BEG (PP2A-B55/ENSA/Greatwall) Pathway Ensures Cytokinesis follows Chromosome Separation

Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 52; no. 3; pp. 393 - 405
Main Authors Cundell, Michael J, Bastos, Ricardo Nunes, Zhang, Tongli, Holder, James, Gruneberg, Ulrike, Novak, Bela, Barr, Francis A
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.11.2013
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.
AbstractList Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.
Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway. • ENSA/Greatwall (EG) timer module delays cytokinesis until after chromosome separation • PP2A-B55 and separase activation occur at discrete cyclin B thresholds • The BEG pathway promotes timely recruitment of PRC1 and Plk1 to anaphase spindles • PP2A-B55 is functionally equivalent to yeast Cdc14 for Ase1/PRC1 regulation
Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.
Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.
Author Cundell, Michael J
Holder, James
Gruneberg, Ulrike
Bastos, Ricardo Nunes
Barr, Francis A
Zhang, Tongli
Novak, Bela
AuthorAffiliation 1 University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
AuthorAffiliation_xml – name: 1 University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
Author_xml – sequence: 1
  fullname: Cundell, Michael J
– sequence: 2
  fullname: Bastos, Ricardo Nunes
– sequence: 3
  fullname: Zhang, Tongli
– sequence: 4
  fullname: Holder, James
– sequence: 5
  fullname: Gruneberg, Ulrike
– sequence: 6
  fullname: Novak, Bela
– sequence: 7
  fullname: Barr, Francis A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24120663$$D View this record in MEDLINE/PubMed
BookMark eNqFkl-PEyEUxYlZ4_7Rb2B0HteHTi8MMODDJt2mW0022qRrfCTMFLbUmaHC1KbfXrrtGvWlvEDgd07uvZxLdNb5ziD0FkOOAfPhKm99U5smJ4CLHGQOwF6gCwyyHFDM6dnxTErOztFljCsATJmQr9A5oZgA58UF-n47mWbXsxkZDW4ZG06-zEfDaTC63-qm-ZDNdL_c6l026eImmJiNd73_4ToTXcysbxq_TXfL4FsffWuyuVnroHvnu9fopdVNNG-O-xV6uJs8jD8N7r9OP49H94OacdoPFraoJBNGWF4yDDURuqw08FLYBWhLBRUMC6ih1hUR2EpbGSp5IishF7i4QjcH2_Wmas2iNl0fdKPWwbU67JTXTv370rmlevS_VCGkkLA3uD4aBP9zY2KvWhfTVBvdGb-JikBaUvDyNIoZJkVREgqnUcoAC44ZT-i7vzv4U_rzFyXg4wGog48xGKtq1z_NODXkGoVB7fOgVuqQB7XPgwKpUh6SmP4nfvY_IXt_kFntlX4MLqpv8wTwNAxMKOHFb7_yw6o
CitedBy_id crossref_primary_10_1038_s41580_019_0208_1
crossref_primary_10_7554_eLife_26233
crossref_primary_10_1002_iub_1404
crossref_primary_10_1083_jcb_202008145
crossref_primary_10_1186_s12885_023_11742_0
crossref_primary_10_3390_biom9020055
crossref_primary_10_1083_jcb_201602038
crossref_primary_10_1083_jcb_201608019
crossref_primary_10_1091_mbc_E18_10_0631
crossref_primary_10_1128_MCB_00657_16
crossref_primary_10_15252_embr_201948503
crossref_primary_10_7554_eLife_01695
crossref_primary_10_1371_journal_pcbi_1005230
crossref_primary_10_1016_j_molcel_2017_11_034
crossref_primary_10_1002_bies_201670905
crossref_primary_10_1016_j_tcb_2017_09_005
crossref_primary_10_1091_mbc_e17_06_0349
crossref_primary_10_1038_s41598_017_12723_7
crossref_primary_10_1038_s41598_018_23246_0
crossref_primary_10_1242_jcs_178855
crossref_primary_10_1371_journal_pgen_1004672
crossref_primary_10_1016_j_semcdb_2016_03_006
crossref_primary_10_1186_s12943_018_0848_3
crossref_primary_10_1111_febs_12685
crossref_primary_10_1002_bies_201600057
crossref_primary_10_1080_15384101_2017_1371885
crossref_primary_10_3390_cimb46120826
crossref_primary_10_7554_eLife_10399
crossref_primary_10_1038_s41388_021_02068_x
crossref_primary_10_3892_ol_2019_9983
crossref_primary_10_18632_oncotarget_23329
crossref_primary_10_1038_s41467_017_01391_w
crossref_primary_10_1074_mcp_M114_046938
crossref_primary_10_1038_s41388_020_01470_1
crossref_primary_10_1091_mbc_E19_05_0254
crossref_primary_10_1016_j_tcb_2016_07_008
crossref_primary_10_2220_biomedres_39_75
crossref_primary_10_3390_ijms20246228
crossref_primary_10_3389_fcell_2018_00162
crossref_primary_10_1038_s41419_018_0561_6
crossref_primary_10_1038_s41467_019_12507_9
crossref_primary_10_1038_ncb3634
crossref_primary_10_1083_jcb_201406033
crossref_primary_10_1083_jcb_201905194
crossref_primary_10_1002_stem_2456
crossref_primary_10_1098_rsob_240065
crossref_primary_10_3390_cells8080814
crossref_primary_10_1038_s41598_022_14933_0
crossref_primary_10_1242_jcs_222364
crossref_primary_10_3389_fcell_2020_00358
crossref_primary_10_1098_rsob_160248
crossref_primary_10_1016_j_cub_2018_09_059
crossref_primary_10_1083_jcb_201808014
crossref_primary_10_1038_s44318_024_00054_z
crossref_primary_10_4161_cc_28401
crossref_primary_10_1002_cam4_3141
crossref_primary_10_1371_journal_pgen_1006310
crossref_primary_10_1038_s41467_021_23657_0
crossref_primary_10_15252_embr_201540876
crossref_primary_10_1016_j_molcel_2015_03_025
crossref_primary_10_7554_eLife_59885
crossref_primary_10_1016_j_devcel_2018_09_011
crossref_primary_10_1002_bies_201400040
crossref_primary_10_1051_medsci_2019104
crossref_primary_10_1083_jcb_201606033
crossref_primary_10_1242_jcs_255950
crossref_primary_10_1016_j_bbamcr_2018_08_010
crossref_primary_10_1038_s41467_024_53500_1
crossref_primary_10_1091_mbc_E20_04_0252
crossref_primary_10_1016_j_cub_2024_11_046
crossref_primary_10_1242_jcs_179754
crossref_primary_10_15252_embj_2023114364
crossref_primary_10_1016_j_febslet_2015_02_007
crossref_primary_10_1083_jcb_201409129
crossref_primary_10_1242_jcs_243857
crossref_primary_10_3390_cells10092336
crossref_primary_10_1016_j_molcel_2015_09_022
crossref_primary_10_3389_fcell_2022_1012768
crossref_primary_10_1080_15384101_2015_1127476
crossref_primary_10_1083_jcb_202205117
crossref_primary_10_1021_acs_jmedchem_4c01659
crossref_primary_10_1515_tjb_2022_0191
crossref_primary_10_7554_eLife_47646
crossref_primary_10_1007_s00412_015_0508_y
crossref_primary_10_1038_s41467_018_04671_1
crossref_primary_10_18632_oncotarget_11511
crossref_primary_10_1016_j_celrep_2024_114494
crossref_primary_10_1242_jcs_258831
crossref_primary_10_1016_j_devcel_2014_11_006
crossref_primary_10_1186_s13008_024_00141_x
crossref_primary_10_1242_bio_20149415
crossref_primary_10_3389_fcell_2024_1375655
crossref_primary_10_1083_jcb_201708105
crossref_primary_10_1016_j_semcancer_2022_11_013
crossref_primary_10_1083_jcb_201307160
crossref_primary_10_1083_jcb_201809138
crossref_primary_10_18632_oncotarget_27201
crossref_primary_10_3389_fcell_2022_967909
crossref_primary_10_1016_j_trecan_2017_11_002
crossref_primary_10_26508_lsa_202101222
crossref_primary_10_1098_rsob_230104
crossref_primary_10_1002_bies_202000021
crossref_primary_10_3390_biom7030059
crossref_primary_10_1111_brv_12547
crossref_primary_10_1016_j_celrep_2023_113495
crossref_primary_10_1083_jcb_201804018
crossref_primary_10_1186_s12915_015_0158_9
crossref_primary_10_3390_biom10111586
crossref_primary_10_3389_fcell_2024_1451027
crossref_primary_10_1152_ajpgi_00260_2023
crossref_primary_10_1016_j_cub_2016_10_022
crossref_primary_10_1002_1873_3468_13591
crossref_primary_10_1083_jcb_201406109
crossref_primary_10_4161_cc_28606
crossref_primary_10_1038_srep14798
crossref_primary_10_1002_1873_3468_13595
crossref_primary_10_1002_1873_3468_13635
Cites_doi 10.1083/jcb.200310059
10.1371/journal.pgen.0030200
10.1083/jcb.200202054
10.1074/jbc.M706748200
10.1038/embor.2011.263
10.1016/j.molcel.2006.02.022
10.1083/jcb.201002133
10.1016/j.tcb.2009.06.005
10.1091/mbc.E12-01-0058
10.4161/cc.9.17.12832
10.1016/j.devcel.2012.06.015
10.1038/nrm3149
10.1016/j.cell.2011.09.047
10.1016/S0962-8924(01)02142-0
10.1016/j.devcel.2009.06.011
10.1091/mbc.E09-07-0643
10.1083/jcb.200704117
10.1016/S1097-2765(00)80302-0
10.1016/j.cell.2010.07.023
10.1038/nature04663
10.1038/ncb2092
10.1083/jcb.200508154
10.1091/mbc.E07-05-0517
10.1038/sj.emboj.7601163
10.1016/S0092-8674(01)00603-1
10.1126/science.1197048
10.1073/pnas.0914191107
10.1093/emboj/cdg348
10.1126/science.1195689
10.1016/j.cub.2011.03.047
10.1083/jcb.200111052
10.1083/jcb.200111001
10.1242/jcs.03083
10.1016/j.molcel.2011.10.007
10.1038/nrm1988
10.1038/nature04664
10.1242/jcs.074815
10.1083/jcb.201008106
10.1038/ncb1871
10.1038/ncb1475
10.1038/nature02767
10.1083/jcb.200910057
10.1038/nature04652
10.1083/jcb.201008108
10.1016/j.devcel.2007.03.013
10.1371/journal.pone.0014711
10.1083/jcb.200702145
10.1038/ncb1557
10.1016/j.devcel.2010.11.011
10.1371/journal.pbio.1000110
10.1098/rsob.120023
10.1016/S0960-9822(02)01073-4
10.1038/emboj.2009.238
10.1146/annurev.cellbio.13.1.261
10.1016/j.ccr.2010.10.028
10.1074/jbc.M702545200
10.1038/nrm3494
10.1038/ncb2327
10.1016/S0962-8924(00)01901-2
10.1091/mbc.E10-07-0599
10.1038/emboj.2009.228
10.1371/journal.pgen.1002225
10.1242/jcs.128397
10.1083/jcb.149.2.341
10.1038/35099020
10.1016/j.molcel.2005.05.022
ContentType Journal Article
Copyright Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
2013 The Authors 2013
Copyright_xml – notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2013 The Authors 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
7S9
L.6
5PM
DOI 10.1016/j.molcel.2013.09.005
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

Genetics Abstracts
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 405
ExternalDocumentID PMC3898901
24120663
10_1016_j_molcel_2013_09_005
US201600012426
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: C24085/A8296
– fundername: Cancer Research UK
  grantid: C20079/A15940
– fundername: Wellcome Trust
  grantid: 091911
– fundername: Cancer Research UK
  grantid: 15940
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
123
1~5
29M
2WC
3O-
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABPTK
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AEQTP
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FCP
FDB
FEDTE
FGOYB
FIRID
HH5
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
R2-
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
UHS
WQ6
X7M
ZA5
ZGI
ZXP
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
8FD
FR3
P64
RC3
7S9
L.6
5PM
ID FETCH-LOGICAL-c564t-df3b958e8f67510c28a7ba0678fd0af48485180c0cab281f9fbe49610cb89d13
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 14:37:05 EDT 2025
Thu Jul 10 18:53:08 EDT 2025
Thu Jul 10 19:31:51 EDT 2025
Fri Jul 11 11:18:49 EDT 2025
Mon Jul 21 05:54:39 EDT 2025
Tue Jul 01 03:40:42 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Wed Dec 27 19:19:10 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Open Access under CC BY-NC-ND 3.0 license
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c564t-df3b958e8f67510c28a7ba0678fd0af48485180c0cab281f9fbe49610cb89d13
Notes http://dx.doi.org/10.1016/j.molcel.2013.09.005
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3898901
PMID 24120663
PQID 1450186156
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3898901
proquest_miscellaneous_2000098671
proquest_miscellaneous_1512337240
proquest_miscellaneous_1450186156
pubmed_primary_24120663
crossref_citationtrail_10_1016_j_molcel_2013_09_005
crossref_primary_10_1016_j_molcel_2013_09_005
fao_agris_US201600012426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-07
PublicationDateYYYYMMDD 2013-11-07
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2013
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Mochida (10.1016/j.molcel.2013.09.005_bib33) 2012; 13
Lowe (10.1016/j.molcel.2013.09.005_bib27) 2000; 149
Wolfe (10.1016/j.molcel.2013.09.005_bib61) 2009; 7
Wu (10.1016/j.molcel.2013.09.005_bib62) 2009; 11
Krasinska (10.1016/j.molcel.2013.09.005_bib26) 2011; 44
Zeng (10.1016/j.molcel.2013.09.005_bib66) 2010; 191
Riedel (10.1016/j.molcel.2013.09.005_bib46) 2006; 441
Hewitt (10.1016/j.molcel.2013.09.005_bib18) 2010; 190
Tumurbaatar (10.1016/j.molcel.2013.09.005_bib54) 2011; 6
Mocciaro (10.1016/j.molcel.2013.09.005_bib32) 2010; 189
Schmitz (10.1016/j.molcel.2013.09.005_bib48) 2010; 12
Gruneberg (10.1016/j.molcel.2013.09.005_bib15) 2002; 158
McCollum (10.1016/j.molcel.2013.09.005_bib29) 2001; 11
Foley (10.1016/j.molcel.2013.09.005_bib10) 2011; 13
Mocciaro (10.1016/j.molcel.2013.09.005_bib31) 2010; 123
Glover (10.1016/j.molcel.2013.09.005_bib12) 2012; 2
Yu (10.1016/j.molcel.2013.09.005_bib65) 2006; 22
Archambault (10.1016/j.molcel.2013.09.005_bib1) 2007; 3
Hu (10.1016/j.molcel.2013.09.005_bib21) 2012; 23
Potapova (10.1016/j.molcel.2013.09.005_bib43) 2011; 22
Vagnarelli (10.1016/j.molcel.2013.09.005_bib55) 2006; 8
Boos (10.1016/j.molcel.2013.09.005_bib5) 2008; 283
Potapova (10.1016/j.molcel.2013.09.005_bib42) 2006; 440
Khmelinskii (10.1016/j.molcel.2013.09.005_bib23) 2007; 177
Gray (10.1016/j.molcel.2013.09.005_bib14) 2003; 22
O’Farrell (10.1016/j.molcel.2013.09.005_bib39) 2001; 11
Bouchoux (10.1016/j.molcel.2013.09.005_bib6) 2011; 147
Mollinari (10.1016/j.molcel.2013.09.005_bib36) 2002; 157
Gorr (10.1016/j.molcel.2013.09.005_bib13) 2005; 19
Mochida (10.1016/j.molcel.2013.09.005_bib35) 2010; 330
Trinkle-Mulcahy (10.1016/j.molcel.2013.09.005_bib53) 2006; 172
Vigneron (10.1016/j.molcel.2013.09.005_bib56) 2009; 28
Mochida (10.1016/j.molcel.2013.09.005_bib34) 2009; 28
Stemmann (10.1016/j.molcel.2013.09.005_bib51) 2001; 107
Tanenbaum (10.1016/j.molcel.2013.09.005_bib52) 2010; 19
Burgess (10.1016/j.molcel.2013.09.005_bib7) 2010; 107
Kitajima (10.1016/j.molcel.2013.09.005_bib25) 2006; 441
Mishima (10.1016/j.molcel.2013.09.005_bib30) 2004; 430
Neef (10.1016/j.molcel.2013.09.005_bib38) 2007; 9
Qian (10.1016/j.molcel.2013.09.005_bib44) 2011; 21
Castilho (10.1016/j.molcel.2013.09.005_bib8) 2009; 20
Morgan (10.1016/j.molcel.2013.09.005_bib37) 1997; 13
Voets (10.1016/j.molcel.2013.09.005_bib57) 2010; 9
Wurzenberger (10.1016/j.molcel.2013.09.005_bib63) 2011; 12
Yu (10.1016/j.molcel.2013.09.005_bib64) 2004; 164
Walczak (10.1016/j.molcel.2013.09.005_bib59) 2010; 142
Wolf (10.1016/j.molcel.2013.09.005_bib60) 2006; 25
Holland (10.1016/j.molcel.2013.09.005_bib19) 2006; 119
Santamaria (10.1016/j.molcel.2013.09.005_bib47) 2007; 18
Shindo (10.1016/j.molcel.2013.09.005_bib49) 2012; 23
Khmelinskii (10.1016/j.molcel.2013.09.005_bib24) 2009; 17
Bastos (10.1016/j.molcel.2013.09.005_bib3) 2010; 191
Petronczki (10.1016/j.molcel.2013.09.005_bib41) 2007; 12
Gharbi-Ayachi (10.1016/j.molcel.2013.09.005_bib11) 2010; 330
Bardin (10.1016/j.molcel.2013.09.005_bib2) 2001; 2
Manchado (10.1016/j.molcel.2013.09.005_bib28) 2010; 18
Hammond (10.1016/j.molcel.2013.09.005_bib17) 2013; 126
Peters (10.1016/j.molcel.2013.09.005_bib40) 2006; 7
Hagting (10.1016/j.molcel.2013.09.005_bib16) 2002; 157
Holland (10.1016/j.molcel.2013.09.005_bib20) 2007; 282
Jiang (10.1016/j.molcel.2013.09.005_bib22) 1998; 2
Skoufias (10.1016/j.molcel.2013.09.005_bib50) 2007; 179
Waizenegger (10.1016/j.molcel.2013.09.005_bib58) 2002; 12
Bollen (10.1016/j.molcel.2013.09.005_bib4) 2009; 19
Rangone (10.1016/j.molcel.2013.09.005_bib45) 2011; 7
Foley (10.1016/j.molcel.2013.09.005_bib9) 2013; 14
References_xml – volume: 164
  start-page: 487
  year: 2004
  ident: 10.1016/j.molcel.2013.09.005_bib64
  article-title: Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200310059
– volume: 3
  start-page: e200
  year: 2007
  ident: 10.1016/j.molcel.2013.09.005_bib1
  article-title: Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030200
– volume: 158
  start-page: 901
  year: 2002
  ident: 10.1016/j.molcel.2013.09.005_bib15
  article-title: The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200202054
– volume: 283
  start-page: 816
  year: 2008
  ident: 10.1016/j.molcel.2013.09.005_bib5
  article-title: Phosphorylation-dependent binding of cyclin B1 to a Cdc6-like domain of human separase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706748200
– volume: 13
  start-page: 197
  year: 2012
  ident: 10.1016/j.molcel.2013.09.005_bib33
  article-title: Protein phosphatases and their regulation in the control of mitosis
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.263
– volume: 22
  start-page: 83
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib65
  article-title: Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.02.022
– volume: 190
  start-page: 25
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib18
  article-title: Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201002133
– volume: 19
  start-page: 531
  year: 2009
  ident: 10.1016/j.molcel.2013.09.005_bib4
  article-title: Mitotic phosphatases: from entry guards to exit guides
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2009.06.005
– volume: 23
  start-page: 2702
  year: 2012
  ident: 10.1016/j.molcel.2013.09.005_bib21
  article-title: Plk1 negatively regulates PRC1 to prevent premature midzone formation before cytokinesis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E12-01-0058
– volume: 9
  start-page: 3591
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib57
  article-title: MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.17.12832
– volume: 23
  start-page: 112
  year: 2012
  ident: 10.1016/j.molcel.2013.09.005_bib49
  article-title: Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.06.015
– volume: 12
  start-page: 469
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib63
  article-title: Phosphatases: providing safe passage through mitotic exit
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3149
– volume: 147
  start-page: 803
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib6
  article-title: A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.047
– volume: 11
  start-page: 512
  year: 2001
  ident: 10.1016/j.molcel.2013.09.005_bib39
  article-title: Triggering the all-or-nothing switch into mitosis
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(01)02142-0
– volume: 17
  start-page: 244
  year: 2009
  ident: 10.1016/j.molcel.2013.09.005_bib24
  article-title: Phosphorylation-dependent protein interactions at the spindle midzone mediate cell cycle regulation of spindle elongation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.06.011
– volume: 20
  start-page: 4777
  year: 2009
  ident: 10.1016/j.molcel.2013.09.005_bib8
  article-title: The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E09-07-0643
– volume: 179
  start-page: 671
  year: 2007
  ident: 10.1016/j.molcel.2013.09.005_bib50
  article-title: Mitosis persists in the absence of Cdk1 activity when proteolysis or protein phosphatase activity is suppressed
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200704117
– volume: 2
  start-page: 877
  year: 1998
  ident: 10.1016/j.molcel.2013.09.005_bib22
  article-title: PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80302-0
– volume: 142
  start-page: 364
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib59
  article-title: A MAP for bundling microtubules
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.023
– volume: 441
  start-page: 46
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib25
  article-title: Shugoshin collaborates with protein phosphatase 2A to protect cohesin
  publication-title: Nature
  doi: 10.1038/nature04663
– volume: 12
  start-page: 886
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib48
  article-title: Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2092
– volume: 172
  start-page: 679
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib53
  article-title: Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200508154
– volume: 18
  start-page: 4024
  year: 2007
  ident: 10.1016/j.molcel.2013.09.005_bib47
  article-title: Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E07-05-0517
– volume: 25
  start-page: 2802
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib60
  article-title: Dose-dependent effects of stable cyclin B1 on progression through mitosis in human cells
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601163
– volume: 107
  start-page: 715
  year: 2001
  ident: 10.1016/j.molcel.2013.09.005_bib51
  article-title: Dual inhibition of sister chromatid separation at metaphase
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00603-1
– volume: 330
  start-page: 1673
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib11
  article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A
  publication-title: Science
  doi: 10.1126/science.1197048
– volume: 107
  start-page: 12564
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib7
  article-title: Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0914191107
– volume: 22
  start-page: 3524
  year: 2003
  ident: 10.1016/j.molcel.2013.09.005_bib14
  article-title: The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg348
– volume: 330
  start-page: 1670
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib35
  article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis
  publication-title: Science
  doi: 10.1126/science.1195689
– volume: 21
  start-page: 766
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib44
  article-title: PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.03.047
– volume: 157
  start-page: 1175
  year: 2002
  ident: 10.1016/j.molcel.2013.09.005_bib36
  article-title: PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200111052
– volume: 157
  start-page: 1125
  year: 2002
  ident: 10.1016/j.molcel.2013.09.005_bib16
  article-title: Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200111001
– volume: 119
  start-page: 3325
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib19
  article-title: Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03083
– volume: 44
  start-page: 437
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib26
  article-title: Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.10.007
– volume: 7
  start-page: 644
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib40
  article-title: The anaphase promoting complex/cyclosome: a machine designed to destroy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1988
– volume: 441
  start-page: 53
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib46
  article-title: Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I
  publication-title: Nature
  doi: 10.1038/nature04664
– volume: 123
  start-page: 2867
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib31
  article-title: Cdc14: a highly conserved family of phosphatases with non-conserved functions?
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.074815
– volume: 191
  start-page: 1315
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib66
  article-title: Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008106
– volume: 11
  start-page: 644
  year: 2009
  ident: 10.1016/j.molcel.2013.09.005_bib62
  article-title: PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1871
– volume: 8
  start-page: 1133
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib55
  article-title: Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1475
– volume: 430
  start-page: 908
  year: 2004
  ident: 10.1016/j.molcel.2013.09.005_bib30
  article-title: Cell cycle regulation of central spindle assembly
  publication-title: Nature
  doi: 10.1038/nature02767
– volume: 189
  start-page: 631
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib32
  article-title: Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200910057
– volume: 440
  start-page: 954
  year: 2006
  ident: 10.1016/j.molcel.2013.09.005_bib42
  article-title: The reversibility of mitotic exit in vertebrate cells
  publication-title: Nature
  doi: 10.1038/nature04652
– volume: 191
  start-page: 751
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib3
  article-title: Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008108
– volume: 12
  start-page: 713
  year: 2007
  ident: 10.1016/j.molcel.2013.09.005_bib41
  article-title: Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.03.013
– volume: 6
  start-page: e14711
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib54
  article-title: Human Cdc14B promotes progression through mitosis by dephosphorylating Cdc25 and regulating Cdk1/cyclin B activity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0014711
– volume: 177
  start-page: 981
  year: 2007
  ident: 10.1016/j.molcel.2013.09.005_bib23
  article-title: Cdc14-regulated midzone assembly controls anaphase B
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200702145
– volume: 9
  start-page: 436
  year: 2007
  ident: 10.1016/j.molcel.2013.09.005_bib38
  article-title: Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1557
– volume: 19
  start-page: 797
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib52
  article-title: Mechanisms of centrosome separation and bipolar spindle assembly
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.11.011
– volume: 7
  start-page: e1000110
  year: 2009
  ident: 10.1016/j.molcel.2013.09.005_bib61
  article-title: Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000110
– volume: 2
  start-page: 120023
  year: 2012
  ident: 10.1016/j.molcel.2013.09.005_bib12
  article-title: The overlooked greatwall: a new perspective on mitotic control
  publication-title: Open Biol
  doi: 10.1098/rsob.120023
– volume: 12
  start-page: 1368
  year: 2002
  ident: 10.1016/j.molcel.2013.09.005_bib58
  article-title: Regulation of human separase by securin binding and autocleavage
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01073-4
– volume: 28
  start-page: 2777
  year: 2009
  ident: 10.1016/j.molcel.2013.09.005_bib34
  article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.238
– volume: 13
  start-page: 261
  year: 1997
  ident: 10.1016/j.molcel.2013.09.005_bib37
  article-title: Cyclin-dependent kinases: engines, clocks, and microprocessors
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.13.1.261
– volume: 18
  start-page: 641
  year: 2010
  ident: 10.1016/j.molcel.2013.09.005_bib28
  article-title: Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.10.028
– volume: 282
  start-page: 24623
  year: 2007
  ident: 10.1016/j.molcel.2013.09.005_bib20
  article-title: Protein phosphatase 2A and separase form a complex regulated by separase autocleavage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702545200
– volume: 14
  start-page: 25
  year: 2013
  ident: 10.1016/j.molcel.2013.09.005_bib9
  article-title: Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3494
– volume: 13
  start-page: 1265
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib10
  article-title: Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2327
– volume: 11
  start-page: 89
  year: 2001
  ident: 10.1016/j.molcel.2013.09.005_bib29
  article-title: Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(00)01901-2
– volume: 22
  start-page: 1191
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib43
  article-title: Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E10-07-0599
– volume: 28
  start-page: 2786
  year: 2009
  ident: 10.1016/j.molcel.2013.09.005_bib56
  article-title: Greatwall maintains mitosis through regulation of PP2A
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.228
– volume: 7
  start-page: e1002225
  year: 2011
  ident: 10.1016/j.molcel.2013.09.005_bib45
  article-title: Suppression of scant identifies Endos as a substrate of greatwall kinase and a negative regulator of protein phosphatase 2A in mitosis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002225
– volume: 126
  start-page: 3429
  year: 2013
  ident: 10.1016/j.molcel.2013.09.005_bib17
  article-title: Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.128397
– volume: 149
  start-page: 341
  year: 2000
  ident: 10.1016/j.molcel.2013.09.005_bib27
  article-title: The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.149.2.341
– volume: 2
  start-page: 815
  year: 2001
  ident: 10.1016/j.molcel.2013.09.005_bib2
  article-title: Men and sin: what’s the difference?
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/35099020
– volume: 19
  start-page: 135
  year: 2005
  ident: 10.1016/j.molcel.2013.09.005_bib13
  article-title: Mutual inhibition of separase and Cdk1 by two-step complex formation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.05.022
SSID ssj0014589
Score 2.468181
Snippet Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 393
SubjectTerms anaphase
Animalia
CDC2 Protein Kinase - metabolism
chromosome segregation
Chromosome Segregation - genetics
Chromosomes - genetics
Cyclin B - metabolism
cyclins
cytokinesis
Cytokinesis - genetics
dephosphorylation
HeLa Cells
Humans
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Mitosis - genetics
Phosphoric Monoester Hydrolases - metabolism
Protein Phosphatase 2 - genetics
Protein Phosphatase 2 - metabolism
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Protein Tyrosine Phosphatases
separase
Separase - genetics
Separase - metabolism
Signal Transduction - genetics
yeasts
Title BEG (PP2A-B55/ENSA/Greatwall) Pathway Ensures Cytokinesis follows Chromosome Separation
URI https://www.ncbi.nlm.nih.gov/pubmed/24120663
https://www.proquest.com/docview/1450186156
https://www.proquest.com/docview/1512337240
https://www.proquest.com/docview/2000098671
https://pubmed.ncbi.nlm.nih.gov/PMC3898901
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbSVpP2Mu3e7CYmrdKmiBRsE-AxibJVqxZVa6r2DRkDvSzB05Ioyv7F_vHOwWDI2u72QiJwLvh82N-xz_kOIW8cFvR8KaTtU0FtnkluhzEVth8GIfhuwBmK9OhP497BCf945p21Wj8aUUvLRdyV32_MK_kfq8I5sCtmyf6DZc2Xwgl4D_aFI1gYjn9l48HoAzLEoyPatwceyjeMxsd9eCkc_5XALYUQVfgvVmLdGeW4GjjvDNcL9QWj3S9Ri2E6Vas5agyomZqrWQqjh5YDL-1VVXuqyuh2cKnf7FxgCpreuCjj7_eGdK_vmMXngQByOS8z-AGMSl8fL_M6dtGsWU8U5hQboKlpovFURPI2lydcVuTp-fWaWZU3sxHWidveNvV1lYhuWp8DesibY7NHGxhkjYGW6bqK5ZzNi9Tt69OBXpm46s7UFDoHA_lYoWrrePX0Z4IST44pyu0hAQTaskV2KHgeMHTu9A8_nx6arSnuFXUVzS1U-ZhF0OD1H9rgO1uZUDe5Mr9G5DYozuQ-uVf6JlZfA-0BaaX5Q3JHVytdPyKnADfrbQW2fYTavgHaO6uEmVXCzGrAzCphZtUws2qYPSaT96PJ8MAu63LY0uvxhZ1kLA69IA0y8DZdR9JA-LFA2pMljsh4wIHGB450pIhp4GZhFqc8BJ4u4yBMXPaEbOcqT3eJFTrAxnuy56eMc5kkIgiYm2QypQlKyPbahFWdF8lSsx5Lp0yjKjjxKtJdHmGXR04YQZe3iW0-9VVrtvyh_S7YJRLnMK1Gmyhok9eVsSIYd_EJE3mqlnNwmVEKE_yB37UBNs2YD6T59ja08NJQZbJNnmoQmD8N7BqrLbA28TfgYRqgNvzmlfzyotCIZ1gW1nGf3X5rz8nd-nl9QbYX35bpSyDYi_hVCfmfQCnKAA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BEG+%28PP2A-B55%2FENSA%2FGreatwall%29+Pathway+Ensures+Cytokinesis+follows+Chromosome+Separation&rft.jtitle=Molecular+cell&rft.au=Cundell%2C+Michael%C2%A0J&rft.au=Bastos%2C+Ricardo%C2%A0Nunes&rft.au=Zhang%2C+Tongli&rft.au=Holder%2C+James&rft.date=2013-11-07&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=52&rft.issue=3&rft.spage=393&rft.epage=405&rft_id=info:doi/10.1016%2Fj.molcel.2013.09.005&rft.externalDocID=US201600012426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon