Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography

One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the e...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 201; p. 116099
Main Authors Boto, Elena, Seedat, Zelekha A., Holmes, Niall, Leggett, James, Hill, Ryan M., Roberts, Gillian, Shah, Vishal, Fromhold, T. Mark, Mullinger, Karen J., Tierney, Tim M., Barnes, Gareth R., Bowtell, Richard, Brookes, Matthew J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms. •Introduction of second generation, smaller, lighter, and highly sensitive OPMs for MEG.•First demonstration of simultaneous EEG and OPM-MEG measurements.•OPM-MEG shown to be less sensitive to artefacts when subjects are allowed to move.•OPM-MEG shown to exhibit fundamentally better theoretical limit on spatial resolution.
AbstractList One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of 'wearable' neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an 'EEG-like' cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of 'wearable' neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an 'EEG-like' cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.
One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.
One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms. •Introduction of second generation, smaller, lighter, and highly sensitive OPMs for MEG.•First demonstration of simultaneous EEG and OPM-MEG measurements.•OPM-MEG shown to be less sensitive to artefacts when subjects are allowed to move.•OPM-MEG shown to exhibit fundamentally better theoretical limit on spatial resolution.
One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms.
ArticleNumber 116099
Author Hill, Ryan M.
Mullinger, Karen J.
Brookes, Matthew J.
Boto, Elena
Roberts, Gillian
Holmes, Niall
Barnes, Gareth R.
Bowtell, Richard
Fromhold, T. Mark
Shah, Vishal
Seedat, Zelekha A.
Tierney, Tim M.
Leggett, James
AuthorAffiliation d Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
b QuSpin Inc, 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
e Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom
a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
c School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
AuthorAffiliation_xml – name: a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– name: d Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
– name: c School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– name: e Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom
– name: b QuSpin Inc, 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
Author_xml – sequence: 1
  givenname: Elena
  surname: Boto
  fullname: Boto, Elena
  email: elena.boto@nottingham.ac.uk
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 2
  givenname: Zelekha A.
  surname: Seedat
  fullname: Seedat, Zelekha A.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 3
  givenname: Niall
  surname: Holmes
  fullname: Holmes, Niall
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 4
  givenname: James
  surname: Leggett
  fullname: Leggett, James
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 5
  givenname: Ryan M.
  surname: Hill
  fullname: Hill, Ryan M.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 6
  givenname: Gillian
  surname: Roberts
  fullname: Roberts, Gillian
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 7
  givenname: Vishal
  surname: Shah
  fullname: Shah, Vishal
  organization: QuSpin Inc, 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
– sequence: 8
  givenname: T. Mark
  surname: Fromhold
  fullname: Fromhold, T. Mark
  organization: School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 9
  givenname: Karen J.
  surname: Mullinger
  fullname: Mullinger, Karen J.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 10
  givenname: Tim M.
  surname: Tierney
  fullname: Tierney, Tim M.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom
– sequence: 11
  givenname: Gareth R.
  surname: Barnes
  fullname: Barnes, Gareth R.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom
– sequence: 12
  givenname: Richard
  surname: Bowtell
  fullname: Bowtell, Richard
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– sequence: 13
  givenname: Matthew J.
  surname: Brookes
  fullname: Brookes, Matthew J.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31419612$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvGyEUhVGVqHm0f6EaqZtuxgUGGOiiamslaaRI3bTqEjHMjY2LwYWZSP73YeI8Wq-8gYs4fBzu4QwdhRgAoYrgGcFEfFzNAowpurVZwIxiomaECKzUK3RKsOK14i09mmre1JIQdYLOcl5hjBVh8jU6aQgjShB6irrfYJLpPFTPRBcWn6p5XHculLIyoa9sDEMyeZjWRRFgiBAsbJbGx0Uym-X2QQYe7JD2t96g41vjM7x9nM_Rr8uLn_Pv9c2Pq-v515vacsGGulcMt8oAa1oraNdQwVqBpVFdGRjBTEnJm962jErbcq56RqzinTKKAjDcnKPPO-5m7NbQW5g8e71J5VFpq6Nx-v-d4JZ6Ee-0pA0nnBbAh0dAin9HyINeu2zBexMgjllT2nLaEilUkb7fk67imEJ5XlEpwaVo-eTo3b-Onq08tf_Fsk0x5wS32rrBDO6h3c5rgvWUt17pl7z1lLfe5V0Acg_wdMcBR7_tjkLJ5M5B0tm6KbrepRKj7qM7BPJlD2J9-TbW-D-wPQxxDyu540A
CitedBy_id crossref_primary_10_1088_1674_1056_ad401b
crossref_primary_10_3389_fphys_2021_724755
crossref_primary_10_1016_j_neuroimage_2022_118990
crossref_primary_10_3390_photonics10121302
crossref_primary_10_1016_j_neuroimage_2023_120157
crossref_primary_10_1109_TIM_2023_3244249
crossref_primary_10_1111_epi_17806
crossref_primary_10_3390_s23125454
crossref_primary_10_3390_s21206886
crossref_primary_10_1038_s41598_023_31111_y
crossref_primary_10_1111_epi_17368
crossref_primary_10_1186_s12915_021_01073_6
crossref_primary_10_1016_j_neuroimage_2021_117815
crossref_primary_10_1109_TIM_2023_3346516
crossref_primary_10_1162_imag_a_00283
crossref_primary_10_3389_fnins_2021_824759
crossref_primary_10_1016_j_measurement_2024_116376
crossref_primary_10_1162_imag_a_00489
crossref_primary_10_1002_hbm_26118
crossref_primary_10_1016_j_sna_2023_114869
crossref_primary_10_1038_s41398_024_03047_y
crossref_primary_10_1117_1_JOM_3_4_044501
crossref_primary_10_1080_00107514_2023_2182950
crossref_primary_10_1016_j_cmpb_2024_108292
crossref_primary_10_1111_psyp_13844
crossref_primary_10_1109_ACCESS_2021_3110882
crossref_primary_10_3390_electronics13163163
crossref_primary_10_1063_5_0167372
crossref_primary_10_1093_brain_awz321
crossref_primary_10_1016_j_neuroimage_2021_118401
crossref_primary_10_31083_j_jin2305093
crossref_primary_10_1038_s41467_019_12486_x
crossref_primary_10_3390_s23094256
crossref_primary_10_1162_imag_a_00179
crossref_primary_10_1162_imag_a_00495
crossref_primary_10_1088_1741_2552_ad44d8
crossref_primary_10_1016_j_neuroimage_2022_119420
crossref_primary_10_1109_JSEN_2024_3438990
crossref_primary_10_1080_27706710_2024_2322930
crossref_primary_10_1016_j_neuroimage_2022_119027
crossref_primary_10_1016_j_tins_2022_05_008
crossref_primary_10_3390_bios12121097
crossref_primary_10_3389_fnins_2023_1284262
crossref_primary_10_1088_1741_2552_abef39
crossref_primary_10_1109_JSEN_2022_3143209
crossref_primary_10_1016_j_neuroimage_2020_116995
crossref_primary_10_1016_j_jneumeth_2023_110010
crossref_primary_10_1016_j_jneumeth_2024_110131
crossref_primary_10_3389_fninf_2022_771965
crossref_primary_10_1016_j_neuroimage_2021_118210
crossref_primary_10_1038_s41598_020_80590_w
crossref_primary_10_1109_TIM_2022_3192287
crossref_primary_10_1093_bjr_tqae123
crossref_primary_10_1016_j_isci_2024_109250
crossref_primary_10_1016_j_mattod_2024_03_005
crossref_primary_10_1109_TIM_2022_3216411
crossref_primary_10_1109_JSEN_2024_3438765
crossref_primary_10_1016_j_nicl_2021_102814
crossref_primary_10_1109_JSEN_2023_3297109
crossref_primary_10_1016_j_neuroimage_2020_116817
crossref_primary_10_1515_revneuro_2020_0073
crossref_primary_10_3390_brainsci13040663
crossref_primary_10_1038_s41598_020_77589_8
crossref_primary_10_1109_TMI_2023_3263167
crossref_primary_10_1002_sus2_195
crossref_primary_10_1016_j_neuroimage_2021_117969
crossref_primary_10_3389_fnins_2021_619591
crossref_primary_10_1016_j_neuroimage_2021_118788
crossref_primary_10_1080_10255842_2024_2414069
crossref_primary_10_1093_cercor_bhae108
crossref_primary_10_1162_imag_a_00112
crossref_primary_10_3389_fphy_2022_969129
Cites_doi 10.1016/S0013-4694(98)00046-7
10.1088/0031-9155/40/3/001
10.1038/nature26147
10.1016/0013-4694(65)90088-X
10.1016/j.neuroimage.2013.10.040
10.1088/1742-6596/723/1/012055
10.1016/j.neuroimage.2019.05.063
10.1109/10.759053
10.1016/j.neuroimage.2008.05.064
10.1016/j.neuroimage.2017.01.034
10.1103/RevModPhys.65.413
10.1016/j.neuroimage.2016.12.048
10.1073/pnas.1221287110
10.1016/j.clinph.2007.04.027
10.1016/j.neuroimage.2007.06.002
10.1016/j.neuroimage.2018.07.035
10.1016/j.neuroimage.2019.03.022
10.1016/S1388-2457(99)00141-8
10.1088/0031-9155/32/1/004
10.1088/1361-6560/aa93d1
10.1016/j.neuroimage.2018.07.028
10.7567/JJAP.54.026601
10.1038/nphoton.2007.201
10.1002/hbm.20571
10.1126/science.175.4022.664
10.3389/fnhum.2013.00138
10.1002/hbm.10024
10.1016/j.eplepsyres.2012.02.002
10.1364/BOE.3.000981
10.1002/hbm.1052
10.1371/journal.pone.0157655
10.1007/978-3-319-34070-8_17
10.1063/1.4974349
10.1007/BF01797193
10.1002/hbm.20011
10.1016/j.neuroimage.2007.03.066
10.1038/nn.4504
10.1016/0013-4694(62)90028-7
10.1103/PhysRevLett.89.130801
10.1016/j.neuroimage.2005.08.043
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Inc.
Copyright Elsevier Limited Nov 1, 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Nov 1, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2019.116099
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 116099
ExternalDocumentID PMC8235152
31419612
10_1016_j_neuroimage_2019_116099
S1053811919306901
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R44 MH110288
– fundername: Wellcome Trust
  grantid: 203257/Z/16/Z
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c564t-d94079ae437c62b32647608a9b08a410498853dc7428c7559d41c95b9a92ee403
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:04:34 EDT 2025
Fri Jul 11 12:44:28 EDT 2025
Wed Aug 13 08:40:22 EDT 2025
Mon Jul 21 05:42:14 EDT 2025
Tue Jul 01 03:02:09 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 23 02:36:56 EST 2024
Tue Aug 26 20:02:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalography
Optically-pumped magnetometers
Magnetoencephalography
EEG
MEG
Wearable neuroimaging
Language English
License Copyright © 2019. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-d94079ae437c62b32647608a9b08a410498853dc7428c7559d41c95b9a92ee403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://nottingham-repository.worktribe.com/output/4937511
PMID 31419612
PQID 2296586750
PQPubID 2031077
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235152
proquest_miscellaneous_2275271869
proquest_journals_2296586750
pubmed_primary_31419612
crossref_citationtrail_10_1016_j_neuroimage_2019_116099
crossref_primary_10_1016_j_neuroimage_2019_116099
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_116099
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_116099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Shah, Knappe, Schwindt, Kitching (bib37) 2007; 1
Sheng, Perry, Krzyzewski, Geller, Kitching, Knappe (bib39) 2017; 110
Tierney, Holmes, Mellor, López, Roberts, Hill, Boto, Leggett, Shah, Brookes, Bowtell, Barnes (bib40) 2019; 199
Fuchs, Wagner, Wischmann, Köhler, Theißen, Drenckhahn, Buchner (bib15) 1998; 107
Molins, Stufflebeam, Brown, Hämäläinen (bib30) 2008; 42
Sharon, Hämäläinen, Tootell, Halgren, Belliveau (bib38) 2007
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib18) 1993; 65
Babiloni, Carducci, Cincotti, Gratta, Pizzella, Romani, Rossini, Tecchio, Babiloni (bib3) 2001
Baillet (bib4) 2017; 20
Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib9) 2018; 555
Jiménez-Martínez, Knappe (bib25) 2017
Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib10) 2017; 149
Liu, Dale, Belliveau (bib29) 2002
Iivanainen, Zetter, Parkkonen (bib24) 2019
Pfurtscheller, Lopes Da Silva (bib34) 1999; 110
Boto, Bowtell, Krüger, Fromhold, Morris, Meyer, Barnes, Brookes (bib8) 2016; 11
Kamada, Sato, Ito, Natsukawa, Okano, Mizutani, Kobayashi (bib26) 2015; 54
Cohen (bib12) 1972; 175
DeLucchi, Garoutte, Aird (bib14) 1962
Goldenholz, Ahlfors, Hämäläinen, Sharon, Ishitobi, Vaina, Stufflebeam (bib16) 2009
Tierney, Holmes, Meyer, Boto, Roberts, Leggett, Buck, Duque-Muñoz, Litvak, Bestmann, Baldeweg, Bowtell, Brookes, Barnes (bib41) 2018; 181
Mullinger, Mayhew, Bagshaw, Bowtell, Francis (bib31) 2013; 110
Knappe, Alem, Sheng, Kitching (bib28) 2016; 723
Iivanainen, Stenroos, Parkkonen (bib22) 2017; 147
Borna, Carter, Goldberg, Colombo, Jau, Berry, McKay, Stephen, Weisend, Schwindt (bib7) 2017; 62
Hämäläinen, Lundqvist (bib17) 2019
Sander, Preusser, Mhaskar, Kitching, Trahms, Knappe (bib35) 2012; 3
Sarvas (bib36) 1987; 32
Zhang (bib43) 1995; 40
Zimmermann, Scharein (bib44) 2004
Huang, Song, Hagler, Podgorny, Jousmaki, Cui, Gaa, Harrington, Dale, Lee, Elman, Halgren (bib21) 2007
Allred, Lyman, Kornack, Romalis (bib1) 2002; 89
Iivanainen, Zetter, Grön, Hakkarainen, Parkkonen (bib23) 2019; 194
Muthukumaraswamy (bib32) 2013; 7
Osborne, Orton, Alem, Shah (bib33) 2018; XI
Cooper, Winter, Crow, Walter (bib13) 1965
Holmes, Leggett, Boto, Roberts, Hill, Tierney, Shah, Barnes, Brookes, Bowtell (bib19) 2018; 181
Baillet, Garnero, Marin, Hugonin (bib5) 1999; 46
Hoogenboom, Schoffelen, Oostenveld, Parkes, Fries (bib20) 2006; 29
Claus, Velis, Lopes da Silva, Viergever, Kalitzin (bib11) 2012; 100
Babiloni, Babiloni, Carducci, Romani, Rossini, Angelone, Cincotti (bib2) 2004
Whitham, Pope, Fitzgibbon, Lewis, Clark, Loveless, Broberg, Wallace, DeLosAngeles, Lillie, Hardy, Fronsko, Pulbrook, Willoughby (bib42) 2007; 118
Berger (bib6) 1929; 87
Kim, Begus, Xia, Lee, Jazbinsek, Trontelj, Romalis (bib27) 2014; 89
Cohen (10.1016/j.neuroimage.2019.116099_bib12) 1972; 175
Iivanainen (10.1016/j.neuroimage.2019.116099_bib22) 2017; 147
Liu (10.1016/j.neuroimage.2019.116099_bib29) 2002
Kamada (10.1016/j.neuroimage.2019.116099_bib26) 2015; 54
Hämäläinen (10.1016/j.neuroimage.2019.116099_bib17) 2019
Fuchs (10.1016/j.neuroimage.2019.116099_bib15) 1998; 107
Kim (10.1016/j.neuroimage.2019.116099_bib27) 2014; 89
Sarvas (10.1016/j.neuroimage.2019.116099_bib36) 1987; 32
Molins (10.1016/j.neuroimage.2019.116099_bib30) 2008; 42
Sander (10.1016/j.neuroimage.2019.116099_bib35) 2012; 3
Iivanainen (10.1016/j.neuroimage.2019.116099_bib24) 2019
Muthukumaraswamy (10.1016/j.neuroimage.2019.116099_bib32) 2013; 7
Tierney (10.1016/j.neuroimage.2019.116099_bib40) 2019; 199
Shah (10.1016/j.neuroimage.2019.116099_bib37) 2007; 1
Hämäläinen (10.1016/j.neuroimage.2019.116099_bib18) 1993; 65
Holmes (10.1016/j.neuroimage.2019.116099_bib19) 2018; 181
Whitham (10.1016/j.neuroimage.2019.116099_bib42) 2007; 118
Osborne (10.1016/j.neuroimage.2019.116099_bib33) 2018; XI
Babiloni (10.1016/j.neuroimage.2019.116099_bib3) 2001
Knappe (10.1016/j.neuroimage.2019.116099_bib28) 2016; 723
Boto (10.1016/j.neuroimage.2019.116099_bib10) 2017; 149
Berger (10.1016/j.neuroimage.2019.116099_bib6) 1929; 87
Sharon (10.1016/j.neuroimage.2019.116099_bib38) 2007
Goldenholz (10.1016/j.neuroimage.2019.116099_bib16) 2009
Babiloni (10.1016/j.neuroimage.2019.116099_bib2) 2004
Cooper (10.1016/j.neuroimage.2019.116099_bib13) 1965
Boto (10.1016/j.neuroimage.2019.116099_bib9) 2018; 555
Iivanainen (10.1016/j.neuroimage.2019.116099_bib23) 2019; 194
Zhang (10.1016/j.neuroimage.2019.116099_bib43) 1995; 40
Boto (10.1016/j.neuroimage.2019.116099_bib8) 2016; 11
Allred (10.1016/j.neuroimage.2019.116099_bib1) 2002; 89
Huang (10.1016/j.neuroimage.2019.116099_bib21) 2007
Sheng (10.1016/j.neuroimage.2019.116099_bib39) 2017; 110
Tierney (10.1016/j.neuroimage.2019.116099_bib41) 2018; 181
Borna (10.1016/j.neuroimage.2019.116099_bib7) 2017; 62
Baillet (10.1016/j.neuroimage.2019.116099_bib5) 1999; 46
Claus (10.1016/j.neuroimage.2019.116099_bib11) 2012; 100
DeLucchi (10.1016/j.neuroimage.2019.116099_bib14) 1962
Jiménez-Martínez (10.1016/j.neuroimage.2019.116099_bib25) 2017
Zimmermann (10.1016/j.neuroimage.2019.116099_bib44) 2004
Baillet (10.1016/j.neuroimage.2019.116099_bib4) 2017; 20
Pfurtscheller (10.1016/j.neuroimage.2019.116099_bib34) 1999; 110
Hoogenboom (10.1016/j.neuroimage.2019.116099_bib20) 2006; 29
Mullinger (10.1016/j.neuroimage.2019.116099_bib31) 2013; 110
References_xml – volume: 54
  year: 2015
  ident: bib26
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
– volume: 181
  start-page: 513
  year: 2018
  end-page: 520
  ident: bib41
  article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function
  publication-title: Neuroimage
– volume: 555
  start-page: 657
  year: 2018
  end-page: 661
  ident: bib9
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
– year: 2001
  ident: bib3
  article-title: Linear inverse source estimate of combined EEG and MEG data related to voluntary movements
  publication-title: Hum. Brain Mapp.
– volume: 110
  start-page: 13636
  year: 2013
  end-page: 13641
  ident: bib31
  article-title: Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 523
  year: 2017
  end-page: 551
  ident: bib25
  article-title: Microfabricated optically-pumped magnetometers
  publication-title: Smart Sensors, Measurement and Instrumentation
– volume: 42
  start-page: 1069
  year: 2008
  end-page: 1077
  ident: bib30
  article-title: Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation
  publication-title: Neuroimage
– year: 1962
  ident: bib14
  article-title: The scalp as an electroencephalographic averager
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 107
  start-page: 93
  year: 1998
  end-page: 111
  ident: bib15
  article-title: Improving source reconstructions by combining bioelectric and biomagnetic data
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 7
  start-page: 138
  year: 2013
  ident: bib32
  article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations
  publication-title: Front. Hum. Neurosci.
– volume: 199
  start-page: 598
  year: 2019
  end-page: 608
  ident: bib40
  article-title: Optically Pumped Magnetometers: from Quantum Origins to Multi-Channel Magnetoencephalography
  publication-title: Neuroimage
– year: 2019
  ident: bib17
  article-title: MEG as an Enabling Tool in Neuroscience: Transcending Boundaries with New Analysis Methods and Devices
  publication-title: Magnetoencephalography: From Signals to Dynamic Cortical Networks
– volume: 723
  year: 2016
  ident: bib28
  article-title: Microfabricated optically-pumped magnetometers for biomagnetic applications
  publication-title: J. Phys. Conf. Ser.
– volume: 87
  start-page: 527
  year: 1929
  end-page: 570
  ident: bib6
  article-title: Über das Elektrenkephalogramm des Menschen
  publication-title: Arch. Psychiatr. Nervenkr.
– year: 2002
  ident: bib29
  article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy
  publication-title: Hum. Brain Mapp.
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: bib34
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  ident: bib36
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
– year: 1965
  ident: bib13
  article-title: Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 46
  start-page: 522
  year: 1999
  end-page: 534
  ident: bib5
  article-title: Combined MEG and EEG source imaging by minimization of mutual information
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 147
  start-page: 542
  year: 2017
  end-page: 553
  ident: bib22
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
– volume: 40
  start-page: 335
  year: 1995
  end-page: 349
  ident: bib43
  article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres
  publication-title: Phys. Med. Biol.
– volume: 1
  start-page: 649
  year: 2007
  end-page: 652
  ident: bib37
  article-title: Subpicotesla atomic magnetometry with a microfabricated vapour cell
  publication-title: Nat. Photonics
– volume: 149
  start-page: 404
  year: 2017
  end-page: 414
  ident: bib10
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: Neuroimage
– year: 2019
  ident: bib24
  publication-title: Potential of On-Scalp MEG: Robust Detection of Human Visual Gamma-Band Responses
– volume: 100
  start-page: 132
  year: 2012
  end-page: 141
  ident: bib11
  article-title: High frequency spectral components after Secobarbital: the contribution of muscular origin-A study with MEG/EEG
  publication-title: Epilepsy Res.
– volume: 175
  start-page: 664
  year: 1972
  end-page: 666
  ident: bib12
  article-title: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer
  publication-title: Science
– volume: 62
  start-page: 8909
  year: 2017
  end-page: 8923
  ident: bib7
  article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers
  publication-title: Phys. Med. Biol.
– volume: 89
  start-page: 143
  year: 2014
  end-page: 151
  ident: bib27
  article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study
  publication-title: Neuroimage
– volume: 29
  start-page: 764
  year: 2006
  end-page: 773
  ident: bib20
  article-title: Localizing human visual gamma-band activity in frequency, time and space
  publication-title: Neuroimage
– volume: 194
  start-page: 244
  year: 2019
  end-page: 258
  ident: bib23
  article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers
  publication-title: Neuroimage
– volume: 181
  start-page: 760
  year: 2018
  end-page: 774
  ident: bib19
  article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
  publication-title: Neuroimage
– volume: 3
  start-page: 981
  year: 2012
  ident: bib35
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Opt. Express
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib18
  article-title: Magnetoencephalography -- theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– year: 2007
  ident: bib38
  article-title: The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex
  publication-title: Neuroimage
– volume: 89
  year: 2002
  ident: bib1
  article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
  publication-title: Phys. Rev. Lett.
– volume: 110
  year: 2017
  ident: bib39
  article-title: A microfabricated optically-pumped magnetic gradiometer
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 327
  year: 2017
  end-page: 339
  ident: bib4
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
– volume: XI
  year: 2018
  ident: bib33
  article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Proc. SPIE, Steep Dispers. Eng. Opto-Atomic Precis. Metrol.
– start-page: 78
  year: 2004
  ident: bib44
  article-title: MEG and EEG show different sensitivity to myogenic artifacts
  publication-title: Neurol. Clin. Neurophysiol. NCN
– year: 2007
  ident: bib21
  article-title: A novel integrated MEG and EEG analysis method for dipolar sources
  publication-title: Neuroimage
– volume: 118
  start-page: 1877
  year: 2007
  end-page: 1888
  ident: bib42
  article-title: Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG
  publication-title: Clin. Neurophysiol.
– year: 2004
  ident: bib2
  article-title: Multimodal integration of EEG and MEG data: a simulation study with variable signal-to-noise ratio and number of sensors
  publication-title: Hum. Brain Mapp.
– volume: 11
  year: 2016
  ident: bib8
  article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study
  publication-title: PLoS One
– year: 2009
  ident: bib16
  article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum. Brain Mapp.
– volume: 107
  start-page: 93
  year: 1998
  ident: 10.1016/j.neuroimage.2019.116099_bib15
  article-title: Improving source reconstructions by combining bioelectric and biomagnetic data
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00046-7
– volume: 40
  start-page: 335
  year: 1995
  ident: 10.1016/j.neuroimage.2019.116099_bib43
  article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/40/3/001
– volume: 555
  start-page: 657
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116099_bib9
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
– year: 1965
  ident: 10.1016/j.neuroimage.2019.116099_bib13
  article-title: Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(65)90088-X
– volume: 89
  start-page: 143
  year: 2014
  ident: 10.1016/j.neuroimage.2019.116099_bib27
  article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.040
– volume: 723
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116099_bib28
  article-title: Microfabricated optically-pumped magnetometers for biomagnetic applications
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/723/1/012055
– volume: 199
  start-page: 598
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116099_bib40
  article-title: Optically Pumped Magnetometers: from Quantum Origins to Multi-Channel Magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.063
– year: 2019
  ident: 10.1016/j.neuroimage.2019.116099_bib24
– volume: 46
  start-page: 522
  year: 1999
  ident: 10.1016/j.neuroimage.2019.116099_bib5
  article-title: Combined MEG and EEG source imaging by minimization of mutual information
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.759053
– volume: 42
  start-page: 1069
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2019.116099_bib30
  article-title: Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.064
– volume: 149
  start-page: 404
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116099_bib10
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.034
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.neuroimage.2019.116099_bib18
  article-title: Magnetoencephalography -- theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 147
  start-page: 542
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116099_bib22
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.048
– volume: 110
  start-page: 13636
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116099_bib31
  article-title: Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1221287110
– year: 2019
  ident: 10.1016/j.neuroimage.2019.116099_bib17
  article-title: MEG as an Enabling Tool in Neuroscience: Transcending Boundaries with New Analysis Methods and Devices
– volume: 118
  start-page: 1877
  year: 2007
  ident: 10.1016/j.neuroimage.2019.116099_bib42
  article-title: Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.04.027
– volume: XI
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116099_bib33
  article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Proc. SPIE, Steep Dispers. Eng. Opto-Atomic Precis. Metrol.
– year: 2007
  ident: 10.1016/j.neuroimage.2019.116099_bib21
  article-title: A novel integrated MEG and EEG analysis method for dipolar sources
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.002
– volume: 181
  start-page: 513
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116099_bib41
  article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.035
– volume: 194
  start-page: 244
  year: 2019
  ident: 10.1016/j.neuroimage.2019.116099_bib23
  article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.022
– volume: 110
  start-page: 1842
  year: 1999
  ident: 10.1016/j.neuroimage.2019.116099_bib34
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 32
  start-page: 11
  year: 1987
  ident: 10.1016/j.neuroimage.2019.116099_bib36
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– volume: 62
  start-page: 8909
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116099_bib7
  article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa93d1
– volume: 181
  start-page: 760
  year: 2018
  ident: 10.1016/j.neuroimage.2019.116099_bib19
  article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.028
– volume: 54
  year: 2015
  ident: 10.1016/j.neuroimage.2019.116099_bib26
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.026601
– volume: 1
  start-page: 649
  year: 2007
  ident: 10.1016/j.neuroimage.2019.116099_bib37
  article-title: Subpicotesla atomic magnetometry with a microfabricated vapour cell
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.201
– year: 2009
  ident: 10.1016/j.neuroimage.2019.116099_bib16
  article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20571
– volume: 175
  start-page: 664
  issue: 80
  year: 1972
  ident: 10.1016/j.neuroimage.2019.116099_bib12
  article-title: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer
  publication-title: Science
  doi: 10.1126/science.175.4022.664
– start-page: 78
  year: 2004
  ident: 10.1016/j.neuroimage.2019.116099_bib44
  article-title: MEG and EEG show different sensitivity to myogenic artifacts
  publication-title: Neurol. Clin. Neurophysiol. NCN
– volume: 7
  start-page: 138
  year: 2013
  ident: 10.1016/j.neuroimage.2019.116099_bib32
  article-title: High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00138
– year: 2002
  ident: 10.1016/j.neuroimage.2019.116099_bib29
  article-title: Monte Carlo simulation studies of EEG and MEG localization accuracy
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10024
– volume: 100
  start-page: 132
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116099_bib11
  article-title: High frequency spectral components after Secobarbital: the contribution of muscular origin-A study with MEG/EEG
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2012.02.002
– volume: 3
  start-page: 981
  year: 2012
  ident: 10.1016/j.neuroimage.2019.116099_bib35
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.000981
– year: 2001
  ident: 10.1016/j.neuroimage.2019.116099_bib3
  article-title: Linear inverse source estimate of combined EEG and MEG data related to voluntary movements
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1052
– volume: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2019.116099_bib8
  article-title: On the potential of a new generation of magnetometers for MEG: a beamformer simulation study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157655
– start-page: 523
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116099_bib25
  article-title: Microfabricated optically-pumped magnetometers
  doi: 10.1007/978-3-319-34070-8_17
– volume: 110
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116099_bib39
  article-title: A microfabricated optically-pumped magnetic gradiometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4974349
– volume: 87
  start-page: 527
  year: 1929
  ident: 10.1016/j.neuroimage.2019.116099_bib6
  article-title: Über das Elektrenkephalogramm des Menschen
  publication-title: Arch. Psychiatr. Nervenkr.
  doi: 10.1007/BF01797193
– year: 2004
  ident: 10.1016/j.neuroimage.2019.116099_bib2
  article-title: Multimodal integration of EEG and MEG data: a simulation study with variable signal-to-noise ratio and number of sensors
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20011
– year: 2007
  ident: 10.1016/j.neuroimage.2019.116099_bib38
  article-title: The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.066
– volume: 20
  start-page: 327
  year: 2017
  ident: 10.1016/j.neuroimage.2019.116099_bib4
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
– year: 1962
  ident: 10.1016/j.neuroimage.2019.116099_bib14
  article-title: The scalp as an electroencephalographic averager
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(62)90028-7
– volume: 89
  year: 2002
  ident: 10.1016/j.neuroimage.2019.116099_bib1
  article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.130801
– volume: 29
  start-page: 764
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2019.116099_bib20
  article-title: Localizing human visual gamma-band activity in frequency, time and space
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.043
SSID ssj0009148
Score 2.590374
Snippet One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116099
SubjectTerms Adult
Brain research
Collaboration
Data acquisition
EEG
Electroencephalography
Electroencephalography - instrumentation
Equipment Design
Female
Humans
Magnetic fields
Magnetoencephalography
Magnetoencephalography - instrumentation
Male
Medical imaging
MEG
Neuroimaging
Neuroimaging - instrumentation
Optically-pumped magnetometers
Sensors
Wearable computers
Wearable Electronic Devices
Wearable neuroimaging
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86QbyI306nVPBaXNu0SfQgIo4hzJPD3UKSRjbRbrru__e9Nu3cFNk5L9D2ff1e3xchl4Ip-xqnsW84DTHNSH0NwuxzDmg9UDGzCjO6vaek26ePg3jgfrhNXVllZRMLQ52ODf4jvwpDHFMC8LZ9O_n0cWsUZlfdCo11soGjy1Cq2YDNh-4GtGyFiyOfA4Gr5Cnru4p5kaMP0Fos8BJgO5J2MQH2T_f0G34uV1H-cEudHbLt8KR3VwrALlmz2R7Z7LmM-T7RLyDK2B7l1U8CzuraAzugi90QnspSryhYV1MsgfaAIrP5GDV-MlTVSOuCzO3MWTo6IP3Ow_N913d7FXwTJzT3UwFRnFCWRswkoQYAR1nS5koAlxSF-ExwcOKpgaiZGwYhR0oDI2ItlAitpe3okDSycWaPiSd0pLCRD-I2Qzkotwm0VhDcckp1JHSTsOpzSuOGjuPui3dZVZe9yTkjJDJCloxokqC-OSkHb6xwR1Qck1VjKZhCCd5hhbs39V0HPkpQseLtViUg0hmBqZyLbJNc1MegvpiTUZkdz5CGxSHDvWBNclTKU_26UQC6AwgUPuKCpNUEOBp88SQbDYsR4TyMAKiGJ_8_1inZwncoWytbpJF_zewZYKxcnxeK9A0MByiO
  priority: 102
  providerName: ProQuest
Title Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919306901
https://dx.doi.org/10.1016/j.neuroimage.2019.116099
https://www.ncbi.nlm.nih.gov/pubmed/31419612
https://www.proquest.com/docview/2296586750
https://www.proquest.com/docview/2275271869
https://pubmed.ncbi.nlm.nih.gov/PMC8235152
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8IRAQrxMML4KBQVpr1mbxKlteCoI1A1RTQxE3yzb8UQnSCsor_x27hwnrGwPlfaSKvVdlNz3yXdngC-Sa_crL_LYCpbSNiOLDQpzLARG64nOudO0o3s17A1u2fdRPlqCs7oXhsoqg-2vbLq31uGfTqBmZzoed35iZIDuBp8oMxq36zvYGScp__r6XuYhE1a1w-VZTNChmqeq8fIzI8ePqLlU5CXRfvS6fgrsP13U3yHox0rKP1zTxTp8CjFl1K9eewOWXPkZVq_CrvkmmDsUZ2qRipo3QYd1HKEtMP58iEiXReSL1vUzlUFHCFG62YSoMb3X9VhrDxbOzfmwtAW3F-c3Z4M4nK0Q27zHZnEhMZOT2rGM215qMIhD0nWFlsgpzTBHkwIdeWExcxaWY9pRsMTK3EgtU-dYN9uG5XJSul2IpMk0NfNh7maZQAW3iTEaE1zBmMmkaQGvyalsGDxO5188qLrC7Ld6Z4QiRqiKES1IGsxpNXxjARxZc0zVzaVoDhV6iAVwTxrcOSFcELtdC4gKhuBZpSlN18GsrNuCo2YZVZj2ZXTpJi8Ew_OU09lgLdip5Kn53CxB_cEoFIk4J2kNAI0Hn18px_d-TLhIMwxW073_-qh9WKO7qvuyDcuzpxd3gGHYzBx6PcMrH_FDWOl_uxwM8ff0fPjj-g3k5TfQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuqLwXWggSHCMSx4ltUIVQH9rSbk-t2JuxHaMWQXZht0L8KX4jM3GcbQtCe-nZnpXjGc98s_MCeKmE8Z_Lukyd5IzCjDy1KMyplIjWc1MKbyiiOzqqhif8w7gcr8DvWAtDaZVRJ7aKup44-o_8NWPUpgThbfZu-j2lqVEUXY0jNIJYHPhfP9Flm23t7yB_XzG2t3u8PUy7qQKpKys-T2uFPowynhfCVcwifOGiyqRReEbD0TtREk1Y7dBnlE4g4K557lRplVHMe54V-Ls3YA0Nb0bOnhiLRZPfnIfSu7JIZZ6rLnMo5JO1_SnPvqGWoIQyhbqqytqOs_80h3_D3atZmxfM4N463Onwa_I-CNxdWPHNPbg56iL098F-xDuicqykPwkaxzcJ6h3bzqJITFMnbYK8mVHKdYI7Gj-fkIaZnprYQrvd1s3oubL0AE6u5cYfwmozafxjSJQtDBUOop_ouERl4nJrDTrTknNbKDsAEa9Tu67JOc3a-KpjNtsXvWCEJkbowIgB5D3lNDT6WIJGRY7pWMiKqlejNVqC9m1P24GdAGKWpN6IAqI7pTPTiycygBf9MqoLigGZxk_OaY8omaA5ZAN4FOSp_9wix7eKiBcv8ZKk9RuoFfnllebstG1JLlmBwJg9-f-xnsOt4fHoUB_uHx08hdv0PaGscwNW5z_O_Sbiu7l91j6qBD5d9yv-A_ryYsM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFD7BJSG-GO-uoo6JPk7Y6XSmLYQYFTYgsiFGIm-l7ZSA0dnVXWL8a_w6z5lpZwWN2Ree2246Pbfv7LkBvFTC-JOiKlInOaMwI08tMnMqJaL1zBTCG4ro7o_KnUP-_qg4WoKLWAtDaZVRJzaKuho7-o98jTFqU4LwdrB2EtIiDraGryffU5ogRZHWOE6jZZE9_-snum_Tzd0tpPUrxobbn97tpGHCQOqKks_SSqE_o4znuXAlswhluCgH0ii8r-HoqSiJ5qxy6D9KJxB8VzxzqrDKKOY9H-T4uzdgWZBX1IPlt9ujg4_zlr8ZbwvxijyVWaZCHlGbXdZ0qzz7hjqD0ssUaq5y0PSf_adx_Bv8Xs3h_MMoDm_DrYBmkzct-92BJV_fhZX9EK-_B_YzvhIVZyXdTdBUrieohWwzmSIxdZU06fJmSgnYCe6o_WxM-mZyamJD7WZbmNhzZek-HF7Lmz-AXj2u_SNIlM0NlRGi1-i4RNXiMmsNutaSc5sr2wcRn1O70PKcJm981TG37YueE0ITIXRLiD5k3clJ2_ZjgTMqUkzHslZUxBpt0wJnN7qzAfq0kGbB06uRQXRQQVM9F5g-vOiWUXlQRMjUfnxOe0TBBE0l68PDlp-6z80zlFzEv_iIlzit20CNyS-v1GenTYNyyXKEyezx_6_1HFZQgvWH3dHeE7hJn9PWeK5Cb_bj3D9FsDezz4JUJXB83YL8G4qOaF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+neuroimaging%3A+Combining+and+contrasting+magnetoencephalography+and+electroencephalography&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Boto%2C+Elena&rft.au=Seedat%2C+Zelekha+A&rft.au=Holmes%2C+Niall&rft.au=Leggett%2C+James&rft.date=2019-11-01&rft.eissn=1095-9572&rft.volume=201&rft.spage=116099&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.116099&rft_id=info%3Apmid%2F31419612&rft.externalDocID=31419612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon