A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using Neural Networks
Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrieval...
Saved in:
Published in | Biogeosciences Vol. 15; no. 19; pp. 5779 - 5800 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
Biogeosciences
02.10.2018
Copernicus GmbH Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIF(sub clear-inst)) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIF(sub all-daily)) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIF(sub yield), the ratio between OCO-2 SIF and CSIF(sub clear-inst) can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIF(sub all-daily) with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate. |
---|---|
AbstractList | Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIF(sub clear-inst)) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIF(sub all-daily)) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIF(sub yield), the ratio between OCO-2 SIF and CSIF(sub clear-inst) can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIF(sub all-daily) with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate. Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05∘ 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate. Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05∘ 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate. Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000–2017) and the other one in all-sky conditions (2000–2016). The clear-sky instantaneous CSIF (CSIFclear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIFall-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIFall-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIFyield, the ratio between OCO-2 SIF and CSIFclear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIFall-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP–SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP–SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate. Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems. However, several issues, including low spatial and temporal resolution of the gridded datasets and high uncertainty of the individual retrievals, limit the applications of SIF. In addition, inconsistency in measurement footprints also hinders the direct comparison between gross primary production (GPP) from eddy covariance (EC) flux towers and satellite-retrieved SIF. In this study, by training a neural network (NN) with surface reflectance from the MODerate-resolution Imaging Spectroradiometer (MODIS) and SIF from Orbiting Carbon Observatory-2 (OCO-2), we generated two global spatially contiguous SIF (CSIF) datasets at moderate spatiotemporal (0.05° 4-day) resolutions during the MODIS era, one for clear-sky conditions (2000-2017) and the other one in all-sky conditions (2000-2016). The clear-sky instantaneous CSIF (CSIF.sub.clear-inst) shows high accuracy against the clear-sky OCO-2 SIF and little bias across biome types. The all-sky daily average CSIF (CSIF.sub.all-daily) dataset exhibits strong spatial, seasonal and interannual dynamics that are consistent with daily SIF from OCO-2 and the Global Ozone Monitoring Experiment-2 (GOME-2). An increasing trend (0.39 %) of annual average CSIF.sub.all-daily is also found, confirming the greening of Earth in most regions. Since the difference between satellite-observed SIF and CSIF is mostly caused by the environmental down-regulation on SIF.sub.yield, the ratio between OCO-2 SIF and CSIF.sub.clear-inst can be an effective indicator of drought stress that is more sensitive than the normalized difference vegetation index and enhanced vegetation index. By comparing CSIF.sub.all-daily with GPP estimates from 40 EC flux towers across the globe, we find a large cross-site variation (c.v. = 0.36) of the GPP-SIF relationship with the highest regression slopes for evergreen needleleaf forest. However, the cross-biome variation is relatively limited (c.v. = 0.15). These two contiguous SIF datasets and the derived GPP-SIF relationship enable a better understanding of the spatial and temporal variations of the GPP across biomes and climate. |
Audience | PUBLIC Academic |
Author | Gentine, Pierre Zhang, Yao Zhou, Sha Joiner, Joanna Alemohammad, Seyed Hamed |
Author_xml | – sequence: 1 givenname: Yao surname: Zhang fullname: Zhang, Yao organization: Columbia Univ – sequence: 2 givenname: Joanna surname: Joiner fullname: Joiner, Joanna organization: NASA Goddard Space Flight Center – sequence: 3 givenname: Seyed Hamed surname: Alemohammad fullname: Alemohammad, Seyed Hamed organization: Radiant Earth Foundation – sequence: 4 givenname: Sha surname: Zhou fullname: Zhou, Sha organization: Columbia Univ – sequence: 5 givenname: Pierre surname: Gentine fullname: Gentine, Pierre organization: Columbia Univ |
BookMark | eNp9ks1r3DAQxU1JofnouZceDL00ByeSbcnWcdl0E0NIodscixjLI6Ot19pKMk3--8jZkrKhFB0kHr_3RtLMSXI02hGT5AMlF4yK8rLtM8oyVlUiywmt3yTHtMp5VtJaHL2cK_IuOfF-Q0hRk5odJz8W6fVgWxjS9Q6CgWF4TJd2DKaf7OTTtR3AZc3YTQq7dDVM1qFXOCpMPy_Xzeo8vYIAHkN6783Yp3c4uZh1h-G3dT_9WfJWw-Dx_Z_9NLlfffm-vMluv143y8VtphgvQ6ZEwYoip0VHOoZ13QJTqta1xlZ1hCMBggKRMEZEQXNeKp3rTgAnhFS81cVp0uxzOwsbuXNmC-5RWjDyWbCul-CCUQNKUQqCNcWcoyorXQkNoNscFAPOOZmzPu2zds7-mtAHubGTG-P1ZU4po0zklP-leoihZtQ2OFBb45VcMMZ5KcqqitTFP6i4OtwaFfunTdQPDOcHhsgEfAg9TN7LZv3tkL3cs8pZ7x3ql4dTIueRkG0vKZPzSMh5JKKDvXIoE2LXYxEHZviP7-PeN4IHGWE_6yL-PmWFKJ4AGgHCCA |
CitedBy_id | crossref_primary_10_1016_j_agrformet_2020_108169 crossref_primary_10_1109_TGRS_2020_2999371 crossref_primary_10_1002_eap_2757 crossref_primary_10_3389_fpls_2021_689220 crossref_primary_10_1016_j_agrformet_2023_109532 crossref_primary_10_3390_rs13132545 crossref_primary_10_3389_fpls_2023_1164078 crossref_primary_10_1016_j_jhydrol_2024_130722 crossref_primary_10_1088_1748_9326_ad5570 crossref_primary_10_3390_rs16132388 crossref_primary_10_1029_2023JG007703 crossref_primary_10_1016_j_rse_2020_111728 crossref_primary_10_1038_s41597_024_04325_6 crossref_primary_10_5194_essd_15_5597_2023 crossref_primary_10_1016_j_rse_2022_113341 crossref_primary_10_1016_j_rse_2023_113861 crossref_primary_10_1016_j_rse_2023_113984 crossref_primary_10_1080_20964471_2021_1920661 crossref_primary_10_1007_s12665_024_11528_y crossref_primary_10_1029_2021EF002634 crossref_primary_10_1016_j_agrformet_2024_109929 crossref_primary_10_1007_s00382_025_07640_9 crossref_primary_10_1038_s41597_025_04403_3 crossref_primary_10_1038_s43247_025_02104_8 crossref_primary_10_1007_s40641_024_00194_8 crossref_primary_10_1016_j_agrformet_2020_108275 crossref_primary_10_1016_j_isprsjprs_2020_01_017 crossref_primary_10_1007_s11442_023_2151_5 crossref_primary_10_1038_s41558_022_01584_2 crossref_primary_10_3389_fpls_2023_1125288 crossref_primary_10_1016_j_foreco_2024_121742 crossref_primary_10_3389_ffgc_2021_695269 crossref_primary_10_3390_rs16213924 crossref_primary_10_1007_s11676_025_01828_9 crossref_primary_10_3390_land13081222 crossref_primary_10_1016_j_jag_2024_103821 crossref_primary_10_1016_j_scitotenv_2021_151335 crossref_primary_10_3390_su15076012 crossref_primary_10_1016_j_rse_2021_112635 crossref_primary_10_3390_environments9090121 crossref_primary_10_1029_2023JG007499 crossref_primary_10_1029_2022JG007315 crossref_primary_10_3390_rs11050517 crossref_primary_10_3390_rs14061328 crossref_primary_10_5194_bg_17_6393_2020 crossref_primary_10_1029_2020GL087474 crossref_primary_10_1093_nsr_nwab150 crossref_primary_10_3390_rs14061329 crossref_primary_10_1016_j_agrformet_2020_108195 crossref_primary_10_1038_s41597_022_01520_1 crossref_primary_10_3390_rs14246316 crossref_primary_10_1016_j_catena_2024_108087 crossref_primary_10_1016_j_agrformet_2024_110025 crossref_primary_10_1029_2024JG008330 crossref_primary_10_1016_j_rse_2021_112748 crossref_primary_10_59717_j_xinn_geo_2024_100095 crossref_primary_10_1029_2023GL102812 crossref_primary_10_1038_s43247_023_00960_w crossref_primary_10_3390_rs12010021 crossref_primary_10_1016_j_jhydrol_2025_132757 crossref_primary_10_1080_15481603_2025_2483492 crossref_primary_10_1080_01431161_2020_1763507 crossref_primary_10_1016_j_compag_2024_109140 crossref_primary_10_1038_s43017_019_0001_x crossref_primary_10_1038_s43247_024_01636_9 crossref_primary_10_1093_jpe_rtae114 crossref_primary_10_1126_science_abb7772 crossref_primary_10_5194_bg_19_5953_2022 crossref_primary_10_3389_fpls_2019_01135 crossref_primary_10_1016_j_agrformet_2024_110019 crossref_primary_10_3390_rs13142824 crossref_primary_10_1016_j_compag_2021_106612 crossref_primary_10_1029_2018JG005002 crossref_primary_10_3390_rs16193731 crossref_primary_10_1016_j_gloplacha_2020_103343 crossref_primary_10_1016_j_agrformet_2021_108800 crossref_primary_10_1016_j_scitotenv_2024_175845 crossref_primary_10_5194_bg_20_383_2023 crossref_primary_10_1029_2021EF002160 crossref_primary_10_1177_03091333221114864 crossref_primary_10_3390_rs14102340 crossref_primary_10_1016_j_gca_2024_12_009 crossref_primary_10_1109_JSTARS_2024_3433371 crossref_primary_10_1016_j_agrformet_2020_108088 crossref_primary_10_1525_elementa_2023_00102 crossref_primary_10_1016_j_agrformet_2023_109851 crossref_primary_10_1016_j_oneear_2019_12_015 crossref_primary_10_1029_2023EF003977 crossref_primary_10_5194_bg_17_405_2020 crossref_primary_10_1016_j_agrformet_2023_109734 crossref_primary_10_1038_s43017_023_00456_3 crossref_primary_10_3390_rs15245697 crossref_primary_10_1016_j_scitotenv_2023_163587 crossref_primary_10_1016_j_scitotenv_2022_160992 crossref_primary_10_1016_j_rse_2022_113383 crossref_primary_10_1016_j_agrformet_2020_108092 crossref_primary_10_1016_j_rse_2024_114596 crossref_primary_10_3390_rs16101707 crossref_primary_10_1080_15481603_2024_2348257 crossref_primary_10_1016_j_scitotenv_2023_166051 crossref_primary_10_3390_rs12040671 crossref_primary_10_3390_land14010160 crossref_primary_10_1016_j_agrformet_2023_109869 crossref_primary_10_3390_rs14205172 crossref_primary_10_5194_gmd_15_1971_2022 crossref_primary_10_3390_rs15163937 crossref_primary_10_1016_j_compag_2022_107260 crossref_primary_10_3390_rs14195045 crossref_primary_10_5194_bg_19_4833_2022 crossref_primary_10_1109_JSTARS_2024_3369332 crossref_primary_10_1007_s11430_022_9987_0 crossref_primary_10_1029_2020GB006893 crossref_primary_10_1360_TB_2022_0566 crossref_primary_10_1029_2018GL081109 crossref_primary_10_1016_j_scitotenv_2020_144011 crossref_primary_10_3390_rs12193249 crossref_primary_10_34133_remotesensing_0445 crossref_primary_10_1109_LGRS_2024_3379255 crossref_primary_10_1016_j_agrformet_2021_108704 crossref_primary_10_1126_sciadv_adk5861 crossref_primary_10_5194_bg_21_2447_2024 crossref_primary_10_3390_rs12071111 crossref_primary_10_3390_rs17010097 crossref_primary_10_1186_s13021_022_00209_7 crossref_primary_10_1016_j_scitotenv_2023_162591 crossref_primary_10_1016_j_rse_2022_113120 crossref_primary_10_1016_j_rse_2024_114496 crossref_primary_10_1016_j_rse_2022_113365 crossref_primary_10_1038_s41893_022_01024_1 crossref_primary_10_1016_j_jenvman_2024_121624 crossref_primary_10_3390_rs15092355 crossref_primary_10_1038_s41597_024_03810_2 crossref_primary_10_1360_SSTe_2022_0100 crossref_primary_10_1016_j_jclepro_2024_142595 crossref_primary_10_3390_agriculture12040547 crossref_primary_10_3390_agronomy14091941 crossref_primary_10_3390_atmos15080985 crossref_primary_10_1007_s12524_024_02097_5 crossref_primary_10_1111_geb_13561 crossref_primary_10_1016_j_agwat_2025_109322 crossref_primary_10_1038_s43247_025_02201_8 crossref_primary_10_1088_1748_9326_ad5858 crossref_primary_10_1016_j_agrformet_2023_109817 crossref_primary_10_1029_2019JG005289 crossref_primary_10_1016_j_jenvman_2024_122986 crossref_primary_10_1038_s41597_025_04686_6 crossref_primary_10_1111_ele_14205 crossref_primary_10_34133_remotesensing_0085 crossref_primary_10_1029_2022MS003150 crossref_primary_10_1109_JSTARS_2023_3247422 crossref_primary_10_1080_01431161_2020_1798549 crossref_primary_10_3390_rs14061504 crossref_primary_10_3389_fenvs_2023_1093095 crossref_primary_10_1038_s41467_020_18631_1 crossref_primary_10_3390_rs15204943 crossref_primary_10_1016_j_rse_2024_113999 crossref_primary_10_1016_j_ecolmodel_2021_109552 crossref_primary_10_1109_JSTARS_2022_3148393 crossref_primary_10_1016_j_rse_2024_114284 crossref_primary_10_3390_rs15164038 crossref_primary_10_1016_j_agrformet_2022_109095 crossref_primary_10_1016_j_agrformet_2024_110197 crossref_primary_10_1016_j_jag_2024_104183 crossref_primary_10_3390_atmos15080886 crossref_primary_10_1029_2020GL089167 crossref_primary_10_1016_j_rse_2023_113699 crossref_primary_10_1029_2022MS003135 crossref_primary_10_3390_rs16060963 crossref_primary_10_3390_rs17060958 crossref_primary_10_1038_s43247_023_01167_9 crossref_primary_10_5194_bg_19_1777_2022 crossref_primary_10_1080_11956860_2024_2303187 crossref_primary_10_1016_j_rse_2022_113282 crossref_primary_10_1029_2022GL100096 crossref_primary_10_1029_2022JD037773 crossref_primary_10_1073_pnas_2103423118 crossref_primary_10_3390_rs15071756 crossref_primary_10_5194_essd_12_1101_2020 crossref_primary_10_1016_j_jhydrol_2023_130254 crossref_primary_10_1016_j_jhydrol_2024_131883 crossref_primary_10_5194_gmd_14_3633_2021 crossref_primary_10_1029_2023GB007702 crossref_primary_10_1038_s41558_022_01374_w crossref_primary_10_3390_rs15030698 crossref_primary_10_1016_j_agrformet_2022_109197 crossref_primary_10_1016_j_rse_2024_114061 crossref_primary_10_1109_TGRS_2022_3204885 crossref_primary_10_1016_j_ecoinf_2023_102194 crossref_primary_10_3390_s20041144 crossref_primary_10_1093_nsr_nwad049 crossref_primary_10_1016_j_asr_2023_09_004 crossref_primary_10_1038_s41477_022_01278_9 crossref_primary_10_3389_fpls_2024_1500499 crossref_primary_10_1016_j_ecolind_2023_111488 crossref_primary_10_1016_j_envres_2022_114991 crossref_primary_10_1016_j_rse_2024_114516 crossref_primary_10_1111_gcb_16502 crossref_primary_10_1016_j_ecolind_2022_108630 crossref_primary_10_1002_rse2_229 crossref_primary_10_1038_s43017_022_00317_5 crossref_primary_10_1016_j_rse_2024_114080 crossref_primary_10_1016_j_isprsjprs_2022_10_018 crossref_primary_10_1109_TGRS_2024_3462589 crossref_primary_10_1016_j_jhydrol_2022_128680 crossref_primary_10_1038_s41558_020_0806_0 crossref_primary_10_1109_TGRS_2024_3439333 crossref_primary_10_1007_s11769_021_1204_x crossref_primary_10_1016_j_rse_2020_111644 crossref_primary_10_3389_ffgc_2023_1172220 crossref_primary_10_1038_s41467_022_28652_7 crossref_primary_10_1038_s41558_022_01304_w crossref_primary_10_1029_2020AV000310 crossref_primary_10_1088_1748_9326_acd2ef crossref_primary_10_34133_remotesensing_0173 crossref_primary_10_1016_j_rse_2024_114405 crossref_primary_10_1016_j_jag_2020_102126 crossref_primary_10_3390_rs13040804 crossref_primary_10_1109_TGRS_2023_3290239 crossref_primary_10_3390_plants13233321 crossref_primary_10_1016_j_agrformet_2023_109591 crossref_primary_10_1038_s41597_024_04101_6 crossref_primary_10_1109_ACCESS_2023_3343367 crossref_primary_10_1016_j_rse_2020_112062 crossref_primary_10_1016_j_ecolmodel_2022_110079 crossref_primary_10_1038_s41559_022_01756_5 crossref_primary_10_1038_s41467_023_40226_9 crossref_primary_10_1126_sciadv_adf3166 crossref_primary_10_1029_2023EF003590 crossref_primary_10_1126_sciadv_abb7232 crossref_primary_10_1126_sciadv_adn2487 crossref_primary_10_1016_j_rse_2022_113409 crossref_primary_10_3390_rs11141691 crossref_primary_10_1038_s41559_023_02272_w crossref_primary_10_1109_JSTARS_2023_3269908 crossref_primary_10_1016_j_agrformet_2022_109278 crossref_primary_10_1016_j_agrformet_2023_109434 crossref_primary_10_1016_j_scitotenv_2024_171182 crossref_primary_10_1088_1748_9326_ada56e crossref_primary_10_1016_j_agrformet_2022_109038 crossref_primary_10_5194_acp_22_14547_2022 crossref_primary_10_1016_j_agrformet_2023_109799 crossref_primary_10_1016_j_agrformet_2023_109558 crossref_primary_10_5194_bg_22_1509_2025 crossref_primary_10_1029_2020MS002394 crossref_primary_10_1007_s00382_021_05702_2 crossref_primary_10_1080_22797254_2025_2455940 crossref_primary_10_1016_j_agrformet_2023_109562 crossref_primary_10_3390_rs16214101 crossref_primary_10_1016_j_agrformet_2023_109440 crossref_primary_10_1088_1748_9326_acde92 crossref_primary_10_1175_JCLI_D_19_0575_1 crossref_primary_10_59717_j_xinn_geo_2024_100060 crossref_primary_10_1029_2020JG005651 crossref_primary_10_1016_j_agwat_2025_109397 crossref_primary_10_1007_s12551_022_00982_2 crossref_primary_10_1016_j_foreco_2021_120000 crossref_primary_10_1088_1748_9326_acdaae crossref_primary_10_1029_2021JG006320 crossref_primary_10_1016_j_agrformet_2021_108439 crossref_primary_10_1073_pnas_1914436117 crossref_primary_10_1080_10106049_2024_2354417 crossref_primary_10_1016_j_jag_2021_102567 crossref_primary_10_1016_j_scitotenv_2024_178269 crossref_primary_10_1016_j_compag_2022_106790 crossref_primary_10_1016_j_agrformet_2022_109027 crossref_primary_10_1016_j_agrformet_2023_109323 crossref_primary_10_3390_rs15215101 crossref_primary_10_1016_j_jag_2022_103036 crossref_primary_10_5194_amt_16_581_2023 crossref_primary_10_1016_j_agrformet_2023_109573 crossref_primary_10_1016_j_agrformet_2024_110051 crossref_primary_10_1016_j_rse_2019_04_030 crossref_primary_10_1088_1748_9326_ab68eb crossref_primary_10_1088_1748_9326_acb72b crossref_primary_10_3390_rs12132167 crossref_primary_10_1088_2515_7620_ada675 |
Cites_doi | 10.1111/gcb.12948 10.1016/j.rse.2015.06.002 10.1111/gcb.12664 10.1111/gcb.13200 10.1139/er-2013-0006 10.1016/j.rse.2016.12.018 10.1029/2010JG001566 10.1146/annurev.pp.42.060191.001525 10.1126/science.1184984 10.3390/rs9090911 10.1016/j.rse.2017.09.021 10.1073/pnas.1210196109 10.3390/rs8050412 10.5194/gmd-8-3311-2015 10.3390/rs8020061 10.1016/S0304-4165(89)80016-9 10.1016/j.rse.2012.02.006 10.1126/science.aam5747 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 10.1016/j.rse.2014.02.007 10.1016/j.rse.2016.08.026 10.1007/978-1-4020-3218-9_22 10.5194/bg-9-3857-2012 10.1093/treephys/tpt030 10.1016/j.rse.2016.08.030 10.1016/j.rse.2017.09.034 10.1111/nph.14437 10.1073/pnas.1320008111 10.1016/S0034-4257(03)00174-3 10.1016/j.rse.2017.10.035 10.1016/j.rse.2014.06.022 10.1088/1748-9326/aa8978 10.1002/2017GL076294 10.1016/j.agrformet.2008.03.005 10.1016/j.rse.2016.04.027 10.1111/gcb.14302 10.5194/amt-9-3939-2016 10.1016/j.rse.2017.12.009 10.1002/2014GL062943 10.5194/gmd-10-709-2017 10.1002/2016JG003580 10.2307/2401901 10.1002/2014JG002713 10.1002/2015RG000483 10.1016/j.rse.2018.02.029 10.1016/j.rse.2016.05.015 10.1016/j.rse.2004.12.011 10.1016/j.rse.2017.10.045 10.1016/j.rse.2016.10.016 10.5194/bg-6-3109-2009 10.5194/bg-13-4291-2016 10.1126/sciadv.1602244 10.1093/jxb/eru191 10.5194/bg-8-637-2011 10.3389/fpls.2017.00309 10.5194/amt-6-2803-2013 10.5194/bg-14-4101-2017 10.1029/2011GL048738 10.1002/2017GL073708 10.1016/j.rse.2016.01.018 10.1016/B978-0-12-409548-9.10632-3 10.1002/2015JG003150 10.1111/j.1600-0889.2006.00221.x 10.1016/j.rse.2009.08.016 10.1029/2017GL076354 10.1109/LGRS.2017.2681128 10.1029/2018GL078202 10.1109/TGRS.2015.2504089 10.1016/j.scitotenv.2017.11.158 10.1038/sdata.2017.165 10.1023/A:1007172424619 10.1038/nclimate3004 10.1016/j.rse.2005.09.009 10.1007/s11120-008-9292-3 10.1111/gcb.14134 10.1111/j.1365-2486.2005.001002.x 10.1109/MGRS.2017.2762307 10.1016/j.rse.2015.06.004 10.5194/hess-2017-680-supplement 10.1111/gcb.13136 10.1016/j.rse.2018.02.016 10.1034/j.1399-3054.2002.1140209.x 10.1029/2001JD001242 10.1098/rspb.2013.0171 10.1016/S0034-4257(02)00091-3 10.1002/9781118671603 10.1111/gcb.12822 10.1111/gcb.14297 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Copernicus GmbH 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2018 Copernicus GmbH – notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | CYE CYI AAYXX CITATION ISR 7QO 7SN 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H95 H96 HCIFZ KL. L.G L6V LK8 M7N M7P M7S P64 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/bg-15-5779-2018 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Gale In Context: Science Biotechnology Research Abstracts Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database Biological Science Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Oceanic Abstracts ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1726-4189 |
EndPage | 5800 |
ExternalDocumentID | oai_doaj_org_article_9490e81e26ec47f79faafb2ac5a6660f A556649477 10_5194_bg_15_5779_2018 20190001539 |
GrantInformation | NNH16ZDA001N-AIST |
GroupedDBID | 23N 2WC 2XV 4P2 5GY 5VS 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ ABJCF ABUWG ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CYE CYI E3Z EBD EBS EDH EJD GROUPED_DOAJ H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC KQ8 L6V L8X LK5 LK8 M7P M7R M7S MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 AAYXX CITATION BBORY PMFND 7QO 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H95 H96 KL. L.G M7N P64 PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c564t-c93533213d0d5e88ba5cc8f8febcd06e0a0e9ee0550931264cf2fd9a600076bf3 |
IEDL.DBID | BENPR |
ISSN | 1726-4170 1726-4189 |
IngestDate | Wed Aug 27 01:27:23 EDT 2025 Fri Jul 25 10:37:04 EDT 2025 Tue Jun 17 21:39:44 EDT 2025 Tue Jun 10 20:32:55 EDT 2025 Fri Jun 27 04:35:00 EDT 2025 Tue Jul 01 02:50:07 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Fri Aug 15 15:27:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-c93533213d0d5e88ba5cc8f8febcd06e0a0e9ee0550931264cf2fd9a600076bf3 |
Notes | GSFC GSFC-E-DAA-TN63345 ISSN: 1726-4170 E-ISSN: 1726-4189 Report Number: GSFC-E-DAA-TN63345 Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5662-3643 0000-0003-4278-1020 |
OpenAccessLink | https://www.proquest.com/docview/2115159216?pq-origsite=%requestingapplication% |
PQID | 2115159216 |
PQPubID | 105740 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9490e81e26ec47f79faafb2ac5a6660f proquest_journals_2115159216 gale_infotracmisc_A556649477 gale_infotracacademiconefile_A556649477 gale_incontextgauss_ISR_A556649477 crossref_primary_10_5194_bg_15_5779_2018 crossref_citationtrail_10_5194_bg_15_5779_2018 nasa_ntrs_20190001539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-02 |
PublicationDateYYYYMMDD | 2018-10-02 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: Katlenburg-Lindau |
PublicationTitle | Biogeosciences |
PublicationYear | 2018 |
Publisher | Biogeosciences Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Biogeosciences – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref40 doi: 10.1111/gcb.12948 – ident: ref72 doi: 10.1016/j.rse.2015.06.002 – ident: ref81 doi: 10.1111/gcb.12664 – ident: ref74 doi: 10.1111/gcb.13200 – ident: ref80 doi: 10.1139/er-2013-0006 – ident: ref85 doi: 10.1016/j.rse.2016.12.018 – ident: ref34 doi: 10.1029/2010JG001566 – ident: ref37 doi: 10.1146/annurev.pp.42.060191.001525 – ident: ref8 doi: 10.1126/science.1184984 – ident: ref11 doi: 10.3390/rs9090911 – ident: ref56 doi: 10.1016/j.rse.2017.09.021 – ident: ref35 doi: 10.1073/pnas.1210196109 – ident: ref55 doi: 10.3390/rs8050412 – ident: ref64 doi: 10.5194/gmd-8-3311-2015 – ident: ref75 doi: 10.3390/rs8020061 – ident: ref22 doi: 10.1016/S0304-4165(89)80016-9 – ident: ref25 doi: 10.1016/j.rse.2012.02.006 – ident: ref62 doi: 10.1126/science.aam5747 – ident: ref7 doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 – ident: ref17 doi: 10.1016/j.rse.2014.02.007 – ident: ref79 doi: 10.1016/j.rse.2016.08.026 – ident: ref1 doi: 10.1007/978-1-4020-3218-9_22 – ident: ref45 doi: 10.5194/bg-9-3857-2012 – ident: ref68 doi: 10.1093/treephys/tpt030 – ident: ref57 – ident: ref29 doi: 10.1016/j.rse.2016.08.030 – ident: ref41 doi: 10.1016/j.rse.2017.09.034 – ident: ref46 doi: 10.1111/nph.14437 – ident: ref26 doi: 10.1073/pnas.1320008111 – ident: ref28 doi: 10.1016/S0034-4257(03)00174-3 – ident: ref53 doi: 10.1016/j.rse.2017.10.035 – ident: ref32 doi: 10.1016/j.rse.2014.06.022 – ident: ref9 doi: 10.1088/1748-9326/aa8978 – ident: ref20 doi: 10.1002/2017GL076294 – ident: ref76 doi: 10.1016/j.agrformet.2008.03.005 – ident: ref13 doi: 10.1016/j.rse.2016.04.027 – ident: ref60 doi: 10.1111/gcb.14302 – ident: ref33 doi: 10.5194/amt-9-3939-2016 – ident: ref86 doi: 10.1016/j.rse.2017.12.009 – ident: ref54 doi: 10.1002/2014GL062943 – ident: ref65 doi: 10.5194/gmd-10-709-2017 – ident: ref71 doi: 10.1002/2016JG003580 – ident: ref47 doi: 10.2307/2401901 – ident: ref70 doi: 10.1002/2014JG002713 – ident: ref4 doi: 10.1002/2015RG000483 – ident: ref77 doi: 10.1016/j.rse.2018.02.029 – ident: ref82 doi: 10.1016/j.rse.2016.05.015 – ident: ref89 doi: 10.1016/j.rse.2004.12.011 – ident: ref36 doi: 10.1016/j.rse.2017.10.045 – ident: ref83 doi: 10.1016/j.rse.2016.10.016 – ident: ref69 doi: 10.5194/bg-6-3109-2009 – ident: ref66 doi: 10.5194/bg-13-4291-2016 – ident: ref6 doi: 10.1126/sciadv.1602244 – ident: ref50 doi: 10.1093/jxb/eru191 – ident: ref30 doi: 10.5194/bg-8-637-2011 – ident: ref5 doi: 10.3389/fpls.2017.00309 – ident: ref31 doi: 10.5194/amt-6-2803-2013 – ident: ref2 doi: 10.5194/bg-14-4101-2017 – ident: ref16 doi: 10.1029/2011GL048738 – ident: ref19 doi: 10.1002/2017GL076294 – ident: ref27 doi: 10.1002/2017GL073708 – ident: ref73 doi: 10.1016/j.rse.2016.01.018 – ident: ref15 doi: 10.1016/B978-0-12-409548-9.10632-3 – ident: ref61 doi: 10.1002/2015JG003150 – ident: ref67 doi: 10.1111/j.1600-0889.2006.00221.x – ident: ref48 – ident: ref18 doi: 10.1016/j.rse.2009.08.016 – ident: ref88 doi: 10.1029/2017GL076354 – ident: ref38 doi: 10.1109/LGRS.2017.2681128 – ident: ref21 doi: 10.1029/2018GL078202 – ident: ref43 doi: 10.1109/TGRS.2015.2504089 – ident: ref44 doi: 10.1016/j.scitotenv.2017.11.158 – ident: ref84 doi: 10.1038/sdata.2017.165 – ident: ref52 doi: 10.1023/A:1007172424619 – ident: ref91 doi: 10.1038/nclimate3004 – ident: ref78 doi: 10.1016/j.rse.2005.09.009 – ident: ref49 doi: 10.1007/s11120-008-9292-3 – ident: ref87 doi: 10.1111/gcb.14134 – ident: ref51 doi: 10.1111/j.1365-2486.2005.001002.x – ident: ref90 doi: 10.1109/MGRS.2017.2762307 – ident: ref10 doi: 10.1016/j.rse.2015.06.004 – ident: ref3 doi: 10.5194/hess-2017-680-supplement – ident: ref24 doi: 10.1111/gcb.13136 – ident: ref63 doi: 10.1016/j.rse.2018.02.016 – ident: ref14 doi: 10.1034/j.1399-3054.2002.1140209.x – ident: ref23 doi: 10.1029/2001JD001242 – ident: ref39 doi: 10.1098/rspb.2013.0171 – ident: ref58 doi: 10.1016/S0034-4257(02)00091-3 – ident: ref12 doi: 10.1002/9781118671603 – ident: ref59 doi: 10.1111/gcb.12822 – ident: ref42 doi: 10.1111/gcb.14297 |
SSID | ssj0038085 |
Score | 2.6415083 |
Snippet | Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems.... Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) has shown great potential to monitor the photosynthetic activity of terrestrial ecosystems.... |
SourceID | doaj proquest gale crossref nasa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5779 |
SubjectTerms | Artificial neural networks Chlorophyll Chlorophylls Covariance Datasets Drought Dynamics Earth Ecosystems Eddy covariance Fluorescence Geosciences (General) Global ozone Greening Imaging techniques MODIS Neural networks Normalized difference vegetative index Observations Ozone Ozone monitoring Photosynthesis Primary production Reflectance Resolution Satellite observation Satellites Slope Spectroradiometers Temporal resolution Temporal variations Terrestrial ecosystems Towers Training Vegetation Vegetation index |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRPyqetiWIYH2ITTbZzebxLB6toA_WQl8k5HMRjj3p3j30v3cmu3f0EPHF181kSSaT-WAmvyHkrRRVyL5xzEWtmYoqsNZFwWIAY4SpoeDxofCXr83Ftfp8U9_ca_WFNWEjPPDIuDOjDE-tSFWTgtJZm-xc9pULtQPPm2fUvmDztsHUqINly0szTrDODVNC8xHUB7wVdeY7JmpWa21AQrDXxz17VGD7d8r5oHeD-0NHF8OzeEIeTx4jnY8rfUoepP4ZeTj2kLx7Tn7M6QjqQQcsjnbL5R3F-vOf3QaCejpg6Mog8IYjjDQvN6vbAuAUEj09v7pcvKdYIzqkNcUK-I4iviX8qx-rw4dDcr349P38gk09E1ioG7VmwUhw4CohI491alvv6hDa3ObkQ-RN4o4nkxKHwMTAOTUq5CpH45qSk_NZvoBtr_r0klCpfOLBiMg9-ExetrpkaT2m7qRTakY-bDlnwwQojn0tlhYCC2S19Z0VtUVWW2T1jJzuJvwasTT-TvoRj2JHhiDY5QOIhp1Ew_5LNGbkDR6kRZiLHutoOrcZBnt59c3Oa3BjlVFaz8i7iSivYPXBTc8SgAeIjLVHebRHCfcw7A0forxY4MGAezDlmbo0MG0rQHbSDzAuiiNZiebV_9jpa_IIuVaKDKsjcrC-3aRjcJbW_qTci9-m0gz9 priority: 102 providerName: Directory of Open Access Journals |
Title | A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using Neural Networks |
URI | https://ntrs.nasa.gov/citations/20190001539 https://www.proquest.com/docview/2115159216 https://doaj.org/article/9490e81e26ec47f79faafb2ac5a6660f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_sFcEX8aPiaT0WEawPa_OxSXaf5Fp6toJFWgt9kWU_g3Bc6uXuof-9M5u9w0P0NTsJycxkPnZmf0PIuzIvbDC1Zto1DeOOWya0y5mz4IywNGQNHhT-elmf3_Avt9Vt2nDrU1vlxiZGQ-06i3vkx5CooOst8vrT3S-GU6OwuppGaOyRfTDBQozI_snZ5berjS0uRRaHcoKXrhnPm2wA94GohR-bluUVq5pGgqbgzI8__FKE798a6dFC9_ovWx0d0OwJeZwiRzodRP2UPPCLZ-ThMEvy_jn5MaUDuAftsUlaz-f3FPvQf7ZrSO5pjyksgwQcROlomK-7ZQRysp4enV5fzD5Q7BXt_YpiJ3xLEecSnrUYusT7A3IzO_t-es7S7ARmq5qvmJUlBHJFXrrMVV4IoytrRRDBG-uy2mc689L7DBIUCfKquQ1FcFLXsTZnQvkCPrtb-JeEltz4zMrcZQZiJ1OKJlZrDZbwSs35mHzccE7ZBCyO8y3mChIMZLUyrcorhaxWyOoxOdrecDdgavyb9ARFsSVDMOx4oVu2Kv1bSnKZeZH7ovaWN6GRQetgCm0rDclZFsbkLQpSIdzFAvtpWr3ue3VxfaWmFYSzXPKmGZP3iSh08PZWp-MJwANEyNqhPNyhhP_R7iwfoL4o4EGP3yDjcfVSwm0bBVLJTsD6Vqtf_X_5NXmE_IhthMUhGa2Wa_8GwqGVmZA9Mfs8SZo_iZsKE3RQ1W-xCgei |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4lFEoICFQJSDqXfX-_ABoVAICX0caCv1goyfK6QoW7KJUP4Uv5GZfURECG69rser9XjsmdmZ-YaQF0kU22AyzbTLcyacsKzQLmLOgjLC0JA1WCh8fJKNz8Xni_Rii_zqa2EwrbK_E5uL2lUW_5Hvg6OCqjeOsneXPxh2jcLoat9CoxWLQ7_6CS5b_XbyAfb3ZRyPPp4djFnXVYDZNBMLZmUCJk4cJY671BeF0am1RSiCN9bxzHPNvfSeg-kuYSWZsCEOTuqsiVqZkMB7r5HrIgFNjpXpo0_9zZ8UvGkBCjZBxkSU8xZKCGwksW9KFqUszXMJcokdRv7Qgk2zgLVK2J7pWv-lGRp1N7pDbnd2Kh22gnWXbPnZPXKj7Vy5uk--DmkLJUJrTMnW0-mKYtb793JZLWtao8PMwN0HwXE0TJfVvIGNsp7uHZxORq8pZqbWfkEx776kiKoJ75q1Oen1Djm_Ep4-gGVXM_-Q0EQYz62MHDdgqZmkyJvYsMGAYaKFGJA3PeeU7WDMsZvGVIE7g6xWplRRqpDVClk9IHvrCZctgse_Sd_jVqzJEHq7eVDNS9WdZCWF5L6IfJx5K_KQy6B1MLG2qQZXkIcBeY4bqRBcY4bZO6Ve1rWanH5RwxSMZyFFng_Iq44oVPD1VnfFEMADxOPaoNzdoITTbzeGd1BeFPCgxjXIpjg-kTCtFyDV3Uowvj5Dj_4__IzcHJ8dH6mjycnhY3ILedMkMMa7ZHsxX_onYIgtzNNG-in5dtXH7TezckDZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxKOIQAELgSgHE--u9-EDQukjaihEVUulXipje-0VUpQt2UQof41fx8w-IiIEt17X49V6PPbM7Mx8Q8jrKAitN4lmOk9TJnJhWabzgOUWlBGGhqzBQuEvk-T4Qny6jC-3yK-uFgbTKrs7sb6o89LiP_IBOCqoesMgGfg2LeL0cPTx-gfDDlIYae3aaTQicuJWP8F9qz6MD2Gv34Th6OjrwTFrOwwwGydiwayMwNwJgyjneeyyzOjY2sxn3hmb88RxzZ10joMZL2FVibA-9LnUSR3BMj6C994i2yl6RT2yvX80OT3r9ECU8bohKFgICRNByhtgIbCYxMAULIhZnKYSpBT7jfyhE-vWAWsF0ZvpSv-lJ2rlN7pP7rVWKx02YvaAbLnZQ3K76WO5ekSuhrQBFqEVJmjr6XRFMQf-e7EslxWt0H1m4PyDGOXUT5flvAaRso7uHZyPR-8o5qlWbkExC7-giLEJ75o1GerVDrm4Ea4-hmWXM_eE0EgYx60Mcm7AbjNRltaRYoPhw0gL0SfvO84p24KaY2-NqQLnBlmtTKGCWCGrFbK6T_bWE64bPI9_k-7jVqzJEIi7flDOC9WeayWF5C4LXJg4K1KfSq-1N6G2sQbHkPs-eYUbqRBqY4ZCW-hlVanx-ZkaxmBKCynStE_etkS-hK-3ui2NAB4gOtcG5e4GJdwFdmN4B-VFAQ8qXIOsS-UjCdM6AVLtHQXj6xP19P_DL8kdOGrq83hy8ozcRdbU2YzhLukt5kv3HKyyhXnRij8l3276xP0GQuVGaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Global+Spatially+Contiguous+Solar-Induced+Fluorescence+%28CSIF%29+Dataset+Using+Neural+Networks&rft.jtitle=Biogeosciences&rft.au=Zhang%2C+Yao&rft.au=Joiner%2C+Joanna&rft.au=Alemohammad%2C+Seyed+Hamed&rft.au=Zhou%2C+Sha&rft.date=2018-10-02&rft.pub=Biogeosciences&rft.issn=1726-4170&rft.eissn=1726-4189&rft.volume=15&rft.issue=19&rft_id=info:doi/10.5194%2Fbg-15-5779-2018&rft.externalDBID=CYI&rft.externalDocID=20190001539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4170&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4170&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4170&client=summon |