Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography
One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the e...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 201; p. 116099 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.
•Introduction of second generation, smaller, lighter, and highly sensitive OPMs for MEG.•First demonstration of simultaneous EEG and OPM-MEG measurements.•OPM-MEG shown to be less sensitive to artefacts when subjects are allowed to move.•OPM-MEG shown to exhibit fundamentally better theoretical limit on spatial resolution. |
---|---|
AbstractList | One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of 'wearable' neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an 'EEG-like' cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of 'wearable' neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an 'EEG-like' cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms. One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms. One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms. •Introduction of second generation, smaller, lighter, and highly sensitive OPMs for MEG.•First demonstration of simultaneous EEG and OPM-MEG measurements.•OPM-MEG shown to be less sensitive to artefacts when subjects are allowed to move.•OPM-MEG shown to exhibit fundamentally better theoretical limit on spatial resolution. One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms. |
ArticleNumber | 116099 |
Author | Hill, Ryan M. Mullinger, Karen J. Brookes, Matthew J. Boto, Elena Roberts, Gillian Holmes, Niall Barnes, Gareth R. Bowtell, Richard Fromhold, T. Mark Shah, Vishal Seedat, Zelekha A. Tierney, Tim M. Leggett, James |
AuthorAffiliation | d Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom b QuSpin Inc, 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA e Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom c School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom |
AuthorAffiliation_xml | – name: a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – name: d Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom – name: c School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – name: e Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom – name: b QuSpin Inc, 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA |
Author_xml | – sequence: 1 givenname: Elena surname: Boto fullname: Boto, Elena email: elena.boto@nottingham.ac.uk organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 2 givenname: Zelekha A. surname: Seedat fullname: Seedat, Zelekha A. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 3 givenname: Niall surname: Holmes fullname: Holmes, Niall organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 4 givenname: James surname: Leggett fullname: Leggett, James organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 5 givenname: Ryan M. surname: Hill fullname: Hill, Ryan M. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 6 givenname: Gillian surname: Roberts fullname: Roberts, Gillian organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 7 givenname: Vishal surname: Shah fullname: Shah, Vishal organization: QuSpin Inc, 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA – sequence: 8 givenname: T. Mark surname: Fromhold fullname: Fromhold, T. Mark organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 9 givenname: Karen J. surname: Mullinger fullname: Mullinger, Karen J. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 10 givenname: Tim M. surname: Tierney fullname: Tierney, Tim M. organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom – sequence: 11 givenname: Gareth R. surname: Barnes fullname: Barnes, Gareth R. organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom – sequence: 12 givenname: Richard surname: Bowtell fullname: Bowtell, Richard organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – sequence: 13 givenname: Matthew J. surname: Brookes fullname: Brookes, Matthew J. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31419612$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvGyEUhVGVqHm0f6EaqZtuxgUGGOiiamslaaRI3bTqEjHMjY2LwYWZSP73YeI8Wq-8gYs4fBzu4QwdhRgAoYrgGcFEfFzNAowpurVZwIxiomaECKzUK3RKsOK14i09mmre1JIQdYLOcl5hjBVh8jU6aQgjShB6irrfYJLpPFTPRBcWn6p5XHculLIyoa9sDEMyeZjWRRFgiBAsbJbGx0Uym-X2QQYe7JD2t96g41vjM7x9nM_Rr8uLn_Pv9c2Pq-v515vacsGGulcMt8oAa1oraNdQwVqBpVFdGRjBTEnJm962jErbcq56RqzinTKKAjDcnKPPO-5m7NbQW5g8e71J5VFpq6Nx-v-d4JZ6Ee-0pA0nnBbAh0dAin9HyINeu2zBexMgjllT2nLaEilUkb7fk67imEJ5XlEpwaVo-eTo3b-Onq08tf_Fsk0x5wS32rrBDO6h3c5rgvWUt17pl7z1lLfe5V0Acg_wdMcBR7_tjkLJ5M5B0tm6KbrepRKj7qM7BPJlD2J9-TbW-D-wPQxxDyu540A |
CitedBy_id | crossref_primary_10_1088_1674_1056_ad401b crossref_primary_10_3389_fphys_2021_724755 crossref_primary_10_1016_j_neuroimage_2022_118990 crossref_primary_10_3390_photonics10121302 crossref_primary_10_1016_j_neuroimage_2023_120157 crossref_primary_10_1109_TIM_2023_3244249 crossref_primary_10_1111_epi_17806 crossref_primary_10_3390_s23125454 crossref_primary_10_3390_s21206886 crossref_primary_10_1038_s41598_023_31111_y crossref_primary_10_1111_epi_17368 crossref_primary_10_1186_s12915_021_01073_6 crossref_primary_10_1016_j_neuroimage_2021_117815 crossref_primary_10_1109_TIM_2023_3346516 crossref_primary_10_1162_imag_a_00283 crossref_primary_10_3389_fnins_2021_824759 crossref_primary_10_1016_j_measurement_2024_116376 crossref_primary_10_1162_imag_a_00489 crossref_primary_10_1002_hbm_26118 crossref_primary_10_1016_j_sna_2023_114869 crossref_primary_10_1038_s41398_024_03047_y crossref_primary_10_1117_1_JOM_3_4_044501 crossref_primary_10_1080_00107514_2023_2182950 crossref_primary_10_1016_j_cmpb_2024_108292 crossref_primary_10_1111_psyp_13844 crossref_primary_10_1109_ACCESS_2021_3110882 crossref_primary_10_3390_electronics13163163 crossref_primary_10_1063_5_0167372 crossref_primary_10_1093_brain_awz321 crossref_primary_10_1016_j_neuroimage_2021_118401 crossref_primary_10_31083_j_jin2305093 crossref_primary_10_1038_s41467_019_12486_x crossref_primary_10_3390_s23094256 crossref_primary_10_1162_imag_a_00179 crossref_primary_10_1162_imag_a_00495 crossref_primary_10_1088_1741_2552_ad44d8 crossref_primary_10_1016_j_neuroimage_2022_119420 crossref_primary_10_1109_JSEN_2024_3438990 crossref_primary_10_1080_27706710_2024_2322930 crossref_primary_10_1016_j_neuroimage_2022_119027 crossref_primary_10_1016_j_tins_2022_05_008 crossref_primary_10_3390_bios12121097 crossref_primary_10_3389_fnins_2023_1284262 crossref_primary_10_1088_1741_2552_abef39 crossref_primary_10_1109_JSEN_2022_3143209 crossref_primary_10_1016_j_neuroimage_2020_116995 crossref_primary_10_1016_j_jneumeth_2023_110010 crossref_primary_10_1016_j_jneumeth_2024_110131 crossref_primary_10_3389_fninf_2022_771965 crossref_primary_10_1016_j_neuroimage_2021_118210 crossref_primary_10_1038_s41598_020_80590_w crossref_primary_10_1109_TIM_2022_3192287 crossref_primary_10_1093_bjr_tqae123 crossref_primary_10_1016_j_isci_2024_109250 crossref_primary_10_1016_j_mattod_2024_03_005 crossref_primary_10_1109_TIM_2022_3216411 crossref_primary_10_1109_JSEN_2024_3438765 crossref_primary_10_1016_j_nicl_2021_102814 crossref_primary_10_1109_JSEN_2023_3297109 crossref_primary_10_1016_j_neuroimage_2020_116817 crossref_primary_10_1515_revneuro_2020_0073 crossref_primary_10_3390_brainsci13040663 crossref_primary_10_1038_s41598_020_77589_8 crossref_primary_10_1109_TMI_2023_3263167 crossref_primary_10_1002_sus2_195 crossref_primary_10_1016_j_neuroimage_2021_117969 crossref_primary_10_3389_fnins_2021_619591 crossref_primary_10_1016_j_neuroimage_2021_118788 crossref_primary_10_1080_10255842_2024_2414069 crossref_primary_10_1093_cercor_bhae108 crossref_primary_10_1162_imag_a_00112 crossref_primary_10_3389_fphy_2022_969129 |
Cites_doi | 10.1016/S0013-4694(98)00046-7 10.1088/0031-9155/40/3/001 10.1038/nature26147 10.1016/0013-4694(65)90088-X 10.1016/j.neuroimage.2013.10.040 10.1088/1742-6596/723/1/012055 10.1016/j.neuroimage.2019.05.063 10.1109/10.759053 10.1016/j.neuroimage.2008.05.064 10.1016/j.neuroimage.2017.01.034 10.1103/RevModPhys.65.413 10.1016/j.neuroimage.2016.12.048 10.1073/pnas.1221287110 10.1016/j.clinph.2007.04.027 10.1016/j.neuroimage.2007.06.002 10.1016/j.neuroimage.2018.07.035 10.1016/j.neuroimage.2019.03.022 10.1016/S1388-2457(99)00141-8 10.1088/0031-9155/32/1/004 10.1088/1361-6560/aa93d1 10.1016/j.neuroimage.2018.07.028 10.7567/JJAP.54.026601 10.1038/nphoton.2007.201 10.1002/hbm.20571 10.1126/science.175.4022.664 10.3389/fnhum.2013.00138 10.1002/hbm.10024 10.1016/j.eplepsyres.2012.02.002 10.1364/BOE.3.000981 10.1002/hbm.1052 10.1371/journal.pone.0157655 10.1007/978-3-319-34070-8_17 10.1063/1.4974349 10.1007/BF01797193 10.1002/hbm.20011 10.1016/j.neuroimage.2007.03.066 10.1038/nn.4504 10.1016/0013-4694(62)90028-7 10.1103/PhysRevLett.89.130801 10.1016/j.neuroimage.2005.08.043 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. Copyright Elsevier Limited Nov 1, 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 1, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2019.116099 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 116099 |
ExternalDocumentID | PMC8235152 31419612 10_1016_j_neuroimage_2019_116099 S1053811919306901 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R44 MH110288 – fundername: Wellcome Trust grantid: 203257/Z/16/Z |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c564t-d94079ae437c62b32647608a9b08a410498853dc7428c7559d41c95b9a92ee403 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:04:34 EDT 2025 Fri Jul 11 12:44:28 EDT 2025 Wed Aug 13 08:40:22 EDT 2025 Mon Jul 21 05:42:14 EDT 2025 Tue Jul 01 03:02:09 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Fri Feb 23 02:36:56 EST 2024 Tue Aug 26 20:02:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroencephalography Optically-pumped magnetometers Magnetoencephalography EEG MEG Wearable neuroimaging |
Language | English |
License | Copyright © 2019. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-d94079ae437c62b32647608a9b08a410498853dc7428c7559d41c95b9a92ee403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://nottingham-repository.worktribe.com/output/4937511 |
PMID | 31419612 |
PQID | 2296586750 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235152 proquest_miscellaneous_2275271869 proquest_journals_2296586750 pubmed_primary_31419612 crossref_citationtrail_10_1016_j_neuroimage_2019_116099 crossref_primary_10_1016_j_neuroimage_2019_116099 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116099 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Shah, Knappe, Schwindt, Kitching (bib37) 2007; 1 Sheng, Perry, Krzyzewski, Geller, Kitching, Knappe (bib39) 2017; 110 Tierney, Holmes, Mellor, López, Roberts, Hill, Boto, Leggett, Shah, Brookes, Bowtell, Barnes (bib40) 2019; 199 Fuchs, Wagner, Wischmann, Köhler, Theißen, Drenckhahn, Buchner (bib15) 1998; 107 Molins, Stufflebeam, Brown, Hämäläinen (bib30) 2008; 42 Sharon, Hämäläinen, Tootell, Halgren, Belliveau (bib38) 2007 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib18) 1993; 65 Babiloni, Carducci, Cincotti, Gratta, Pizzella, Romani, Rossini, Tecchio, Babiloni (bib3) 2001 Baillet (bib4) 2017; 20 Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib9) 2018; 555 Jiménez-Martínez, Knappe (bib25) 2017 Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib10) 2017; 149 Liu, Dale, Belliveau (bib29) 2002 Iivanainen, Zetter, Parkkonen (bib24) 2019 Pfurtscheller, Lopes Da Silva (bib34) 1999; 110 Boto, Bowtell, Krüger, Fromhold, Morris, Meyer, Barnes, Brookes (bib8) 2016; 11 Kamada, Sato, Ito, Natsukawa, Okano, Mizutani, Kobayashi (bib26) 2015; 54 Cohen (bib12) 1972; 175 DeLucchi, Garoutte, Aird (bib14) 1962 Goldenholz, Ahlfors, Hämäläinen, Sharon, Ishitobi, Vaina, Stufflebeam (bib16) 2009 Tierney, Holmes, Meyer, Boto, Roberts, Leggett, Buck, Duque-Muñoz, Litvak, Bestmann, Baldeweg, Bowtell, Brookes, Barnes (bib41) 2018; 181 Mullinger, Mayhew, Bagshaw, Bowtell, Francis (bib31) 2013; 110 Knappe, Alem, Sheng, Kitching (bib28) 2016; 723 Iivanainen, Stenroos, Parkkonen (bib22) 2017; 147 Borna, Carter, Goldberg, Colombo, Jau, Berry, McKay, Stephen, Weisend, Schwindt (bib7) 2017; 62 Hämäläinen, Lundqvist (bib17) 2019 Sander, Preusser, Mhaskar, Kitching, Trahms, Knappe (bib35) 2012; 3 Sarvas (bib36) 1987; 32 Zhang (bib43) 1995; 40 Zimmermann, Scharein (bib44) 2004 Huang, Song, Hagler, Podgorny, Jousmaki, Cui, Gaa, Harrington, Dale, Lee, Elman, Halgren (bib21) 2007 Allred, Lyman, Kornack, Romalis (bib1) 2002; 89 Iivanainen, Zetter, Grön, Hakkarainen, Parkkonen (bib23) 2019; 194 Muthukumaraswamy (bib32) 2013; 7 Osborne, Orton, Alem, Shah (bib33) 2018; XI Cooper, Winter, Crow, Walter (bib13) 1965 Holmes, Leggett, Boto, Roberts, Hill, Tierney, Shah, Barnes, Brookes, Bowtell (bib19) 2018; 181 Baillet, Garnero, Marin, Hugonin (bib5) 1999; 46 Hoogenboom, Schoffelen, Oostenveld, Parkes, Fries (bib20) 2006; 29 Claus, Velis, Lopes da Silva, Viergever, Kalitzin (bib11) 2012; 100 Babiloni, Babiloni, Carducci, Romani, Rossini, Angelone, Cincotti (bib2) 2004 Whitham, Pope, Fitzgibbon, Lewis, Clark, Loveless, Broberg, Wallace, DeLosAngeles, Lillie, Hardy, Fronsko, Pulbrook, Willoughby (bib42) 2007; 118 Berger (bib6) 1929; 87 Kim, Begus, Xia, Lee, Jazbinsek, Trontelj, Romalis (bib27) 2014; 89 Cohen (10.1016/j.neuroimage.2019.116099_bib12) 1972; 175 Iivanainen (10.1016/j.neuroimage.2019.116099_bib22) 2017; 147 Liu (10.1016/j.neuroimage.2019.116099_bib29) 2002 Kamada (10.1016/j.neuroimage.2019.116099_bib26) 2015; 54 Hämäläinen (10.1016/j.neuroimage.2019.116099_bib17) 2019 Fuchs (10.1016/j.neuroimage.2019.116099_bib15) 1998; 107 Kim (10.1016/j.neuroimage.2019.116099_bib27) 2014; 89 Sarvas (10.1016/j.neuroimage.2019.116099_bib36) 1987; 32 Molins (10.1016/j.neuroimage.2019.116099_bib30) 2008; 42 Sander (10.1016/j.neuroimage.2019.116099_bib35) 2012; 3 Iivanainen (10.1016/j.neuroimage.2019.116099_bib24) 2019 Muthukumaraswamy (10.1016/j.neuroimage.2019.116099_bib32) 2013; 7 Tierney (10.1016/j.neuroimage.2019.116099_bib40) 2019; 199 Shah (10.1016/j.neuroimage.2019.116099_bib37) 2007; 1 Hämäläinen (10.1016/j.neuroimage.2019.116099_bib18) 1993; 65 Holmes (10.1016/j.neuroimage.2019.116099_bib19) 2018; 181 Whitham (10.1016/j.neuroimage.2019.116099_bib42) 2007; 118 Osborne (10.1016/j.neuroimage.2019.116099_bib33) 2018; XI Babiloni (10.1016/j.neuroimage.2019.116099_bib3) 2001 Knappe (10.1016/j.neuroimage.2019.116099_bib28) 2016; 723 Boto (10.1016/j.neuroimage.2019.116099_bib10) 2017; 149 Berger (10.1016/j.neuroimage.2019.116099_bib6) 1929; 87 Sharon (10.1016/j.neuroimage.2019.116099_bib38) 2007 Goldenholz (10.1016/j.neuroimage.2019.116099_bib16) 2009 Babiloni (10.1016/j.neuroimage.2019.116099_bib2) 2004 Cooper (10.1016/j.neuroimage.2019.116099_bib13) 1965 Boto (10.1016/j.neuroimage.2019.116099_bib9) 2018; 555 Iivanainen (10.1016/j.neuroimage.2019.116099_bib23) 2019; 194 Zhang (10.1016/j.neuroimage.2019.116099_bib43) 1995; 40 Boto (10.1016/j.neuroimage.2019.116099_bib8) 2016; 11 Allred (10.1016/j.neuroimage.2019.116099_bib1) 2002; 89 Huang (10.1016/j.neuroimage.2019.116099_bib21) 2007 Sheng (10.1016/j.neuroimage.2019.116099_bib39) 2017; 110 Tierney (10.1016/j.neuroimage.2019.116099_bib41) 2018; 181 Borna (10.1016/j.neuroimage.2019.116099_bib7) 2017; 62 Baillet (10.1016/j.neuroimage.2019.116099_bib5) 1999; 46 Claus (10.1016/j.neuroimage.2019.116099_bib11) 2012; 100 DeLucchi (10.1016/j.neuroimage.2019.116099_bib14) 1962 Jiménez-Martínez (10.1016/j.neuroimage.2019.116099_bib25) 2017 Zimmermann (10.1016/j.neuroimage.2019.116099_bib44) 2004 Baillet (10.1016/j.neuroimage.2019.116099_bib4) 2017; 20 Pfurtscheller (10.1016/j.neuroimage.2019.116099_bib34) 1999; 110 Hoogenboom (10.1016/j.neuroimage.2019.116099_bib20) 2006; 29 Mullinger (10.1016/j.neuroimage.2019.116099_bib31) 2013; 110 |
References_xml | – volume: 54 year: 2015 ident: bib26 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. – volume: 181 start-page: 513 year: 2018 end-page: 520 ident: bib41 article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function publication-title: Neuroimage – volume: 555 start-page: 657 year: 2018 end-page: 661 ident: bib9 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature – year: 2001 ident: bib3 article-title: Linear inverse source estimate of combined EEG and MEG data related to voluntary movements publication-title: Hum. Brain Mapp. – volume: 110 start-page: 13636 year: 2013 end-page: 13641 ident: bib31 article-title: Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity publication-title: Proc. Natl. Acad. Sci. – start-page: 523 year: 2017 end-page: 551 ident: bib25 article-title: Microfabricated optically-pumped magnetometers publication-title: Smart Sensors, Measurement and Instrumentation – volume: 42 start-page: 1069 year: 2008 end-page: 1077 ident: bib30 article-title: Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation publication-title: Neuroimage – year: 1962 ident: bib14 article-title: The scalp as an electroencephalographic averager publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 107 start-page: 93 year: 1998 end-page: 111 ident: bib15 article-title: Improving source reconstructions by combining bioelectric and biomagnetic data publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 7 start-page: 138 year: 2013 ident: bib32 article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations publication-title: Front. Hum. Neurosci. – volume: 199 start-page: 598 year: 2019 