Predicting mortality in patients diagnosed with advanced dementia presenting at an acute care hospital: the PROgnostic Model for Advanced DEmentia (PRO-MADE)

Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. This retrospective cohor...

Full description

Saved in:
Bibliographic Details
Published inBMC geriatrics Vol. 23; no. 1; p. 255
Main Authors Kaur, Palvinder, Kannapiran, Palvannan, Ng, Sheryl Hui Xian, Chu, Jermain, Low, Zhi Jun, Ding, Yew Yoong, Tan, Woan Shin, Hum, Allyn
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 28.04.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R , Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care.
AbstractList BackgroundChallenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital.MethodsThis retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke’s R2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties.ResultsA total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke’s R2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26).ConclusionThe PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician’s judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care.
Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R.sup.2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index [greater than or equal to] 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in [greater than or equal to] 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R.sup.2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care.
Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. Methods This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R.sup.2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. Results A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index [greater than or equal to] 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in [greater than or equal to] 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R.sup.2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). Conclusion The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care. Keywords: Advanced dementia, Acute care setting, Prognostication, One-year mortality, Palliative care
Abstract Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. Methods This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke’s R2 and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. Results A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke’s R2, Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). Conclusion The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician’s judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care.
Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a prognostic model to predict one-year all-cause mortality (ACM) in patients with AD presenting at an acute care hospital. This retrospective cohort study utilised administrative and clinical data from Tan Tock Seng Hospital (TTSH). Patients admitted to TTSH between 1st July 2016 and 31st October 2017 and identified to have AD were included. The primary outcome was ACM within one-year of AD diagnosis. Multivariable logistic regression was used. The PROgnostic Model for Advanced Dementia (PRO-MADE) was internally validated using a bootstrap resampling of 1000 replications and externally validated on a more recent cohort of AD patients. The model was evaluated for overall predictive accuracy (Nagelkerke's R and Brier score), discriminative [area-under-the-curve (AUC)], and calibration [calibration slope and calibration-in-the-large (CITL)] properties. A total of 1,077 patients with a mean age of 85 (SD: 7.7) years old were included, and 318 (29.5%) patients died within one-year of AD diagnosis. Predictors of one-year ACM were age > 85 years (OR:1.87; 95%CI:1.36 to 2.56), male gender (OR:1.62; 95%CI:1.18 to 2.22), presence of pneumonia (OR:1.75; 95%CI:1.25 to 2.45), pressure ulcers (OR:2.60; 95%CI:1.57 to 4.31), dysphagia (OR:1.53; 95%CI:1.11 to 2.11), Charlson Comorbidity Index ≥ 8 (OR:1.39; 95%CI:1.01 to 1.90), functional dependency in ≥ 4 activities of daily living (OR: 1.82; 95%CI:1.32 to 2.53), abnormal urea (OR:2.16; 95%CI:1.58 to 2.95) and abnormal albumin (OR:3.68; 95%CI:2.07 to 6.54) values. Internal validation results for optimism-adjusted Nagelkerke's R , Brier score, AUC, calibration slope and CITL were 0.25 (95%CI:0.25 to 0.26), 0.17 (95%CI:0.17 to 0.17), 0.76 (95%CI:0.76 to 0.76), 0.95 (95% CI:0.95 to 0.96) and 0 (95%CI:-0.0001 to 0.001) respectively. When externally validated, the model demonstrated an AUC of 0.70 (95%CI:0.69 to 0.71), calibration slope of 0.64 (95%CI:0.63 to 0.66) and CITL of -0.27 (95%CI:-0.28 to -0.26). The PRO-MADE attained good discrimination and calibration properties. Used synergistically with a clinician's judgement, this model can identify AD patients who are at high-risk of one-year ACM to facilitate timely referrals to palliative care.
ArticleNumber 255
Audience Academic
Author Hum, Allyn
Kaur, Palvinder
Ding, Yew Yoong
Low, Zhi Jun
Chu, Jermain
Ng, Sheryl Hui Xian
Tan, Woan Shin
Kannapiran, Palvannan
Author_xml – sequence: 1
  givenname: Palvinder
  surname: Kaur
  fullname: Kaur, Palvinder
  organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore
– sequence: 2
  givenname: Palvannan
  surname: Kannapiran
  fullname: Kannapiran, Palvannan
  organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore
– sequence: 3
  givenname: Sheryl Hui Xian
  surname: Ng
  fullname: Ng, Sheryl Hui Xian
  organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore
– sequence: 4
  givenname: Jermain
  surname: Chu
  fullname: Chu, Jermain
  organization: Department of Palliative Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
– sequence: 5
  givenname: Zhi Jun
  surname: Low
  fullname: Low, Zhi Jun
  organization: Department of Palliative Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
– sequence: 6
  givenname: Yew Yoong
  surname: Ding
  fullname: Ding, Yew Yoong
  organization: Geriatric Education and Research Institute, 2 Yishun Central 2, Singapore, 768024, Singapore
– sequence: 7
  givenname: Woan Shin
  surname: Tan
  fullname: Tan, Woan Shin
  organization: Health Services and Outcomes Research, National Healthcare Group, 3 Fusionopolis Link, #03-08, Singapore, 138543, Singapore
– sequence: 8
  givenname: Allyn
  surname: Hum
  fullname: Hum, Allyn
  email: allyn_hum@ttsh.com.sg
  organization: Palliative Care Centre for Excellence in Research and Education, Tan Tock Seng Hospital, 10 Jalan Tan Tock Seng, Singapore, 308436, Singapore. allyn_hum@ttsh.com.sg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37118683$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFCEUhiemxn7oH_DCkHhTL6YOXwPjjdm0qzZp08boNWHgzC7NLGyBremP8b_Kdre1awwXwOE9D5zDe1jt-eChqt7i5gRj2X5MmEgh6obQuqEd47V8UR1gJnBNKJZ7z9b71WFKN02DhSTtq2qfijVA0oPq93UE60x2foYWIWY9unyPnEdLnR34nJB1euZDAot-uTxH2t5pb8rOwqKcO42WEdJ6VQg6I-2RNqsMyOgIaB7S0hXoJ5TngK6_X61R2Rl0GSyMaAgRTR6BZ9Mt8Ljo6svJ2fTD6-rloMcEb7bzUfXzy_TH6bf64urr-enkoja8Zbm2upNNx4TQYjCdMaS3QESvCWWSsI5q3bWAtRFgJXCGh743pV-cNQ3jAwF6VJ1vuDboG7WMbqHjvQraqYdAiDOlY3n2CErytmNt21DALcO878Fa01roh25gwGxhfd6wlqt-AdaUmqIed6C7J97N1SzcKdxgJjllhXC8JcRwu4KU1cIlA-OoPYRVUkQ2osOS47ZI3_8jvQmr6EuvigpzXt5J6F_VTJcKnB9CudisoWoimGCUlz4U1cl_VGWUn3amWG9wJb6TQDYJJoaUIgxPReJGrQ2mNg5VxaHqwaFKlqR3z9vzlPJoSfoHVpTjmA
CitedBy_id crossref_primary_10_3390_brainsci14050455
crossref_primary_10_1097_MOO_0000000000000912
Cites_doi 10.1016/S0895-4356(96)00236-3
10.1136/bmjspcare-2019-002145
10.1186/1748-5908-5-69
10.1016/j.jamda.2020.11.017
10.1001/jama.2010.1572
10.1001/jama.291.22.2734
10.1080/1364557032000119616
10.1016/j.jamda.2014.11.003
10.1056/NEJMoa0902234
10.1001/jamanetworkopen.2021.0677
10.1016/S2468-2667(21)00249-8
10.1007/978-0-387-77244-8
10.1186/1471-2288-14-40
10.1177/1049909118776985
10.1186/s41512-019-0060-y
10.1177/2010105815611440
10.3389/fpsyt.2020.00699
10.1080/09699260.2018.1442286
10.21037/apm.2017.06.13
10.1136/heartjnl-2011-301247
10.1016/j.ijnurstu.2018.12.013
10.1377/hlthaff.2021.01985
10.1111/j.1525-1497.2004.30329.x
10.1093/ageing/afab212
10.1136/bmjspcare-2020-002217
10.1186/s41512-018-0045-2
10.1056/NEJMcp1412652
10.1186/s12916-019-1466-7
10.1186/s12916-019-1425-3
10.1111/inr.12194
10.1093/jamia/ocz228
10.7326/M14-0698
10.1097/ALN.0000000000003871
10.3233/JAD-201364
10.1371/journal.pone.0201051
10.1016/j.jpainsymman.2022.03.016
10.1177/0269216313493685
10.1016/j.jclinepi.2009.03.017
10.1016/j.jpainsymman.2013.11.009
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QP
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s12877-023-03945-8
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: ProQuest Health and Medical
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2318
EndPage 255
ExternalDocumentID oai_doaj_org_article_856946603e16415bbeddc6debf9f4e4d
A747435045
10_1186_s12877_023_03945_8
37118683
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GroupedDBID ---
-A0
0R~
23N
2WC
3V.
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AAWTL
ABUWG
ACGFO
ACGFS
ACHQT
ACIHN
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBD
EBLON
EBS
ECM
EIF
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
7QP
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c564t-da9809477a7fc9cc2bde27ba23482493aa96e1ac7ed8e541fbbc945540045f2e3
IEDL.DBID RPM
ISSN 1471-2318
IngestDate Tue Oct 22 15:08:04 EDT 2024
Tue Sep 17 21:31:12 EDT 2024
Fri Oct 25 01:54:27 EDT 2024
Thu Oct 10 16:16:50 EDT 2024
Tue Nov 19 21:04:49 EST 2024
Tue Nov 12 23:14:39 EST 2024
Thu Nov 21 22:08:58 EST 2024
Sat Sep 28 08:19:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords One-year mortality
Palliative care
Prognostication
Acute care setting
Advanced dementia
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-da9809477a7fc9cc2bde27ba23482493aa96e1ac7ed8e541fbbc945540045f2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148534/
PMID 37118683
PQID 2815560323
PQPubID 44817
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_856946603e16415bbeddc6debf9f4e4d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10148534
proquest_miscellaneous_2807918516
proquest_journals_2815560323
gale_infotracmisc_A747435045
gale_infotracacademiconefile_A747435045
crossref_primary_10_1186_s12877_023_03945_8
pubmed_primary_37118683
PublicationCentury 2000
PublicationDate 2023-04-28
PublicationDateYYYYMMDD 2023-04-28
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC geriatrics
PublicationTitleAlternate BMC Geriatr
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References B Van Calster (3945_CR35) 2019; 17
KG Moons (3945_CR24) 2015; 162
DA Jenkins (3945_CR37) 2018; 2
Y Eisenmann (3945_CR3) 2020; 11
P Peduzzi (3945_CR29) 1996; 49
E Nichols (3945_CR1) 2022; 7
SJ Staffa (3945_CR34) 2021; 135
T Reyniers (3945_CR2) 2015; 16
A Hum (3945_CR20) 2021; 22
PC Hsieh (3945_CR19) 2019; 96
3945_CR22
B Reisberg (3945_CR25) 1986; 41
K Moens (3945_CR8) 2014; 48
L Wynants (3945_CR39) 2019; 17
E Frank (3945_CR30) 2001
SL Mitchell (3945_CR18) 2004; 291
M Erel (3945_CR15) 2017; 6
D Levac (3945_CR28) 2010; 5
SL Mitchell (3945_CR14) 2015; 372
LE Cowley (3945_CR32) 2019; 3
EE Smith (3945_CR17) 2021; 80
3945_CR26
Y Vergouwe (3945_CR31) 2010; 63
3945_CR9
Y Huang (3945_CR36) 2020; 27
GS Collins (3945_CR33) 2014; 14
KL Quinn (3945_CR10) 2021; 4
KG Moons (3945_CR38) 2012; 98
KL Harrison (3945_CR41) 2022; 41
SL Mitchell (3945_CR21) 2010; 304
CY Chiao (3945_CR7) 2015; 62
JT van der Steen (3945_CR13) 2014; 28
AYM Hum (3945_CR12) 2018; 26
SL Mitchell (3945_CR5) 2009; 361
3945_CR11
GA Sachs (3945_CR16) 2004; 19
EW Steyerberg (3945_CR23) 2009
H Arksey (3945_CR27) 2005; 8
F Moon (3945_CR40) 2018; 35
L Martinsson (3945_CR6) 2018; 13
3945_CR4
References_xml – volume: 49
  start-page: 1373
  issue: 12
  year: 1996
  ident: 3945_CR29
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(96)00236-3
  contributor:
    fullname: P Peduzzi
– ident: 3945_CR11
  doi: 10.1136/bmjspcare-2019-002145
– volume: 5
  start-page: 69
  year: 2010
  ident: 3945_CR28
  publication-title: Implement Sci
  doi: 10.1186/1748-5908-5-69
  contributor:
    fullname: D Levac
– volume: 41
  start-page: 30
  issue: 4
  year: 1986
  ident: 3945_CR25
  publication-title: Geriatrics
  contributor:
    fullname: B Reisberg
– volume: 22
  start-page: 312
  issue: 2
  year: 2021
  ident: 3945_CR20
  publication-title: J Am Med Dir Assoc
  doi: 10.1016/j.jamda.2020.11.017
  contributor:
    fullname: A Hum
– volume: 304
  start-page: 1929
  issue: 17
  year: 2010
  ident: 3945_CR21
  publication-title: JAMA
  doi: 10.1001/jama.2010.1572
  contributor:
    fullname: SL Mitchell
– volume: 291
  start-page: 2734
  issue: 22
  year: 2004
  ident: 3945_CR18
  publication-title: JAMA
  doi: 10.1001/jama.291.22.2734
  contributor:
    fullname: SL Mitchell
– volume: 8
  start-page: 19
  issue: 1
  year: 2005
  ident: 3945_CR27
  publication-title: Int J Soc Res Methodol
  doi: 10.1080/1364557032000119616
  contributor:
    fullname: H Arksey
– volume: 16
  start-page: 165
  issue: 2
  year: 2015
  ident: 3945_CR2
  publication-title: J Am Med Dir Assoc
  doi: 10.1016/j.jamda.2014.11.003
  contributor:
    fullname: T Reyniers
– volume: 361
  start-page: 1529
  issue: 16
  year: 2009
  ident: 3945_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0902234
  contributor:
    fullname: SL Mitchell
– volume: 4
  start-page: e210677
  issue: 3
  year: 2021
  ident: 3945_CR10
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2021.0677
  contributor:
    fullname: KL Quinn
– volume: 7
  start-page: e105
  issue: 2
  year: 2022
  ident: 3945_CR1
  publication-title: The Lancet Public Health
  doi: 10.1016/S2468-2667(21)00249-8
  contributor:
    fullname: E Nichols
– volume-title: Clinical prediction modelling
  year: 2009
  ident: 3945_CR23
  doi: 10.1007/978-0-387-77244-8
  contributor:
    fullname: EW Steyerberg
– volume: 14
  start-page: 40
  year: 2014
  ident: 3945_CR33
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-40
  contributor:
    fullname: GS Collins
– volume: 35
  start-page: 1572
  issue: 12
  year: 2018
  ident: 3945_CR40
  publication-title: Am J Hosp Palliat Care
  doi: 10.1177/1049909118776985
  contributor:
    fullname: F Moon
– volume: 3
  start-page: 16
  year: 2019
  ident: 3945_CR32
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-019-0060-y
  contributor:
    fullname: LE Cowley
– ident: 3945_CR26
  doi: 10.1177/2010105815611440
– volume: 11
  start-page: 699
  year: 2020
  ident: 3945_CR3
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2020.00699
  contributor:
    fullname: Y Eisenmann
– volume: 26
  start-page: 65
  issue: 2
  year: 2018
  ident: 3945_CR12
  publication-title: Progress in Palliative Care
  doi: 10.1080/09699260.2018.1442286
  contributor:
    fullname: AYM Hum
– volume: 6
  start-page: 365
  issue: 4
  year: 2017
  ident: 3945_CR15
  publication-title: Ann Palliat Med
  doi: 10.21037/apm.2017.06.13
  contributor:
    fullname: M Erel
– volume: 98
  start-page: 691
  issue: 9
  year: 2012
  ident: 3945_CR38
  publication-title: Heart
  doi: 10.1136/heartjnl-2011-301247
  contributor:
    fullname: KG Moons
– volume: 96
  start-page: 9
  year: 2019
  ident: 3945_CR19
  publication-title: Int J Nurs Stud
  doi: 10.1016/j.ijnurstu.2018.12.013
  contributor:
    fullname: PC Hsieh
– volume: 41
  start-page: 821
  issue: 6
  year: 2022
  ident: 3945_CR41
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.2021.01985
  contributor:
    fullname: KL Harrison
– volume: 19
  start-page: 1057
  issue: 10
  year: 2004
  ident: 3945_CR16
  publication-title: J Gen Intern Med
  doi: 10.1111/j.1525-1497.2004.30329.x
  contributor:
    fullname: GA Sachs
– ident: 3945_CR4
  doi: 10.1093/ageing/afab212
– ident: 3945_CR22
  doi: 10.1136/bmjspcare-2020-002217
– volume: 2
  start-page: 23
  year: 2018
  ident: 3945_CR37
  publication-title: Diagn Progn Res
  doi: 10.1186/s41512-018-0045-2
  contributor:
    fullname: DA Jenkins
– volume: 372
  start-page: 2533
  issue: 26
  year: 2015
  ident: 3945_CR14
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp1412652
  contributor:
    fullname: SL Mitchell
– volume: 17
  start-page: 230
  issue: 1
  year: 2019
  ident: 3945_CR35
  publication-title: BMC Med
  doi: 10.1186/s12916-019-1466-7
  contributor:
    fullname: B Van Calster
– volume: 17
  start-page: 192
  issue: 1
  year: 2019
  ident: 3945_CR39
  publication-title: BMC Med
  doi: 10.1186/s12916-019-1425-3
  contributor:
    fullname: L Wynants
– volume: 62
  start-page: 340
  issue: 3
  year: 2015
  ident: 3945_CR7
  publication-title: Int Nurs Rev
  doi: 10.1111/inr.12194
  contributor:
    fullname: CY Chiao
– volume: 27
  start-page: 621
  issue: 4
  year: 2020
  ident: 3945_CR36
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocz228
  contributor:
    fullname: Y Huang
– volume: 162
  start-page: W1
  issue: 1
  year: 2015
  ident: 3945_CR24
  publication-title: Ann Intern Med
  doi: 10.7326/M14-0698
  contributor:
    fullname: KG Moons
– volume: 135
  start-page: 396
  issue: 3
  year: 2021
  ident: 3945_CR34
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000003871
  contributor:
    fullname: SJ Staffa
– volume-title: Regression modelling strategies with applications to linear models, logistic regression and survival analysis
  year: 2001
  ident: 3945_CR30
  contributor:
    fullname: E Frank
– volume: 80
  start-page: 103
  issue: 1
  year: 2021
  ident: 3945_CR17
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-201364
  contributor:
    fullname: EE Smith
– volume: 13
  start-page: e0201051
  issue: 7
  year: 2018
  ident: 3945_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0201051
  contributor:
    fullname: L Martinsson
– ident: 3945_CR9
  doi: 10.1016/j.jpainsymman.2022.03.016
– volume: 28
  start-page: 197
  issue: 3
  year: 2014
  ident: 3945_CR13
  publication-title: Palliat Med
  doi: 10.1177/0269216313493685
  contributor:
    fullname: JT van der Steen
– volume: 63
  start-page: 205
  issue: 2
  year: 2010
  ident: 3945_CR31
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.03.017
  contributor:
    fullname: Y Vergouwe
– volume: 48
  start-page: 660
  issue: 4
  year: 2014
  ident: 3945_CR8
  publication-title: J Pain Symptom Manage
  doi: 10.1016/j.jpainsymman.2013.11.009
  contributor:
    fullname: K Moens
SSID ssj0017826
Score 2.3870559
Snippet Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and validate a...
Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and...
BackgroundChallenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and...
BACKGROUNDChallenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop and...
Abstract Background Challenges in prognosticating patients diagnosed with advanced dementia (AD) hinders timely referrals to palliative care. We aim to develop...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 255
SubjectTerms Accuracy and precision
Activities of Daily Living
Acute care setting
Advanced dementia
Aged, 80 and over
Care and treatment
Comorbidity
Death & dying
Dementia
Dementia - diagnosis
Dementia - epidemiology
Dementia - therapy
Dementia disorders
Diagnosis
Disease
Dysphagia
Forecasts and trends
Geriatrics
Hospitals
Humans
Male
Management
Medical prognosis
Mortality
Older people
One-year mortality
Palliation
Palliative care
Palliative treatment
Patients
Primary care
Prognosis
Prognostication
Retrospective Studies
Services
Singapore
Ulcers
Variables
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7SB_FFrNfRKhEEFQmdyeQ2vq3aUoRqEQt9C7kNXdBp6e7-nP5Xz8lklh188MW3ZXImm-TcvkxOziHkTQ9u3DXCM2mCYcJFxbypHUsADZTSTYgpB8h-Uyfn4uuFvNgp9YUxYWN64HHhDo1UmAK9bhMA-0Z6n2IMKibfd71IImbrW_NpM1XOD8DvqemKjFGHK7DCWjPwT6xuOyGZmbmhnK3_b5u845TmAZM7Huj4AblfoCNdjEPeJ3fS8JDcPS2H44_I7dkN_sY4Zvo7o2pA2HQ50JI7dUXjGFeXIsXPr3Q6_6cxfyNcOno9XkbCHtyauoG6sFkniuFh9LJUGPlIATPSsx_fsSsYCsVyar8ogF-6mDr8clQ6fAd07BS4_f4xOT8--vn5hJXqCyxIJdYsus7A3k9rp_vQhcB9TFx7xzEdjuha5zqVGhd0iiZJ0fTeB1haiUZB9jy1T8jecDWkZ4QCRomchxqphW6Vix3YDt73MqVWi1iRDxMz7PWYZMPmzYlRdmSdBdbZzDprKvIJ-bWlxATZ-QGIjS1iY_8lNhV5i9y2qMbA0uDKbQQYMCbEsgsYKCBJmEpFDmaUoH5h3jzJiy3qv7LcAEyDP-dtRV5vm_FNDGkb0tUGaWrdAVpqVEWejuK1nVKrce4G3jYzwZvNed4yLC9zcnCsvQwQTDz_H6v0gtzjWWkE4-aA7K1vNuklgLC1f5X17Q_91DCU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEA-6B-KL-N-ep0QQVCRcm6ZJ6ovs6R6HcOdyeHBvIU3SuwXt7u12P47f1Zk2Xa8IvpVmkiadzMwvyWSGkLc1mHGbiYoV2mkmrJes0qllAaCBlCpzPnQOsmfy5EJ8uywu44bbJrpVDjqxU9R-6XCP_JBrsHwyzXn-eXXDMGsUnq7GFBp3yR7Pcq0nZO9odjY_350jgP2Tw1UZLQ83oI2VYmCnWJqXomB6ZI66qP3_6uZbxmnsOHnLEh0_JA8ihKTTnuePyJ3QPCb3TuMh-RPye77GZ_Rnpr86dA1Imy4aGmOobqjv_euCp7gNSwc_AOq7vcKFpav-UhK2YFtqG2rdtg0U3cTodcw08okCdqTz8-_YFHSFYlq1nxRAMJ0ODX6dxQbfAx07Ba5_eEoujmc_vpywmIWBuUKKlnlbalgDKmVV7UrneOUDV5XlGBZHlLm1pQyZdSp4HQqR1VXl4NcWqByKmof8GZk0yya8IBSwiufcpUgtVC6tL0GH8LouQsiV8An5ODDDrPpgG6ZbpGhpetYZYJ3pWGd0Qo6QXztKDJTdvViur0yUO6MLiRH00zzAujArqip476QPVV3WIuAn3yG3DYozsNTZeCsBOoyBscwUOgqIEoaSkIMRJYihGxcP88VENbAxfydtQt7sirEmurY1YblFmlSVgJoymZDn_fTaDSlXOHYNtfVo4o3GPC5pFtddkHDMwQxQTOz_v18vyX3eiYNgXB-QSbvehlcAs9rqdZSlP2kFKIA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEA_nCeIX8W31lAiCikTbNK8KIqvecQirh7hw30KapN7C2T33AfrH-L86k7brFe-D35bN5DGdmcwv7WSGkCcNuHFXiJpJ4w0TLihWm9yxCNBAKV34EFOA7Cd1OBMfj-XxDhnKHfUPcHXh0Q7rSc2Wpy9__vj1Fgz-TTJ4o16tYI_VmoH3YXlZCcnMJXKZg2fEEK-p-PtVAbyhGi7OXNhv5JxSDv9_d-pzrmocRnnOLx1cJ9d6QEknnQbcIDuxvUmuTPtP5rfI76Ml_sboZvo9sQm4m85b2mdUXdHQRdvFQPGlLB2iAmhIbw7njp51V5RwBLemrqXOb9aRYtAYPenrjrymgCTp0ZfPOBQshWKRtVMKkJhOhgE_7PcDPgM6NgUdeH6bzA72v74_ZH1NBualEmsWXGXgRKi1042vvOd1iFzXjmOSHFGVzlUqFs7rGEyUomjq2sOjlbhVyIbH8g7ZbRdtvEcoIJfAuc-RWuhSuVDBjsKbRsZYahEy8mIQhj3rUm_YdGQxynaisyA6m0RnTUbeoby2lJg2O_2xWH6zvRVaIxXm08_LCKfEQtZ1DMGrEOumakTEKZ-itC2qG4jUu_6OAiwY02TZCSwU8CWwkpG9ESUYpR83D_piB5223AB4g8l5mZHH22bsiYFubVxskCbXFWCoQmXkbqdeW5ZKjbwb6G1GijfiedzSzk9SynCsyAzATNz_j4kfkKs82YRg3OyR3fVyEx8C8lrXj5I5_QESxCxy
  priority: 102
  providerName: Scholars Portal
Title Predicting mortality in patients diagnosed with advanced dementia presenting at an acute care hospital: the PROgnostic Model for Advanced DEmentia (PRO-MADE)
URI https://www.ncbi.nlm.nih.gov/pubmed/37118683
https://www.proquest.com/docview/2815560323
https://search.proquest.com/docview/2807918516
https://pubmed.ncbi.nlm.nih.gov/PMC10148534
https://doaj.org/article/856946603e16415bbeddc6debf9f4e4d
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtB2Mvo_v22gUNBtsYamJbluS9JV1KGaQLYYWwFyFL8hponJCPP2f_6-5kO9TsbS8mRGdZ8n39JJ_uCPlQghs3MS9Ypqxi3DjBCjUwzAM0EELG1vkQIHsjrm_593k2PyKiPQsTgvZtsbio7pcX1eIuxFaul7bfxon1p5NLrC8Lbob3j8kx-N92jd58OwCfJ9rjMUr0t2CBpWTgm9ggzXnGsERfKrFNpR1vFJL2_2uaH_imbtzkA0d0dUqeNgiSDuuRPiNHvnpOHk-ab-QvyJ_pBn9jODNdBnANQJsuKtqkUN1SV4fXeUdxF5a2YQDUha3ChaHr-kwS9mB21FTU2P3OU4wSo3dNoZGvFKAjnc5-YFcwFIpV1e4pYGA6bDv8Nm46_AR0bAJM__yS3F6Nf15es6YIA7OZ4DvmTK5gCSilkaXNrU0K5xNZmASz4vA8NSYXPjZWeqd8xuOyKCy85QxtQ1YmPn1FTqpV5d8QClDFJYkdIDWXqTAuBxOSlGXmfSq5i8iXlhl6Xefa0GGNooSuuaiBizpwUauIjJBfB0rMkx3-WG1-60ZatMoEJtAfpB6WhXFWFN45K5wvyrzkHh_5EbmtUZuBpdY0hxJgwJgXSw9hoAAoYSoROe9QghbabnMrL7qxAludKEBr8PAkjcj7QzPeiZFtlV_tkWYgcwBNsYjI61q8DlNqpTQiqiN4nTl3W0BlQo7wVkXe_v-tZ-RJErSGs0Sdk5PdZu_fAQLbFT1Qu7nskUej8c101gv7GHCdcAXX2ehXLyjkX-52Ndg
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELegk4AviDeFAUZCAoSs5eFX-II66FRgLdO0SftmObbDKkFa-vhz-F-5S5yyCIlvUXx27Jzv7mf7fEfIqwrMuE15yYR2mnHrJSt1YlkAaCClSp0PjYPsTE7O-ZcLcRE33NbRrbLTiY2i9guHe-QHmQbLJ5M8yz8sfzHMGoWnqzGFxnWyh5HTxYDsHY5nJ6e7cwSwf7K7KqPlwRq0sVIM7BRL8oILpnvmqIna_69uvmKc-o6TVyzR0R1yO0JIOmp5fpdcC_U9cmMaD8nvk98nK3xGf2b6s0HXgLTpvKYxhuqa-ta_LniK27C08wOgvtkrnFu6bC8lYQt2Q21NrdtuAkU3MXoZM428p4Ad6cnpN2wKukIxrdoPCiCYjroGP41jg2-Ajk2B628fkPOj8dnHCYtZGJgTkm-Yt4WGNaBSVlWucC4rfchUaTMMi8OL3NpChtQ6FbwOgqdVWTr4tQKVg6iykD8kg3pRh8eEAlbxWeYSpOYql9YXoEOyqhIh5Ir7IXnXMcMs22AbplmkaGla1hlgnWlYZ_SQHCK_dpQYKLt5sVh9N1HujBYSI-gneYB1YSrKMnjvpA9lVVQ84CdfI7cNijOw1Nl4KwE6jIGxzAg6CogShjIk-z1KEEPXL-7mi4lqYG3-Ttohebkrxpro2laHxRZpElUAakrlkDxqp9duSLnCsWuorXsTrzfmfkk9v2yChGMOZoBi_Mn_-_WC3JycTY_N8efZ16fkVtaIBmeZ3ieDzWobngHk2pTPo1z9AWd_K2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSBMvaHyHDTASEiDktUn8Fd7Ktmp8dFSISXuzHNthlda06sefw__KXeJUi3jjraovjp278_2c_HxHyNsKwrhNecmEdppx6yUr9dCyANBASpU6HxqC7IU8v-Rfr8RVZFWuI62yduXsuL6ZH9ez64ZbuZy7QccTG0wnJ1hfFsIMHyx9NbhL7okcrKzbqccvCBD5ZHdIRsvBGtZhpRhEKDbMCy4YFurLFbbpvBeTmtT9_y7QtyJUnz15KxyND8iDiCPpqB3vQ3In1I_I_iR-KX9M_kxX-BtJzXTeQGyA23RW05hIdU19S7ILnuK7WNqRAahvXhjOLF22J5OwB7uhtqbWbTeBIleMXsdyI58oAEg6_fkDu4KhUKytdkMBCdNR1-HpWezwPcixCaj-wxNyOT77dXLOYikG5oTkG-ZtoWEjqJRVlSucy0ofMlXaDHPj8CK3tpAhtU4Fr4PgaVWWDp6ywBVCVFnIn5K9elGH54QCYPFZ5oYozVUurS9gIcmqSoSQK-4T8rFThlm2GTdMs1PR0rRaNKBF02jR6IR8Rn3tJDFbdvPHYvXbRJsxWkhMoz_MA2wOU1GWwXsnfSirouIBb_kOtW3Qp0GlzsajCTBgzI5lRjBQgJUwlYQc9STBF12_ubMXE9eCtck0YDa4eZYn5M2uGa9EflsdFluUGaoCoFMqE_KsNa_dlDorTYjuGV5vzv0WcJwmU3jnKC_-_9LXZH96Ojbfv1x8OyT3s8aBOMv0EdnbrLbhJUCyTfmq8b2_BEI04Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+mortality+in+patients+diagnosed+with+advanced+dementia+presenting+at+an+acute+care+hospital%3A+the+PROgnostic+Model+for+Advanced+DEmentia+%28PRO-MADE%29&rft.jtitle=BMC+geriatrics&rft.au=Kaur%2C+Palvinder&rft.au=Kannapiran%2C+Palvannan&rft.au=Ng%2C+Sheryl+Hui+Xian&rft.au=Chu%2C+Jermain&rft.date=2023-04-28&rft.eissn=1471-2318&rft.volume=23&rft.issue=1&rft.spage=255&rft.epage=255&rft_id=info:doi/10.1186%2Fs12877-023-03945-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2318&client=summon