A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using Neural Networks

Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrieval...

Full description

Saved in:
Bibliographic Details
Published inBiogeosciences Vol. 15; no. 19; pp. 5779 - 5800
Main Authors Zhang, Yao, Joiner, Joanna, Alemohammad, Seyed Hamed, Zhou, Sha, Gentine, Pierre
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center Biogeosciences 02.10.2018
Copernicus GmbH
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIF(sub clear-inst)) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIF(sub all-daily)) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIF(sub yield), the ratio between OCO-2 SIF and CSIF(sub clear-inst) can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIF(sub all-daily) with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
AbstractList Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIF(sub clear-inst)) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIF(sub all-daily)) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIF(sub yield), the ratio between OCO-2 SIF and CSIF(sub clear-inst) can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIF(sub all-daily) with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05∘ 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05∘ 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v.  =  0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v.  =  0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000-2017) and the other one in all-sky conditions (2000-2016). The clear-sky instantaneous CSIF (CSIF.sub.clear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIF.sub.all-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIF.sub.all-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIF.sub.yield, the ratio between OCO-2 SIF and CSIF.sub.clear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIF.sub.all-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP-SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v.  =  0.15). These two contiguous SIF datasets and the derived GPP-SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate.
Audience PUBLIC
Academic
Author Gentine, Pierre
Zhang, Yao
Zhou, Sha
Joiner, Joanna
Alemohammad, Seyed Hamed
Author_xml – sequence: 1
  givenname: Yao
  surname: Zhang
  fullname: Zhang, Yao
  organization: Columbia Univ
– sequence: 2
  givenname: Joanna
  surname: Joiner
  fullname: Joiner, Joanna
  organization: NASA Goddard Space Flight Center
– sequence: 3
  givenname: Seyed Hamed
  surname: Alemohammad
  fullname: Alemohammad, Seyed Hamed
  organization: Radiant Earth Foundation
– sequence: 4
  givenname: Sha
  surname: Zhou
  fullname: Zhou, Sha
  organization: Columbia Univ
– sequence: 5
  givenname: Pierre
  surname: Gentine
  fullname: Gentine, Pierre
  organization: Columbia Univ
BookMark eNp9ks1r3DAQxU1JofnouZceDL00ByeSbcnWcdl0E0NIodscixjLI6Ot19pKMk3--8jZkrKhFB0kHr_3RtLMSXI02hGT5AMlF4yK8rLtM8oyVlUiywmt3yTHtMp5VtJaHL2cK_IuOfF-Q0hRk5odJz8W6fVgWxjS9Q6CgWF4TJd2DKaf7OTTtR3AZc3YTQq7dDVM1qFXOCpMPy_Xzeo8vYIAHkN6783Yp3c4uZh1h-G3dT_9WfJWw-Dx_Z_9NLlfffm-vMluv143y8VtphgvQ6ZEwYoip0VHOoZ13QJTqta1xlZ1hCMBggKRMEZEQXNeKp3rTgAnhFS81cVp0uxzOwsbuXNmC-5RWjDyWbCul-CCUQNKUQqCNcWcoyorXQkNoNscFAPOOZmzPu2zds7-mtAHubGTG-P1ZU4po0zklP-leoihZtQ2OFBb45VcMMZ5KcqqitTFP6i4OtwaFfunTdQPDOcHhsgEfAg9TN7LZv3tkL3cs8pZ7x3ql4dTIueRkG0vKZPzSMh5JKKDvXIoE2LXYxEHZviP7-PeN4IHGWE_6yL-PmWFKJ4AGgHCCA
CitedBy_id crossref_primary_10_1016_j_agrformet_2020_108169
crossref_primary_10_1109_TGRS_2020_2999371
crossref_primary_10_1002_eap_2757
crossref_primary_10_3389_fpls_2021_689220
crossref_primary_10_1016_j_agrformet_2023_109532
crossref_primary_10_3390_rs13132545
crossref_primary_10_3389_fpls_2023_1164078
crossref_primary_10_1016_j_jhydrol_2024_130722
crossref_primary_10_1088_1748_9326_ad5570
crossref_primary_10_3390_rs16132388
crossref_primary_10_1029_2023JG007703
crossref_primary_10_1016_j_rse_2020_111728
crossref_primary_10_1038_s41597_024_04325_6
crossref_primary_10_5194_essd_15_5597_2023
crossref_primary_10_1016_j_rse_2022_113341
crossref_primary_10_1016_j_rse_2023_113861
crossref_primary_10_1016_j_rse_2023_113984
crossref_primary_10_1080_20964471_2021_1920661
crossref_primary_10_1007_s12665_024_11528_y
crossref_primary_10_1029_2021EF002634
crossref_primary_10_1016_j_agrformet_2024_109929
crossref_primary_10_1007_s00382_025_07640_9
crossref_primary_10_1038_s41597_025_04403_3
crossref_primary_10_1038_s43247_025_02104_8
crossref_primary_10_1007_s40641_024_00194_8
crossref_primary_10_1016_j_agrformet_2020_108275
crossref_primary_10_1016_j_isprsjprs_2020_01_017
crossref_primary_10_1007_s11442_023_2151_5
crossref_primary_10_1038_s41558_022_01584_2
crossref_primary_10_3389_fpls_2023_1125288
crossref_primary_10_1016_j_foreco_2024_121742
crossref_primary_10_3389_ffgc_2021_695269
crossref_primary_10_3390_rs16213924
crossref_primary_10_1007_s11676_025_01828_9
crossref_primary_10_3390_land13081222
crossref_primary_10_1016_j_jag_2024_103821
crossref_primary_10_1016_j_scitotenv_2021_151335
crossref_primary_10_3390_su15076012
crossref_primary_10_1016_j_rse_2021_112635
crossref_primary_10_3390_environments9090121
crossref_primary_10_1029_2023JG007499
crossref_primary_10_1029_2022JG007315
crossref_primary_10_3390_rs11050517
crossref_primary_10_3390_rs14061328
crossref_primary_10_5194_bg_17_6393_2020
crossref_primary_10_1029_2020GL087474
crossref_primary_10_1093_nsr_nwab150
crossref_primary_10_3390_rs14061329
crossref_primary_10_1016_j_agrformet_2020_108195
crossref_primary_10_1038_s41597_022_01520_1
crossref_primary_10_3390_rs14246316
crossref_primary_10_1016_j_catena_2024_108087
crossref_primary_10_1016_j_agrformet_2024_110025
crossref_primary_10_1029_2024JG008330
crossref_primary_10_1016_j_rse_2021_112748
crossref_primary_10_59717_j_xinn_geo_2024_100095
crossref_primary_10_1029_2023GL102812
crossref_primary_10_1038_s43247_023_00960_w
crossref_primary_10_3390_rs12010021
crossref_primary_10_1016_j_jhydrol_2025_132757
crossref_primary_10_1080_15481603_2025_2483492
crossref_primary_10_1080_01431161_2020_1763507
crossref_primary_10_1016_j_compag_2024_109140
crossref_primary_10_1038_s43017_019_0001_x
crossref_primary_10_1038_s43247_024_01636_9
crossref_primary_10_1093_jpe_rtae114
crossref_primary_10_1126_science_abb7772
crossref_primary_10_5194_bg_19_5953_2022
crossref_primary_10_3389_fpls_2019_01135
crossref_primary_10_1016_j_agrformet_2024_110019
crossref_primary_10_3390_rs13142824
crossref_primary_10_1016_j_compag_2021_106612
crossref_primary_10_1029_2018JG005002
crossref_primary_10_3390_rs16193731
crossref_primary_10_1016_j_gloplacha_2020_103343
crossref_primary_10_1016_j_agrformet_2021_108800
crossref_primary_10_1016_j_scitotenv_2024_175845
crossref_primary_10_5194_bg_20_383_2023
crossref_primary_10_1029_2021EF002160
crossref_primary_10_1177_03091333221114864
crossref_primary_10_3390_rs14102340
crossref_primary_10_1016_j_gca_2024_12_009
crossref_primary_10_1109_JSTARS_2024_3433371
crossref_primary_10_1016_j_agrformet_2020_108088
crossref_primary_10_1525_elementa_2023_00102
crossref_primary_10_1016_j_agrformet_2023_109851
crossref_primary_10_1016_j_oneear_2019_12_015
crossref_primary_10_1029_2023EF003977
crossref_primary_10_5194_bg_17_405_2020
crossref_primary_10_1016_j_agrformet_2023_109734
crossref_primary_10_1038_s43017_023_00456_3
crossref_primary_10_3390_rs15245697
crossref_primary_10_1016_j_scitotenv_2023_163587
crossref_primary_10_1016_j_scitotenv_2022_160992
crossref_primary_10_1016_j_rse_2022_113383
crossref_primary_10_1016_j_agrformet_2020_108092
crossref_primary_10_1016_j_rse_2024_114596
crossref_primary_10_3390_rs16101707
crossref_primary_10_1080_15481603_2024_2348257
crossref_primary_10_1016_j_scitotenv_2023_166051
crossref_primary_10_3390_rs12040671
crossref_primary_10_3390_land14010160
crossref_primary_10_1016_j_agrformet_2023_109869
crossref_primary_10_3390_rs14205172
crossref_primary_10_5194_gmd_15_1971_2022
crossref_primary_10_3390_rs15163937
crossref_primary_10_1016_j_compag_2022_107260
crossref_primary_10_3390_rs14195045
crossref_primary_10_5194_bg_19_4833_2022
crossref_primary_10_1109_JSTARS_2024_3369332
crossref_primary_10_1007_s11430_022_9987_0
crossref_primary_10_1029_2020GB006893
crossref_primary_10_1360_TB_2022_0566
crossref_primary_10_1029_2018GL081109
crossref_primary_10_1016_j_scitotenv_2020_144011
crossref_primary_10_3390_rs12193249
crossref_primary_10_34133_remotesensing_0445
crossref_primary_10_1109_LGRS_2024_3379255
crossref_primary_10_1016_j_agrformet_2021_108704
crossref_primary_10_1126_sciadv_adk5861
crossref_primary_10_5194_bg_21_2447_2024
crossref_primary_10_3390_rs12071111
crossref_primary_10_3390_rs17010097
crossref_primary_10_1186_s13021_022_00209_7
crossref_primary_10_1016_j_scitotenv_2023_162591
crossref_primary_10_1016_j_rse_2022_113120
crossref_primary_10_1016_j_rse_2024_114496
crossref_primary_10_1016_j_rse_2022_113365
crossref_primary_10_1038_s41893_022_01024_1
crossref_primary_10_1016_j_jenvman_2024_121624
crossref_primary_10_3390_rs15092355
crossref_primary_10_1038_s41597_024_03810_2
crossref_primary_10_1360_SSTe_2022_0100
crossref_primary_10_1016_j_jclepro_2024_142595
crossref_primary_10_3390_agriculture12040547
crossref_primary_10_3390_agronomy14091941
crossref_primary_10_3390_atmos15080985
crossref_primary_10_1007_s12524_024_02097_5
crossref_primary_10_1111_geb_13561
crossref_primary_10_1016_j_agwat_2025_109322
crossref_primary_10_1038_s43247_025_02201_8
crossref_primary_10_1088_1748_9326_ad5858
crossref_primary_10_1016_j_agrformet_2023_109817
crossref_primary_10_1029_2019JG005289
crossref_primary_10_1016_j_jenvman_2024_122986
crossref_primary_10_1038_s41597_025_04686_6
crossref_primary_10_1111_ele_14205
crossref_primary_10_34133_remotesensing_0085
crossref_primary_10_1029_2022MS003150
crossref_primary_10_1109_JSTARS_2023_3247422
crossref_primary_10_1080_01431161_2020_1798549
crossref_primary_10_3390_rs14061504
crossref_primary_10_3389_fenvs_2023_1093095
crossref_primary_10_1038_s41467_020_18631_1
crossref_primary_10_3390_rs15204943
crossref_primary_10_1016_j_rse_2024_113999
crossref_primary_10_1016_j_ecolmodel_2021_109552
crossref_primary_10_1109_JSTARS_2022_3148393
crossref_primary_10_1016_j_rse_2024_114284
crossref_primary_10_3390_rs15164038
crossref_primary_10_1016_j_agrformet_2022_109095
crossref_primary_10_1016_j_agrformet_2024_110197
crossref_primary_10_1016_j_jag_2024_104183
crossref_primary_10_3390_atmos15080886
crossref_primary_10_1029_2020GL089167
crossref_primary_10_1016_j_rse_2023_113699
crossref_primary_10_1029_2022MS003135
crossref_primary_10_3390_rs16060963
crossref_primary_10_3390_rs17060958
crossref_primary_10_1038_s43247_023_01167_9
crossref_primary_10_5194_bg_19_1777_2022
crossref_primary_10_1080_11956860_2024_2303187
crossref_primary_10_1016_j_rse_2022_113282
crossref_primary_10_1029_2022GL100096
crossref_primary_10_1029_2022JD037773
crossref_primary_10_1073_pnas_2103423118
crossref_primary_10_3390_rs15071756
crossref_primary_10_5194_essd_12_1101_2020
crossref_primary_10_1016_j_jhydrol_2023_130254
crossref_primary_10_1016_j_jhydrol_2024_131883
crossref_primary_10_5194_gmd_14_3633_2021
crossref_primary_10_1029_2023GB007702
crossref_primary_10_1038_s41558_022_01374_w
crossref_primary_10_3390_rs15030698
crossref_primary_10_1016_j_agrformet_2022_109197
crossref_primary_10_1016_j_rse_2024_114061
crossref_primary_10_1109_TGRS_2022_3204885
crossref_primary_10_1016_j_ecoinf_2023_102194
crossref_primary_10_3390_s20041144
crossref_primary_10_1093_nsr_nwad049
crossref_primary_10_1016_j_asr_2023_09_004
crossref_primary_10_1038_s41477_022_01278_9
crossref_primary_10_3389_fpls_2024_1500499
crossref_primary_10_1016_j_ecolind_2023_111488
crossref_primary_10_1016_j_envres_2022_114991
crossref_primary_10_1016_j_rse_2024_114516
crossref_primary_10_1111_gcb_16502
crossref_primary_10_1016_j_ecolind_2022_108630
crossref_primary_10_1002_rse2_229
crossref_primary_10_1038_s43017_022_00317_5
crossref_primary_10_1016_j_rse_2024_114080
crossref_primary_10_1016_j_isprsjprs_2022_10_018
crossref_primary_10_1109_TGRS_2024_3462589
crossref_primary_10_1016_j_jhydrol_2022_128680
crossref_primary_10_1038_s41558_020_0806_0
crossref_primary_10_1109_TGRS_2024_3439333
crossref_primary_10_1007_s11769_021_1204_x
crossref_primary_10_1016_j_rse_2020_111644
crossref_primary_10_3389_ffgc_2023_1172220
crossref_primary_10_1038_s41467_022_28652_7
crossref_primary_10_1038_s41558_022_01304_w
crossref_primary_10_1029_2020AV000310
crossref_primary_10_1088_1748_9326_acd2ef
crossref_primary_10_34133_remotesensing_0173
crossref_primary_10_1016_j_rse_2024_114405
crossref_primary_10_1016_j_jag_2020_102126
crossref_primary_10_3390_rs13040804
crossref_primary_10_1109_TGRS_2023_3290239
crossref_primary_10_3390_plants13233321
crossref_primary_10_1016_j_agrformet_2023_109591
crossref_primary_10_1038_s41597_024_04101_6
crossref_primary_10_1109_ACCESS_2023_3343367
crossref_primary_10_1016_j_rse_2020_112062
crossref_primary_10_1016_j_ecolmodel_2022_110079
crossref_primary_10_1038_s41559_022_01756_5
crossref_primary_10_1038_s41467_023_40226_9
crossref_primary_10_1126_sciadv_adf3166
crossref_primary_10_1029_2023EF003590
crossref_primary_10_1126_sciadv_abb7232
crossref_primary_10_1126_sciadv_adn2487
crossref_primary_10_1016_j_rse_2022_113409
crossref_primary_10_3390_rs11141691
crossref_primary_10_1038_s41559_023_02272_w
crossref_primary_10_1109_JSTARS_2023_3269908
crossref_primary_10_1016_j_agrformet_2022_109278
crossref_primary_10_1016_j_agrformet_2023_109434
crossref_primary_10_1016_j_scitotenv_2024_171182
crossref_primary_10_1088_1748_9326_ada56e
crossref_primary_10_1016_j_agrformet_2022_109038
crossref_primary_10_5194_acp_22_14547_2022
crossref_primary_10_1016_j_agrformet_2023_109799
crossref_primary_10_1016_j_agrformet_2023_109558
crossref_primary_10_5194_bg_22_1509_2025
crossref_primary_10_1029_2020MS002394
crossref_primary_10_1007_s00382_021_05702_2
crossref_primary_10_1080_22797254_2025_2455940
crossref_primary_10_1016_j_agrformet_2023_109562
crossref_primary_10_3390_rs16214101
crossref_primary_10_1016_j_agrformet_2023_109440
crossref_primary_10_1088_1748_9326_acde92
crossref_primary_10_1175_JCLI_D_19_0575_1
crossref_primary_10_59717_j_xinn_geo_2024_100060
crossref_primary_10_1029_2020JG005651
crossref_primary_10_1016_j_agwat_2025_109397
crossref_primary_10_1007_s12551_022_00982_2
crossref_primary_10_1016_j_foreco_2021_120000
crossref_primary_10_1088_1748_9326_acdaae
crossref_primary_10_1029_2021JG006320
crossref_primary_10_1016_j_agrformet_2021_108439
crossref_primary_10_1073_pnas_1914436117
crossref_primary_10_1080_10106049_2024_2354417
crossref_primary_10_1016_j_jag_2021_102567
crossref_primary_10_1016_j_scitotenv_2024_178269
crossref_primary_10_1016_j_compag_2022_106790
crossref_primary_10_1016_j_agrformet_2022_109027
crossref_primary_10_1016_j_agrformet_2023_109323
crossref_primary_10_3390_rs15215101
crossref_primary_10_1016_j_jag_2022_103036
crossref_primary_10_5194_amt_16_581_2023
crossref_primary_10_1016_j_agrformet_2023_109573
crossref_primary_10_1016_j_agrformet_2024_110051
crossref_primary_10_1016_j_rse_2019_04_030
crossref_primary_10_1088_1748_9326_ab68eb
crossref_primary_10_1088_1748_9326_acb72b
crossref_primary_10_3390_rs12132167
crossref_primary_10_1088_2515_7620_ada675
Cites_doi 10.1111/gcb.12948
10.1016/j.rse.2015.06.002
10.1111/gcb.12664
10.1111/gcb.13200
10.1139/er-2013-0006
10.1016/j.rse.2016.12.018
10.1029/2010JG001566
10.1146/annurev.pp.42.060191.001525
10.1126/science.1184984
10.3390/rs9090911
10.1016/j.rse.2017.09.021
10.1073/pnas.1210196109
10.3390/rs8050412
10.5194/gmd-8-3311-2015
10.3390/rs8020061
10.1016/S0304-4165(89)80016-9
10.1016/j.rse.2012.02.006
10.1126/science.aam5747
10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
10.1016/j.rse.2014.02.007
10.1016/j.rse.2016.08.026
10.1007/978-1-4020-3218-9_22
10.5194/bg-9-3857-2012
10.1093/treephys/tpt030
10.1016/j.rse.2016.08.030
10.1016/j.rse.2017.09.034
10.1111/nph.14437
10.1073/pnas.1320008111
10.1016/S0034-4257(03)00174-3
10.1016/j.rse.2017.10.035
10.1016/j.rse.2014.06.022
10.1088/1748-9326/aa8978
10.1002/2017GL076294
10.1016/j.agrformet.2008.03.005
10.1016/j.rse.2016.04.027
10.1111/gcb.14302
10.5194/amt-9-3939-2016
10.1016/j.rse.2017.12.009
10.1002/2014GL062943
10.5194/gmd-10-709-2017
10.1002/2016JG003580
10.2307/2401901
10.1002/2014JG002713
10.1002/2015RG000483
10.1016/j.rse.2018.02.029
10.1016/j.rse.2016.05.015
10.1016/j.rse.2004.12.011
10.1016/j.rse.2017.10.045
10.1016/j.rse.2016.10.016
10.5194/bg-6-3109-2009
10.5194/bg-13-4291-2016
10.1126/sciadv.1602244
10.1093/jxb/eru191
10.5194/bg-8-637-2011
10.3389/fpls.2017.00309
10.5194/amt-6-2803-2013
10.5194/bg-14-4101-2017
10.1029/2011GL048738
10.1002/2017GL073708
10.1016/j.rse.2016.01.018
10.1016/B978-0-12-409548-9.10632-3
10.1002/2015JG003150
10.1111/j.1600-0889.2006.00221.x
10.1016/j.rse.2009.08.016
10.1029/2017GL076354
10.1109/LGRS.2017.2681128
10.1029/2018GL078202
10.1109/TGRS.2015.2504089
10.1016/j.scitotenv.2017.11.158
10.1038/sdata.2017.165
10.1023/A:1007172424619
10.1038/nclimate3004
10.1016/j.rse.2005.09.009
10.1007/s11120-008-9292-3
10.1111/gcb.14134
10.1111/j.1365-2486.2005.001002.x
10.1109/MGRS.2017.2762307
10.1016/j.rse.2015.06.004
10.5194/hess-2017-680-supplement
10.1111/gcb.13136
10.1016/j.rse.2018.02.016
10.1034/j.1399-3054.2002.1140209.x
10.1029/2001JD001242
10.1098/rspb.2013.0171
10.1016/S0034-4257(02)00091-3
10.1002/9781118671603
10.1111/gcb.12822
10.1111/gcb.14297
ContentType Journal Article
Copyright COPYRIGHT 2018 Copernicus GmbH
2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2018 Copernicus GmbH
– notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID CYE
CYI
AAYXX
CITATION
ISR
7QO
7SN
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H95
H96
HCIFZ
KL.
L.G
L6V
LK8
M7N
M7P
M7S
P64
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/bg-15-5779-2018
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Gale In Context: Science
Biotechnology Research Abstracts
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
Biological Science Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Biotechnology Research Abstracts
Oceanic Abstracts
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
DatabaseTitleList
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1726-4189
EndPage 5800
ExternalDocumentID oai_doaj_org_article_9490e81e26ec47f79faafb2ac5a6660f
A556649477
10_5194_bg_15_5779_2018
20190001539
GrantInformation NNH16ZDA001N-AIST
GroupedDBID 23N
2WC
2XV
4P2
5GY
5VS
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABJCF
ABUWG
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CYE
CYI
E3Z
EBD
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
KQ8
L6V
L8X
LK5
LK8
M7P
M7R
M7S
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
AAYXX
CITATION
BBORY
PMFND
7QO
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H95
H96
KL.
L.G
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c564t-c93533213d0d5e88ba5cc8f8febcd06e0a0e9ee0550931264cf2fd9a600076bf3
IEDL.DBID BENPR
ISSN 1726-4170
1726-4189
IngestDate Wed Aug 27 01:27:23 EDT 2025
Fri Jul 25 10:37:04 EDT 2025
Tue Jun 17 21:39:44 EDT 2025
Tue Jun 10 20:32:55 EDT 2025
Fri Jun 27 04:35:00 EDT 2025
Tue Jul 01 02:50:07 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Fri Aug 15 15:27:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-c93533213d0d5e88ba5cc8f8febcd06e0a0e9ee0550931264cf2fd9a600076bf3
Notes GSFC
GSFC-E-DAA-TN63345
ISSN: 1726-4170
E-ISSN: 1726-4189
Report Number: GSFC-E-DAA-TN63345
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5662-3643
0000-0003-4278-1020
OpenAccessLink https://www.proquest.com/docview/2115159216?pq-origsite=%requestingapplication%
PQID 2115159216
PQPubID 105740
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_9490e81e26ec47f79faafb2ac5a6660f
proquest_journals_2115159216
gale_infotracmisc_A556649477
gale_infotracacademiconefile_A556649477
gale_incontextgauss_ISR_A556649477
crossref_primary_10_5194_bg_15_5779_2018
crossref_citationtrail_10_5194_bg_15_5779_2018
nasa_ntrs_20190001539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-02
PublicationDateYYYYMMDD 2018-10-02
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Katlenburg-Lindau
PublicationTitle Biogeosciences
PublicationYear 2018
Publisher Biogeosciences
Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Biogeosciences
– name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref40
  doi: 10.1111/gcb.12948
– ident: ref72
  doi: 10.1016/j.rse.2015.06.002
– ident: ref81
  doi: 10.1111/gcb.12664
– ident: ref74
  doi: 10.1111/gcb.13200
– ident: ref80
  doi: 10.1139/er-2013-0006
– ident: ref85
  doi: 10.1016/j.rse.2016.12.018
– ident: ref34
  doi: 10.1029/2010JG001566
– ident: ref37
  doi: 10.1146/annurev.pp.42.060191.001525
– ident: ref8
  doi: 10.1126/science.1184984
– ident: ref11
  doi: 10.3390/rs9090911
– ident: ref56
  doi: 10.1016/j.rse.2017.09.021
– ident: ref35
  doi: 10.1073/pnas.1210196109
– ident: ref55
  doi: 10.3390/rs8050412
– ident: ref64
  doi: 10.5194/gmd-8-3311-2015
– ident: ref75
  doi: 10.3390/rs8020061
– ident: ref22
  doi: 10.1016/S0304-4165(89)80016-9
– ident: ref25
  doi: 10.1016/j.rse.2012.02.006
– ident: ref62
  doi: 10.1126/science.aam5747
– ident: ref7
  doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
– ident: ref17
  doi: 10.1016/j.rse.2014.02.007
– ident: ref79
  doi: 10.1016/j.rse.2016.08.026
– ident: ref1
  doi: 10.1007/978-1-4020-3218-9_22
– ident: ref45
  doi: 10.5194/bg-9-3857-2012
– ident: ref68
  doi: 10.1093/treephys/tpt030
– ident: ref57
– ident: ref29
  doi: 10.1016/j.rse.2016.08.030
– ident: ref41
  doi: 10.1016/j.rse.2017.09.034
– ident: ref46
  doi: 10.1111/nph.14437
– ident: ref26
  doi: 10.1073/pnas.1320008111
– ident: ref28
  doi: 10.1016/S0034-4257(03)00174-3
– ident: ref53
  doi: 10.1016/j.rse.2017.10.035
– ident: ref32
  doi: 10.1016/j.rse.2014.06.022
– ident: ref9
  doi: 10.1088/1748-9326/aa8978
– ident: ref20
  doi: 10.1002/2017GL076294
– ident: ref76
  doi: 10.1016/j.agrformet.2008.03.005
– ident: ref13
  doi: 10.1016/j.rse.2016.04.027
– ident: ref60
  doi: 10.1111/gcb.14302
– ident: ref33
  doi: 10.5194/amt-9-3939-2016
– ident: ref86
  doi: 10.1016/j.rse.2017.12.009
– ident: ref54
  doi: 10.1002/2014GL062943
– ident: ref65
  doi: 10.5194/gmd-10-709-2017
– ident: ref71
  doi: 10.1002/2016JG003580
– ident: ref47
  doi: 10.2307/2401901
– ident: ref70
  doi: 10.1002/2014JG002713
– ident: ref4
  doi: 10.1002/2015RG000483
– ident: ref77
  doi: 10.1016/j.rse.2018.02.029
– ident: ref82
  doi: 10.1016/j.rse.2016.05.015
– ident: ref89
  doi: 10.1016/j.rse.2004.12.011
– ident: ref36
  doi: 10.1016/j.rse.2017.10.045
– ident: ref83
  doi: 10.1016/j.rse.2016.10.016
– ident: ref69
  doi: 10.5194/bg-6-3109-2009
– ident: ref66
  doi: 10.5194/bg-13-4291-2016
– ident: ref6
  doi: 10.1126/sciadv.1602244
– ident: ref50
  doi: 10.1093/jxb/eru191
– ident: ref30
  doi: 10.5194/bg-8-637-2011
– ident: ref5
  doi: 10.3389/fpls.2017.00309
– ident: ref31
  doi: 10.5194/amt-6-2803-2013
– ident: ref2
  doi: 10.5194/bg-14-4101-2017
– ident: ref16
  doi: 10.1029/2011GL048738
– ident: ref19
  doi: 10.1002/2017GL076294
– ident: ref27
  doi: 10.1002/2017GL073708
– ident: ref73
  doi: 10.1016/j.rse.2016.01.018
– ident: ref15
  doi: 10.1016/B978-0-12-409548-9.10632-3
– ident: ref61
  doi: 10.1002/2015JG003150
– ident: ref67
  doi: 10.1111/j.1600-0889.2006.00221.x
– ident: ref48
– ident: ref18
  doi: 10.1016/j.rse.2009.08.016
– ident: ref88
  doi: 10.1029/2017GL076354
– ident: ref38
  doi: 10.1109/LGRS.2017.2681128
– ident: ref21
  doi: 10.1029/2018GL078202
– ident: ref43
  doi: 10.1109/TGRS.2015.2504089
– ident: ref44
  doi: 10.1016/j.scitotenv.2017.11.158
– ident: ref84
  doi: 10.1038/sdata.2017.165
– ident: ref52
  doi: 10.1023/A:1007172424619
– ident: ref91
  doi: 10.1038/nclimate3004
– ident: ref78
  doi: 10.1016/j.rse.2005.09.009
– ident: ref49
  doi: 10.1007/s11120-008-9292-3
– ident: ref87
  doi: 10.1111/gcb.14134
– ident: ref51
  doi: 10.1111/j.1365-2486.2005.001002.x
– ident: ref90
  doi: 10.1109/MGRS.2017.2762307
– ident: ref10
  doi: 10.1016/j.rse.2015.06.004
– ident: ref3
  doi: 10.5194/hess-2017-680-supplement
– ident: ref24
  doi: 10.1111/gcb.13136
– ident: ref63
  doi: 10.1016/j.rse.2018.02.016
– ident: ref14
  doi: 10.1034/j.1399-3054.2002.1140209.x
– ident: ref23
  doi: 10.1029/2001JD001242
– ident: ref39
  doi: 10.1098/rspb.2013.0171
– ident: ref58
  doi: 10.1016/S0034-4257(02)00091-3
– ident: ref12
  doi: 10.1002/9781118671603
– ident: ref59
  doi: 10.1111/gcb.12822
– ident: ref42
  doi: 10.1111/gcb.14297
SSID ssj0038085
Score 2.6415083
Snippet Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems....
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems....
SourceID doaj
proquest
gale
crossref
nasa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5779
SubjectTerms Artificial neural networks
Chlorophyll
Chlorophylls
Covariance
Datasets
Drought
Dynamics
Earth
Ecosystems
Eddy covariance
Fluorescence
Geosciences (General)
Global ozone
Greening
Imaging techniques
MODIS
Neural networks
Normalized difference vegetative index
Observations
Ozone
Ozone monitoring
Photosynthesis
Primary production
Reflectance
Resolution
Satellite observation
Satellites
Slope
Spectroradiometers
Temporal resolution
Temporal variations
Terrestrial ecosystems
Towers
Training
Vegetation
Vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRPyqetiWIYH2ITTbZzebxLB6toA_WQl8k5HMRjj3p3j30v3cmu3f0EPHF181kSSaT-WAmvyHkrRRVyL5xzEWtmYoqsNZFwWIAY4SpoeDxofCXr83Ftfp8U9_ca_WFNWEjPPDIuDOjDE-tSFWTgtJZm-xc9pULtQPPm2fUvmDztsHUqINly0szTrDODVNC8xHUB7wVdeY7JmpWa21AQrDXxz17VGD7d8r5oHeD-0NHF8OzeEIeTx4jnY8rfUoepP4ZeTj2kLx7Tn7M6QjqQQcsjnbL5R3F-vOf3QaCejpg6Mog8IYjjDQvN6vbAuAUEj09v7pcvKdYIzqkNcUK-I4iviX8qx-rw4dDcr349P38gk09E1ioG7VmwUhw4CohI491alvv6hDa3ObkQ-RN4o4nkxKHwMTAOTUq5CpH45qSk_NZvoBtr_r0klCpfOLBiMg9-ExetrpkaT2m7qRTakY-bDlnwwQojn0tlhYCC2S19Z0VtUVWW2T1jJzuJvwasTT-TvoRj2JHhiDY5QOIhp1Ew_5LNGbkDR6kRZiLHutoOrcZBnt59c3Oa3BjlVFaz8i7iSivYPXBTc8SgAeIjLVHebRHCfcw7A0forxY4MGAezDlmbo0MG0rQHbSDzAuiiNZiebV_9jpa_IIuVaKDKsjcrC-3aRjcJbW_qTci9-m0gz9
  priority: 102
  providerName: Directory of Open Access Journals
Title A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using Neural Networks
URI https://ntrs.nasa.gov/citations/20190001539
https://www.proquest.com/docview/2115159216
https://doaj.org/article/9490e81e26ec47f79faafb2ac5a6660f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_sFcEX8aPiaT0WEawPa_OxSXaf5Fp6toJFWgt9kWU_g3Bc6uXuof-9M5u9w0P0NTsJycxkPnZmf0PIuzIvbDC1Zto1DeOOWya0y5mz4IywNGQNHhT-elmf3_Avt9Vt2nDrU1vlxiZGQ-06i3vkx5CooOst8vrT3S-GU6OwuppGaOyRfTDBQozI_snZ5berjS0uRRaHcoKXrhnPm2wA94GohR-bluUVq5pGgqbgzI8__FKE798a6dFC9_ovWx0d0OwJeZwiRzodRP2UPPCLZ-ThMEvy_jn5MaUDuAftsUlaz-f3FPvQf7ZrSO5pjyksgwQcROlomK-7ZQRysp4enV5fzD5Q7BXt_YpiJ3xLEecSnrUYusT7A3IzO_t-es7S7ARmq5qvmJUlBHJFXrrMVV4IoytrRRDBG-uy2mc689L7DBIUCfKquQ1FcFLXsTZnQvkCPrtb-JeEltz4zMrcZQZiJ1OKJlZrDZbwSs35mHzccE7ZBCyO8y3mChIMZLUyrcorhaxWyOoxOdrecDdgavyb9ARFsSVDMOx4oVu2Kv1bSnKZeZH7ovaWN6GRQetgCm0rDclZFsbkLQpSIdzFAvtpWr3ue3VxfaWmFYSzXPKmGZP3iSh08PZWp-MJwANEyNqhPNyhhP_R7iwfoL4o4EGP3yDjcfVSwm0bBVLJTsD6Vqtf_X_5NXmE_IhthMUhGa2Wa_8GwqGVmZA9Mfs8SZo_iZsKE3RQ1W-xCgei
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4lFEoICFQJSDqXfX-_ABoVAICX0caCv1goyfK6QoW7KJUP4Uv5GZfURECG69rser9XjsmdmZ-YaQF0kU22AyzbTLcyacsKzQLmLOgjLC0JA1WCh8fJKNz8Xni_Rii_zqa2EwrbK_E5uL2lUW_5Hvg6OCqjeOsneXPxh2jcLoat9CoxWLQ7_6CS5b_XbyAfb3ZRyPPp4djFnXVYDZNBMLZmUCJk4cJY671BeF0am1RSiCN9bxzHPNvfSeg-kuYSWZsCEOTuqsiVqZkMB7r5HrIgFNjpXpo0_9zZ8UvGkBCjZBxkSU8xZKCGwksW9KFqUszXMJcokdRv7Qgk2zgLVK2J7pWv-lGRp1N7pDbnd2Kh22gnWXbPnZPXKj7Vy5uk--DmkLJUJrTMnW0-mKYtb793JZLWtao8PMwN0HwXE0TJfVvIGNsp7uHZxORq8pZqbWfkEx776kiKoJ75q1Oen1Djm_Ep4-gGVXM_-Q0EQYz62MHDdgqZmkyJvYsMGAYaKFGJA3PeeU7WDMsZvGVIE7g6xWplRRqpDVClk9IHvrCZctgse_Sd_jVqzJEHq7eVDNS9WdZCWF5L6IfJx5K_KQy6B1MLG2qQZXkIcBeY4bqRBcY4bZO6Ve1rWanH5RwxSMZyFFng_Iq44oVPD1VnfFEMADxOPaoNzdoITTbzeGd1BeFPCgxjXIpjg-kTCtFyDV3Uowvj5Dj_4__IzcHJ8dH6mjycnhY3ILedMkMMa7ZHsxX_onYIgtzNNG-in5dtXH7TezckDZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxKOIQAELgSgHE--u9-EDQukjaihEVUulXipje-0VUpQt2UQof41fx8w-IiIEt17X49V6PPbM7Mx8Q8jrKAitN4lmOk9TJnJhWabzgOUWlBGGhqzBQuEvk-T4Qny6jC-3yK-uFgbTKrs7sb6o89LiP_IBOCqoesMgGfg2LeL0cPTx-gfDDlIYae3aaTQicuJWP8F9qz6MD2Gv34Th6OjrwTFrOwwwGydiwayMwNwJgyjneeyyzOjY2sxn3hmb88RxzZ10joMZL2FVibA-9LnUSR3BMj6C994i2yl6RT2yvX80OT3r9ECU8bohKFgICRNByhtgIbCYxMAULIhZnKYSpBT7jfyhE-vWAWsF0ZvpSv-lJ2rlN7pP7rVWKx02YvaAbLnZQ3K76WO5ekSuhrQBFqEVJmjr6XRFMQf-e7EslxWt0H1m4PyDGOXUT5flvAaRso7uHZyPR-8o5qlWbkExC7-giLEJ75o1GerVDrm4Ea4-hmWXM_eE0EgYx60Mcm7AbjNRltaRYoPhw0gL0SfvO84p24KaY2-NqQLnBlmtTKGCWCGrFbK6T_bWE64bPI9_k-7jVqzJEIi7flDOC9WeayWF5C4LXJg4K1KfSq-1N6G2sQbHkPs-eYUbqRBqY4ZCW-hlVanx-ZkaxmBKCynStE_etkS-hK-3ui2NAB4gOtcG5e4GJdwFdmN4B-VFAQ8qXIOsS-UjCdM6AVLtHQXj6xP19P_DL8kdOGrq83hy8ozcRdbU2YzhLukt5kv3HKyyhXnRij8l3276xP0GQuVGaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Global+Spatially+Contiguous+Solar-Induced+Fluorescence+%28CSIF%29+Dataset+Using+Neural+Networks&rft.jtitle=Biogeosciences&rft.au=Zhang%2C+Yao&rft.au=Joiner%2C+Joanna&rft.au=Alemohammad%2C+Seyed+Hamed&rft.au=Zhou%2C+Sha&rft.date=2018-10-02&rft.pub=Biogeosciences&rft.issn=1726-4170&rft.eissn=1726-4189&rft.volume=15&rft.issue=19&rft_id=info:doi/10.5194%2Fbg-15-5779-2018&rft.externalDBID=CYI&rft.externalDocID=20190001539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4170&client=summon