end-page: 608 ident: bib40 article-title: Optically Pumped Magnetometers: from Quantum Origins to Multi-Channel Magnetoencephalography publication-title: Neuroimage – year: 2019 ident: bib17 article-title: MEG as an Enabling Tool in Neuroscience: Transcending Boundaries with New Analysis Methods and Devices publication-title: Magnetoencephalography: From Signals to Dynamic Cortical Networks – volume: 723 year: 2016 ident: bib28 article-title: Microfabricated optically-pumped magnetometers for biomagnetic applications publication-title: J. Phys. Conf. Ser. – volume: 87 start-page: 527 year: 1929 end-page: 570 ident: bib6 article-title: Über das Elektrenkephalogramm des Menschen publication-title: Arch. Psychiatr. Nervenkr. – year: 2002 ident: bib29 article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy publication-title: Hum. Brain Mapp. – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: bib34 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. – volume: 32 start-page: 11 year: 1987 end-page: 22 ident: bib36 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. – year: 1965 ident: bib13 article-title: Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 46 start-page: 522 year: 1999 end-page: 534 ident: bib5 article-title: Combined MEG and EEG source imaging by minimization of mutual information publication-title: IEEE Trans. Biomed. Eng. – volume: 147 start-page: 542 year: 2017 end-page: 553 ident: bib22 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage – volume: 40 start-page: 335 year: 1995 end-page: 349 ident: bib43 article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres publication-title: Phys. Med. Biol. – volume: 1 start-page: 649 year: 2007 end-page: 652 ident: bib37 article-title: Subpicotesla atomic magnetometry with a microfabricated vapour cell publication-title: Nat. Photonics – volume: 149 start-page: 404 year: 2017 end-page: 414 ident: bib10 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: Neuroimage – year: 2019 ident: bib24 publication-title: Potential of On-Scalp MEG: Robust Detection of Human Visual Gamma-Band Responses – volume: 100 start-page: 132 year: 2012 end-page: 141 ident: bib11 article-title: High frequency spectral components after Secobarbital: the contribution of muscular origin-A study with MEG/EEG publication-title: Epilepsy Res. – volume: 175 start-page: 664 year: 1972 end-page: 666 ident: bib12 article-title: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer publication-title: Science – volume: 62 start-page: 8909 year: 2017 end-page: 8923 ident: bib7 article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers publication-title: Phys. Med. Biol. – volume: 89 start-page: 143 year: 2014 end-page: 151 ident: bib27 article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study publication-title: Neuroimage – volume: 29 start-page: 764 year: 2006 end-page: 773 ident: bib20 article-title: Localizing human visual gamma-band activity in frequency, time and space publication-title: Neuroimage – volume: 194 start-page: 244 year: 2019 end-page: 258 ident: bib23 article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers publication-title: Neuroimage – volume: 181 start-page: 760 year: 2018 end-page: 774 ident: bib19 article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography publication-title: Neuroimage – volume: 3 start-page: 981 year: 2012 ident: bib35 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Opt. Express – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib18 article-title: Magnetoencephalography -- theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – year: 2007 ident: bib38 article-title: The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex publication-title: Neuroimage – volume: 89 year: 2002 ident: bib1 article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation publication-title: Phys. Rev. Lett. – volume: 110 year: 2017 ident: bib39 article-title: A microfabricated optically-pumped magnetic gradiometer publication-title: Appl. Phys. Lett. – volume: 20 start-page: 327 year: 2017 end-page: 339 ident: bib4 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. – volume: XI year: 2018 ident: bib33 article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism publication-title: Proc. SPIE, Steep Dispers. Eng. Opto-Atomic Precis. Metrol. – start-page: 78 year: 2004 ident: bib44 article-title: MEG and EEG show different sensitivity to myogenic artifacts publication-title: Neurol. Clin. Neurophysiol. NCN – year: 2007 ident: bib21 article-title: A novel integrated MEG and EEG analysis method for dipolar sources publication-title: Neuroimage – volume: 118 start-page: 1877 year: 2007 end-page: 1888 ident: bib42 article-title: Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG publication-title: Clin. Neurophysiol. – year: 2004 ident: bib2 article-title: Multimodal integration of EEG and MEG data: a simulation study with variable signal-to-noise ratio and number of sensors publication-title: Hum. Brain Mapp. – volume: 11 year: 2016 ident: bib8 article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study publication-title: PLoS One – year: 2009 ident: bib16 article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum. Brain Mapp. – volume: 107 start-page: 93 year: 1998 ident: 10.1016/j.neuroimage.2019.116099_bib15 article-title: Improving source reconstructions by combining bioelectric and biomagnetic data publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00046-7 – volume: 40 start-page: 335 year: 1995 ident: 10.1016/j.neuroimage.2019.116099_bib43 article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/40/3/001 – volume: 555 start-page: 657 year: 2018 ident: 10.1016/j.neuroimage.2019.116099_bib9 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature doi: 10.1038/nature26147 – year: 1965 ident: 10.1016/j.neuroimage.2019.116099_bib13 article-title: Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(65)90088-X – volume: 89 start-page: 143 year: 2014 ident: 10.1016/j.neuroimage.2019.116099_bib27 article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.040 – volume: 723 year: 2016 ident: 10.1016/j.neuroimage.2019.116099_bib28 article-title: Microfabricated optically-pumped magnetometers for biomagnetic applications publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/723/1/012055 – volume: 199 start-page: 598 year: 2019 ident: 10.1016/j.neuroimage.2019.116099_bib40 article-title: Optically Pumped Magnetometers: from Quantum Origins to Multi-Channel Magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.063 – year: 2019 ident: 10.1016/j.neuroimage.2019.116099_bib24 – volume: 46 start-page: 522 year: 1999 ident: 10.1016/j.neuroimage.2019.116099_bib5 article-title: Combined MEG and EEG source imaging by minimization of mutual information publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.759053 – volume: 42 start-page: 1069 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2019.116099_bib30 article-title: Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.064 – volume: 149 start-page: 404 year: 2017 ident: 10.1016/j.neuroimage.2019.116099_bib10 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.034 – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.neuroimage.2019.116099_bib18 article-title: Magnetoencephalography -- theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 147 start-page: 542 year: 2017 ident: 10.1016/j.neuroimage.2019.116099_bib22 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.048 – volume: 110 start-page: 13636 year: 2013 ident: 10.1016/j.neuroimage.2019.116099_bib31 article-title: Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1221287110 – year: 2019 ident: 10.1016/j.neuroimage.2019.116099_bib17 article-title: MEG as an Enabling Tool in Neuroscience: Transcending Boundaries with New Analysis Methods and Devices – volume: 118 start-page: 1877 year: 2007 ident: 10.1016/j.neuroimage.2019.116099_bib42 article-title: Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.04.027 – volume: XI year: 2018 ident: 10.1016/j.neuroimage.2019.116099_bib33 article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism publication-title: Proc. SPIE, Steep Dispers. Eng. Opto-Atomic Precis. Metrol. – year: 2007 ident: 10.1016/j.neuroimage.2019.116099_bib21 article-title: A novel integrated MEG and EEG analysis method for dipolar sources publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.002 – volume: 181 start-page: 513 year: 2018 ident: 10.1016/j.neuroimage.2019.116099_bib41 article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.035 – volume: 194 start-page: 244 year: 2019 ident: 10.1016/j.neuroimage.2019.116099_bib23 article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.03.022 – volume: 110 start-page: 1842 year: 1999 ident: 10.1016/j.neuroimage.2019.116099_bib34 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 32 start-page: 11 year: 1987 ident: 10.1016/j.neuroimage.2019.116099_bib36 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – volume: 62 start-page: 8909 year: 2017 ident: 10.1016/j.neuroimage.2019.116099_bib7 article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa93d1 – volume: 181 start-page: 760 year: 2018 ident: 10.1016/j.neuroimage.2019.116099_bib19 article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.028 – volume: 54 year: 2015 ident: 10.1016/j.neuroimage.2019.116099_bib26 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.026601 – volume: 1 start-page: 649 year: 2007 ident: 10.1016/j.neuroimage.2019.116099_bib37 article-title: Subpicotesla atomic magnetometry with a microfabricated vapour cell publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.201 – year: 2009 ident: 10.1016/j.neuroimage.2019.116099_bib16 article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20571 – volume: 175 start-page: 664 issue: 80 year: 1972 ident: 10.1016/j.neuroimage.2019.116099_bib12 article-title: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer publication-title: Science doi: 10.1126/science.175.4022.664 – start-page: 78 year: 2004 ident: 10.1016/j.neuroimage.2019.116099_bib44 article-title: MEG and EEG show different sensitivity to myogenic artifacts publication-title: Neurol. Clin. Neurophysiol. NCN – volume: 7 start-page: 138 year: 2013 ident: 10.1016/j.neuroimage.2019.116099_bib32 article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00138 – year: 2002 ident: 10.1016/j.neuroimage.2019.116099_bib29 article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10024 – volume: 100 start-page: 132 year: 2012 ident: 10.1016/j.neuroimage.2019.116099_bib11 article-title: High frequency spectral components after Secobarbital: the contribution of muscular origin-A study with MEG/EEG publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2012.02.002 – volume: 3 start-page: 981 year: 2012 ident: 10.1016/j.neuroimage.2019.116099_bib35 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.000981 – year: 2001 ident: 10.1016/j.neuroimage.2019.116099_bib3 article-title: Linear inverse source estimate of combined EEG and MEG data related to voluntary movements publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1052 – volume: 11 year: 2016 ident: 10.1016/j.neuroimage.2019.116099_bib8 article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study publication-title: PLoS One doi: 10.1371/journal.pone.0157655 – start-page: 523 year: 2017 ident: 10.1016/j.neuroimage.2019.116099_bib25 article-title: Microfabricated optically-pumped magnetometers doi: 10.1007/978-3-319-34070-8_17 – volume: 110 year: 2017 ident: 10.1016/j.neuroimage.2019.116099_bib39 article-title: A microfabricated optically-pumped magnetic gradiometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.4974349 – volume: 87 start-page: 527 year: 1929 ident: 10.1016/j.neuroimage.2019.116099_bib6 article-title: Über das Elektrenkephalogramm des Menschen publication-title: Arch. Psychiatr. Nervenkr. doi: 10.1007/BF01797193 – year: 2004 ident: 10.1016/j.neuroimage.2019.116099_bib2 article-title: Multimodal integration of EEG and MEG data: a simulation study with variable signal-to-noise ratio and number of sensors publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20011 – year: 2007 ident: 10.1016/j.neuroimage.2019.116099_bib38 article-title: The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.066 – volume: 20 start-page: 327 year: 2017 ident: 10.1016/j.neuroimage.2019.116099_bib4 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4504 – year: 1962 ident: 10.1016/j.neuroimage.2019.116099_bib14 article-title: The scalp as an electroencephalographic averager publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(62)90028-7 – volume: 89 year: 2002 ident: 10.1016/j.neuroimage.2019.116099_bib1 article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.130801 – volume: 29 start-page: 764 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2019.116099_bib20 article-title: Localizing human visual gamma-band activity in frequency, time and space publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.043 |
SSID | ssj0009148 |
Score | 2.590374 |
Snippet | One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116099 |
SubjectTerms | Adult Brain research Collaboration Data acquisition EEG Electroencephalography Electroencephalography - instrumentation Equipment Design Female Humans Magnetic fields Magnetoencephalography Magnetoencephalography - instrumentation Male Medical imaging MEG Neuroimaging Neuroimaging - instrumentation Optically-pumped magnetometers Sensors Wearable computers Wearable Electronic Devices Wearable neuroimaging |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86QbyI306nVPBaXNu0SfQgIo4hzJPD3UKSRjbRbrru__e9Nu3cFNk5L9D2ff1e3xchl4Ip-xqnsW84DTHNSH0NwuxzDmg9UDGzCjO6vaek26ePg3jgfrhNXVllZRMLQ52ODf4jvwpDHFMC8LZ9O_n0cWsUZlfdCo11soGjy1Cq2YDNh-4GtGyFiyOfA4Gr5Cnru4p5kaMP0Fos8BJgO5J2MQH2T_f0G34uV1H-cEudHbLt8KR3VwrALlmz2R7Z7LmM-T7RLyDK2B7l1U8CzuraAzugi90QnspSryhYV1MsgfaAIrP5GDV-MlTVSOuCzO3MWTo6IP3Ow_N913d7FXwTJzT3UwFRnFCWRswkoQYAR1nS5koAlxSF-ExwcOKpgaiZGwYhR0oDI2ItlAitpe3okDSycWaPiSd0pLCRD-I2Qzkotwm0VhDcckp1JHSTsOpzSuOGjuPui3dZVZe9yTkjJDJCloxokqC-OSkHb6xwR1Qck1VjKZhCCd5hhbs39V0HPkpQseLtViUg0hmBqZyLbJNc1MegvpiTUZkdz5CGxSHDvWBNclTKU_26UQC6AwgUPuKCpNUEOBp88SQbDYsR4TyMAKiGJ_8_1inZwncoWytbpJF_zewZYKxcnxeK9A0MByiO priority: 102 providerName: ProQuest |
Title | Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919306901 https://dx.doi.org/10.1016/j.neuroimage.2019.116099 https://www.ncbi.nlm.nih.gov/pubmed/31419612 https://www.proquest.com/docview/2296586750 https://www.proquest.com/docview/2275271869 https://pubmed.ncbi.nlm.nih.gov/PMC8235152 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8IRAQrxMML4KBQVpr1mbxKlteCoI1A1RTQxE3yzb8UQnSCsor_x27hwnrGwPlfaSKvVdlNz3yXdngC-Sa_crL_LYCpbSNiOLDQpzLARG64nOudO0o3s17A1u2fdRPlqCs7oXhsoqg-2vbLq31uGfTqBmZzoed35iZIDuBp8oMxq36zvYGScp__r6XuYhE1a1w-VZTNChmqeq8fIzI8ePqLlU5CXRfvS6fgrsP13U3yHox0rKP1zTxTp8CjFl1K9eewOWXPkZVq_CrvkmmDsUZ2qRipo3QYd1HKEtMP58iEiXReSL1vUzlUFHCFG62YSoMb3X9VhrDxbOzfmwtAW3F-c3Z4M4nK0Q27zHZnEhMZOT2rGM215qMIhD0nWFlsgpzTBHkwIdeWExcxaWY9pRsMTK3EgtU-dYN9uG5XJSul2IpMk0NfNh7maZQAW3iTEaE1zBmMmkaQGvyalsGDxO5188qLrC7Ld6Z4QiRqiKES1IGsxpNXxjARxZc0zVzaVoDhV6iAVwTxrcOSFcELtdC4gKhuBZpSlN18GsrNuCo2YZVZj2ZXTpJi8Ew_OU09lgLdip5Kn53CxB_cEoFIk4J2kNAI0Hn18px_d-TLhIMwxW073_-qh9WKO7qvuyDcuzpxd3gGHYzBx6PcMrH_FDWOl_uxwM8ff0fPjj-g3k5TfQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuqLwXWggSHCMSx4ltUIVQH9rSbk-t2JuxHaMWQXZht0L8KX4jM3GcbQtCe-nZnpXjGc98s_MCeKmE8Z_Lukyd5IzCjDy1KMyplIjWc1MKbyiiOzqqhif8w7gcr8DvWAtDaZVRJ7aKup44-o_8NWPUpgThbfZu-j2lqVEUXY0jNIJYHPhfP9Flm23t7yB_XzG2t3u8PUy7qQKpKys-T2uFPowynhfCVcwifOGiyqRReEbD0TtREk1Y7dBnlE4g4K557lRplVHMe54V-Ls3YA0Nb0bOnhiLRZPfnIfSu7JIZZ6rLnMo5JO1_SnPvqGWoIQyhbqqytqOs_80h3_D3atZmxfM4N463Onwa_I-CNxdWPHNPbg56iL098F-xDuicqykPwkaxzcJ6h3bzqJITFMnbYK8mVHKdYI7Gj-fkIaZnprYQrvd1s3oubL0AE6u5cYfwmozafxjSJQtDBUOop_ouERl4nJrDTrTknNbKDsAEa9Tu67JOc3a-KpjNtsXvWCEJkbowIgB5D3lNDT6WIJGRY7pWMiKqlejNVqC9m1P24GdAGKWpN6IAqI7pTPTiycygBf9MqoLigGZxk_OaY8omaA5ZAN4FOSp_9wix7eKiBcv8ZKk9RuoFfnllebstG1JLlmBwJg9-f-xnsOt4fHoUB_uHx08hdv0PaGscwNW5z_O_Sbiu7l91j6qBD5d9yv-A_ryYsM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFD7BJSG-GO-uoo6JPk7Y6XSmLYQYFTYgsiFGIm-l7ZSA0dnVXWL8a_w6z5lpZwWN2Ree2246Pbfv7LkBvFTC-JOiKlInOaMwI08tMnMqJaL1zBTCG4ro7o_KnUP-_qg4WoKLWAtDaZVRJzaKuho7-o98jTFqU4LwdrB2EtIiDraGryffU5ogRZHWOE6jZZE9_-snum_Tzd0tpPUrxobbn97tpGHCQOqKks_SSqE_o4znuXAlswhluCgH0ii8r-HoqSiJ5qxy6D9KJxB8VzxzqrDKKOY9H-T4uzdgWZBX1IPlt9ujg4_zlr8ZbwvxijyVWaZCHlGbXdZ0qzz7hjqD0ssUaq5y0PSf_adx_Bv8Xs3h_MMoDm_DrYBmkzct-92BJV_fhZX9EK-_B_YzvhIVZyXdTdBUrieohWwzmSIxdZU06fJmSgnYCe6o_WxM-mZyamJD7WZbmNhzZek-HF7Lmz-AXj2u_SNIlM0NlRGi1-i4RNXiMmsNutaSc5sr2wcRn1O70PKcJm981TG37YueE0ITIXRLiD5k3clJ2_ZjgTMqUkzHslZUxBpt0wJnN7qzAfq0kGbB06uRQXRQQVM9F5g-vOiWUXlQRMjUfnxOe0TBBE0l68PDlp-6z80zlFzEv_iIlzit20CNyS-v1GenTYNyyXKEyezx_6_1HFZQgvWH3dHeE7hJn9PWeK5Cb_bj3D9FsDezz4JUJXB83YL8G4qOaF4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+neuroimaging%3A+Combining+and+contrasting+magnetoencephalography+and+electroencephalography&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Boto%2C+Elena&rft.au=Seedat%2C+Zelekha+A&rft.au=Holmes%2C+Niall&rft.au=Leggett%2C+James&rft.date=2019-11-01&rft.eissn=1095-9572&rft.volume=201&rft.spage=116099&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116099&rft_id=info%3Apmid%2F31419612&rft.externalDocID=31419612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |