AI algorithms for accurate prediction of osteoporotic fractures in patients with diabetes: an up-to-date review
Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures....
Saved in:
Published in | Journal of orthopaedic surgery and research Vol. 18; no. 1; pp. 956 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
12.12.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice. |
---|---|
AbstractList | Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice. Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice. Keywords: Osteoporotic fracture, Artificial intelligence, Fracture prediction, Diabetes Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice.Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice. Abstract Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice. |
ArticleNumber | 956 |
Audience | Academic |
Author | Lin, Xiahong Li, Zeting Zhao, Wen Li, Fangping |
Author_xml | – sequence: 1 givenname: Zeting surname: Li fullname: Li, Zeting – sequence: 2 givenname: Wen surname: Zhao fullname: Zhao, Wen – sequence: 3 givenname: Xiahong surname: Lin fullname: Lin, Xiahong – sequence: 4 givenname: Fangping surname: Li fullname: Li, Fangping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38087332$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAURiNURH_gBVggS2zYpNiJHdts0KgCOlIlNiCxszz29dSjTBxsp1XfHmempZ0KoSwS3Zx7nC_6TqujIQxQVW8JPidEdB8TaTERNW7aGlNKu5q9qE4Ip7LmUv46evJ8XJ2mtMGYYSboq-q4FVjwtm1OqrBYIt2vQ_T5epuQCxFpY6aoM6AxgvUm-zCg4FBIGcIYYsjeIBe1yVOEhPyARp09DDmh2yJB1usVZEifkB7QNNY51Ha2RbjxcPu6eul0n-DN_f2s-vn1y4-Ly_rq-7flxeKqNqyjubaUmZVzRLQCCDFO0hUWhpsOqOksE8Y51znLAIgALTCUubSdtq5hzHayPauWe68NeqPG6Lc63qmgvdoNQlwrHUuSHhQ3jFJCnLVSUkyNhpYLDQIAr7Aks-vz3jVOqy1YU7JG3R9ID98M_lqtw40imBNKRVsMH-4NMfyeIGW19clA3-sBwpRUI3EjqWScFPT9M3QTpjiUf7WjSNtIzh6ptS4J_OBCOdjMUrXgvCOSCNIU6vwfVLksbL0pZXK-zA8W3j1N-jfiQ18KIPaAiSGlCE4Zn_VckWL2fUms5mqqfTVVqabaVVPNn9w8W32w_2fpD5Az52o |
CitedBy_id | crossref_primary_10_3390_jcm13226862 crossref_primary_10_3390_biomedicines12102389 crossref_primary_10_1007_s11657_024_01489_x crossref_primary_10_1007_s00198_025_07396_2 crossref_primary_10_1007_s43465_024_01295_0 crossref_primary_10_1093_bmb_ldae024 crossref_primary_10_3390_nutraceuticals4020012 |
Cites_doi | 10.1007/s11684-021-0828-7 10.1007/s00198-008-0588-0 10.1016/j.heliyon.2023.e18186 10.1080/17512433.2021.1851192 10.3390/jcm11072021 10.1186/1471-2474-13-204 10.1093/aje/kwm106 10.1001/jama.2011.715 10.1007/s00198-006-0172-4 10.1210/jc.2016-2569 10.1016/j.bonr.2021.101070 10.1007/s00198-015-3093-2 10.1002/jbmr.3538 10.1002/jbmr.4494 10.1097/MED.0000000000000734 10.1002/jbmr.4292 10.1371/journal.pone.0232969 10.1093/bmb/ldac017 10.1118/1.3425791 10.1186/1472-6823-14-33 10.1007/s00198-007-0362-8 10.1038/s41574-021-00555-5 10.1007/s11657-018-0510-0 10.1016/j.cmpb.2020.105484 10.1007/s00198-009-1026-7 10.4239/wjd.v12.i6.706 10.1002/jbmr.1763 10.1007/s00198-016-3818-x 10.1016/j.gie.2020.06.040 10.1371/journal.pone.0245967 10.1007/s00330-018-5846-8 10.1186/s12889-016-3712-7 10.3390/ijms16035452 10.1001/archinte.164.6.603 10.1007/s11657-020-00827-z 10.1002/jbmr.556 10.1002/jbm4.10207 10.1136/bmj.b4229 10.1186/s13018-021-02497-0 10.1007/s00223-021-00941-1 10.1016/j.bone.2007.11.001 10.1007/s10654-012-9674-x 10.1007/s00223-020-00734-y 10.1007/s00198-016-3828-8 10.1007/s00198-017-4183-0 10.1186/s13018-021-02474-7 10.1002/dmrr.3100 10.2337/dc18-1486 10.1007/s00223-017-0238-7 10.3390/medicina57101119 10.1155/2020/8880786 10.2196/22550 10.1016/0002-9343(93)90218-E 10.1007/s40520-021-01817-y 10.1002/jmri.26280 10.1016/j.bone.2020.115614 10.1007/s00198-019-05053-z 10.1002/jbmr.4805 10.1186/s13018-021-02678-x 10.1007/s00198-020-05735-z |
ContentType | Journal Article |
Copyright | 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1186/s13018-023-04446-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1749-799X |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_7c54411fdd99404cae378ae8ee0b0919 PMC10714483 A776191812 38087332 10_1186_s13018_023_04446_5 |
Genre | Journal Article Review |
GeographicLocations | United Kingdom--UK China |
GeographicLocations_xml | – name: United Kingdom--UK – name: China |
GrantInformation_xml | – fundername: Sanming Project of Medicine in Shenzen Municipality grantid: SZSM202011007 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR IPT ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TUS UKHRP WOQ WOW ~8M -5E -5G -A0 -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7QP 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c564t-d45cbff1838e11cf94b08c7c6e4c6d58cfff6fd5ee18ea80ee4c9d6adf255d693 |
IEDL.DBID | M48 |
ISSN | 1749-799X |
IngestDate | Wed Aug 27 01:11:41 EDT 2025 Thu Aug 21 18:35:50 EDT 2025 Mon Jul 21 11:08:41 EDT 2025 Sat Jul 26 00:30:43 EDT 2025 Tue Jun 17 22:23:01 EDT 2025 Tue Jun 10 21:23:14 EDT 2025 Wed Feb 19 02:06:24 EST 2025 Thu Apr 24 23:11:32 EDT 2025 Tue Jul 01 02:17:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Diabetes Fracture prediction Artificial intelligence Osteoporotic fracture |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-d45cbff1838e11cf94b08c7c6e4c6d58cfff6fd5ee18ea80ee4c9d6adf255d693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2902132975?pq-origsite=%requestingapplication% |
PMID | 38087332 |
PQID | 2902132975 |
PQPubID | 55349 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7c54411fdd99404cae378ae8ee0b0919 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10714483 proquest_miscellaneous_2902949571 proquest_journals_2902132975 gale_infotracmisc_A776191812 gale_infotracacademiconefile_A776191812 pubmed_primary_38087332 crossref_citationtrail_10_1186_s13018_023_04446_5 crossref_primary_10_1186_s13018_023_04446_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-12 |
PublicationDateYYYYMMDD | 2023-12-12 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of orthopaedic surgery and research |
PublicationTitleAlternate | J Orthop Surg Res |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | T Nissinen (4446_CR42) 2021; 14 4446_CR1 4446_CR6 P Jia (4446_CR15) 2017; 28 WA Davis (4446_CR30) 2019; 42 B Schuler (4446_CR54) 2010; 37 C Kruse (4446_CR52) 2017; 28 F Migliorini (4446_CR60) 2021; 16 Y Su (4446_CR49) 2019; 3 F Migliorini (4446_CR59) 2021; 14 A Agarwal (4446_CR33) 2022; 110 H Lundin (4446_CR55) 2017; 28 J Barnsley (4446_CR8) 2021; 33 FM Ulivieri (4446_CR41) 2021; 16 F Migliorini (4446_CR64) 2021; 16 YA Almog (4446_CR48) 2020; 22 SK Sandhu (4446_CR23) 2010; 21 A Agarwal (4446_CR12) 2022; 29 E Kalaitzoglou (4446_CR20) 2019; 35 ND Nguyen (4446_CR31) 2007; 18 G Leidig-Bruckner (4446_CR10) 2014; 14 JM Patsch (4446_CR19) 2013; 28 C Kruse (4446_CR53) 2017; 100 LT Ho-Pham (4446_CR18) 2019; 30 V Kaul (4446_CR34) 2020; 92 AV Schwartz (4446_CR26) 2011; 305 4446_CR45 PL Xiao (4446_CR3) 2022; 6 L Ma (4446_CR17) 2012; 27 O Johnell (4446_CR4) 2006; 17 LM Giangregorio (4446_CR27) 2012; 27 S Chu (4446_CR57) 2023; 9 JA Kanis (4446_CR21) 2018; 13 A Engels (4446_CR47) 2020; 15 SH Kong (4446_CR38) 2022; 6 DE Whittier (4446_CR36) 2022; 37 WD Leslie (4446_CR29) 2018; 33 A Galassi (4446_CR46) 2020; 2020 F Migliorini (4446_CR9) 2021; 57 S Khosla (4446_CR11) 2021; 17 H Shimizu (4446_CR37) 2022; 11 A Champakanath (4446_CR25) 2021; 143 F Migliorini (4446_CR61) 2022; 143 Y Chen (4446_CR40) 2022; 16 J Hippisley-Cox (4446_CR22) 2009; 339 U Ferizi (4446_CR51) 2019; 49 SR Majumdar (4446_CR28) 2016; 101 Q Dong (4446_CR39) 2022; 6 R Azagra (4446_CR56) 2012; 13 L Si (4446_CR7) 2015; 26 Y El Miedany (4446_CR24) 2020; 15 P Chen (4446_CR16) 2016; 16 J Smets (4446_CR35) 2021; 36 R Palui (4446_CR14) 2021; 12 Q Wu (4446_CR44) 2020; 107 JA Kanis (4446_CR2) 2008; 42 BCS de Vries (4446_CR43) 2021; 32 Z Yosibash (4446_CR58) 2023; 38 V Conti (4446_CR62) 2015; 16 M Janghorbani (4446_CR13) 2007; 166 ND Nguyen (4446_CR32) 2008; 19 F Migliorini (4446_CR63) 2021; 16 UJ Muehlematter (4446_CR50) 2019; 29 ML Gourlay (4446_CR5) 2004; 164 |
References_xml | – volume: 16 start-page: 496 issue: 3 year: 2022 ident: 4446_CR40 publication-title: Front Med doi: 10.1007/s11684-021-0828-7 – volume: 19 start-page: 1431 issue: 10 year: 2008 ident: 4446_CR32 publication-title: Osteoporos Int doi: 10.1007/s00198-008-0588-0 – volume: 6 start-page: 66 year: 2022 ident: 4446_CR38 publication-title: Endocrinol Metab – volume: 9 issue: 7 year: 2023 ident: 4446_CR57 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e18186 – volume: 14 start-page: 105 issue: 1 year: 2021 ident: 4446_CR59 publication-title: Expert Rev Clin Pharmacol doi: 10.1080/17512433.2021.1851192 – volume: 11 start-page: 66 issue: 7 year: 2022 ident: 4446_CR37 publication-title: J Clin Med doi: 10.3390/jcm11072021 – volume: 13 start-page: 204 year: 2012 ident: 4446_CR56 publication-title: BMC Musculoskelet Disord doi: 10.1186/1471-2474-13-204 – volume: 166 start-page: 495 issue: 5 year: 2007 ident: 4446_CR13 publication-title: Am J Epidemiol doi: 10.1093/aje/kwm106 – volume: 305 start-page: 2184 issue: 21 year: 2011 ident: 4446_CR26 publication-title: JAMA doi: 10.1001/jama.2011.715 – volume: 17 start-page: 1726 issue: 12 year: 2006 ident: 4446_CR4 publication-title: Osteoporos Int doi: 10.1007/s00198-006-0172-4 – volume: 101 start-page: 4489 issue: 11 year: 2016 ident: 4446_CR28 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2016-2569 – volume: 14 year: 2021 ident: 4446_CR42 publication-title: Bone Rep doi: 10.1016/j.bonr.2021.101070 – volume: 26 start-page: 1929 issue: 7 year: 2015 ident: 4446_CR7 publication-title: Osteoporos Int doi: 10.1007/s00198-015-3093-2 – volume: 33 start-page: 1923 issue: 11 year: 2018 ident: 4446_CR29 publication-title: J Bone Mineral Res doi: 10.1002/jbmr.3538 – volume: 6 start-page: 66 year: 2022 ident: 4446_CR39 publication-title: Acad Radiol – volume: 37 start-page: 428 issue: 3 year: 2022 ident: 4446_CR36 publication-title: J Bone Miner Res doi: 10.1002/jbmr.4494 – volume: 29 start-page: 326 issue: 4 year: 2022 ident: 4446_CR12 publication-title: Curr Opin Endocrinol Diabetes Obes doi: 10.1097/MED.0000000000000734 – volume: 36 start-page: 833 issue: 5 year: 2021 ident: 4446_CR35 publication-title: J Bone Miner Res doi: 10.1002/jbmr.4292 – volume: 15 start-page: 66 issue: 5 year: 2020 ident: 4446_CR47 publication-title: PLoS One doi: 10.1371/journal.pone.0232969 – volume: 143 start-page: 46 issue: 1 year: 2022 ident: 4446_CR61 publication-title: Br Med Bull doi: 10.1093/bmb/ldac017 – volume: 37 start-page: 2560 issue: 6 year: 2010 ident: 4446_CR54 publication-title: Med Phys doi: 10.1118/1.3425791 – volume: 14 start-page: 33 year: 2014 ident: 4446_CR10 publication-title: BMC Endocr Disord doi: 10.1186/1472-6823-14-33 – volume: 18 start-page: 1109 issue: 8 year: 2007 ident: 4446_CR31 publication-title: Osteoporos Int doi: 10.1007/s00198-007-0362-8 – volume: 17 start-page: 685 issue: 11 year: 2021 ident: 4446_CR11 publication-title: Nat Rev Endocrinol doi: 10.1038/s41574-021-00555-5 – volume: 13 start-page: 118 issue: 1 year: 2018 ident: 4446_CR21 publication-title: Arch Osteoporos doi: 10.1007/s11657-018-0510-0 – ident: 4446_CR45 doi: 10.1016/j.cmpb.2020.105484 – volume: 21 start-page: 863 issue: 5 year: 2010 ident: 4446_CR23 publication-title: Osteoporos Int doi: 10.1007/s00198-009-1026-7 – volume: 12 start-page: 706 issue: 6 year: 2021 ident: 4446_CR14 publication-title: World J Diabetes doi: 10.4239/wjd.v12.i6.706 – volume: 28 start-page: 313 issue: 2 year: 2013 ident: 4446_CR19 publication-title: J Bone Miner Res doi: 10.1002/jbmr.1763 – volume: 28 start-page: 179 issue: 1 year: 2017 ident: 4446_CR55 publication-title: Osteoporos Int doi: 10.1007/s00198-016-3818-x – volume: 92 start-page: 807 issue: 4 year: 2020 ident: 4446_CR34 publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2020.06.040 – volume: 16 issue: 2 year: 2021 ident: 4446_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0245967 – volume: 29 start-page: 2207 issue: 5 year: 2019 ident: 4446_CR50 publication-title: Eur Radiol doi: 10.1007/s00330-018-5846-8 – volume: 16 start-page: 1039 issue: 1 year: 2016 ident: 4446_CR16 publication-title: BMC Public Health doi: 10.1186/s12889-016-3712-7 – volume: 16 start-page: 5452 issue: 3 year: 2015 ident: 4446_CR62 publication-title: Int J Mol Sci doi: 10.3390/ijms16035452 – volume: 164 start-page: 603 issue: 6 year: 2004 ident: 4446_CR5 publication-title: Arch Intern Med doi: 10.1001/archinte.164.6.603 – volume: 15 start-page: 150 issue: 1 year: 2020 ident: 4446_CR24 publication-title: Arch Osteoporos doi: 10.1007/s11657-020-00827-z – volume: 27 start-page: 301 issue: 2 year: 2012 ident: 4446_CR27 publication-title: J Bone Miner Res doi: 10.1002/jbmr.556 – volume: 3 issue: 10 year: 2019 ident: 4446_CR49 publication-title: JBMR Plus doi: 10.1002/jbm4.10207 – volume: 339 year: 2009 ident: 4446_CR22 publication-title: BMJ doi: 10.1136/bmj.b4229 – volume: 16 start-page: 351 issue: 1 year: 2021 ident: 4446_CR64 publication-title: J Orthop Surg Res doi: 10.1186/s13018-021-02497-0 – volume: 110 start-page: 658 issue: 6 year: 2022 ident: 4446_CR33 publication-title: Calcif Tissue Int doi: 10.1007/s00223-021-00941-1 – volume: 42 start-page: 467 issue: 3 year: 2008 ident: 4446_CR2 publication-title: Bone doi: 10.1016/j.bone.2007.11.001 – volume: 27 start-page: 319 issue: 5 year: 2012 ident: 4446_CR17 publication-title: Eur J Epidemiol doi: 10.1007/s10654-012-9674-x – volume: 107 start-page: 353 issue: 4 year: 2020 ident: 4446_CR44 publication-title: Calcif Tissue Int doi: 10.1007/s00223-020-00734-y – volume: 28 start-page: 819 issue: 3 year: 2017 ident: 4446_CR52 publication-title: Osteoporos Int doi: 10.1007/s00198-016-3828-8 – volume: 28 start-page: 3113 issue: 11 year: 2017 ident: 4446_CR15 publication-title: Osteoporos Int doi: 10.1007/s00198-017-4183-0 – volume: 16 start-page: 318 issue: 1 year: 2021 ident: 4446_CR63 publication-title: J Orthop Surg Res doi: 10.1186/s13018-021-02474-7 – volume: 35 issue: 2 year: 2019 ident: 4446_CR20 publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.3100 – volume: 42 start-page: 102 issue: 1 year: 2019 ident: 4446_CR30 publication-title: Diabet Care doi: 10.2337/dc18-1486 – volume: 100 start-page: 348 issue: 4 year: 2017 ident: 4446_CR53 publication-title: Calcif Tissue Int doi: 10.1007/s00223-017-0238-7 – volume: 57 start-page: 66 issue: 10 year: 2021 ident: 4446_CR9 publication-title: Medicina doi: 10.3390/medicina57101119 – volume: 2020 start-page: 8880786 year: 2020 ident: 4446_CR46 publication-title: Appl Bionics Biomech doi: 10.1155/2020/8880786 – volume: 22 issue: 10 year: 2020 ident: 4446_CR48 publication-title: J Med Internet Res doi: 10.2196/22550 – ident: 4446_CR1 doi: 10.1016/0002-9343(93)90218-E – ident: 4446_CR6 – volume: 33 start-page: 759 issue: 4 year: 2021 ident: 4446_CR8 publication-title: Aging Clin Exp Res doi: 10.1007/s40520-021-01817-y – volume: 49 start-page: 1029 issue: 4 year: 2019 ident: 4446_CR51 publication-title: J Magn Resonan Imaging doi: 10.1002/jmri.26280 – volume: 143 year: 2021 ident: 4446_CR25 publication-title: Bone doi: 10.1016/j.bone.2020.115614 – volume: 6 start-page: 66 year: 2022 ident: 4446_CR3 publication-title: Osteoporos Int – volume: 30 start-page: 2079 issue: 10 year: 2019 ident: 4446_CR18 publication-title: Osteoporos Int doi: 10.1007/s00198-019-05053-z – volume: 38 start-page: 876 issue: 6 year: 2023 ident: 4446_CR58 publication-title: J Bone Miner Res doi: 10.1002/jbmr.4805 – volume: 16 start-page: 533 issue: 1 year: 2021 ident: 4446_CR60 publication-title: J Orthop Surg Res doi: 10.1186/s13018-021-02678-x – volume: 32 start-page: 437 issue: 3 year: 2021 ident: 4446_CR43 publication-title: Osteoporos Int doi: 10.1007/s00198-020-05735-z |
SSID | ssj0050584 |
Score | 2.358136 |
SecondaryResourceType | review_article |
Snippet | Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of... Abstract Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 956 |
SubjectTerms | Algorithms Artificial Intelligence Bone Density Bone turnover Care and treatment Chronic obstructive pulmonary disease Denosumab Diabetes Diabetes Mellitus Diabetics Fracture prediction Fractures Hip Fractures - epidemiology Hip joint Humans Kidney diseases Medical research Medicine, Experimental Metabolism Mortality Orthopedics Osteoporosis Osteoporosis - complications Osteoporosis - diagnosis Osteoporotic fracture Osteoporotic Fractures - diagnosis Osteoporotic Fractures - epidemiology Osteoporotic Fractures - etiology Predictions Review Rheumatoid arthritis Risk Assessment Risk Factors Type 2 diabetes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJy-i-FVdJYLgQcI2bZJOvD3FZRX05MLeQpoPd2FtH_te_39n-vF4RdCLp0KSKU1mJjOTZn7D2FubtbWtVkLrjAFKW9bCW5CiqZDAZBOrRAnO376bi0v19UpfHZX6ojthEzzwtHBnTaAqWTLHaK0qVfCpbsAnSKls0daNqXv4XIKpaQ9Gsw5qSZEBc7bDnVqCQPskCB_NCL0yQyNa_5978pFRWl-YPLJA5w_Zg9l15Jvpkx-xe6l7zPrNF-5vf_YY41__2nF0QbkPYSAACL69o78wtPK8z5yyOXr0tnsk55mSowYMtflNx2ds1R2nQ1m-nMZ-4L7jw1bse0GnAnxKcnnCLs8___h0IeYiCiJoo_YiKh3anFFzIUkZskV-QGiCSSqYqCHknE2OOiUJyUOZsN1G42PGYCMaWz9lJ13fpeeMQwAbrcZmjCoriB45U0blkSc2RakLJpc1dWFGGKdCF7dujDTAuIkPDvngRj44pHl_oNlO-Bp_Hf2RWHUYSdjYYwNKjJslxv1LYgr2jhjtSIPx84KfExFwkoSF5TYNHe2Q51Ow09VI1Lyw7l5Exc2av3OVRa-ppnzlgr05dBMl3WbrUj9MYyxGpo0s2LNJsg5TqqGEpq7x5bCSudWc1z3dzfWICy4pGU1B_eJ_rNJLdr8ifZFU--aUnezvhvQK_a99-3pUtd-EDi52 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggEK9AQUZC4oCsxont2FzQgqgKEpyotDfL8aOt1CbLJvn_zOSxNELq1fZEdsbjedjzDSHvTZLG1FIwKRM4KHVeMmc0Z1UBBCqpUERMcP75S52dix9buZ0Dbt38rHI5E8eDOrQeY-QnhQFtVGIe6OfdH4ZVo_B2dS6hcZ88QOgy3NXV9uBwgXLXYkmU0eqkg_OaawZaiiFKmmJypYxGzP7_T-Zbqmn9bPKWHjp9TB7NBiTdTBx_Qu7F5ilpN9-pu76A-faXNx0FQ5Q67weEgaC7Pd7F4P-nbaKY09GCzd0COU2YIjWAw02vGjojrHYUQ7N0icl-oq6hw471LcPYAJ1SXZ6R89Nvv7-esbmUAvNSiZ4FIX2dEsivjpz7ZIAr2ldeReFVkNqnlFQKMkauo9N5hHYTlAsJXI6gTPmcHDVtE18Sqr02wUhoBt-y0MFJIfIgnHfRxMBlRvjyT62fccax3MW1Hf0NrezEBwt8sCMfLNB8PNDsJpSNO0d_QVYdRiJC9tjQ7i_sLHC28lhdjacQjBG5gNmVlXZRx5jXYCOZjHxARluUY5ied3M6AiwSEbHspsIAD9o_GTlejQT58-vuZavYWf47-2-3ZuTdoRsp8U1bE9thGmPAP614Rl5MO-uwpFLnuipL-Lhe7bnVmtc9zdXliA7OMSVN6PLV3fN6TR4WKAkca9sck6N-P8Q3YF_19dtRiP4CjGwl0A priority: 102 providerName: ProQuest |
Title | AI algorithms for accurate prediction of osteoporotic fractures in patients with diabetes: an up-to-date review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38087332 https://www.proquest.com/docview/2902132975 https://www.proquest.com/docview/2902949571 https://pubmed.ncbi.nlm.nih.gov/PMC10714483 https://doaj.org/article/7c54411fdd99404cae378ae8ee0b0919 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZixNBEG72ePFFFK-sa2hB8EFaZzJ9CiJZ2WUN7CLqQt6aTh-7gTgTc4D-e6vmCDu4iE-B7q7JdFfV1DFTXxHyyiRhzExwJkSCAGWWFcwZnTM1AgKZZBhFLHC-uJTnV3wyFdM90rU7ag9wfWdoh_2krlaLt79-_v4ICv-hVngt363hOZxrBtaHIfqZZGKfHIJlUtjR4ILv3iqAsa87EIMTbpgyZtoV0dx5jZ6hqvH8_35q3zJb_U8qb9moswfkfutc0nEjDQ_JXiwfkWr8mbrFdbWab25-rCk4qdR5v0WICLpc4Xsa5A2tEsV6jwqOogJymrB8agvBOJ2XtEVfXVNM29IuX_ueupJul2xTMcwb0KYM5jG5Ojv9_umctW0WmBeSb1jgws9SAt3WMc99MsAx7ZWXkXsZhPYpJZmCiDHX0ekswrgJ0oUE4UiQpnhCDsqqjM8I1V6bYAQMQ9w50sEJzrPAnXfRxJCLAcm7M7W-xSDHVhgLW8ciWtqGDxb4YGs-WKB5s6NZNggc_1x9gqzarUT07HqgWl3bVhmt8th5LU8hGMMzDndXKO2ijjGbgf9kBuQ1Mtqi1MHtedeWKsAmES3LjhUmf9A3GpDj3krQTd-f7kTFdqJtRwb8qgIrmgfk5W4aKfF7tzJW22aNgdhV5QPytJGs3ZYKnWlVFHBx3ZO53p77M-X8pkYOz7Fcjevi6D_--Dm5N0J1yLH5zTE52Ky28QU4YJvZkOyrqRqSw_F48m0Cvyenl1--Dut0xrDWuD-hfDIc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0KrKA7wgENdCASOBeEBW48R2bCSElqPapcdTK_XNeH20lUqy7CHET_GNzORYGiH1ra-2J7I998QzQ8hrk6QxMymYlAkclFlWMGc0Z2UOACqpkEdMcD48UpMT8e1Unm6RP30uDD6r7GViI6hD7TFGvpsb0EYF5oF-nP9k2DUK_672LTRastiPv3-By7b8MP0C-H2T53tfjz9PWNdVgHmpxIoFIf0sJSBlHTn3ycAGtS-9isKrILVPKakUZIxcR6ezCOMmKBcSWN9BYfElEPm3QPFm6OyVpxsHD4wJLfrEHK12l6AfuGagFRlWZVNMDpRf0yPgf01wRRUOn2le0Xt798jdzmCl45bC7pOtWD0g9XhK3eUZ3M_q_MeSguFLnfdrLDtB5wv894P4pnWimENSg41fAzhNmJK1BgefXlS0q-i6pBgKpn0M-D11FV3P2apmGIugbWrNQ3JyI5f8iGxXdRWfEKq9NsFIGAZfNtfBSSGyIJx30cTA5Yjw_k6t7-qaY3uNS9v4N1rZFg8W8GAbPFiAebeBmbdVPa5d_QlRtVmJFbmbgXpxZjsGt6XHbm48hWCMyATsrii1izrGbAY2mRmRt4hoi3IDtuddl_4Ah8QKXHZcYkAJ7a0R2RmsBH73w-meVGwnb5b2H3eMyKvNNELiG7oq1ut2jQF_uOQj8rilrM2RCp3psijg43pAc4MzD2eqi_OmGjnHFDihi6fX7-sluT05PjywB9Oj_WfkTo5cwbGvzg7ZXi3W8TnYdqvZi4ahKPl-0xz8F54oZbs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+algorithms+for+accurate+prediction+of+osteoporotic+fractures+in+patients+with+diabetes%3A+an+up-to-date+review&rft.jtitle=Journal+of+orthopaedic+surgery+and+research&rft.au=Li%2C+Zeting&rft.au=Zhao%2C+Wen&rft.au=Lin%2C+Xiahong&rft.au=Li%2C+Fangping&rft.date=2023-12-12&rft.issn=1749-799X&rft.eissn=1749-799X&rft.volume=18&rft.issue=1&rft.spage=956&rft_id=info:doi/10.1186%2Fs13018-023-04446-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-799X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-799X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-799X&client=summon |