .GJ 0R~ 123 1~5 29M 2WC 3O- 4.4 457 4G. 53G 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABPTK ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV ADMUD AEFWE AENEX AEQTP AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FBQ FCP FDB FEDTE FGOYB FIRID HH5 HVGLF HZ~ IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 OZT P2P R2- RCE RIG ROL RPZ SDG SES SSZ TR2 UHS WQ6 X7M ZA5 ZGI ZXP AAHBH AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 8FD FR3 P64 RC3 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c564t-df3b958e8f67510c28a7ba0678fd0af48485180c0cab281f9fbe49610cb89d13 |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 14:37:05 EDT 2025 Thu Jul 10 18:53:08 EDT 2025 Thu Jul 10 19:31:51 EDT 2025 Fri Jul 11 11:18:49 EDT 2025 Mon Jul 21 05:54:39 EDT 2025 Tue Jul 01 03:40:42 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Wed Dec 27 19:19:10 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. Open Access under CC BY-NC-ND 3.0 license |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c564t-df3b958e8f67510c28a7ba0678fd0af48485180c0cab281f9fbe49610cb89d13 |
Notes | http://dx.doi.org/10.1016/j.molcel.2013.09.005 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3898901 |
PMID | 24120663 |
PQID | 1450186156 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3898901 proquest_miscellaneous_2000098671 proquest_miscellaneous_1512337240 proquest_miscellaneous_1450186156 pubmed_primary_24120663 crossref_citationtrail_10_1016_j_molcel_2013_09_005 crossref_primary_10_1016_j_molcel_2013_09_005 fao_agris_US201600012426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-07 |
PublicationDateYYYYMMDD | 2013-11-07 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2013 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Mochida (10.1016/j.molcel.2013.09.005_bib33) 2012; 13 Lowe (10.1016/j.molcel.2013.09.005_bib27) 2000; 149 Wolfe (10.1016/j.molcel.2013.09.005_bib61) 2009; 7 Wu (10.1016/j.molcel.2013.09.005_bib62) 2009; 11 Krasinska (10.1016/j.molcel.2013.09.005_bib26) 2011; 44 Zeng (10.1016/j.molcel.2013.09.005_bib66) 2010; 191 Riedel (10.1016/j.molcel.2013.09.005_bib46) 2006; 441 Hewitt (10.1016/j.molcel.2013.09.005_bib18) 2010; 190 Tumurbaatar (10.1016/j.molcel.2013.09.005_bib54) 2011; 6 Mocciaro (10.1016/j.molcel.2013.09.005_bib32) 2010; 189 Schmitz (10.1016/j.molcel.2013.09.005_bib48) 2010; 12 Gruneberg (10.1016/j.molcel.2013.09.005_bib15) 2002; 158 McCollum (10.1016/j.molcel.2013.09.005_bib29) 2001; 11 Foley (10.1016/j.molcel.2013.09.005_bib10) 2011; 13 Mocciaro (10.1016/j.molcel.2013.09.005_bib31) 2010; 123 Glover (10.1016/j.molcel.2013.09.005_bib12) 2012; 2 Yu (10.1016/j.molcel.2013.09.005_bib65) 2006; 22 Archambault (10.1016/j.molcel.2013.09.005_bib1) 2007; 3 Hu (10.1016/j.molcel.2013.09.005_bib21) 2012; 23 Potapova (10.1016/j.molcel.2013.09.005_bib43) 2011; 22 Vagnarelli (10.1016/j.molcel.2013.09.005_bib55) 2006; 8 Boos (10.1016/j.molcel.2013.09.005_bib5) 2008; 283 Potapova (10.1016/j.molcel.2013.09.005_bib42) 2006; 440 Khmelinskii (10.1016/j.molcel.2013.09.005_bib23) 2007; 177 Gray (10.1016/j.molcel.2013.09.005_bib14) 2003; 22 O’Farrell (10.1016/j.molcel.2013.09.005_bib39) 2001; 11 Bouchoux (10.1016/j.molcel.2013.09.005_bib6) 2011; 147 Mollinari (10.1016/j.molcel.2013.09.005_bib36) 2002; 157 Gorr (10.1016/j.molcel.2013.09.005_bib13) 2005; 19 Mochida (10.1016/j.molcel.2013.09.005_bib35) 2010; 330 Trinkle-Mulcahy (10.1016/j.molcel.2013.09.005_bib53) 2006; 172 Vigneron (10.1016/j.molcel.2013.09.005_bib56) 2009; 28 Mochida (10.1016/j.molcel.2013.09.005_bib34) 2009; 28 Stemmann (10.1016/j.molcel.2013.09.005_bib51) 2001; 107 Tanenbaum (10.1016/j.molcel.2013.09.005_bib52) 2010; 19 Burgess (10.1016/j.molcel.2013.09.005_bib7) 2010; 107 Kitajima (10.1016/j.molcel.2013.09.005_bib25) 2006; 441 Mishima (10.1016/j.molcel.2013.09.005_bib30) 2004; 430 Neef (10.1016/j.molcel.2013.09.005_bib38) 2007; 9 Qian (10.1016/j.molcel.2013.09.005_bib44) 2011; 21 Castilho (10.1016/j.molcel.2013.09.005_bib8) 2009; 20 Morgan (10.1016/j.molcel.2013.09.005_bib37) 1997; 13 Voets (10.1016/j.molcel.2013.09.005_bib57) 2010; 9 Wurzenberger (10.1016/j.molcel.2013.09.005_bib63) 2011; 12 Yu (10.1016/j.molcel.2013.09.005_bib64) 2004; 164 Walczak (10.1016/j.molcel.2013.09.005_bib59) 2010; 142 Wolf (10.1016/j.molcel.2013.09.005_bib60) 2006; 25 Holland (10.1016/j.molcel.2013.09.005_bib19) 2006; 119 Santamaria (10.1016/j.molcel.2013.09.005_bib47) 2007; 18 Shindo (10.1016/j.molcel.2013.09.005_bib49) 2012; 23 Khmelinskii (10.1016/j.molcel.2013.09.005_bib24) 2009; 17 Bastos (10.1016/j.molcel.2013.09.005_bib3) 2010; 191 Petronczki (10.1016/j.molcel.2013.09.005_bib41) 2007; 12 Gharbi-Ayachi (10.1016/j.molcel.2013.09.005_bib11) 2010; 330 Bardin (10.1016/j.molcel.2013.09.005_bib2) 2001; 2 Manchado (10.1016/j.molcel.2013.09.005_bib28) 2010; 18 Hammond (10.1016/j.molcel.2013.09.005_bib17) 2013; 126 Peters (10.1016/j.molcel.2013.09.005_bib40) 2006; 7 Hagting (10.1016/j.molcel.2013.09.005_bib16) 2002; 157 Holland (10.1016/j.molcel.2013.09.005_bib20) 2007; 282 Jiang (10.1016/j.molcel.2013.09.005_bib22) 1998; 2 Skoufias (10.1016/j.molcel.2013.09.005_bib50) 2007; 179 Waizenegger (10.1016/j.molcel.2013.09.005_bib58) 2002; 12 Bollen (10.1016/j.molcel.2013.09.005_bib4) 2009; 19 Rangone (10.1016/j.molcel.2013.09.005_bib45) 2011; 7 Foley (10.1016/j.molcel.2013.09.005_bib9) 2013; 14 |
References_xml | – volume: 164 start-page: 487 year: 2004 ident: 10.1016/j.molcel.2013.09.005_bib64 article-title: Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila publication-title: J. Cell Biol. doi: 10.1083/jcb.200310059 – volume: 3 start-page: e200 year: 2007 ident: 10.1016/j.molcel.2013.09.005_bib1 article-title: Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030200 – volume: 158 start-page: 901 year: 2002 ident: 10.1016/j.molcel.2013.09.005_bib15 article-title: The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo publication-title: J. Cell Biol. doi: 10.1083/jcb.200202054 – volume: 283 start-page: 816 year: 2008 ident: 10.1016/j.molcel.2013.09.005_bib5 article-title: Phosphorylation-dependent binding of cyclin B1 to a Cdc6-like domain of human separase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706748200 – volume: 13 start-page: 197 year: 2012 ident: 10.1016/j.molcel.2013.09.005_bib33 article-title: Protein phosphatases and their regulation in the control of mitosis publication-title: EMBO Rep. doi: 10.1038/embor.2011.263 – volume: 22 start-page: 83 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib65 article-title: Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.02.022 – volume: 190 start-page: 25 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib18 article-title: Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex publication-title: J. Cell Biol. doi: 10.1083/jcb.201002133 – volume: 19 start-page: 531 year: 2009 ident: 10.1016/j.molcel.2013.09.005_bib4 article-title: Mitotic phosphatases: from entry guards to exit guides publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2009.06.005 – volume: 23 start-page: 2702 year: 2012 ident: 10.1016/j.molcel.2013.09.005_bib21 article-title: Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E12-01-0058 – volume: 9 start-page: 3591 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib57 article-title: MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis publication-title: Cell Cycle doi: 10.4161/cc.9.17.12832 – volume: 23 start-page: 112 year: 2012 ident: 10.1016/j.molcel.2013.09.005_bib49 article-title: Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.06.015 – volume: 12 start-page: 469 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib63 article-title: Phosphatases: providing safe passage through mitotic exit publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3149 – volume: 147 start-page: 803 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib6 article-title: A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit publication-title: Cell doi: 10.1016/j.cell.2011.09.047 – volume: 11 start-page: 512 year: 2001 ident: 10.1016/j.molcel.2013.09.005_bib39 article-title: Triggering the all-or-nothing switch into mitosis publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(01)02142-0 – volume: 17 start-page: 244 year: 2009 ident: 10.1016/j.molcel.2013.09.005_bib24 article-title: Phosphorylation-dependent protein interactions at the spindle midzone mediate cell cycle regulation of spindle elongation publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.06.011 – volume: 20 start-page: 4777 year: 2009 ident: 10.1016/j.molcel.2013.09.005_bib8 article-title: The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E09-07-0643 – volume: 179 start-page: 671 year: 2007 ident: 10.1016/j.molcel.2013.09.005_bib50 article-title: Mitosis persists in the absence of Cdk1 activity when proteolysis or protein phosphatase activity is suppressed publication-title: J. Cell Biol. doi: 10.1083/jcb.200704117 – volume: 2 start-page: 877 year: 1998 ident: 10.1016/j.molcel.2013.09.005_bib22 article-title: PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80302-0 – volume: 142 start-page: 364 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib59 article-title: A MAP for bundling microtubules publication-title: Cell doi: 10.1016/j.cell.2010.07.023 – volume: 441 start-page: 46 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib25 article-title: Shugoshin collaborates with protein phosphatase 2A to protect cohesin publication-title: Nature doi: 10.1038/nature04663 – volume: 12 start-page: 886 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib48 article-title: Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2092 – volume: 172 start-page: 679 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib53 article-title: Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability publication-title: J. Cell Biol. doi: 10.1083/jcb.200508154 – volume: 18 start-page: 4024 year: 2007 ident: 10.1016/j.molcel.2013.09.005_bib47 article-title: Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E07-05-0517 – volume: 25 start-page: 2802 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib60 article-title: Dose-dependent effects of stable cyclin B1 on progression through mitosis in human cells publication-title: EMBO J. doi: 10.1038/sj.emboj.7601163 – volume: 107 start-page: 715 year: 2001 ident: 10.1016/j.molcel.2013.09.005_bib51 article-title: Dual inhibition of sister chromatid separation at metaphase publication-title: Cell doi: 10.1016/S0092-8674(01)00603-1 – volume: 330 start-page: 1673 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib11 article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A publication-title: Science doi: 10.1126/science.1197048 – volume: 107 start-page: 12564 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib7 article-title: Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0914191107 – volume: 22 start-page: 3524 year: 2003 ident: 10.1016/j.molcel.2013.09.005_bib14 article-title: The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase publication-title: EMBO J. doi: 10.1093/emboj/cdg348 – volume: 330 start-page: 1670 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib35 article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis publication-title: Science doi: 10.1126/science.1195689 – volume: 21 start-page: 766 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib44 article-title: PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.03.047 – volume: 157 start-page: 1175 year: 2002 ident: 10.1016/j.molcel.2013.09.005_bib36 article-title: PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone publication-title: J. Cell Biol. doi: 10.1083/jcb.200111052 – volume: 157 start-page: 1125 year: 2002 ident: 10.1016/j.molcel.2013.09.005_bib16 article-title: Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200111001 – volume: 119 start-page: 3325 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib19 article-title: Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction publication-title: J. Cell Sci. doi: 10.1242/jcs.03083 – volume: 44 start-page: 437 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib26 article-title: Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.10.007 – volume: 7 start-page: 644 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib40 article-title: The anaphase promoting complex/cyclosome: a machine designed to destroy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1988 – volume: 441 start-page: 53 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib46 article-title: Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I publication-title: Nature doi: 10.1038/nature04664 – volume: 123 start-page: 2867 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib31 article-title: Cdc14: a highly conserved family of phosphatases with non-conserved functions? publication-title: J. Cell Sci. doi: 10.1242/jcs.074815 – volume: 191 start-page: 1315 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib66 article-title: Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2 publication-title: J. Cell Biol. doi: 10.1083/jcb.201008106 – volume: 11 start-page: 644 year: 2009 ident: 10.1016/j.molcel.2013.09.005_bib62 article-title: PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation publication-title: Nat. Cell Biol. doi: 10.1038/ncb1871 – volume: 8 start-page: 1133 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib55 article-title: Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis publication-title: Nat. Cell Biol. doi: 10.1038/ncb1475 – volume: 430 start-page: 908 year: 2004 ident: 10.1016/j.molcel.2013.09.005_bib30 article-title: Cell cycle regulation of central spindle assembly publication-title: Nature doi: 10.1038/nature02767 – volume: 189 start-page: 631 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib32 article-title: Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair publication-title: J. Cell Biol. doi: 10.1083/jcb.200910057 – volume: 440 start-page: 954 year: 2006 ident: 10.1016/j.molcel.2013.09.005_bib42 article-title: The reversibility of mitotic exit in vertebrate cells publication-title: Nature doi: 10.1038/nature04652 – volume: 191 start-page: 751 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib3 article-title: Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission publication-title: J. Cell Biol. doi: 10.1083/jcb.201008108 – volume: 12 start-page: 713 year: 2007 ident: 10.1016/j.molcel.2013.09.005_bib41 article-title: Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.03.013 – volume: 6 start-page: e14711 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib54 article-title: Human Cdc14B promotes progression through mitosis by dephosphorylating Cdc25 and regulating Cdk1/cyclin B activity publication-title: PLoS ONE doi: 10.1371/journal.pone.0014711 – volume: 177 start-page: 981 year: 2007 ident: 10.1016/j.molcel.2013.09.005_bib23 article-title: Cdc14-regulated midzone assembly controls anaphase B publication-title: J. Cell Biol. doi: 10.1083/jcb.200702145 – volume: 9 start-page: 436 year: 2007 ident: 10.1016/j.molcel.2013.09.005_bib38 article-title: Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1557 – volume: 19 start-page: 797 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib52 article-title: Mechanisms of centrosome separation and bipolar spindle assembly publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.11.011 – volume: 7 start-page: e1000110 year: 2009 ident: 10.1016/j.molcel.2013.09.005_bib61 article-title: Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000110 – volume: 2 start-page: 120023 year: 2012 ident: 10.1016/j.molcel.2013.09.005_bib12 article-title: The overlooked greatwall: a new perspective on mitotic control publication-title: Open Biol doi: 10.1098/rsob.120023 – volume: 12 start-page: 1368 year: 2002 ident: 10.1016/j.molcel.2013.09.005_bib58 article-title: Regulation of human separase by securin binding and autocleavage publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01073-4 – volume: 28 start-page: 2777 year: 2009 ident: 10.1016/j.molcel.2013.09.005_bib34 article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts publication-title: EMBO J. doi: 10.1038/emboj.2009.238 – volume: 13 start-page: 261 year: 1997 ident: 10.1016/j.molcel.2013.09.005_bib37 article-title: Cyclin-dependent kinases: engines, clocks, and microprocessors publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.13.1.261 – volume: 18 start-page: 641 year: 2010 ident: 10.1016/j.molcel.2013.09.005_bib28 article-title: Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.10.028 – volume: 282 start-page: 24623 year: 2007 ident: 10.1016/j.molcel.2013.09.005_bib20 article-title: Protein phosphatase 2A and separase form a complex regulated by separase autocleavage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702545200 – volume: 14 start-page: 25 year: 2013 ident: 10.1016/j.molcel.2013.09.005_bib9 article-title: Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3494 – volume: 13 start-page: 1265 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib10 article-title: Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase publication-title: Nat. Cell Biol. doi: 10.1038/ncb2327 – volume: 11 start-page: 89 year: 2001 ident: 10.1016/j.molcel.2013.09.005_bib29 article-title: Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(00)01901-2 – volume: 22 start-page: 1191 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib43 article-title: Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E10-07-0599 – volume: 28 start-page: 2786 year: 2009 ident: 10.1016/j.molcel.2013.09.005_bib56 article-title: Greatwall maintains mitosis through regulation of PP2A publication-title: EMBO J. doi: 10.1038/emboj.2009.228 – volume: 7 start-page: e1002225 year: 2011 ident: 10.1016/j.molcel.2013.09.005_bib45 article-title: Suppression of scant identifies Endos as a substrate of greatwall kinase and a negative regulator of protein phosphatase 2A in mitosis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002225 – volume: 126 start-page: 3429 year: 2013 ident: 10.1016/j.molcel.2013.09.005_bib17 article-title: Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A publication-title: J. Cell Sci. doi: 10.1242/jcs.128397 – volume: 149 start-page: 341 year: 2000 ident: 10.1016/j.molcel.2013.09.005_bib27 article-title: The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130 publication-title: J. Cell Biol. doi: 10.1083/jcb.149.2.341 – volume: 2 start-page: 815 year: 2001 ident: 10.1016/j.molcel.2013.09.005_bib2 article-title: Men and sin: what’s the difference? publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/35099020 – volume: 19 start-page: 135 year: 2005 ident: 10.1016/j.molcel.2013.09.005_bib13 article-title: Mutual inhibition of separase and Cdk1 by two-step complex formation publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.05.022 |
SSID | ssj0014589 |
Score | 2.468181 |
Snippet | Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p... |
SourceID | pubmedcentral proquest pubmed crossref fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 393 |
SubjectTerms | anaphase Animalia CDC2 Protein Kinase - metabolism chromosome segregation Chromosome Segregation - genetics Chromosomes - genetics Cyclin B - metabolism cyclins cytokinesis Cytokinesis - genetics dephosphorylation HeLa Cells Humans Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Mitosis - genetics Phosphoric Monoester Hydrolases - metabolism Protein Phosphatase 2 - genetics Protein Phosphatase 2 - metabolism Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Protein Tyrosine Phosphatases separase Separase - genetics Separase - metabolism Signal Transduction - genetics yeasts |
Title | BEG (PP2A-B55/ENSA/Greatwall) Pathway Ensures Cytokinesis follows Chromosome Separation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24120663 https://www.proquest.com/docview/1450186156 https://www.proquest.com/docview/1512337240 https://www.proquest.com/docview/2000098671 https://pubmed.ncbi.nlm.nih.gov/PMC3898901 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbSVpP2Mu3e7CYmrdKmiBRsE-AxibJVqxZVa6r2DRkDvSzB05Ioyv7F_vHOwWDI2u72QiJwLvh82N-xz_kOIW8cFvR8KaTtU0FtnkluhzEVth8GIfhuwBmK9OhP497BCf945p21Wj8aUUvLRdyV32_MK_kfq8I5sCtmyf6DZc2Xwgl4D_aFI1gYjn9l48HoAzLEoyPatwceyjeMxsd9eCkc_5XALYUQVfgvVmLdGeW4GjjvDNcL9QWj3S9Ri2E6Vas5agyomZqrWQqjh5YDL-1VVXuqyuh2cKnf7FxgCpreuCjj7_eGdK_vmMXngQByOS8z-AGMSl8fL_M6dtGsWU8U5hQboKlpovFURPI2lydcVuTp-fWaWZU3sxHWidveNvV1lYhuWp8DesibY7NHGxhkjYGW6bqK5ZzNi9Tt69OBXpm46s7UFDoHA_lYoWrrePX0Z4IST44pyu0hAQTaskV2KHgeMHTu9A8_nx6arSnuFXUVzS1U-ZhF0OD1H9rgO1uZUDe5Mr9G5DYozuQ-uVf6JlZfA-0BaaX5Q3JHVytdPyKnADfrbQW2fYTavgHaO6uEmVXCzGrAzCphZtUws2qYPSaT96PJ8MAu63LY0uvxhZ1kLA69IA0y8DZdR9JA-LFA2pMljsh4wIHGB450pIhp4GZhFqc8BJ4u4yBMXPaEbOcqT3eJFTrAxnuy56eMc5kkIgiYm2QypQlKyPbahFWdF8lSsx5Lp0yjKjjxKtJdHmGXR04YQZe3iW0-9VVrtvyh_S7YJRLnMK1Gmyhok9eVsSIYd_EJE3mqlnNwmVEKE_yB37UBNs2YD6T59ja08NJQZbJNnmoQmD8N7BqrLbA28TfgYRqgNvzmlfzyotCIZ1gW1nGf3X5rz8nd-nl9QbYX35bpSyDYi_hVCfmfQCnKAA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BEG+%28PP2A-B55%2FENSA%2FGreatwall%29+Pathway+Ensures+Cytokinesis+follows+Chromosome+Separation&rft.jtitle=Molecular+cell&rft.au=Cundell%2C+Michael%C2%A0J&rft.au=Bastos%2C+Ricardo%C2%A0Nunes&rft.au=Zhang%2C+Tongli&rft.au=Holder%2C+James&rft.date=2013-11-07&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=52&rft.issue=3&rft.spage=393&rft.epage=405&rft_id=info:doi/10.1016%2Fj.molcel.2013.09.005&rft.externalDocID=US201600012426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |