Predicting mortality in patients diagnosed with advanced dementia presenting at an acute care hospital: the PROgnostic Model for Advanced DEmentia (PRO-MADE)
Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. This retrospective cohor...
Saved in:
Published in | BMC geriatrics Vol. 23; no. 1; p. 255 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
28.04.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital.
This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R
and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties.
A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R
, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26).
The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care. |
---|---|
AbstractList | BackgroundChallenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital.MethodsThis retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke’s R2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties.ResultsA total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke’s R2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26).ConclusionThe PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician’s judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care. Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R.sup.2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index [greater than or equal to] 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in [greater than or equal to] 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R.sup.2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care. Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. Methods This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R.sup.2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. Results A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index [greater than or equal to] 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in [greater than or equal to] 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R.sup.2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). Conclusion The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care. Keywords: Advanced dementia, Acute care setting, Prognostication, One-year mortality, Palliative care Abstract Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. Methods This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke’s R2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. Results A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke’s R2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). Conclusion The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician’s judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care. Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R , Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care. |
ArticleNumber | 255 |
Audience | Academic |
Author | Hum, Allyn Kaur, Palvinder Ding, Yew Yoong Low, Zhi Jun Chu, Jermain Ng, Sheryl Hui Xian Tan, Woan Shin Kannapiran, Palvannan |
Author_xml | – sequence: 1 givenname: Palvinder surname: Kaur fullname: Kaur, Palvinder organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore – sequence: 2 givenname: Palvannan surname: Kannapiran fullname: Kannapiran, Palvannan organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore – sequence: 3 givenname: Sheryl Hui Xian surname: Ng fullname: Ng, Sheryl Hui Xian organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore – sequence: 4 givenname: Jermain surname: Chu fullname: Chu, Jermain organization: Department of Palliative Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore – sequence: 5 givenname: Zhi Jun surname: Low fullname: Low, Zhi Jun organization: Department of Palliative Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore – sequence: 6 givenname: Yew Yoong surname: Ding fullname: Ding, Yew Yoong organization: Geriatric Education and Research Institute, 2 Yishun Central 2, Singapore, 768024, Singapore – sequence: 7 givenname: Woan Shin surname: Tan fullname: Tan, Woan Shin organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore – sequence: 8 givenname: Allyn surname: Hum fullname: Hum, Allyn email: allyn_hum@ttsh.com.sg organization: Palliative Care Centre for Excellence in Research and Education, Tan Tock Seng Hospital, 10 Jalan Tan Tock Seng, Singapore, 308436, Singapore. allyn_hum@ttsh.com.sg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37118683$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1vFCEUhiemxn7oH_DCkHhTL6YOXwPjjdm0qzZp08boNWHgzC7NLGyBremP8b_Kdre1awwXwOE9D5zDe1jt-eChqt7i5gRj2X5MmEgh6obQuqEd47V8UR1gJnBNKJZ7z9b71WFKN02DhSTtq2qfijVA0oPq93UE60x2foYWIWY9unyPnEdLnR34nJB1euZDAot-uTxH2t5pb8rOwqKcO42WEdJ6VQg6I-2RNqsMyOgIaB7S0hXoJ5TngK6_X61R2Rl0GSyMaAgRTR6BZ9Mt8Ljo6svJ2fTD6-rloMcEb7bzUfXzy_TH6bf64urr-enkoja8Zbm2upNNx4TQYjCdMaS3QESvCWWSsI5q3bWAtRFgJXCGh743pV-cNQ3jAwF6VJ1vuDboG7WMbqHjvQraqYdAiDOlY3n2CErytmNt21DALcO878Fa01roh25gwGxhfd6wlqt-AdaUmqIed6C7J97N1SzcKdxgJjllhXC8JcRwu4KU1cIlA-OoPYRVUkQ2osOS47ZI3_8jvQmr6EuvigpzXt5J6F_VTJcKnB9CudisoWoimGCUlz4U1cl_VGWUn3amWG9wJb6TQDYJJoaUIgxPReJGrQ2mNg5VxaHqwaFKlqR3z9vzlPJoSfoHVpTjmA |
CitedBy_id | crossref_primary_10_3390_brainsci14050455 crossref_primary_10_1097_MOO_0000000000000912 |
Cites_doi | 10.1016/S0895-4356(96)00236-3 10.1136/bmjspcare-2019-002145 10.1186/1748-5908-5-69 10.1016/j.jamda.2020.11.017 10.1001/jama.2010.1572 10.1001/jama.291.22.2734 10.1080/1364557032000119616 10.1016/j.jamda.2014.11.003 10.1056/NEJMoa0902234 10.1001/jamanetworkopen.2021.0677 10.1016/S2468-2667(21)00249-8 10.1007/978-0-387-77244-8 10.1186/1471-2288-14-40 10.1177/1049909118776985 10.1186/s41512-019-0060-y 10.1177/2010105815611440 10.3389/fpsyt.2020.00699 10.1080/09699260.2018.1442286 10.21037/apm.2017.06.13 10.1136/heartjnl-2011-301247 10.1016/j.ijnurstu.2018.12.013 10.1377/hlthaff.2021.01985 10.1111/j.1525-1497.2004.30329.x 10.1093/ageing/afab212 10.1136/bmjspcare-2020-002217 10.1186/s41512-018-0045-2 10.1056/NEJMcp1412652 10.1186/s12916-019-1466-7 10.1186/s12916-019-1425-3 10.1111/inr.12194 10.1093/jamia/ocz228 10.7326/M14-0698 10.1097/ALN.0000000000003871 10.3233/JAD-201364 10.1371/journal.pone.0201051 10.1016/j.jpainsymman.2022.03.016 10.1177/0269216313493685 10.1016/j.jclinepi.2009.03.017 10.1016/j.jpainsymman.2013.11.009 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QP 7TK 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1186/s12877-023-03945-8 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: ProQuest Health and Medical url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2318 |
EndPage | 255 |
ExternalDocumentID | oai_doaj_org_article_856946603e16415bbeddc6debf9f4e4d A747435045 10_1186_s12877_023_03945_8 37118683 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Singapore |
GeographicLocations_xml | – name: Singapore |
GroupedDBID | --- -A0 0R~ 23N 2WC 3V. 53G 5GY 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AAWTL ABUWG ACGFO ACGFS ACHQT ACIHN ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EBD EBLON EBS ECM EIF EMB EMOBN F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 UKHRP W2D WOQ WOW XSB AAYXX CITATION 7QP 7TK 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c564t-da9809477a7fc9cc2bde27ba23482493aa96e1ac7ed8e541fbbc945540045f2e3 |
IEDL.DBID | RPM |
ISSN | 1471-2318 |
IngestDate | Tue Oct 22 15:08:04 EDT 2024 Tue Sep 17 21:31:12 EDT 2024 Fri Oct 25 01:54:27 EDT 2024 Thu Oct 10 16:16:50 EDT 2024 Tue Nov 19 21:04:49 EST 2024 Tue Nov 12 23:14:39 EST 2024 Thu Nov 21 22:08:58 EST 2024 Sat Sep 28 08:19:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | One-year mortality Palliative care Prognostication Acute care setting Advanced dementia |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-da9809477a7fc9cc2bde27ba23482493aa96e1ac7ed8e541fbbc945540045f2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148534/ |
PMID | 37118683 |
PQID | 2815560323 |
PQPubID | 44817 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_856946603e16415bbeddc6debf9f4e4d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10148534 proquest_miscellaneous_2807918516 proquest_journals_2815560323 gale_infotracmisc_A747435045 gale_infotracacademiconefile_A747435045 crossref_primary_10_1186_s12877_023_03945_8 pubmed_primary_37118683 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-28 |
PublicationDateYYYYMMDD | 2023-04-28 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC geriatrics |
PublicationTitleAlternate | BMC Geriatr |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | B Van Calster (3945_CR35) 2019; 17 KG Moons (3945_CR24) 2015; 162 DA Jenkins (3945_CR37) 2018; 2 Y Eisenmann (3945_CR3) 2020; 11 P Peduzzi (3945_CR29) 1996; 49 E Nichols (3945_CR1) 2022; 7 SJ Staffa (3945_CR34) 2021; 135 T Reyniers (3945_CR2) 2015; 16 A Hum (3945_CR20) 2021; 22 PC Hsieh (3945_CR19) 2019; 96 3945_CR22 B Reisberg (3945_CR25) 1986; 41 K Moens (3945_CR8) 2014; 48 L Wynants (3945_CR39) 2019; 17 E Frank (3945_CR30) 2001 SL Mitchell (3945_CR18) 2004; 291 M Erel (3945_CR15) 2017; 6 D Levac (3945_CR28) 2010; 5 SL Mitchell (3945_CR14) 2015; 372 LE Cowley (3945_CR32) 2019; 3 EE Smith (3945_CR17) 2021; 80 3945_CR26 Y Vergouwe (3945_CR31) 2010; 63 3945_CR9 Y Huang (3945_CR36) 2020; 27 GS Collins (3945_CR33) 2014; 14 KL Quinn (3945_CR10) 2021; 4 KG Moons (3945_CR38) 2012; 98 KL Harrison (3945_CR41) 2022; 41 SL Mitchell (3945_CR21) 2010; 304 CY Chiao (3945_CR7) 2015; 62 JT van der Steen (3945_CR13) 2014; 28 AYM Hum (3945_CR12) 2018; 26 SL Mitchell (3945_CR5) 2009; 361 3945_CR11 GA Sachs (3945_CR16) 2004; 19 EW Steyerberg (3945_CR23) 2009 H Arksey (3945_CR27) 2005; 8 F Moon (3945_CR40) 2018; 35 L Martinsson (3945_CR6) 2018; 13 3945_CR4 |
References_xml | – volume: 49 start-page: 1373 issue: 12 year: 1996 ident: 3945_CR29 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(96)00236-3 contributor: fullname: P Peduzzi – ident: 3945_CR11 doi: 10.1136/bmjspcare-2019-002145 – volume: 5 start-page: 69 year: 2010 ident: 3945_CR28 publication-title: Implement Sci doi: 10.1186/1748-5908-5-69 contributor: fullname: D Levac – volume: 41 start-page: 30 issue: 4 year: 1986 ident: 3945_CR25 publication-title: Geriatrics contributor: fullname: B Reisberg – volume: 22 start-page: 312 issue: 2 year: 2021 ident: 3945_CR20 publication-title: J Am Med Dir Assoc doi: 10.1016/j.jamda.2020.11.017 contributor: fullname: A Hum – volume: 304 start-page: 1929 issue: 17 year: 2010 ident: 3945_CR21 publication-title: JAMA doi: 10.1001/jama.2010.1572 contributor: fullname: SL Mitchell – volume: 291 start-page: 2734 issue: 22 year: 2004 ident: 3945_CR18 publication-title: JAMA doi: 10.1001/jama.291.22.2734 contributor: fullname: SL Mitchell – volume: 8 start-page: 19 issue: 1 year: 2005 ident: 3945_CR27 publication-title: Int J Soc Res Methodol doi: 10.1080/1364557032000119616 contributor: fullname: H Arksey – volume: 16 start-page: 165 issue: 2 year: 2015 ident: 3945_CR2 publication-title: J Am Med Dir Assoc doi: 10.1016/j.jamda.2014.11.003 contributor: fullname: T Reyniers – volume: 361 start-page: 1529 issue: 16 year: 2009 ident: 3945_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMoa0902234 contributor: fullname: SL Mitchell – volume: 4 start-page: e210677 issue: 3 year: 2021 ident: 3945_CR10 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2021.0677 contributor: fullname: KL Quinn – volume: 7 start-page: e105 issue: 2 year: 2022 ident: 3945_CR1 publication-title: The Lancet Public Health doi: 10.1016/S2468-2667(21)00249-8 contributor: fullname: E Nichols – volume-title: Clinical prediction modelling year: 2009 ident: 3945_CR23 doi: 10.1007/978-0-387-77244-8 contributor: fullname: EW Steyerberg – volume: 14 start-page: 40 year: 2014 ident: 3945_CR33 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-14-40 contributor: fullname: GS Collins – volume: 35 start-page: 1572 issue: 12 year: 2018 ident: 3945_CR40 publication-title: Am J Hosp Palliat Care doi: 10.1177/1049909118776985 contributor: fullname: F Moon – volume: 3 start-page: 16 year: 2019 ident: 3945_CR32 publication-title: Diagn Progn Res doi: 10.1186/s41512-019-0060-y contributor: fullname: LE Cowley – ident: 3945_CR26 doi: 10.1177/2010105815611440 – volume: 11 start-page: 699 year: 2020 ident: 3945_CR3 publication-title: Front Psychiatry doi: 10.3389/fpsyt.2020.00699 contributor: fullname: Y Eisenmann – volume: 26 start-page: 65 issue: 2 year: 2018 ident: 3945_CR12 publication-title: Progress in Palliative Care doi: 10.1080/09699260.2018.1442286 contributor: fullname: AYM Hum – volume: 6 start-page: 365 issue: 4 year: 2017 ident: 3945_CR15 publication-title: Ann Palliat Med doi: 10.21037/apm.2017.06.13 contributor: fullname: M Erel – volume: 98 start-page: 691 issue: 9 year: 2012 ident: 3945_CR38 publication-title: Heart doi: 10.1136/heartjnl-2011-301247 contributor: fullname: KG Moons – volume: 96 start-page: 9 year: 2019 ident: 3945_CR19 publication-title: Int J Nurs Stud doi: 10.1016/j.ijnurstu.2018.12.013 contributor: fullname: PC Hsieh – volume: 41 start-page: 821 issue: 6 year: 2022 ident: 3945_CR41 publication-title: Health Aff (Millwood) doi: 10.1377/hlthaff.2021.01985 contributor: fullname: KL Harrison – volume: 19 start-page: 1057 issue: 10 year: 2004 ident: 3945_CR16 publication-title: J Gen Intern Med doi: 10.1111/j.1525-1497.2004.30329.x contributor: fullname: GA Sachs – ident: 3945_CR4 doi: 10.1093/ageing/afab212 – ident: 3945_CR22 doi: 10.1136/bmjspcare-2020-002217 – volume: 2 start-page: 23 year: 2018 ident: 3945_CR37 publication-title: Diagn Progn Res doi: 10.1186/s41512-018-0045-2 contributor: fullname: DA Jenkins – volume: 372 start-page: 2533 issue: 26 year: 2015 ident: 3945_CR14 publication-title: N Engl J Med doi: 10.1056/NEJMcp1412652 contributor: fullname: SL Mitchell – volume: 17 start-page: 230 issue: 1 year: 2019 ident: 3945_CR35 publication-title: BMC Med doi: 10.1186/s12916-019-1466-7 contributor: fullname: B Van Calster – volume: 17 start-page: 192 issue: 1 year: 2019 ident: 3945_CR39 publication-title: BMC Med doi: 10.1186/s12916-019-1425-3 contributor: fullname: L Wynants – volume: 62 start-page: 340 issue: 3 year: 2015 ident: 3945_CR7 publication-title: Int Nurs Rev doi: 10.1111/inr.12194 contributor: fullname: CY Chiao – volume: 27 start-page: 621 issue: 4 year: 2020 ident: 3945_CR36 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocz228 contributor: fullname: Y Huang – volume: 162 start-page: W1 issue: 1 year: 2015 ident: 3945_CR24 publication-title: Ann Intern Med doi: 10.7326/M14-0698 contributor: fullname: KG Moons – volume: 135 start-page: 396 issue: 3 year: 2021 ident: 3945_CR34 publication-title: Anesthesiology doi: 10.1097/ALN.0000000000003871 contributor: fullname: SJ Staffa – volume-title: Regression modelling strategies with applications to linear models, logistic regression and survival analysis year: 2001 ident: 3945_CR30 contributor: fullname: E Frank – volume: 80 start-page: 103 issue: 1 year: 2021 ident: 3945_CR17 publication-title: J Alzheimers Dis doi: 10.3233/JAD-201364 contributor: fullname: EE Smith – volume: 13 start-page: e0201051 issue: 7 year: 2018 ident: 3945_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0201051 contributor: fullname: L Martinsson – ident: 3945_CR9 doi: 10.1016/j.jpainsymman.2022.03.016 – volume: 28 start-page: 197 issue: 3 year: 2014 ident: 3945_CR13 publication-title: Palliat Med doi: 10.1177/0269216313493685 contributor: fullname: JT van der Steen – volume: 63 start-page: 205 issue: 2 year: 2010 ident: 3945_CR31 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2009.03.017 contributor: fullname: Y Vergouwe – volume: 48 start-page: 660 issue: 4 year: 2014 ident: 3945_CR8 publication-title: J Pain Symptom Manage doi: 10.1016/j.jpainsymman.2013.11.009 contributor: fullname: K Moens |
SSID | ssj0017826 |
Score | 2.3870559 |
Snippet | Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a... Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and... BackgroundChallenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and... BACKGROUNDChallenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and... Abstract Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 255 |
SubjectTerms | Accuracy and precision Activities of Daily Living Acute care setting Advanced dementia Aged, 80 and over Care and treatment Comorbidity Death & dying Dementia Dementia - diagnosis Dementia - epidemiology Dementia - therapy Dementia disorders Diagnosis Disease Dysphagia Forecasts and trends Geriatrics Hospitals Humans Male Management Medical prognosis Mortality Older people One-year mortality Palliation Palliative care Palliative treatment Patients Primary care Prognosis Prognostication Retrospective Studies Services Singapore Ulcers Variables |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7SB_FFrNfRKhEEFQmdyeQ2vq3aUoRqEQt9C7kNXdBp6e7-nP5Xz8lklh188MW3ZXImm-TcvkxOziHkTQ9u3DXCM2mCYcJFxbypHUsADZTSTYgpB8h-Uyfn4uuFvNgp9YUxYWN64HHhDo1UmAK9bhMA-0Z6n2IMKibfd71IImbrW_NpM1XOD8DvqemKjFGHK7DCWjPwT6xuOyGZmbmhnK3_b5u845TmAZM7Huj4AblfoCNdjEPeJ3fS8JDcPS2H44_I7dkN_sY4Zvo7o2pA2HQ50JI7dUXjGFeXIsXPr3Q6_6cxfyNcOno9XkbCHtyauoG6sFkniuFh9LJUGPlIATPSsx_fsSsYCsVyar8ogF-6mDr8clQ6fAd07BS4_f4xOT8--vn5hJXqCyxIJdYsus7A3k9rp_vQhcB9TFx7xzEdjuha5zqVGhd0iiZJ0fTeB1haiUZB9jy1T8jecDWkZ4QCRomchxqphW6Vix3YDt73MqVWi1iRDxMz7PWYZMPmzYlRdmSdBdbZzDprKvIJ-bWlxATZ-QGIjS1iY_8lNhV5i9y2qMbA0uDKbQQYMCbEsgsYKCBJmEpFDmaUoH5h3jzJiy3qv7LcAEyDP-dtRV5vm_FNDGkb0tUGaWrdAVpqVEWejuK1nVKrce4G3jYzwZvNed4yLC9zcnCsvQwQTDz_H6v0gtzjWWkE4-aA7K1vNuklgLC1f5X17Q_91DCU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEA-6B-KL-N-ep0QQVCRcm6ZJ6ovs6R6HcOdyeHBvIU3SuwXt7u12P47f1Zk2Xa8IvpVmkiadzMwvyWSGkLc1mHGbiYoV2mkmrJes0qllAaCBlCpzPnQOsmfy5EJ8uywu44bbJrpVDjqxU9R-6XCP_JBrsHwyzXn-eXXDMGsUnq7GFBp3yR7Pcq0nZO9odjY_350jgP2Tw1UZLQ83oI2VYmCnWJqXomB6ZI66qP3_6uZbxmnsOHnLEh0_JA8ihKTTnuePyJ3QPCb3TuMh-RPye77GZ_Rnpr86dA1Imy4aGmOobqjv_euCp7gNSwc_AOq7vcKFpav-UhK2YFtqG2rdtg0U3cTodcw08okCdqTz8-_YFHSFYlq1nxRAMJ0ODX6dxQbfAx07Ba5_eEoujmc_vpywmIWBuUKKlnlbalgDKmVV7UrneOUDV5XlGBZHlLm1pQyZdSp4HQqR1VXl4NcWqByKmof8GZk0yya8IBSwiufcpUgtVC6tL0GH8LouQsiV8An5ODDDrPpgG6ZbpGhpetYZYJ3pWGd0Qo6QXztKDJTdvViur0yUO6MLiRH00zzAujArqip476QPVV3WIuAn3yG3DYozsNTZeCsBOoyBscwUOgqIEoaSkIMRJYihGxcP88VENbAxfydtQt7sirEmurY1YblFmlSVgJoymZDn_fTaDSlXOHYNtfVo4o3GPC5pFtddkHDMwQxQTOz_v18vyX3eiYNgXB-QSbvehlcAs9rqdZSlP2kFKIA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEA_nCeIX8W31lAiCikTbNK8KIqvecQirh7hw30KapN7C2T33AfrH-L86k7brFe-D35bN5DGdmcwv7WSGkCcNuHFXiJpJ4w0TLihWm9yxCNBAKV34EFOA7Cd1OBMfj-XxDhnKHfUPcHXh0Q7rSc2Wpy9__vj1Fgz-TTJ4o16tYI_VmoH3YXlZCcnMJXKZg2fEEK-p-PtVAbyhGi7OXNhv5JxSDv9_d-pzrmocRnnOLx1cJ9d6QEknnQbcIDuxvUmuTPtP5rfI76Ml_sboZvo9sQm4m85b2mdUXdHQRdvFQPGlLB2iAmhIbw7njp51V5RwBLemrqXOb9aRYtAYPenrjrymgCTp0ZfPOBQshWKRtVMKkJhOhgE_7PcDPgM6NgUdeH6bzA72v74_ZH1NBualEmsWXGXgRKi1042vvOd1iFzXjmOSHFGVzlUqFs7rGEyUomjq2sOjlbhVyIbH8g7ZbRdtvEcoIJfAuc-RWuhSuVDBjsKbRsZYahEy8mIQhj3rUm_YdGQxynaisyA6m0RnTUbeoby2lJg2O_2xWH6zvRVaIxXm08_LCKfEQtZ1DMGrEOumakTEKZ-itC2qG4jUu_6OAiwY02TZCSwU8CWwkpG9ESUYpR83D_piB5223AB4g8l5mZHH22bsiYFubVxskCbXFWCoQmXkbqdeW5ZKjbwb6G1GijfiedzSzk9SynCsyAzATNz_j4kfkKs82YRg3OyR3fVyEx8C8lrXj5I5_QESxCxy priority: 102 providerName: Scholars Portal |
Title | Predicting mortality in patients diagnosed with advanced dementia presenting at an acute care hospital: the PROgnostic Model for Advanced DEmentia (PRO-MADE) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37118683 https://www.proquest.com/docview/2815560323 https://search.proquest.com/docview/2807918516 https://pubmed.ncbi.nlm.nih.gov/PMC10148534 https://doaj.org/article/856946603e16415bbeddc6debf9f4e4d |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtB2Mvo_v22gUNBtsYamJbluS9JV1KGaQLYYWwFyFL8hponJCPP2f_6-5kO9TsbS8mRGdZ8n39JJ_uCPlQghs3MS9Ypqxi3DjBCjUwzAM0EELG1vkQIHsjrm_593k2PyKiPQsTgvZtsbio7pcX1eIuxFaul7bfxon1p5NLrC8Lbob3j8kx-N92jd58OwCfJ9rjMUr0t2CBpWTgm9ggzXnGsERfKrFNpR1vFJL2_2uaH_imbtzkA0d0dUqeNgiSDuuRPiNHvnpOHk-ab-QvyJ_pBn9jODNdBnANQJsuKtqkUN1SV4fXeUdxF5a2YQDUha3ChaHr-kwS9mB21FTU2P3OU4wSo3dNoZGvFKAjnc5-YFcwFIpV1e4pYGA6bDv8Nm46_AR0bAJM__yS3F6Nf15es6YIA7OZ4DvmTK5gCSilkaXNrU0K5xNZmASz4vA8NSYXPjZWeqd8xuOyKCy85QxtQ1YmPn1FTqpV5d8QClDFJYkdIDWXqTAuBxOSlGXmfSq5i8iXlhl6Xefa0GGNooSuuaiBizpwUauIjJBfB0rMkx3-WG1-60ZatMoEJtAfpB6WhXFWFN45K5wvyrzkHh_5EbmtUZuBpdY0hxJgwJgXSw9hoAAoYSoROe9QghbabnMrL7qxAludKEBr8PAkjcj7QzPeiZFtlV_tkWYgcwBNsYjI61q8DlNqpTQiqiN4nTl3W0BlQo7wVkXe_v-tZ-RJErSGs0Sdk5PdZu_fAQLbFT1Qu7nskUej8c101gv7GHCdcAXX2ehXLyjkX-52Ndg |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELegk4AviDeFAUZCAoSs5eFX-II66FRgLdO0SftmObbDKkFa-vhz-F-5S5yyCIlvUXx27Jzv7mf7fEfIqwrMuE15yYR2mnHrJSt1YlkAaCClSp0PjYPsTE7O-ZcLcRE33NbRrbLTiY2i9guHe-QHmQbLJ5M8yz8sfzHMGoWnqzGFxnWyh5HTxYDsHY5nJ6e7cwSwf7K7KqPlwRq0sVIM7BRL8oILpnvmqIna_69uvmKc-o6TVyzR0R1yO0JIOmp5fpdcC_U9cmMaD8nvk98nK3xGf2b6s0HXgLTpvKYxhuqa-ta_LniK27C08wOgvtkrnFu6bC8lYQt2Q21NrdtuAkU3MXoZM428p4Ad6cnpN2wKukIxrdoPCiCYjroGP41jg2-Ajk2B628fkPOj8dnHCYtZGJgTkm-Yt4WGNaBSVlWucC4rfchUaTMMi8OL3NpChtQ6FbwOgqdVWTr4tQKVg6iykD8kg3pRh8eEAlbxWeYSpOYql9YXoEOyqhIh5Ir7IXnXMcMs22AbplmkaGla1hlgnWlYZ_SQHCK_dpQYKLt5sVh9N1HujBYSI-gneYB1YSrKMnjvpA9lVVQ84CdfI7cNijOw1Nl4KwE6jIGxzAg6CogShjIk-z1KEEPXL-7mi4lqYG3-Ttohebkrxpro2laHxRZpElUAakrlkDxqp9duSLnCsWuorXsTrzfmfkk9v2yChGMOZoBi_Mn_-_WC3JycTY_N8efZ16fkVtaIBmeZ3ieDzWobngHk2pTPo1z9AWd_K2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSBMvaHyHDTASEiDktUn8Fd7Ktmp8dFSISXuzHNthlda06sefw__KXeJUi3jjraovjp278_2c_HxHyNsKwrhNecmEdppx6yUr9dCyANBASpU6HxqC7IU8v-Rfr8RVZFWuI62yduXsuL6ZH9ez64ZbuZy7QccTG0wnJ1hfFsIMHyx9NbhL7okcrKzbqccvCBD5ZHdIRsvBGtZhpRhEKDbMCy4YFurLFbbpvBeTmtT9_y7QtyJUnz15KxyND8iDiCPpqB3vQ3In1I_I_iR-KX9M_kxX-BtJzXTeQGyA23RW05hIdU19S7ILnuK7WNqRAahvXhjOLF22J5OwB7uhtqbWbTeBIleMXsdyI58oAEg6_fkDu4KhUKytdkMBCdNR1-HpWezwPcixCaj-wxNyOT77dXLOYikG5oTkG-ZtoWEjqJRVlSucy0ofMlXaDHPj8CK3tpAhtU4Fr4PgaVWWDp6ywBVCVFnIn5K9elGH54QCYPFZ5oYozVUurS9gIcmqSoSQK-4T8rFThlm2GTdMs1PR0rRaNKBF02jR6IR8Rn3tJDFbdvPHYvXbRJsxWkhMoz_MA2wOU1GWwXsnfSirouIBb_kOtW3Qp0GlzsajCTBgzI5lRjBQgJUwlYQc9STBF12_ubMXE9eCtck0YDa4eZYn5M2uGa9EflsdFluUGaoCoFMqE_KsNa_dlDorTYjuGV5vzv0WcJwmU3jnKC_-_9LXZH96Ojbfv1x8OyT3s8aBOMv0EdnbrLbhJUCyTfmq8b2_BEI04Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+mortality+in+patients+diagnosed+with+advanced+dementia+presenting+at+an+acute+care+hospital%3A+the+PROgnostic+Model+for+Advanced+DEmentia+%28PRO-MADE%29&rft.jtitle=BMC+geriatrics&rft.au=Kaur%2C+Palvinder&rft.au=Kannapiran%2C+Palvannan&rft.au=Ng%2C+Sheryl+Hui+Xian&rft.au=Chu%2C+Jermain&rft.date=2023-04-28&rft.eissn=1471-2318&rft.volume=23&rft.issue=1&rft.spage=255&rft.epage=255&rft_id=info:doi/10.1186%2Fs12877-023-03945-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2318&client=summon |