Prediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clustering

Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 142; p. 105180
Main Authors Chen, Hanjie, Das, Saptarshi, Morgan, John M., Maharatna, Koushik
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2022
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. 32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD. •Arrhythmia is caused due to cumulative effect of disruptive phase relationship•Heart electrical activities from different parts lead to desynchronised operation•A statistical index based on phase-space analysis is designed to predict impending arrhythmia•Joint prediction and classification are carried out for four type of arrhythmia•Fuzzy c-means clustering based method can classify arrhythmia 4 min before the onset
AbstractList Background and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs.MethodsA statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA.Results32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%.ConclusionsThe results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.
Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. 32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD. •Arrhythmia is caused due to cumulative effect of disruptive phase relationship•Heart electrical activities from different parts lead to desynchronised operation•A statistical index based on phase-space analysis is designed to predict impending arrhythmia•Joint prediction and classification are carried out for four type of arrhythmia•Fuzzy c-means clustering based method can classify arrhythmia 4 min before the onset
Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. 32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.
Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs.BACKGROUND AND OBJECTIVEPrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs.A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA.METHODSA statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA.32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%.RESULTS32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%.The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.CONCLUSIONSThe results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.
AbstractBackground and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. MethodsA statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. Results32 healthy and 32 arrhythmic subjects from two open databases; PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. ConclusionsThe results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.
ArticleNumber 105180
Author Chen, Hanjie
Maharatna, Koushik
Morgan, John M.
Das, Saptarshi
Author_xml – sequence: 1
  givenname: Hanjie
  orcidid: 0000-0001-8024-8804
  surname: Chen
  fullname: Chen, Hanjie
  email: hc4y15@soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
– sequence: 2
  givenname: Saptarshi
  orcidid: 0000-0002-8394-5303
  surname: Das
  fullname: Das, Saptarshi
  email: saptarshi.das@ieee.org, s.das3@exeter.ac.uk
  organization: Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
– sequence: 3
  givenname: John M.
  surname: Morgan
  fullname: Morgan, John M.
  email: jmm@hrclinic.org
  organization: Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ, UK
– sequence: 4
  givenname: Koushik
  surname: Maharatna
  fullname: Maharatna, Koushik
  email: km3@ecs.soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35026575$$D View this record in MEDLINE/PubMed
BookMark eNqVkt9rFDEQx4NU7LX6L8iCL77sdZJssrsvoi3-goKC-hyy2YmXczc5k93i9a8312uvUBDqU8LwmQ_DfOeEHPngkZCCwpIClWfrpQnjpnNhxH7JgNFcFrSBJ2RBm7otQfDqiCwAKJRVw8QxOUlpDQAVcHhGjrkAJkUtFuTP14i9M5MLvtC-L8ygU3LWGX1TCra4Qj9FZ-ZBx0LHuNpOq9HpotMJ-yIjm1X-lWmjDRYRTfBpivO90M7X19vClCNqn7J-ThNG538-J0-tHhK-uH1PyY8P779ffCovv3z8fPHusjRCVlPZcV1La7luoZa8BqmpAdlYLlgvDG-Fhba3vZTMNMiavmsr6Gxd88aglk3HT8nrvXcTw-8Z06RGlwwOg_YY5qSYZAB1A63I6KsH6DrM0efpdlRNGaMVz9TLW2ru8vrVJrpRx62622kGmj1gYkgpoj0gFNQuPrVW9_GpXXxqH19uffOg1bjpJokpajc8RnC-F2Be6ZXDqJJx6E3OOGczqT64_5jiIDGD8_kkhl-4xXRYClWJKVDfdme2uzJGAdq6qrLg7b8Fj5vhL3OM6PQ
CitedBy_id crossref_primary_10_1016_j_apacoust_2023_109534
crossref_primary_10_1016_j_procs_2024_05_182
crossref_primary_10_3390_s23063164
crossref_primary_10_3233_JIFS_223356
crossref_primary_10_3390_s23042316
crossref_primary_10_1080_01969722_2022_2122013
crossref_primary_10_1111_exsy_13298
crossref_primary_10_1109_TAI_2023_3266191
crossref_primary_10_1016_j_compeleceng_2024_110022
crossref_primary_10_1016_j_asoc_2022_108840
crossref_primary_10_1016_j_eswa_2023_121157
crossref_primary_10_1016_j_jenvman_2024_121087
crossref_primary_10_1109_TIM_2022_3189748
crossref_primary_10_1155_2022_8571970
Cites_doi 10.1093/qjmed/hci018
10.3389/fphar.2019.01640
10.1088/1361-6579/aae46a
10.1016/j.future.2018.10.019
10.1109/JBHI.2020.2973982
10.1161/01.CIR.101.23.e215
10.1016/j.neucom.2016.08.042
10.1016/j.bspc.2018.04.005
10.1016/j.bspc.2021.102851
10.1109/JSEN.2018.2812792
10.1016/j.compbiomed.2011.04.003
10.1016/j.procs.2018.10.361
10.1109/TVLSI.2015.2475119
10.1007/s10916-016-0441-5
10.1016/j.eswa.2016.03.034
10.1114/1.1523030
10.1016/j.patcog.2008.11.020
10.3389/fphys.2018.00722
10.1049/iet-spr.2010.0263
10.1007/s00521-019-04061-8
10.1055/s-0038-1633859
10.1016/j.bspc.2010.05.003
10.1186/1475-925X-4-60
10.1038/s41598-021-97118-5
10.1109/51.664037
10.1088/0967-3334/36/1/107
10.1016/j.future.2017.08.039
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.105180
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105180
ExternalDocumentID 35026575
10_1016_j_compbiomed_2021_105180
S0010482521009744
1_s2_0_S0010482521009744
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c564t-b3a76ff3a90763706a1c068f352d5c395f09dfd662c8e28db940bf7738cea68b3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Fri Jul 11 08:24:43 EDT 2025
Wed Aug 13 06:00:12 EDT 2025
Thu Apr 03 06:57:59 EDT 2025
Tue Jul 01 03:28:47 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 23 02:41:19 EST 2024
Tue Feb 25 20:10:53 EST 2025
Tue Aug 26 20:14:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ventricular arrhythmia
Prediction and classification
Phase space reconstruction
Fuzzy C-means clustering
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-b3a76ff3a90763706a1c068f352d5c395f09dfd662c8e28db940bf7738cea68b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8394-5303
0000-0001-8024-8804
OpenAccessLink http://hdl.handle.net/10871/128262
PMID 35026575
PQID 2627122143
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2620078095
proquest_journals_2627122143
pubmed_primary_35026575
crossref_primary_10_1016_j_compbiomed_2021_105180
crossref_citationtrail_10_1016_j_compbiomed_2021_105180
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_105180
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521009744
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_105180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Kelwade, Salankar (bib8) 2016
Adams, Choi (bib10) 2012
Riasi, Mohebbi (bib7) 2015
Small (bib22) 2005; vol. 52
Wei, Hongxing, Jianchun (bib28) 2012; 6
Szabo, Ujvarosy, Ötvös, Sebestyén, Nanasi (bib1) 2020; 10
Sharma, Tan, Acharya (bib19) 2020; 32
Wessel, Ziehmann, Kurths, Meyerfeldt, Schirdewan, Voss (bib4) 2000; 61
Li, Rajagopalan, Clifford (bib11) 2013; 61
Roopa, Harish, Kumar (bib33) 2018; 143
Chakraborty, Kamiyama, Takahashi, Kinoshita (bib23) 2017
Mohanty, Sahoo, Biswal, Sabut (bib16) 2018; 44
Roopaei, Boostani, Sarvestani, Taghavi, Azimifar (bib13) 2010; 5
Nejadgholi, Moradi, Abdolali (bib25) 2011; 41
Gharieb, Massoud, Nady, Moness (bib34) 2016
Bousseljot, Kreiseler, Schnabel (bib38) 1995; 40
Kesemen, Tezel, Özkul (bib36) 2016; 58
Gawde, Bansal, Nielson (bib17) 2017
Bayasi, Tekeste, Saleh, Mohammad, Khandoker, Ismail (bib9) 2015; 24
Chen, Maharatna (bib2) 2020; 24
Reed, Robertson, Addison (bib5) 2005; 98
Tripathy, Zamora-Mendez, De la O Serna, Paternina, Arrieta, Naik (bib18) 2018; 9
Nolle, Badura, Catlett, Bowser, Sketch (bib39) 1986; 13
Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (bib15) 2018; 79
Aziz, Ahmed, Alouini (bib3) 2021; 11
Hou, Dong, Xiang, Li, Yang (bib26) 2018; 18
Fang, Chan (bib29) 2009; 42
Nandi, Venton, Aston (bib40) 2018; 39
Alonso-Atienza, Morgado, Fernandez-Martinez, García- Alberola, Rojo-Alvarez (bib12) 2013; 61
Lee, Kim, Lee, Lee, Lee (bib27) 2002; 30
Haldar, Khan, Ali, Abbas (bib32) 2017; 220
Fojt, Holcik (bib24) 1998; 17
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib37) 2000; 101
Dongdong, Arunkumar, Wenyu, Beibei, Xinlei, Guangjian (bib31) 2019; 92
Cappiello, Das, Mazomenos, Maharatna, Koulaouzidis, Morgan, Puddu (bib20) 2014; 36
Chen, Das, Morgan, Maharatna (bib30) 2021; 69
Tripathy, Sharma, Dandapat (bib14) 2016; 40
Baumert, Baier, Haueisen, Wessel, Meyerfeldt, Schirdewan, Voss (bib6) 2004; 43
Kantz, Schreiber (bib21) 2004; vol. 7
Amann, Tratnig, Unterkofler (bib35) 2005; 4
Szabo (10.1016/j.compbiomed.2021.105180_bib1) 2020; 10
Aziz (10.1016/j.compbiomed.2021.105180_bib3) 2021; 11
Riasi (10.1016/j.compbiomed.2021.105180_bib7) 2015
Amann (10.1016/j.compbiomed.2021.105180_bib35) 2005; 4
Dongdong (10.1016/j.compbiomed.2021.105180_bib31) 2019; 92
Nandi (10.1016/j.compbiomed.2021.105180_bib40) 2018; 39
Fang (10.1016/j.compbiomed.2021.105180_bib29) 2009; 42
Kantz (10.1016/j.compbiomed.2021.105180_bib21) 2004; vol. 7
Hou (10.1016/j.compbiomed.2021.105180_bib26) 2018; 18
Haldar (10.1016/j.compbiomed.2021.105180_bib32) 2017; 220
Kesemen (10.1016/j.compbiomed.2021.105180_bib36) 2016; 58
Alonso-Atienza (10.1016/j.compbiomed.2021.105180_bib12) 2013; 61
Nejadgholi (10.1016/j.compbiomed.2021.105180_bib25) 2011; 41
Gharieb (10.1016/j.compbiomed.2021.105180_bib34) 2016
Wei (10.1016/j.compbiomed.2021.105180_bib28) 2012; 6
Roopa (10.1016/j.compbiomed.2021.105180_bib33) 2018; 143
Bousseljot (10.1016/j.compbiomed.2021.105180_bib38) 1995; 40
Li (10.1016/j.compbiomed.2021.105180_bib11) 2013; 61
Tripathy (10.1016/j.compbiomed.2021.105180_bib18) 2018; 9
Lee (10.1016/j.compbiomed.2021.105180_bib27) 2002; 30
Goldberger (10.1016/j.compbiomed.2021.105180_bib37) 2000; 101
Chen (10.1016/j.compbiomed.2021.105180_bib2) 2020; 24
Kelwade (10.1016/j.compbiomed.2021.105180_bib8) 2016
Small (10.1016/j.compbiomed.2021.105180_bib22) 2005; vol. 52
Mohanty (10.1016/j.compbiomed.2021.105180_bib16) 2018; 44
Chen (10.1016/j.compbiomed.2021.105180_bib30) 2021; 69
Roopaei (10.1016/j.compbiomed.2021.105180_bib13) 2010; 5
Acharya (10.1016/j.compbiomed.2021.105180_bib15) 2018; 79
Wessel (10.1016/j.compbiomed.2021.105180_bib4) 2000; 61
Baumert (10.1016/j.compbiomed.2021.105180_bib6) 2004; 43
Sharma (10.1016/j.compbiomed.2021.105180_bib19) 2020; 32
Cappiello (10.1016/j.compbiomed.2021.105180_bib20) 2014; 36
Tripathy (10.1016/j.compbiomed.2021.105180_bib14) 2016; 40
Gawde (10.1016/j.compbiomed.2021.105180_bib17) 2017
Nolle (10.1016/j.compbiomed.2021.105180_bib39) 1986; 13
Chakraborty (10.1016/j.compbiomed.2021.105180_bib23) 2017
Bayasi (10.1016/j.compbiomed.2021.105180_bib9) 2015; 24
Adams (10.1016/j.compbiomed.2021.105180_bib10) 2012
Fojt (10.1016/j.compbiomed.2021.105180_bib24) 1998; 17
Reed (10.1016/j.compbiomed.2021.105180_bib5) 2005; 98
References_xml – volume: 98
  start-page: 87
  year: 2005
  end-page: 95
  ident: bib5
  article-title: Heart rate variability measurements and the prediction of ventricular arrhythmias
  publication-title: QJM
– volume: 43
  start-page: 202
  year: 2004
  end-page: 206
  ident: bib6
  article-title: Forecasting of life threatening arrhythmias using the compression entropy of heart rate
  publication-title: Methods Inf. Med.
– start-page: 88
  year: 2015
  end-page: 92
  ident: bib7
  article-title: Predicting imminent episodes of ventricular tachyarrhythmia using an entropy-based feature in the emd domain
  publication-title: 2015 23rd Iranian Conference on Electrical Engineering
– volume: 10
  start-page: 1640
  year: 2020
  ident: bib1
  article-title: Handling of ventricular fibrillation in the emergency setting
  publication-title: Front. Pharmacol.
– volume: 24
  start-page: 1962
  year: 2015
  end-page: 1974
  ident: bib9
  article-title: Low-power ECG-based processor for predicting ventricular arrhythmia
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
– start-page: 72
  year: 2016
  end-page: 75
  ident: bib34
  article-title: Fuzzy
  publication-title: 2016 8th Cairo International Biomedical Engineering Conference (CIBEC)
– volume: 58
  start-page: 76
  year: 2016
  end-page: 82
  ident: bib36
  article-title: Fuzzy
  publication-title: Expert Syst. Appl.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib37
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: vol. 7
  year: 2004
  ident: bib21
  publication-title: Nonlinear Time Series Analysis
– volume: 32
  start-page: 15869
  year: 2020
  end-page: 158615 884
  ident: bib19
  article-title: Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters
  publication-title: Neural Comput. Appl.
– volume: 92
  start-page: 324
  year: 2019
  end-page: 328
  ident: bib31
  article-title: Semantic clustering fuzzy c means spectral model based comparative analysis of cardiac color ultrasound and electrocardiogram in patients with left ventricular heart failure and cardiomyopathy
  publication-title: Future Generat. Comput. Syst.
– volume: 61
  start-page: 1607
  year: 2013
  end-page: 1613
  ident: bib11
  article-title: Ventricular fibrillation and tachycardia classification using a machine learning approach
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 79
  start-page: 952
  year: 2018
  end-page: 959
  ident: bib15
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Generat. Comput. Syst.
– volume: 18
  start-page: 3694
  year: 2018
  end-page: 3702
  ident: bib26
  article-title: A real-time QRS detection method based on phase portraits and box-scoring calculation
  publication-title: IEEE Sensor. J.
– volume: 143
  start-page: 133
  year: 2018
  end-page: 140
  ident: bib33
  article-title: A novel method of clustering ECG arrhythmia data using robust spatial kernel fuzzy
  publication-title: Procedia Comput. Sci.
– volume: 24
  start-page: 2825
  year: 2020
  end-page: 2832
  ident: bib2
  article-title: An automatic R and T peak detection method based on the combination of hierarchical clustering and discrete wavelet transform
  publication-title: IEEE J.Biomed. Health Inf.
– start-page: 409
  year: 2017
  end-page: 412
  ident: bib17
  article-title: Integrating Markov model and morphology analysis for finer classification of ventricular arrhythmia in real time
  publication-title: 2017 IEEE EMBS International Conference on Biomedical & Health Informatics
– volume: 4
  start-page: 60
  year: 2005
  ident: bib35
  article-title: Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators
  publication-title: Biomed. Eng. Online
– volume: 6
  start-page: 171
  year: 2012
  end-page: 177
  ident: bib28
  article-title: Adaptive filtering in phase space for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal
  publication-title: IET Signal Process.
– start-page: 147
  year: 2017
  end-page: 157
  ident: bib23
  article-title: ‘’An efficient anomaly detection in quasi-periodic time series data—a case study with ECG
  publication-title: International Work-Conference on Time Series Analysis
– volume: 11
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib3
  article-title: ECG-based machine-learning algorithms for heartbeat classification
  publication-title: Sci. Rep.
– volume: 5
  start-page: 318
  year: 2010
  end-page: 327
  ident: bib13
  article-title: Chaotic based reconstructed phase space features for detecting ventricular fibrillation
  publication-title: Biomed. Signal Process Control
– volume: 39
  start-page: 104008
  year: 2018
  ident: bib40
  article-title: A novel method to quantify arterial pulse waveform morphology: attractor reconstruction for physiologists and clinicians
  publication-title: Physiol. Meas.
– volume: vol. 52
  year: 2005
  ident: bib22
  publication-title: Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance
– volume: 36
  start-page: 107
  year: 2014
  ident: bib20
  article-title: A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits
  publication-title: Physiol. Meas.
– volume: 9
  start-page: 722
  year: 2018
  ident: bib18
  article-title: Detection of life threatening ventricular arrhythmia using digital Taylor Fourier transform
  publication-title: Front. Physiol.
– volume: 61
  start-page: 733
  year: 2000
  ident: bib4
  article-title: Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates
  publication-title: Phys. Rev.
– volume: 17
  start-page: 96
  year: 1998
  end-page: 101
  ident: bib24
  article-title: Applying nonlinear dynamics to ECG signal processing
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 42
  start-page: 1824
  year: 2009
  end-page: 1831
  ident: bib29
  article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space
  publication-title: Pattern Recogn.
– volume: 61
  start-page: 832
  year: 2013
  end-page: 840
  ident: bib12
  article-title: Detection of life-threatening arrhythmias using feature selection and support vector machines
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 40
  start-page: 317
  year: 1995
  end-page: 318
  ident: bib38
  article-title: Nutzung der ekgsignaldatenbank cardiodat der ptb über das internet
  publication-title: Biomedizinische Technik/Biomed. Eng.
– volume: 69
  start-page: 102851
  year: 2021
  ident: bib30
  article-title: An effective PSR-based arrhythmia classifier using self-similarity analysis
  publication-title: Biomed. Signal Process Control
– start-page: 454
  year: 2016
  end-page: 458
  ident: bib8
  article-title: Radial basis function neural network for prediction of cardiac arrhythmias based on heart rate time series
  publication-title: 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)
– volume: 30
  start-page: 1140
  year: 2002
  end-page: 1151
  ident: bib27
  article-title: A real time QRS detection using delay-coordinate mapping for the microcontroller implementation
  publication-title: Ann. Biomed. Eng.
– volume: 220
  start-page: 221
  year: 2017
  end-page: 235
  ident: bib32
  article-title: Arrhythmia classification using Mahalanobis distance based improved fuzzy
  publication-title: Neurocomputing
– volume: 40
  start-page: 79
  year: 2016
  ident: bib14
  article-title: Detection of shockable ventricular arrhythmia using variational mode decomposition
  publication-title: J. Med. Syst.
– volume: 44
  start-page: 200
  year: 2018
  end-page: 208
  ident: bib16
  article-title: Efficient classification of ventricular arrhythmias using feature selection and c4. 5 classifier
  publication-title: Biomed. Signal Process Control
– volume: 13
  start-page: 515
  year: 1986
  end-page: 518
  ident: bib39
  article-title: Crei-gard, a new concept in computerized arrhythmia monitoring systems
  publication-title: Comput. Cardiol.
– volume: 41
  start-page: 411
  year: 2011
  end-page: 419
  ident: bib25
  article-title: Using phase space reconstruction for patient independent heartbeat classification in comparison with some benchmark methods
  publication-title: Comput. Biol. Med.
– start-page: 402
  year: 2012
  end-page: 407
  ident: bib10
  article-title: Using neural networks to predict cardiac arrhythmias
  publication-title: 2012 IEEE International Conference on Systems, Man, and Cybernetics
– volume: 98
  start-page: 87
  issue: 2
  year: 2005
  ident: 10.1016/j.compbiomed.2021.105180_bib5
  article-title: Heart rate variability measurements and the prediction of ventricular arrhythmias
  publication-title: QJM
  doi: 10.1093/qjmed/hci018
– volume: 10
  start-page: 1640
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105180_bib1
  article-title: Handling of ventricular fibrillation in the emergency setting
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01640
– start-page: 409
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105180_bib17
  article-title: Integrating Markov model and morphology analysis for finer classification of ventricular arrhythmia in real time
– start-page: 72
  year: 2016
  ident: 10.1016/j.compbiomed.2021.105180_bib34
  article-title: Fuzzy c-means in features space of teager-kaiser energy of continuous wavelet coefficients for detection of PVC beats in ECG
– volume: vol. 7
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105180_bib21
– volume: 39
  start-page: 104008
  issue: 10
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105180_bib40
  article-title: A novel method to quantify arterial pulse waveform morphology: attractor reconstruction for physiologists and clinicians
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aae46a
– volume: 92
  start-page: 324
  year: 2019
  ident: 10.1016/j.compbiomed.2021.105180_bib31
  article-title: Semantic clustering fuzzy c means spectral model based comparative analysis of cardiac color ultrasound and electrocardiogram in patients with left ventricular heart failure and cardiomyopathy
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2018.10.019
– volume: 24
  start-page: 2825
  issue: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105180_bib2
  article-title: An automatic R and T peak detection method based on the combination of hierarchical clustering and discrete wavelet transform
  publication-title: IEEE J.Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.2973982
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.compbiomed.2021.105180_bib37
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– start-page: 88
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105180_bib7
  article-title: Predicting imminent episodes of ventricular tachyarrhythmia using an entropy-based feature in the emd domain
– volume: 220
  start-page: 221
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105180_bib32
  article-title: Arrhythmia classification using Mahalanobis distance based improved fuzzy c-means clustering for mobile health monitoring systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.042
– volume: 44
  start-page: 200
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105180_bib16
  article-title: Efficient classification of ventricular arrhythmias using feature selection and c4. 5 classifier
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2018.04.005
– volume: 69
  start-page: 102851
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105180_bib30
  article-title: An effective PSR-based arrhythmia classifier using self-similarity analysis
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.102851
– volume: 18
  start-page: 3694
  issue: 9
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105180_bib26
  article-title: A real-time QRS detection method based on phase portraits and box-scoring calculation
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2018.2812792
– volume: 41
  start-page: 411
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2021.105180_bib25
  article-title: Using phase space reconstruction for patient independent heartbeat classification in comparison with some benchmark methods
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.04.003
– volume: 61
  start-page: 733
  issue: 1
  year: 2000
  ident: 10.1016/j.compbiomed.2021.105180_bib4
  article-title: Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates
  publication-title: Phys. Rev.
– volume: 143
  start-page: 133
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105180_bib33
  article-title: A novel method of clustering ECG arrhythmia data using robust spatial kernel fuzzy c-means
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.10.361
– volume: 24
  start-page: 1962
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105180_bib9
  article-title: Low-power ECG-based processor for predicting ventricular arrhythmia
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2015.2475119
– volume: 40
  start-page: 79
  issue: 4
  year: 2016
  ident: 10.1016/j.compbiomed.2021.105180_bib14
  article-title: Detection of shockable ventricular arrhythmia using variational mode decomposition
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0441-5
– volume: 61
  start-page: 832
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105180_bib12
  article-title: Detection of life-threatening arrhythmias using feature selection and support vector machines
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 147
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105180_bib23
  article-title: ‘’An efficient anomaly detection in quasi-periodic time series data—a case study with ECG
– volume: 58
  start-page: 76
  year: 2016
  ident: 10.1016/j.compbiomed.2021.105180_bib36
  article-title: Fuzzy c-means clustering algorithm for directional data (fcm4dd)
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.03.034
– volume: 40
  start-page: 317
  issue: s1
  year: 1995
  ident: 10.1016/j.compbiomed.2021.105180_bib38
  article-title: Nutzung der ekgsignaldatenbank cardiodat der ptb über das internet
  publication-title: Biomedizinische Technik/Biomed. Eng.
– volume: 13
  start-page: 515
  year: 1986
  ident: 10.1016/j.compbiomed.2021.105180_bib39
  article-title: Crei-gard, a new concept in computerized arrhythmia monitoring systems
  publication-title: Comput. Cardiol.
– start-page: 402
  year: 2012
  ident: 10.1016/j.compbiomed.2021.105180_bib10
  article-title: Using neural networks to predict cardiac arrhythmias
– volume: 30
  start-page: 1140
  issue: 9
  year: 2002
  ident: 10.1016/j.compbiomed.2021.105180_bib27
  article-title: A real time QRS detection using delay-coordinate mapping for the microcontroller implementation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1523030
– volume: 42
  start-page: 1824
  issue: 9
  year: 2009
  ident: 10.1016/j.compbiomed.2021.105180_bib29
  article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.11.020
– volume: 9
  start-page: 722
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105180_bib18
  article-title: Detection of life threatening ventricular arrhythmia using digital Taylor Fourier transform
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00722
– volume: 6
  start-page: 171
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2021.105180_bib28
  article-title: Adaptive filtering in phase space for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2010.0263
– volume: 32
  start-page: 15869
  issue: 20
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105180_bib19
  article-title: Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04061-8
– volume: 43
  start-page: 202
  issue: 2
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105180_bib6
  article-title: Forecasting of life threatening arrhythmias using the compression entropy of heart rate
  publication-title: Methods Inf. Med.
  doi: 10.1055/s-0038-1633859
– volume: 61
  start-page: 1607
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105180_bib11
  article-title: Ventricular fibrillation and tachycardia classification using a machine learning approach
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 5
  start-page: 318
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2021.105180_bib13
  article-title: Chaotic based reconstructed phase space features for detecting ventricular fibrillation
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2010.05.003
– volume: 4
  start-page: 60
  issue: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2021.105180_bib35
  article-title: Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-4-60
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105180_bib3
  article-title: ECG-based machine-learning algorithms for heartbeat classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-97118-5
– volume: 17
  start-page: 96
  issue: 2
  year: 1998
  ident: 10.1016/j.compbiomed.2021.105180_bib24
  article-title: Applying nonlinear dynamics to ECG signal processing
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.664037
– start-page: 454
  year: 2016
  ident: 10.1016/j.compbiomed.2021.105180_bib8
  article-title: Radial basis function neural network for prediction of cardiac arrhythmias based on heart rate time series
– volume: 36
  start-page: 107
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2021.105180_bib20
  article-title: A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/1/107
– volume: 79
  start-page: 952
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105180_bib15
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2017.08.039
– volume: vol. 52
  year: 2005
  ident: 10.1016/j.compbiomed.2021.105180_bib22
SSID ssj0004030
Score 2.4042783
Snippet Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac...
AbstractBackground and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping...
Background and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105180
SubjectTerms Algorithms
Arrhythmia
Arrhythmias, Cardiac
Boxes
Cardiac arrhythmia
Classification
Cluster Analysis
Clustering
Defibrillators, Implantable
Electrocardiography
Fibrillation
Fuzzy C-means clustering
Heart
Humans
Internal Medicine
Neural networks
Other
Phase space reconstruction
Prediction and classification
Predictions
Reconstruction
Signal processing
Statistical methods
Support vector machines
Tachyarrhythmia
Tachycardia
Tachycardia, Ventricular - diagnosis
Ventricle
Ventricular arrhythmia
Ventricular fibrillation
Ventricular Fibrillation - diagnosis
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA9aQXwp9XtrlQi-Lu4m2WSXPkgRSxEUQQv3FvLJKXbvvA9o-9c7k83uvVS5t8DuJJCZzPwmmQ9C3hnROGsUKztpRCmYcaVt0UsRvIrR10qFVO3zq7y4FJ9nzSxfuK1zWOWoE5Oi9guHd-TvmWSqZgzM-4flnxK7RuHram6hcZ88wNJlGNKlZmqXF1nxIQUFdI0AVyhH8gzxXRiyPaS4g5fIamx4W2NxyLvN07_gZzJD50fkMONHejYw_DG5F_on5OGX_EL-lFx_W-EYt5ua3lOH6BjDgRIH6CJSDHBMt35mRc1qNb_ZzK9-GormzFP4ZTmHUQmKxgWa3OWpxGyaMG5vb2-oK68CGDmYfouVFsD-PSOX559-fLwoc3eF0jVSbErLjZIxcgPuseSqkqZ2lWwjIDLfON41sep89FIy1wbWetuJykaleOuCka3lz8lBv-jDS0JjZS1nXiphW8GEsYCKomxVdJIDu5uCqHFTtculx7EDxm89xpj90jt2aGSHHthRkHqiXA7lN_ag6Ua-6TG9FBSiBhuxB626izas88le61qvma7091TYCGQKXOYKfDJRkNOJMoOXAZTsue7JKGB6Wmon8gV5O32G449vOqYPi236B1EeAOWCvBgEc9oo3oCDDXD8-P-TvyKPGOZ0pMC6E3IAQhVeA9La2DfpOP0FbUcozQ
  priority: 102
  providerName: ProQuest
Title Prediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clustering
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521009744
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521009744
https://dx.doi.org/10.1016/j.compbiomed.2021.105180
https://www.ncbi.nlm.nih.gov/pubmed/35026575
https://www.proquest.com/docview/2627122143
https://www.proquest.com/docview/2620078095
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdJL6btu06BCr25sSZZsekpCttuWLqE0sDchyRK7pfEu-4Amh_72zsiPUJrCQi-2WWtsoxnPfLP-ZkTIWyMKZ41iaSWNSAUzLrUlZimCZyHUuVI-dvucyPGl-DQtpnvkrK-FQVpl5_tbnx69dffLcTebx8v5HGt8IZWABAeSlgxQMfYEFUKhlb_7dUvzEBlvy1DA3-Dojs3TcryQtt2WuUOmyHJc9DbHBpF3h6h_QdAYikYPyYMOQ9KT9jEfkT3fPCb3vnRfyZ-QnxcrPMYpp6apqUOEjJSgqAW6CBRJjvGfP7OiZrWaXW9mV3NDMaTVFIYsZ3CUgrNxnsaUeWgzGy8Ytjc319SlVx4CHVx-i90WIAY-JZej829n47RbYSF1hRSb1HKjZAjcQIosucqkyV0mywCorC4cr4qQVXWopWSu9KysbSUyG5TipfNGlpY_I_vNovEvCA2ZtZzVUglbCiaMBWQUZKmCkxxUXiRE9ZOqXdd-HFfB-KF7ntl3fasOjerQrToSkg-Sy7YFxw4yVa833ZeYglPUECd2kFV3yfp193avda7XTGf6LwtMyPtB8g8j3vG-h72B6eFWTDKVMwaoNiFvhtPgAvC7jmn8YhvHINIDsJyQ561hDhPFC0iyAZK__K9He0XuMyz7iNy7Q7IPNudfAxjb2KP4tsFWTRVsy9GHI3Jw8vHzeAL70_PJxdffy6049Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LixQxEA7rCupFfK6tq0bQY2N3kk66ERFRx1n3geAu7C0m6YRR3JlxHujsj_I3WpV-zGWVuewt0F0JpCpVXyX1IOS5EYWzRrG0kkakghmX2hK9FMGzEOpcKR-rfR7J4Yn4dFqcbpE_XS4MhlV2OjEq6nri8I78JZNM5YyBeX8z_Zli1yh8Xe1aaDRise9Xv8Blm7_eew_8fcHY4MPxu2HadhVIXSHFIrXcKBkCN-AWSq4yaXKXyTIAEqkLx6siZFUdaimZKz0ra1uJzAaleOm8kaXlMO8VclVwXuGJKgcf13mYGW9SXkC3CXC92sihJp4MQ8SblHrwSlmODXZzLEZ5sTn8F9yNZm9wi9xs8Sp92wjYbbLlx3fItcP2Rf4u-f15hmNkLzXjmjpE4xh-FDlOJ4FiQGW8ZTQzamaz0WoxOvtmKJrPmsIv0xGMUlBsztPonvclbeOEYXl-vqIuPfNgVGH6JVZ2AHt7j5xcyr7fJ9vjydg_IDRk1nJWSyVsKZgwFlBYkKUKTnIQryIhqttU7dpS59hx44fuYtq-6zU7NLJDN-xISN5TTptyHxvQVB3fdJfOCgpYg03agFZdROvnrSaZ61zPmc70l1hICWQKXPQMfECRkFc9ZQuWGhC04bq7nYDpfqn1EUvIs_4zqBt8QzJjP1nGfxBVAjBPyE4jmP1G8QIceoD_D_8_-VNyfXh8eKAP9o72H5EbDPNJYlDfLtkGAfOPAeUt7JN4tCj5etln-S_Ik2Wn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61QvGleHdq1Qj6OHQmySSziIhYl9ZqKWhh32KSSVjFzq57Qbc_zV_nOZnLvlTZl74FZk4Gcq7f5FwIeWFE4axRLB1II1LBjEttiShF8CyEKlfKx26fp_LoXHwYFaMt8qerhcG0ys4mRkNdTRz-Iz9gkqmcMXDvB6FNizg7HL6Z_kxxghTetHbjNBoROfGrXwDf5q-PD4HXLxkbvv_y7ihtJwykrpBikVpulAyBG4CIkqtMmtxlsgwQlVSF44MiZIMqVFIyV3pWVnYgMhuU4qXzRpaWw743yE3Fixx1TI3UuiYz4035C9g5ATCszSJqcsswXbwprweEynIctptjY8qrXeO_Qt_oAoe3yW4bu9K3jbDdIVu-vkt2PrW38_fI77MZrpHV1NQVdRiZYypS5D6dBIrJlfGPo5lRM5uNV4vxxTdD0ZVWFF6ZjmGVgpFznkao3re3jRuG5eXlirr0woODhe2X2OUBfO99cn4t5_6AbNeT2j8iNGTWclZJJWwpmDAWIrIgSxWc5CBqRUJUd6jatW3PcfrGD93lt33Xa3ZoZIdu2JGQvKecNq0_NqAZdHzTXWkrGGMN_mkDWnUVrZ-3VmWucz1nOtOfY1MlkCmA6xngQZGQVz1lGzg1AdGG393vBEz3n1qrW0Ke94_B9OB9kqn9ZBnfwQgTgvSEPGwEsz8oXgC4Byiw9__Nn5Ed0GL98fj05DG5xbC0JOb37ZNtkC__BAK-hX0aNYuSr9etyn8BRqdp1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+classification+of+ventricular+arrhythmia+based+on+phase-space+reconstruction+and+fuzzy+c-means+clustering&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chen%2C+Hanjie&rft.au=Das%2C+Saptarshi&rft.au=Morgan%2C+John+M&rft.au=Maharatna%2C+Koushik&rft.date=2022-03-01&rft.eissn=1879-0534&rft.volume=142&rft.spage=105180&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.105180&rft_id=info%3Apmid%2F35026575&rft.externalDocID=35026575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon