AI algorithms for accurate prediction of osteoporotic fractures in patients with diabetes: an up-to-date review

Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures....

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic surgery and research Vol. 18; no. 1; pp. 956 - 11
Main Authors Li, Zeting, Zhao, Wen, Lin, Xiahong, Li, Fangping
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 12.12.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice.
AbstractList Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice.
Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice. Keywords: Osteoporotic fracture, Artificial intelligence, Fracture prediction, Diabetes
Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice.Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice.
Abstract Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algorithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this population. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conventional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteoporotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy and assess the potential advantages of their application in clinical practice.
ArticleNumber 956
Audience Academic
Author Lin, Xiahong
Li, Zeting
Zhao, Wen
Li, Fangping
Author_xml – sequence: 1
  givenname: Zeting
  surname: Li
  fullname: Li, Zeting
– sequence: 2
  givenname: Wen
  surname: Zhao
  fullname: Zhao, Wen
– sequence: 3
  givenname: Xiahong
  surname: Lin
  fullname: Lin, Xiahong
– sequence: 4
  givenname: Fangping
  surname: Li
  fullname: Li, Fangping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38087332$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAURiNURH_gBVggS2zYpNiJHdts0KgCOlIlNiCxszz29dSjTBxsp1XfHmempZ0KoSwS3Zx7nC_6TqujIQxQVW8JPidEdB8TaTERNW7aGlNKu5q9qE4Ip7LmUv46evJ8XJ2mtMGYYSboq-q4FVjwtm1OqrBYIt2vQ_T5epuQCxFpY6aoM6AxgvUm-zCg4FBIGcIYYsjeIBe1yVOEhPyARp09DDmh2yJB1usVZEifkB7QNNY51Ha2RbjxcPu6eul0n-DN_f2s-vn1y4-Ly_rq-7flxeKqNqyjubaUmZVzRLQCCDFO0hUWhpsOqOksE8Y51znLAIgALTCUubSdtq5hzHayPauWe68NeqPG6Lc63qmgvdoNQlwrHUuSHhQ3jFJCnLVSUkyNhpYLDQIAr7Aks-vz3jVOqy1YU7JG3R9ID98M_lqtw40imBNKRVsMH-4NMfyeIGW19clA3-sBwpRUI3EjqWScFPT9M3QTpjiUf7WjSNtIzh6ptS4J_OBCOdjMUrXgvCOSCNIU6vwfVLksbL0pZXK-zA8W3j1N-jfiQ18KIPaAiSGlCE4Zn_VckWL2fUms5mqqfTVVqabaVVPNn9w8W32w_2fpD5Az52o
CitedBy_id crossref_primary_10_3390_jcm13226862
crossref_primary_10_3390_biomedicines12102389
crossref_primary_10_1007_s11657_024_01489_x
crossref_primary_10_1007_s00198_025_07396_2
crossref_primary_10_1007_s43465_024_01295_0
crossref_primary_10_1093_bmb_ldae024
crossref_primary_10_3390_nutraceuticals4020012
Cites_doi 10.1007/s11684-021-0828-7
10.1007/s00198-008-0588-0
10.1016/j.heliyon.2023.e18186
10.1080/17512433.2021.1851192
10.3390/jcm11072021
10.1186/1471-2474-13-204
10.1093/aje/kwm106
10.1001/jama.2011.715
10.1007/s00198-006-0172-4
10.1210/jc.2016-2569
10.1016/j.bonr.2021.101070
10.1007/s00198-015-3093-2
10.1002/jbmr.3538
10.1002/jbmr.4494
10.1097/MED.0000000000000734
10.1002/jbmr.4292
10.1371/journal.pone.0232969
10.1093/bmb/ldac017
10.1118/1.3425791
10.1186/1472-6823-14-33
10.1007/s00198-007-0362-8
10.1038/s41574-021-00555-5
10.1007/s11657-018-0510-0
10.1016/j.cmpb.2020.105484
10.1007/s00198-009-1026-7
10.4239/wjd.v12.i6.706
10.1002/jbmr.1763
10.1007/s00198-016-3818-x
10.1016/j.gie.2020.06.040
10.1371/journal.pone.0245967
10.1007/s00330-018-5846-8
10.1186/s12889-016-3712-7
10.3390/ijms16035452
10.1001/archinte.164.6.603
10.1007/s11657-020-00827-z
10.1002/jbmr.556
10.1002/jbm4.10207
10.1136/bmj.b4229
10.1186/s13018-021-02497-0
10.1007/s00223-021-00941-1
10.1016/j.bone.2007.11.001
10.1007/s10654-012-9674-x
10.1007/s00223-020-00734-y
10.1007/s00198-016-3828-8
10.1007/s00198-017-4183-0
10.1186/s13018-021-02474-7
10.1002/dmrr.3100
10.2337/dc18-1486
10.1007/s00223-017-0238-7
10.3390/medicina57101119
10.1155/2020/8880786
10.2196/22550
10.1016/0002-9343(93)90218-E
10.1007/s40520-021-01817-y
10.1002/jmri.26280
10.1016/j.bone.2020.115614
10.1007/s00198-019-05053-z
10.1002/jbmr.4805
10.1186/s13018-021-02678-x
10.1007/s00198-020-05735-z
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s13018-023-04446-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1749-799X
EndPage 11
ExternalDocumentID oai_doaj_org_article_7c54411fdd99404cae378ae8ee0b0919
PMC10714483
A776191812
38087332
10_1186_s13018_023_04446_5
Genre Journal Article
Review
GeographicLocations United Kingdom--UK
China
GeographicLocations_xml – name: United Kingdom--UK
– name: China
GrantInformation_xml – fundername: Sanming Project of Medicine in Shenzen Municipality
  grantid: SZSM202011007
GroupedDBID ---
0R~
29L
2WC
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
IPT
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TUS
UKHRP
WOQ
WOW
~8M
-5E
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QP
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c564t-d45cbff1838e11cf94b08c7c6e4c6d58cfff6fd5ee18ea80ee4c9d6adf255d693
IEDL.DBID M48
ISSN 1749-799X
IngestDate Wed Aug 27 01:11:41 EDT 2025
Thu Aug 21 18:35:50 EDT 2025
Mon Jul 21 11:08:41 EDT 2025
Sat Jul 26 00:30:43 EDT 2025
Tue Jun 17 22:23:01 EDT 2025
Tue Jun 10 21:23:14 EDT 2025
Wed Feb 19 02:06:24 EST 2025
Thu Apr 24 23:11:32 EDT 2025
Tue Jul 01 02:17:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diabetes
Fracture prediction
Artificial intelligence
Osteoporotic fracture
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-d45cbff1838e11cf94b08c7c6e4c6d58cfff6fd5ee18ea80ee4c9d6adf255d693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2902132975?pq-origsite=%requestingapplication%
PMID 38087332
PQID 2902132975
PQPubID 55349
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7c54411fdd99404cae378ae8ee0b0919
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10714483
proquest_miscellaneous_2902949571
proquest_journals_2902132975
gale_infotracmisc_A776191812
gale_infotracacademiconefile_A776191812
pubmed_primary_38087332
crossref_citationtrail_10_1186_s13018_023_04446_5
crossref_primary_10_1186_s13018_023_04446_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-12
PublicationDateYYYYMMDD 2023-12-12
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of orthopaedic surgery and research
PublicationTitleAlternate J Orthop Surg Res
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References T Nissinen (4446_CR42) 2021; 14
4446_CR1
4446_CR6
P Jia (4446_CR15) 2017; 28
WA Davis (4446_CR30) 2019; 42
B Schuler (4446_CR54) 2010; 37
C Kruse (4446_CR52) 2017; 28
F Migliorini (4446_CR60) 2021; 16
Y Su (4446_CR49) 2019; 3
F Migliorini (4446_CR59) 2021; 14
A Agarwal (4446_CR33) 2022; 110
H Lundin (4446_CR55) 2017; 28
J Barnsley (4446_CR8) 2021; 33
FM Ulivieri (4446_CR41) 2021; 16
F Migliorini (4446_CR64) 2021; 16
YA Almog (4446_CR48) 2020; 22
SK Sandhu (4446_CR23) 2010; 21
A Agarwal (4446_CR12) 2022; 29
E Kalaitzoglou (4446_CR20) 2019; 35
ND Nguyen (4446_CR31) 2007; 18
G Leidig-Bruckner (4446_CR10) 2014; 14
JM Patsch (4446_CR19) 2013; 28
C Kruse (4446_CR53) 2017; 100
LT Ho-Pham (4446_CR18) 2019; 30
V Kaul (4446_CR34) 2020; 92
AV Schwartz (4446_CR26) 2011; 305
4446_CR45
PL Xiao (4446_CR3) 2022; 6
L Ma (4446_CR17) 2012; 27
O Johnell (4446_CR4) 2006; 17
LM Giangregorio (4446_CR27) 2012; 27
S Chu (4446_CR57) 2023; 9
JA Kanis (4446_CR21) 2018; 13
A Engels (4446_CR47) 2020; 15
SH Kong (4446_CR38) 2022; 6
DE Whittier (4446_CR36) 2022; 37
WD Leslie (4446_CR29) 2018; 33
A Galassi (4446_CR46) 2020; 2020
F Migliorini (4446_CR9) 2021; 57
S Khosla (4446_CR11) 2021; 17
H Shimizu (4446_CR37) 2022; 11
A Champakanath (4446_CR25) 2021; 143
F Migliorini (4446_CR61) 2022; 143
Y Chen (4446_CR40) 2022; 16
J Hippisley-Cox (4446_CR22) 2009; 339
U Ferizi (4446_CR51) 2019; 49
SR Majumdar (4446_CR28) 2016; 101
Q Dong (4446_CR39) 2022; 6
R Azagra (4446_CR56) 2012; 13
L Si (4446_CR7) 2015; 26
Y El Miedany (4446_CR24) 2020; 15
P Chen (4446_CR16) 2016; 16
J Smets (4446_CR35) 2021; 36
R Palui (4446_CR14) 2021; 12
Q Wu (4446_CR44) 2020; 107
JA Kanis (4446_CR2) 2008; 42
BCS de Vries (4446_CR43) 2021; 32
Z Yosibash (4446_CR58) 2023; 38
V Conti (4446_CR62) 2015; 16
M Janghorbani (4446_CR13) 2007; 166
ND Nguyen (4446_CR32) 2008; 19
F Migliorini (4446_CR63) 2021; 16
UJ Muehlematter (4446_CR50) 2019; 29
ML Gourlay (4446_CR5) 2004; 164
References_xml – volume: 16
  start-page: 496
  issue: 3
  year: 2022
  ident: 4446_CR40
  publication-title: Front Med
  doi: 10.1007/s11684-021-0828-7
– volume: 19
  start-page: 1431
  issue: 10
  year: 2008
  ident: 4446_CR32
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-008-0588-0
– volume: 6
  start-page: 66
  year: 2022
  ident: 4446_CR38
  publication-title: Endocrinol Metab
– volume: 9
  issue: 7
  year: 2023
  ident: 4446_CR57
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e18186
– volume: 14
  start-page: 105
  issue: 1
  year: 2021
  ident: 4446_CR59
  publication-title: Expert Rev Clin Pharmacol
  doi: 10.1080/17512433.2021.1851192
– volume: 11
  start-page: 66
  issue: 7
  year: 2022
  ident: 4446_CR37
  publication-title: J Clin Med
  doi: 10.3390/jcm11072021
– volume: 13
  start-page: 204
  year: 2012
  ident: 4446_CR56
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/1471-2474-13-204
– volume: 166
  start-page: 495
  issue: 5
  year: 2007
  ident: 4446_CR13
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm106
– volume: 305
  start-page: 2184
  issue: 21
  year: 2011
  ident: 4446_CR26
  publication-title: JAMA
  doi: 10.1001/jama.2011.715
– volume: 17
  start-page: 1726
  issue: 12
  year: 2006
  ident: 4446_CR4
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-006-0172-4
– volume: 101
  start-page: 4489
  issue: 11
  year: 2016
  ident: 4446_CR28
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2016-2569
– volume: 14
  year: 2021
  ident: 4446_CR42
  publication-title: Bone Rep
  doi: 10.1016/j.bonr.2021.101070
– volume: 26
  start-page: 1929
  issue: 7
  year: 2015
  ident: 4446_CR7
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-015-3093-2
– volume: 33
  start-page: 1923
  issue: 11
  year: 2018
  ident: 4446_CR29
  publication-title: J Bone Mineral Res
  doi: 10.1002/jbmr.3538
– volume: 6
  start-page: 66
  year: 2022
  ident: 4446_CR39
  publication-title: Acad Radiol
– volume: 37
  start-page: 428
  issue: 3
  year: 2022
  ident: 4446_CR36
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4494
– volume: 29
  start-page: 326
  issue: 4
  year: 2022
  ident: 4446_CR12
  publication-title: Curr Opin Endocrinol Diabetes Obes
  doi: 10.1097/MED.0000000000000734
– volume: 36
  start-page: 833
  issue: 5
  year: 2021
  ident: 4446_CR35
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4292
– volume: 15
  start-page: 66
  issue: 5
  year: 2020
  ident: 4446_CR47
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0232969
– volume: 143
  start-page: 46
  issue: 1
  year: 2022
  ident: 4446_CR61
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldac017
– volume: 37
  start-page: 2560
  issue: 6
  year: 2010
  ident: 4446_CR54
  publication-title: Med Phys
  doi: 10.1118/1.3425791
– volume: 14
  start-page: 33
  year: 2014
  ident: 4446_CR10
  publication-title: BMC Endocr Disord
  doi: 10.1186/1472-6823-14-33
– volume: 18
  start-page: 1109
  issue: 8
  year: 2007
  ident: 4446_CR31
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-007-0362-8
– volume: 17
  start-page: 685
  issue: 11
  year: 2021
  ident: 4446_CR11
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/s41574-021-00555-5
– volume: 13
  start-page: 118
  issue: 1
  year: 2018
  ident: 4446_CR21
  publication-title: Arch Osteoporos
  doi: 10.1007/s11657-018-0510-0
– ident: 4446_CR45
  doi: 10.1016/j.cmpb.2020.105484
– volume: 21
  start-page: 863
  issue: 5
  year: 2010
  ident: 4446_CR23
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-009-1026-7
– volume: 12
  start-page: 706
  issue: 6
  year: 2021
  ident: 4446_CR14
  publication-title: World J Diabetes
  doi: 10.4239/wjd.v12.i6.706
– volume: 28
  start-page: 313
  issue: 2
  year: 2013
  ident: 4446_CR19
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1763
– volume: 28
  start-page: 179
  issue: 1
  year: 2017
  ident: 4446_CR55
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-016-3818-x
– volume: 92
  start-page: 807
  issue: 4
  year: 2020
  ident: 4446_CR34
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2020.06.040
– volume: 16
  issue: 2
  year: 2021
  ident: 4446_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0245967
– volume: 29
  start-page: 2207
  issue: 5
  year: 2019
  ident: 4446_CR50
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5846-8
– volume: 16
  start-page: 1039
  issue: 1
  year: 2016
  ident: 4446_CR16
  publication-title: BMC Public Health
  doi: 10.1186/s12889-016-3712-7
– volume: 16
  start-page: 5452
  issue: 3
  year: 2015
  ident: 4446_CR62
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms16035452
– volume: 164
  start-page: 603
  issue: 6
  year: 2004
  ident: 4446_CR5
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.164.6.603
– volume: 15
  start-page: 150
  issue: 1
  year: 2020
  ident: 4446_CR24
  publication-title: Arch Osteoporos
  doi: 10.1007/s11657-020-00827-z
– volume: 27
  start-page: 301
  issue: 2
  year: 2012
  ident: 4446_CR27
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.556
– volume: 3
  issue: 10
  year: 2019
  ident: 4446_CR49
  publication-title: JBMR Plus
  doi: 10.1002/jbm4.10207
– volume: 339
  year: 2009
  ident: 4446_CR22
  publication-title: BMJ
  doi: 10.1136/bmj.b4229
– volume: 16
  start-page: 351
  issue: 1
  year: 2021
  ident: 4446_CR64
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-021-02497-0
– volume: 110
  start-page: 658
  issue: 6
  year: 2022
  ident: 4446_CR33
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-021-00941-1
– volume: 42
  start-page: 467
  issue: 3
  year: 2008
  ident: 4446_CR2
  publication-title: Bone
  doi: 10.1016/j.bone.2007.11.001
– volume: 27
  start-page: 319
  issue: 5
  year: 2012
  ident: 4446_CR17
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-012-9674-x
– volume: 107
  start-page: 353
  issue: 4
  year: 2020
  ident: 4446_CR44
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-020-00734-y
– volume: 28
  start-page: 819
  issue: 3
  year: 2017
  ident: 4446_CR52
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-016-3828-8
– volume: 28
  start-page: 3113
  issue: 11
  year: 2017
  ident: 4446_CR15
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-017-4183-0
– volume: 16
  start-page: 318
  issue: 1
  year: 2021
  ident: 4446_CR63
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-021-02474-7
– volume: 35
  issue: 2
  year: 2019
  ident: 4446_CR20
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.3100
– volume: 42
  start-page: 102
  issue: 1
  year: 2019
  ident: 4446_CR30
  publication-title: Diabet Care
  doi: 10.2337/dc18-1486
– volume: 100
  start-page: 348
  issue: 4
  year: 2017
  ident: 4446_CR53
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-017-0238-7
– volume: 57
  start-page: 66
  issue: 10
  year: 2021
  ident: 4446_CR9
  publication-title: Medicina
  doi: 10.3390/medicina57101119
– volume: 2020
  start-page: 8880786
  year: 2020
  ident: 4446_CR46
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2020/8880786
– volume: 22
  issue: 10
  year: 2020
  ident: 4446_CR48
  publication-title: J Med Internet Res
  doi: 10.2196/22550
– ident: 4446_CR1
  doi: 10.1016/0002-9343(93)90218-E
– ident: 4446_CR6
– volume: 33
  start-page: 759
  issue: 4
  year: 2021
  ident: 4446_CR8
  publication-title: Aging Clin Exp Res
  doi: 10.1007/s40520-021-01817-y
– volume: 49
  start-page: 1029
  issue: 4
  year: 2019
  ident: 4446_CR51
  publication-title: J Magn Resonan Imaging
  doi: 10.1002/jmri.26280
– volume: 143
  year: 2021
  ident: 4446_CR25
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115614
– volume: 6
  start-page: 66
  year: 2022
  ident: 4446_CR3
  publication-title: Osteoporos Int
– volume: 30
  start-page: 2079
  issue: 10
  year: 2019
  ident: 4446_CR18
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-019-05053-z
– volume: 38
  start-page: 876
  issue: 6
  year: 2023
  ident: 4446_CR58
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4805
– volume: 16
  start-page: 533
  issue: 1
  year: 2021
  ident: 4446_CR60
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-021-02678-x
– volume: 32
  start-page: 437
  issue: 3
  year: 2021
  ident: 4446_CR43
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-020-05735-z
SSID ssj0050584
Score 2.358136
SecondaryResourceType review_article
Snippet Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the efficacy of...
Abstract Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics in bone metabolism, limiting the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 956
SubjectTerms Algorithms
Artificial Intelligence
Bone Density
Bone turnover
Care and treatment
Chronic obstructive pulmonary disease
Denosumab
Diabetes
Diabetes Mellitus
Diabetics
Fracture prediction
Fractures
Hip Fractures - epidemiology
Hip joint
Humans
Kidney diseases
Medical research
Medicine, Experimental
Metabolism
Mortality
Orthopedics
Osteoporosis
Osteoporosis - complications
Osteoporosis - diagnosis
Osteoporotic fracture
Osteoporotic Fractures - diagnosis
Osteoporotic Fractures - epidemiology
Osteoporotic Fractures - etiology
Predictions
Review
Rheumatoid arthritis
Risk Assessment
Risk Factors
Type 2 diabetes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJy-i-FVdJYLgQcI2bZJOvD3FZRX05MLeQpoPd2FtH_te_39n-vF4RdCLp0KSKU1mJjOTZn7D2FubtbWtVkLrjAFKW9bCW5CiqZDAZBOrRAnO376bi0v19UpfHZX6ojthEzzwtHBnTaAqWTLHaK0qVfCpbsAnSKls0daNqXv4XIKpaQ9Gsw5qSZEBc7bDnVqCQPskCB_NCL0yQyNa_5978pFRWl-YPLJA5w_Zg9l15Jvpkx-xe6l7zPrNF-5vf_YY41__2nF0QbkPYSAACL69o78wtPK8z5yyOXr0tnsk55mSowYMtflNx2ds1R2nQ1m-nMZ-4L7jw1bse0GnAnxKcnnCLs8___h0IeYiCiJoo_YiKh3anFFzIUkZskV-QGiCSSqYqCHknE2OOiUJyUOZsN1G42PGYCMaWz9lJ13fpeeMQwAbrcZmjCoriB45U0blkSc2RakLJpc1dWFGGKdCF7dujDTAuIkPDvngRj44pHl_oNlO-Bp_Hf2RWHUYSdjYYwNKjJslxv1LYgr2jhjtSIPx84KfExFwkoSF5TYNHe2Q51Ow09VI1Lyw7l5Exc2av3OVRa-ppnzlgr05dBMl3WbrUj9MYyxGpo0s2LNJsg5TqqGEpq7x5bCSudWc1z3dzfWICy4pGU1B_eJ_rNJLdr8ifZFU--aUnezvhvQK_a99-3pUtd-EDi52
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggEK9AQUZC4oCsxont2FzQgqgKEpyotDfL8aOt1CbLJvn_zOSxNELq1fZEdsbjedjzDSHvTZLG1FIwKRM4KHVeMmc0Z1UBBCqpUERMcP75S52dix9buZ0Dbt38rHI5E8eDOrQeY-QnhQFtVGIe6OfdH4ZVo_B2dS6hcZ88QOgy3NXV9uBwgXLXYkmU0eqkg_OaawZaiiFKmmJypYxGzP7_T-Zbqmn9bPKWHjp9TB7NBiTdTBx_Qu7F5ilpN9-pu76A-faXNx0FQ5Q67weEgaC7Pd7F4P-nbaKY09GCzd0COU2YIjWAw02vGjojrHYUQ7N0icl-oq6hw471LcPYAJ1SXZ6R89Nvv7-esbmUAvNSiZ4FIX2dEsivjpz7ZIAr2ldeReFVkNqnlFQKMkauo9N5hHYTlAsJXI6gTPmcHDVtE18Sqr02wUhoBt-y0MFJIfIgnHfRxMBlRvjyT62fccax3MW1Hf0NrezEBwt8sCMfLNB8PNDsJpSNO0d_QVYdRiJC9tjQ7i_sLHC28lhdjacQjBG5gNmVlXZRx5jXYCOZjHxARluUY5ied3M6AiwSEbHspsIAD9o_GTlejQT58-vuZavYWf47-2-3ZuTdoRsp8U1bE9thGmPAP614Rl5MO-uwpFLnuipL-Lhe7bnVmtc9zdXliA7OMSVN6PLV3fN6TR4WKAkca9sck6N-P8Q3YF_19dtRiP4CjGwl0A
  priority: 102
  providerName: ProQuest
Title AI algorithms for accurate prediction of osteoporotic fractures in patients with diabetes: an up-to-date review
URI https://www.ncbi.nlm.nih.gov/pubmed/38087332
https://www.proquest.com/docview/2902132975
https://www.proquest.com/docview/2902949571
https://pubmed.ncbi.nlm.nih.gov/PMC10714483
https://doaj.org/article/7c54411fdd99404cae378ae8ee0b0919
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZixNBEG72ePFFFK-sa2hB8EFaZzJ9CiJZ2WUN7CLqQt6aTh-7gTgTc4D-e6vmCDu4iE-B7q7JdFfV1DFTXxHyyiRhzExwJkSCAGWWFcwZnTM1AgKZZBhFLHC-uJTnV3wyFdM90rU7ag9wfWdoh_2krlaLt79-_v4ICv-hVngt363hOZxrBtaHIfqZZGKfHIJlUtjR4ILv3iqAsa87EIMTbpgyZtoV0dx5jZ6hqvH8_35q3zJb_U8qb9moswfkfutc0nEjDQ_JXiwfkWr8mbrFdbWab25-rCk4qdR5v0WICLpc4Xsa5A2tEsV6jwqOogJymrB8agvBOJ2XtEVfXVNM29IuX_ueupJul2xTMcwb0KYM5jG5Ojv9_umctW0WmBeSb1jgws9SAt3WMc99MsAx7ZWXkXsZhPYpJZmCiDHX0ekswrgJ0oUE4UiQpnhCDsqqjM8I1V6bYAQMQ9w50sEJzrPAnXfRxJCLAcm7M7W-xSDHVhgLW8ciWtqGDxb4YGs-WKB5s6NZNggc_1x9gqzarUT07HqgWl3bVhmt8th5LU8hGMMzDndXKO2ijjGbgf9kBuQ1Mtqi1MHtedeWKsAmES3LjhUmf9A3GpDj3krQTd-f7kTFdqJtRwb8qgIrmgfk5W4aKfF7tzJW22aNgdhV5QPytJGs3ZYKnWlVFHBx3ZO53p77M-X8pkYOz7Fcjevi6D_--Dm5N0J1yLH5zTE52Ky28QU4YJvZkOyrqRqSw_F48m0Cvyenl1--Dut0xrDWuD-hfDIc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0KrKA7wgENdCASOBeEBW48R2bCSElqPapcdTK_XNeH20lUqy7CHET_GNzORYGiH1ra-2J7I998QzQ8hrk6QxMymYlAkclFlWMGc0Z2UOACqpkEdMcD48UpMT8e1Unm6RP30uDD6r7GViI6hD7TFGvpsb0EYF5oF-nP9k2DUK_672LTRastiPv3-By7b8MP0C-H2T53tfjz9PWNdVgHmpxIoFIf0sJSBlHTn3ycAGtS-9isKrILVPKakUZIxcR6ezCOMmKBcSWN9BYfElEPm3QPFm6OyVpxsHD4wJLfrEHK12l6AfuGagFRlWZVNMDpRf0yPgf01wRRUOn2le0Xt798jdzmCl45bC7pOtWD0g9XhK3eUZ3M_q_MeSguFLnfdrLDtB5wv894P4pnWimENSg41fAzhNmJK1BgefXlS0q-i6pBgKpn0M-D11FV3P2apmGIugbWrNQ3JyI5f8iGxXdRWfEKq9NsFIGAZfNtfBSSGyIJx30cTA5Yjw_k6t7-qaY3uNS9v4N1rZFg8W8GAbPFiAebeBmbdVPa5d_QlRtVmJFbmbgXpxZjsGt6XHbm48hWCMyATsrii1izrGbAY2mRmRt4hoi3IDtuddl_4Ah8QKXHZcYkAJ7a0R2RmsBH73w-meVGwnb5b2H3eMyKvNNELiG7oq1ut2jQF_uOQj8rilrM2RCp3psijg43pAc4MzD2eqi_OmGjnHFDihi6fX7-sluT05PjywB9Oj_WfkTo5cwbGvzg7ZXi3W8TnYdqvZi4ahKPl-0xz8F54oZbs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+algorithms+for+accurate+prediction+of+osteoporotic+fractures+in+patients+with+diabetes%3A+an+up-to-date+review&rft.jtitle=Journal+of+orthopaedic+surgery+and+research&rft.au=Li%2C+Zeting&rft.au=Zhao%2C+Wen&rft.au=Lin%2C+Xiahong&rft.au=Li%2C+Fangping&rft.date=2023-12-12&rft.issn=1749-799X&rft.eissn=1749-799X&rft.volume=18&rft.issue=1&rft.spage=956&rft_id=info:doi/10.1186%2Fs13018-023-04446-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-799X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-799X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-799X&client=summon