Prediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clustering
Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event...
Saved in:
Published in | Computers in biology and medicine Vol. 142; p. 105180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2022
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs.
A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA.
32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%.
The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.
•Arrhythmia is caused due to cumulative effect of disruptive phase relationship•Heart electrical activities from different parts lead to desynchronised operation•A statistical index based on phase-space analysis is designed to predict impending arrhythmia•Joint prediction and classification are carried out for four type of arrhythmia•Fuzzy c-means clustering based method can classify arrhythmia 4 min before the onset |
---|---|
AbstractList | Background and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs.MethodsA statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA.Results32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%.ConclusionsThe results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD. Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. 32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD. •Arrhythmia is caused due to cumulative effect of disruptive phase relationship•Heart electrical activities from different parts lead to desynchronised operation•A statistical index based on phase-space analysis is designed to predict impending arrhythmia•Joint prediction and classification are carried out for four type of arrhythmia•Fuzzy c-means clustering based method can classify arrhythmia 4 min before the onset Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. 32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD. Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs.BACKGROUND AND OBJECTIVEPrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs.A statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA.METHODSA statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA.32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%.RESULTS32 healthy and 32 arrhythmic subjects from two open databases - PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%.The results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD.CONCLUSIONSThe results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD. AbstractBackground and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac Death (SCD). This paper proposes a novel method for predicting VA and classifying its type, in particular, the fatal VA even before the event occurs. MethodsA statistical index J based on the combination of phase-space reconstruction (PSR) and box counting has been used to predict VA. The fuzzy c-means (FCM) clustering technique is applied for the classification of impending VA. Results32 healthy and 32 arrhythmic subjects from two open databases; PTB Diagnostic database (PTBDB) and CU Ventricular Tachyarrhythmia (CUDB) database respectively; were used to validate our proposed method. Our method showed average prediction time of approximately 5 min (4.97 min) for impending VA in the tested dataset while classifying four types of VA (VA without ventricular premature beats (VPBs), ventricular fibrillation (VF), ventricular tachycardia (VT), and VT followed by VF) with an average 4 min (approximately) before the VA onset, i.e., after 1 min of the prediction time point with average accuracy of 98.4%, a sensitivity of 97.5% and specificity of 99.1%. ConclusionsThe results obtained can be used in clinical practice after rigorous clinical trial to advance technologies such as implantable cardioverter defibrillator (ICD) that can help to preempt the occurrence of fatal ventricular arrhythmia - a main cause of SCD. |
ArticleNumber | 105180 |
Author | Chen, Hanjie Maharatna, Koushik Morgan, John M. Das, Saptarshi |
Author_xml | – sequence: 1 givenname: Hanjie orcidid: 0000-0001-8024-8804 surname: Chen fullname: Chen, Hanjie email: hc4y15@soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK – sequence: 2 givenname: Saptarshi orcidid: 0000-0002-8394-5303 surname: Das fullname: Das, Saptarshi email: saptarshi.das@ieee.org, s.das3@exeter.ac.uk organization: Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK – sequence: 3 givenname: John M. surname: Morgan fullname: Morgan, John M. email: jmm@hrclinic.org organization: Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ, UK – sequence: 4 givenname: Koushik surname: Maharatna fullname: Maharatna, Koushik email: km3@ecs.soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35026575$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkt9rFDEQx4NU7LX6L8iCL77sdZJssrsvoi3-goKC-hyy2YmXczc5k93i9a8312uvUBDqU8LwmQ_DfOeEHPngkZCCwpIClWfrpQnjpnNhxH7JgNFcFrSBJ2RBm7otQfDqiCwAKJRVw8QxOUlpDQAVcHhGjrkAJkUtFuTP14i9M5MLvtC-L8ygU3LWGX1TCra4Qj9FZ-ZBx0LHuNpOq9HpotMJ-yIjm1X-lWmjDRYRTfBpivO90M7X19vClCNqn7J-ThNG538-J0-tHhK-uH1PyY8P779ffCovv3z8fPHusjRCVlPZcV1La7luoZa8BqmpAdlYLlgvDG-Fhba3vZTMNMiavmsr6Gxd88aglk3HT8nrvXcTw-8Z06RGlwwOg_YY5qSYZAB1A63I6KsH6DrM0efpdlRNGaMVz9TLW2ru8vrVJrpRx62622kGmj1gYkgpoj0gFNQuPrVW9_GpXXxqH19uffOg1bjpJokpajc8RnC-F2Be6ZXDqJJx6E3OOGczqT64_5jiIDGD8_kkhl-4xXRYClWJKVDfdme2uzJGAdq6qrLg7b8Fj5vhL3OM6PQ |
CitedBy_id | crossref_primary_10_1016_j_apacoust_2023_109534 crossref_primary_10_1016_j_procs_2024_05_182 crossref_primary_10_3390_s23063164 crossref_primary_10_3233_JIFS_223356 crossref_primary_10_3390_s23042316 crossref_primary_10_1080_01969722_2022_2122013 crossref_primary_10_1111_exsy_13298 crossref_primary_10_1109_TAI_2023_3266191 crossref_primary_10_1016_j_compeleceng_2024_110022 crossref_primary_10_1016_j_asoc_2022_108840 crossref_primary_10_1016_j_eswa_2023_121157 crossref_primary_10_1016_j_jenvman_2024_121087 crossref_primary_10_1109_TIM_2022_3189748 crossref_primary_10_1155_2022_8571970 |
Cites_doi | 10.1093/qjmed/hci018 10.3389/fphar.2019.01640 10.1088/1361-6579/aae46a 10.1016/j.future.2018.10.019 10.1109/JBHI.2020.2973982 10.1161/01.CIR.101.23.e215 10.1016/j.neucom.2016.08.042 10.1016/j.bspc.2018.04.005 10.1016/j.bspc.2021.102851 10.1109/JSEN.2018.2812792 10.1016/j.compbiomed.2011.04.003 10.1016/j.procs.2018.10.361 10.1109/TVLSI.2015.2475119 10.1007/s10916-016-0441-5 10.1016/j.eswa.2016.03.034 10.1114/1.1523030 10.1016/j.patcog.2008.11.020 10.3389/fphys.2018.00722 10.1049/iet-spr.2010.0263 10.1007/s00521-019-04061-8 10.1055/s-0038-1633859 10.1016/j.bspc.2010.05.003 10.1186/1475-925X-4-60 10.1038/s41598-021-97118-5 10.1109/51.664037 10.1088/0967-3334/36/1/107 10.1016/j.future.2017.08.039 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2021.105180 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 105180 |
ExternalDocumentID | 35026575 10_1016_j_compbiomed_2021_105180 S0010482521009744 1_s2_0_S0010482521009744 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c564t-b3a76ff3a90763706a1c068f352d5c395f09dfd662c8e28db940bf7738cea68b3 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Fri Jul 11 08:24:43 EDT 2025 Wed Aug 13 06:00:12 EDT 2025 Thu Apr 03 06:57:59 EDT 2025 Tue Jul 01 03:28:47 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Fri Feb 23 02:41:19 EST 2024 Tue Feb 25 20:10:53 EST 2025 Tue Aug 26 20:14:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ventricular arrhythmia Prediction and classification Phase space reconstruction Fuzzy C-means clustering |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-b3a76ff3a90763706a1c068f352d5c395f09dfd662c8e28db940bf7738cea68b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8394-5303 0000-0001-8024-8804 |
OpenAccessLink | http://hdl.handle.net/10871/128262 |
PMID | 35026575 |
PQID | 2627122143 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2620078095 proquest_journals_2627122143 pubmed_primary_35026575 crossref_primary_10_1016_j_compbiomed_2021_105180 crossref_citationtrail_10_1016_j_compbiomed_2021_105180 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_105180 elsevier_clinicalkeyesjournals_1_s2_0_S0010482521009744 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_105180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Kelwade, Salankar (bib8) 2016 Adams, Choi (bib10) 2012 Riasi, Mohebbi (bib7) 2015 Small (bib22) 2005; vol. 52 Wei, Hongxing, Jianchun (bib28) 2012; 6 Szabo, Ujvarosy, Ötvös, Sebestyén, Nanasi (bib1) 2020; 10 Sharma, Tan, Acharya (bib19) 2020; 32 Wessel, Ziehmann, Kurths, Meyerfeldt, Schirdewan, Voss (bib4) 2000; 61 Li, Rajagopalan, Clifford (bib11) 2013; 61 Roopa, Harish, Kumar (bib33) 2018; 143 Chakraborty, Kamiyama, Takahashi, Kinoshita (bib23) 2017 Mohanty, Sahoo, Biswal, Sabut (bib16) 2018; 44 Roopaei, Boostani, Sarvestani, Taghavi, Azimifar (bib13) 2010; 5 Nejadgholi, Moradi, Abdolali (bib25) 2011; 41 Gharieb, Massoud, Nady, Moness (bib34) 2016 Bousseljot, Kreiseler, Schnabel (bib38) 1995; 40 Kesemen, Tezel, Özkul (bib36) 2016; 58 Gawde, Bansal, Nielson (bib17) 2017 Bayasi, Tekeste, Saleh, Mohammad, Khandoker, Ismail (bib9) 2015; 24 Chen, Maharatna (bib2) 2020; 24 Reed, Robertson, Addison (bib5) 2005; 98 Tripathy, Zamora-Mendez, De la O Serna, Paternina, Arrieta, Naik (bib18) 2018; 9 Nolle, Badura, Catlett, Bowser, Sketch (bib39) 1986; 13 Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (bib15) 2018; 79 Aziz, Ahmed, Alouini (bib3) 2021; 11 Hou, Dong, Xiang, Li, Yang (bib26) 2018; 18 Fang, Chan (bib29) 2009; 42 Nandi, Venton, Aston (bib40) 2018; 39 Alonso-Atienza, Morgado, Fernandez-Martinez, García- Alberola, Rojo-Alvarez (bib12) 2013; 61 Lee, Kim, Lee, Lee, Lee (bib27) 2002; 30 Haldar, Khan, Ali, Abbas (bib32) 2017; 220 Fojt, Holcik (bib24) 1998; 17 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib37) 2000; 101 Dongdong, Arunkumar, Wenyu, Beibei, Xinlei, Guangjian (bib31) 2019; 92 Cappiello, Das, Mazomenos, Maharatna, Koulaouzidis, Morgan, Puddu (bib20) 2014; 36 Chen, Das, Morgan, Maharatna (bib30) 2021; 69 Tripathy, Sharma, Dandapat (bib14) 2016; 40 Baumert, Baier, Haueisen, Wessel, Meyerfeldt, Schirdewan, Voss (bib6) 2004; 43 Kantz, Schreiber (bib21) 2004; vol. 7 Amann, Tratnig, Unterkofler (bib35) 2005; 4 Szabo (10.1016/j.compbiomed.2021.105180_bib1) 2020; 10 Aziz (10.1016/j.compbiomed.2021.105180_bib3) 2021; 11 Riasi (10.1016/j.compbiomed.2021.105180_bib7) 2015 Amann (10.1016/j.compbiomed.2021.105180_bib35) 2005; 4 Dongdong (10.1016/j.compbiomed.2021.105180_bib31) 2019; 92 Nandi (10.1016/j.compbiomed.2021.105180_bib40) 2018; 39 Fang (10.1016/j.compbiomed.2021.105180_bib29) 2009; 42 Kantz (10.1016/j.compbiomed.2021.105180_bib21) 2004; vol. 7 Hou (10.1016/j.compbiomed.2021.105180_bib26) 2018; 18 Haldar (10.1016/j.compbiomed.2021.105180_bib32) 2017; 220 Kesemen (10.1016/j.compbiomed.2021.105180_bib36) 2016; 58 Alonso-Atienza (10.1016/j.compbiomed.2021.105180_bib12) 2013; 61 Nejadgholi (10.1016/j.compbiomed.2021.105180_bib25) 2011; 41 Gharieb (10.1016/j.compbiomed.2021.105180_bib34) 2016 Wei (10.1016/j.compbiomed.2021.105180_bib28) 2012; 6 Roopa (10.1016/j.compbiomed.2021.105180_bib33) 2018; 143 Bousseljot (10.1016/j.compbiomed.2021.105180_bib38) 1995; 40 Li (10.1016/j.compbiomed.2021.105180_bib11) 2013; 61 Tripathy (10.1016/j.compbiomed.2021.105180_bib18) 2018; 9 Lee (10.1016/j.compbiomed.2021.105180_bib27) 2002; 30 Goldberger (10.1016/j.compbiomed.2021.105180_bib37) 2000; 101 Chen (10.1016/j.compbiomed.2021.105180_bib2) 2020; 24 Kelwade (10.1016/j.compbiomed.2021.105180_bib8) 2016 Small (10.1016/j.compbiomed.2021.105180_bib22) 2005; vol. 52 Mohanty (10.1016/j.compbiomed.2021.105180_bib16) 2018; 44 Chen (10.1016/j.compbiomed.2021.105180_bib30) 2021; 69 Roopaei (10.1016/j.compbiomed.2021.105180_bib13) 2010; 5 Acharya (10.1016/j.compbiomed.2021.105180_bib15) 2018; 79 Wessel (10.1016/j.compbiomed.2021.105180_bib4) 2000; 61 Baumert (10.1016/j.compbiomed.2021.105180_bib6) 2004; 43 Sharma (10.1016/j.compbiomed.2021.105180_bib19) 2020; 32 Cappiello (10.1016/j.compbiomed.2021.105180_bib20) 2014; 36 Tripathy (10.1016/j.compbiomed.2021.105180_bib14) 2016; 40 Gawde (10.1016/j.compbiomed.2021.105180_bib17) 2017 Nolle (10.1016/j.compbiomed.2021.105180_bib39) 1986; 13 Chakraborty (10.1016/j.compbiomed.2021.105180_bib23) 2017 Bayasi (10.1016/j.compbiomed.2021.105180_bib9) 2015; 24 Adams (10.1016/j.compbiomed.2021.105180_bib10) 2012 Fojt (10.1016/j.compbiomed.2021.105180_bib24) 1998; 17 Reed (10.1016/j.compbiomed.2021.105180_bib5) 2005; 98 |
References_xml | – volume: 98 start-page: 87 year: 2005 end-page: 95 ident: bib5 article-title: Heart rate variability measurements and the prediction of ventricular arrhythmias publication-title: QJM – volume: 43 start-page: 202 year: 2004 end-page: 206 ident: bib6 article-title: Forecasting of life threatening arrhythmias using the compression entropy of heart rate publication-title: Methods Inf. Med. – start-page: 88 year: 2015 end-page: 92 ident: bib7 article-title: Predicting imminent episodes of ventricular tachyarrhythmia using an entropy-based feature in the emd domain publication-title: 2015 23rd Iranian Conference on Electrical Engineering – volume: 10 start-page: 1640 year: 2020 ident: bib1 article-title: Handling of ventricular fibrillation in the emergency setting publication-title: Front. Pharmacol. – volume: 24 start-page: 1962 year: 2015 end-page: 1974 ident: bib9 article-title: Low-power ECG-based processor for predicting ventricular arrhythmia publication-title: IEEE Trans. Very Large Scale Integr. Syst. – start-page: 72 year: 2016 end-page: 75 ident: bib34 article-title: Fuzzy publication-title: 2016 8th Cairo International Biomedical Engineering Conference (CIBEC) – volume: 58 start-page: 76 year: 2016 end-page: 82 ident: bib36 article-title: Fuzzy publication-title: Expert Syst. Appl. – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib37 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: vol. 7 year: 2004 ident: bib21 publication-title: Nonlinear Time Series Analysis – volume: 32 start-page: 15869 year: 2020 end-page: 158615 884 ident: bib19 article-title: Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters publication-title: Neural Comput. Appl. – volume: 92 start-page: 324 year: 2019 end-page: 328 ident: bib31 article-title: Semantic clustering fuzzy c means spectral model based comparative analysis of cardiac color ultrasound and electrocardiogram in patients with left ventricular heart failure and cardiomyopathy publication-title: Future Generat. Comput. Syst. – volume: 61 start-page: 1607 year: 2013 end-page: 1613 ident: bib11 article-title: Ventricular fibrillation and tachycardia classification using a machine learning approach publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 79 start-page: 952 year: 2018 end-page: 959 ident: bib15 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Generat. Comput. Syst. – volume: 18 start-page: 3694 year: 2018 end-page: 3702 ident: bib26 article-title: A real-time QRS detection method based on phase portraits and box-scoring calculation publication-title: IEEE Sensor. J. – volume: 143 start-page: 133 year: 2018 end-page: 140 ident: bib33 article-title: A novel method of clustering ECG arrhythmia data using robust spatial kernel fuzzy publication-title: Procedia Comput. Sci. – volume: 24 start-page: 2825 year: 2020 end-page: 2832 ident: bib2 article-title: An automatic R and T peak detection method based on the combination of hierarchical clustering and discrete wavelet transform publication-title: IEEE J.Biomed. Health Inf. – start-page: 409 year: 2017 end-page: 412 ident: bib17 article-title: Integrating Markov model and morphology analysis for finer classification of ventricular arrhythmia in real time publication-title: 2017 IEEE EMBS International Conference on Biomedical & Health Informatics – volume: 4 start-page: 60 year: 2005 ident: bib35 article-title: Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators publication-title: Biomed. Eng. Online – volume: 6 start-page: 171 year: 2012 end-page: 177 ident: bib28 article-title: Adaptive filtering in phase space for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal publication-title: IET Signal Process. – start-page: 147 year: 2017 end-page: 157 ident: bib23 article-title: ‘’An efficient anomaly detection in quasi-periodic time series data—a case study with ECG publication-title: International Work-Conference on Time Series Analysis – volume: 11 start-page: 1 year: 2021 end-page: 14 ident: bib3 article-title: ECG-based machine-learning algorithms for heartbeat classification publication-title: Sci. Rep. – volume: 5 start-page: 318 year: 2010 end-page: 327 ident: bib13 article-title: Chaotic based reconstructed phase space features for detecting ventricular fibrillation publication-title: Biomed. Signal Process Control – volume: 39 start-page: 104008 year: 2018 ident: bib40 article-title: A novel method to quantify arterial pulse waveform morphology: attractor reconstruction for physiologists and clinicians publication-title: Physiol. Meas. – volume: vol. 52 year: 2005 ident: bib22 publication-title: Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance – volume: 36 start-page: 107 year: 2014 ident: bib20 article-title: A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits publication-title: Physiol. Meas. – volume: 9 start-page: 722 year: 2018 ident: bib18 article-title: Detection of life threatening ventricular arrhythmia using digital Taylor Fourier transform publication-title: Front. Physiol. – volume: 61 start-page: 733 year: 2000 ident: bib4 article-title: Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates publication-title: Phys. Rev. – volume: 17 start-page: 96 year: 1998 end-page: 101 ident: bib24 article-title: Applying nonlinear dynamics to ECG signal processing publication-title: IEEE Eng. Med. Biol. Mag. – volume: 42 start-page: 1824 year: 2009 end-page: 1831 ident: bib29 article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space publication-title: Pattern Recogn. – volume: 61 start-page: 832 year: 2013 end-page: 840 ident: bib12 article-title: Detection of life-threatening arrhythmias using feature selection and support vector machines publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 40 start-page: 317 year: 1995 end-page: 318 ident: bib38 article-title: Nutzung der ekgsignaldatenbank cardiodat der ptb über das internet publication-title: Biomedizinische Technik/Biomed. Eng. – volume: 69 start-page: 102851 year: 2021 ident: bib30 article-title: An effective PSR-based arrhythmia classifier using self-similarity analysis publication-title: Biomed. Signal Process Control – start-page: 454 year: 2016 end-page: 458 ident: bib8 article-title: Radial basis function neural network for prediction of cardiac arrhythmias based on heart rate time series publication-title: 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI) – volume: 30 start-page: 1140 year: 2002 end-page: 1151 ident: bib27 article-title: A real time QRS detection using delay-coordinate mapping for the microcontroller implementation publication-title: Ann. Biomed. Eng. – volume: 220 start-page: 221 year: 2017 end-page: 235 ident: bib32 article-title: Arrhythmia classification using Mahalanobis distance based improved fuzzy publication-title: Neurocomputing – volume: 40 start-page: 79 year: 2016 ident: bib14 article-title: Detection of shockable ventricular arrhythmia using variational mode decomposition publication-title: J. Med. Syst. – volume: 44 start-page: 200 year: 2018 end-page: 208 ident: bib16 article-title: Efficient classification of ventricular arrhythmias using feature selection and c4. 5 classifier publication-title: Biomed. Signal Process Control – volume: 13 start-page: 515 year: 1986 end-page: 518 ident: bib39 article-title: Crei-gard, a new concept in computerized arrhythmia monitoring systems publication-title: Comput. Cardiol. – volume: 41 start-page: 411 year: 2011 end-page: 419 ident: bib25 article-title: Using phase space reconstruction for patient independent heartbeat classification in comparison with some benchmark methods publication-title: Comput. Biol. Med. – start-page: 402 year: 2012 end-page: 407 ident: bib10 article-title: Using neural networks to predict cardiac arrhythmias publication-title: 2012 IEEE International Conference on Systems, Man, and Cybernetics – volume: 98 start-page: 87 issue: 2 year: 2005 ident: 10.1016/j.compbiomed.2021.105180_bib5 article-title: Heart rate variability measurements and the prediction of ventricular arrhythmias publication-title: QJM doi: 10.1093/qjmed/hci018 – volume: 10 start-page: 1640 year: 2020 ident: 10.1016/j.compbiomed.2021.105180_bib1 article-title: Handling of ventricular fibrillation in the emergency setting publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01640 – start-page: 409 year: 2017 ident: 10.1016/j.compbiomed.2021.105180_bib17 article-title: Integrating Markov model and morphology analysis for finer classification of ventricular arrhythmia in real time – start-page: 72 year: 2016 ident: 10.1016/j.compbiomed.2021.105180_bib34 article-title: Fuzzy c-means in features space of teager-kaiser energy of continuous wavelet coefficients for detection of PVC beats in ECG – volume: vol. 7 year: 2004 ident: 10.1016/j.compbiomed.2021.105180_bib21 – volume: 39 start-page: 104008 issue: 10 year: 2018 ident: 10.1016/j.compbiomed.2021.105180_bib40 article-title: A novel method to quantify arterial pulse waveform morphology: attractor reconstruction for physiologists and clinicians publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aae46a – volume: 92 start-page: 324 year: 2019 ident: 10.1016/j.compbiomed.2021.105180_bib31 article-title: Semantic clustering fuzzy c means spectral model based comparative analysis of cardiac color ultrasound and electrocardiogram in patients with left ventricular heart failure and cardiomyopathy publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2018.10.019 – volume: 24 start-page: 2825 issue: 10 year: 2020 ident: 10.1016/j.compbiomed.2021.105180_bib2 article-title: An automatic R and T peak detection method based on the combination of hierarchical clustering and discrete wavelet transform publication-title: IEEE J.Biomed. Health Inf. doi: 10.1109/JBHI.2020.2973982 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.compbiomed.2021.105180_bib37 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – start-page: 88 year: 2015 ident: 10.1016/j.compbiomed.2021.105180_bib7 article-title: Predicting imminent episodes of ventricular tachyarrhythmia using an entropy-based feature in the emd domain – volume: 220 start-page: 221 year: 2017 ident: 10.1016/j.compbiomed.2021.105180_bib32 article-title: Arrhythmia classification using Mahalanobis distance based improved fuzzy c-means clustering for mobile health monitoring systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.042 – volume: 44 start-page: 200 year: 2018 ident: 10.1016/j.compbiomed.2021.105180_bib16 article-title: Efficient classification of ventricular arrhythmias using feature selection and c4. 5 classifier publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2018.04.005 – volume: 69 start-page: 102851 year: 2021 ident: 10.1016/j.compbiomed.2021.105180_bib30 article-title: An effective PSR-based arrhythmia classifier using self-similarity analysis publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2021.102851 – volume: 18 start-page: 3694 issue: 9 year: 2018 ident: 10.1016/j.compbiomed.2021.105180_bib26 article-title: A real-time QRS detection method based on phase portraits and box-scoring calculation publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2018.2812792 – volume: 41 start-page: 411 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2021.105180_bib25 article-title: Using phase space reconstruction for patient independent heartbeat classification in comparison with some benchmark methods publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.04.003 – volume: 61 start-page: 733 issue: 1 year: 2000 ident: 10.1016/j.compbiomed.2021.105180_bib4 article-title: Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates publication-title: Phys. Rev. – volume: 143 start-page: 133 year: 2018 ident: 10.1016/j.compbiomed.2021.105180_bib33 article-title: A novel method of clustering ECG arrhythmia data using robust spatial kernel fuzzy c-means publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.10.361 – volume: 24 start-page: 1962 issue: 5 year: 2015 ident: 10.1016/j.compbiomed.2021.105180_bib9 article-title: Low-power ECG-based processor for predicting ventricular arrhythmia publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2015.2475119 – volume: 40 start-page: 79 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2021.105180_bib14 article-title: Detection of shockable ventricular arrhythmia using variational mode decomposition publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0441-5 – volume: 61 start-page: 832 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2021.105180_bib12 article-title: Detection of life-threatening arrhythmias using feature selection and support vector machines publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – start-page: 147 year: 2017 ident: 10.1016/j.compbiomed.2021.105180_bib23 article-title: ‘’An efficient anomaly detection in quasi-periodic time series data—a case study with ECG – volume: 58 start-page: 76 year: 2016 ident: 10.1016/j.compbiomed.2021.105180_bib36 article-title: Fuzzy c-means clustering algorithm for directional data (fcm4dd) publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.03.034 – volume: 40 start-page: 317 issue: s1 year: 1995 ident: 10.1016/j.compbiomed.2021.105180_bib38 article-title: Nutzung der ekgsignaldatenbank cardiodat der ptb über das internet publication-title: Biomedizinische Technik/Biomed. Eng. – volume: 13 start-page: 515 year: 1986 ident: 10.1016/j.compbiomed.2021.105180_bib39 article-title: Crei-gard, a new concept in computerized arrhythmia monitoring systems publication-title: Comput. Cardiol. – start-page: 402 year: 2012 ident: 10.1016/j.compbiomed.2021.105180_bib10 article-title: Using neural networks to predict cardiac arrhythmias – volume: 30 start-page: 1140 issue: 9 year: 2002 ident: 10.1016/j.compbiomed.2021.105180_bib27 article-title: A real time QRS detection using delay-coordinate mapping for the microcontroller implementation publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1523030 – volume: 42 start-page: 1824 issue: 9 year: 2009 ident: 10.1016/j.compbiomed.2021.105180_bib29 article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.11.020 – volume: 9 start-page: 722 year: 2018 ident: 10.1016/j.compbiomed.2021.105180_bib18 article-title: Detection of life threatening ventricular arrhythmia using digital Taylor Fourier transform publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00722 – volume: 6 start-page: 171 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2021.105180_bib28 article-title: Adaptive filtering in phase space for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal publication-title: IET Signal Process. doi: 10.1049/iet-spr.2010.0263 – volume: 32 start-page: 15869 issue: 20 year: 2020 ident: 10.1016/j.compbiomed.2021.105180_bib19 article-title: Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04061-8 – volume: 43 start-page: 202 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2021.105180_bib6 article-title: Forecasting of life threatening arrhythmias using the compression entropy of heart rate publication-title: Methods Inf. Med. doi: 10.1055/s-0038-1633859 – volume: 61 start-page: 1607 issue: 6 year: 2013 ident: 10.1016/j.compbiomed.2021.105180_bib11 article-title: Ventricular fibrillation and tachycardia classification using a machine learning approach publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 5 start-page: 318 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2021.105180_bib13 article-title: Chaotic based reconstructed phase space features for detecting ventricular fibrillation publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2010.05.003 – volume: 4 start-page: 60 issue: 1 year: 2005 ident: 10.1016/j.compbiomed.2021.105180_bib35 article-title: Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-4-60 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2021.105180_bib3 article-title: ECG-based machine-learning algorithms for heartbeat classification publication-title: Sci. Rep. doi: 10.1038/s41598-021-97118-5 – volume: 17 start-page: 96 issue: 2 year: 1998 ident: 10.1016/j.compbiomed.2021.105180_bib24 article-title: Applying nonlinear dynamics to ECG signal processing publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.664037 – start-page: 454 year: 2016 ident: 10.1016/j.compbiomed.2021.105180_bib8 article-title: Radial basis function neural network for prediction of cardiac arrhythmias based on heart rate time series – volume: 36 start-page: 107 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2021.105180_bib20 article-title: A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/1/107 – volume: 79 start-page: 952 year: 2018 ident: 10.1016/j.compbiomed.2021.105180_bib15 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2017.08.039 – volume: vol. 52 year: 2005 ident: 10.1016/j.compbiomed.2021.105180_bib22 |
SSID | ssj0004030 |
Score | 2.4042783 |
Snippet | Prediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its escalation to Sudden Cardiac... AbstractBackground and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping... Background and objectivePrediction and classification of Ventricular Arrhythmias (VA) may allow clinicians sufficient time to intervene for stopping its... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105180 |
SubjectTerms | Algorithms Arrhythmia Arrhythmias, Cardiac Boxes Cardiac arrhythmia Classification Cluster Analysis Clustering Defibrillators, Implantable Electrocardiography Fibrillation Fuzzy C-means clustering Heart Humans Internal Medicine Neural networks Other Phase space reconstruction Prediction and classification Predictions Reconstruction Signal processing Statistical methods Support vector machines Tachyarrhythmia Tachycardia Tachycardia, Ventricular - diagnosis Ventricle Ventricular arrhythmia Ventricular fibrillation Ventricular Fibrillation - diagnosis Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA9aQXwp9XtrlQi-Lu4m2WSXPkgRSxEUQQv3FvLJKXbvvA9o-9c7k83uvVS5t8DuJJCZzPwmmQ9C3hnROGsUKztpRCmYcaVt0UsRvIrR10qFVO3zq7y4FJ9nzSxfuK1zWOWoE5Oi9guHd-TvmWSqZgzM-4flnxK7RuHram6hcZ88wNJlGNKlZmqXF1nxIQUFdI0AVyhH8gzxXRiyPaS4g5fIamx4W2NxyLvN07_gZzJD50fkMONHejYw_DG5F_on5OGX_EL-lFx_W-EYt5ua3lOH6BjDgRIH6CJSDHBMt35mRc1qNb_ZzK9-GormzFP4ZTmHUQmKxgWa3OWpxGyaMG5vb2-oK68CGDmYfouVFsD-PSOX559-fLwoc3eF0jVSbErLjZIxcgPuseSqkqZ2lWwjIDLfON41sep89FIy1wbWetuJykaleOuCka3lz8lBv-jDS0JjZS1nXiphW8GEsYCKomxVdJIDu5uCqHFTtculx7EDxm89xpj90jt2aGSHHthRkHqiXA7lN_ag6Ua-6TG9FBSiBhuxB626izas88le61qvma7091TYCGQKXOYKfDJRkNOJMoOXAZTsue7JKGB6Wmon8gV5O32G449vOqYPi236B1EeAOWCvBgEc9oo3oCDDXD8-P-TvyKPGOZ0pMC6E3IAQhVeA9La2DfpOP0FbUcozQ priority: 102 providerName: ProQuest |
Title | Prediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clustering |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521009744 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521009744 https://dx.doi.org/10.1016/j.compbiomed.2021.105180 https://www.ncbi.nlm.nih.gov/pubmed/35026575 https://www.proquest.com/docview/2627122143 https://www.proquest.com/docview/2620078095 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdJL6btu06BCr25sSZZsekpCttuWLqE0sDchyRK7pfEu-4Amh_72zsiPUJrCQi-2WWtsoxnPfLP-ZkTIWyMKZ41iaSWNSAUzLrUlZimCZyHUuVI-dvucyPGl-DQtpnvkrK-FQVpl5_tbnx69dffLcTebx8v5HGt8IZWABAeSlgxQMfYEFUKhlb_7dUvzEBlvy1DA3-Dojs3TcryQtt2WuUOmyHJc9DbHBpF3h6h_QdAYikYPyYMOQ9KT9jEfkT3fPCb3vnRfyZ-QnxcrPMYpp6apqUOEjJSgqAW6CBRJjvGfP7OiZrWaXW9mV3NDMaTVFIYsZ3CUgrNxnsaUeWgzGy8Ytjc319SlVx4CHVx-i90WIAY-JZej829n47RbYSF1hRSb1HKjZAjcQIosucqkyV0mywCorC4cr4qQVXWopWSu9KysbSUyG5TipfNGlpY_I_vNovEvCA2ZtZzVUglbCiaMBWQUZKmCkxxUXiRE9ZOqXdd-HFfB-KF7ntl3fasOjerQrToSkg-Sy7YFxw4yVa833ZeYglPUECd2kFV3yfp193avda7XTGf6LwtMyPtB8g8j3vG-h72B6eFWTDKVMwaoNiFvhtPgAvC7jmn8YhvHINIDsJyQ561hDhPFC0iyAZK__K9He0XuMyz7iNy7Q7IPNudfAxjb2KP4tsFWTRVsy9GHI3Jw8vHzeAL70_PJxdffy6049Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LixQxEA7rCupFfK6tq0bQY2N3kk66ERFRx1n3geAu7C0m6YRR3JlxHujsj_I3WpV-zGWVuewt0F0JpCpVXyX1IOS5EYWzRrG0kkakghmX2hK9FMGzEOpcKR-rfR7J4Yn4dFqcbpE_XS4MhlV2OjEq6nri8I78JZNM5YyBeX8z_Zli1yh8Xe1aaDRise9Xv8Blm7_eew_8fcHY4MPxu2HadhVIXSHFIrXcKBkCN-AWSq4yaXKXyTIAEqkLx6siZFUdaimZKz0ra1uJzAaleOm8kaXlMO8VclVwXuGJKgcf13mYGW9SXkC3CXC92sihJp4MQ8SblHrwSlmODXZzLEZ5sTn8F9yNZm9wi9xs8Sp92wjYbbLlx3fItcP2Rf4u-f15hmNkLzXjmjpE4xh-FDlOJ4FiQGW8ZTQzamaz0WoxOvtmKJrPmsIv0xGMUlBsztPonvclbeOEYXl-vqIuPfNgVGH6JVZ2AHt7j5xcyr7fJ9vjydg_IDRk1nJWSyVsKZgwFlBYkKUKTnIQryIhqttU7dpS59hx44fuYtq-6zU7NLJDN-xISN5TTptyHxvQVB3fdJfOCgpYg03agFZdROvnrSaZ61zPmc70l1hICWQKXPQMfECRkFc9ZQuWGhC04bq7nYDpfqn1EUvIs_4zqBt8QzJjP1nGfxBVAjBPyE4jmP1G8QIceoD_D_8_-VNyfXh8eKAP9o72H5EbDPNJYlDfLtkGAfOPAeUt7JN4tCj5etln-S_Ik2Wn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61QvGleHdq1Qj6OHQmySSziIhYl9ZqKWhh32KSSVjFzq57Qbc_zV_nOZnLvlTZl74FZk4Gcq7f5FwIeWFE4axRLB1II1LBjEttiShF8CyEKlfKx26fp_LoXHwYFaMt8qerhcG0ys4mRkNdTRz-Iz9gkqmcMXDvB6FNizg7HL6Z_kxxghTetHbjNBoROfGrXwDf5q-PD4HXLxkbvv_y7ihtJwykrpBikVpulAyBG4CIkqtMmtxlsgwQlVSF44MiZIMqVFIyV3pWVnYgMhuU4qXzRpaWw743yE3Fixx1TI3UuiYz4035C9g5ATCszSJqcsswXbwprweEynIctptjY8qrXeO_Qt_oAoe3yW4bu9K3jbDdIVu-vkt2PrW38_fI77MZrpHV1NQVdRiZYypS5D6dBIrJlfGPo5lRM5uNV4vxxTdD0ZVWFF6ZjmGVgpFznkao3re3jRuG5eXlirr0woODhe2X2OUBfO99cn4t5_6AbNeT2j8iNGTWclZJJWwpmDAWIrIgSxWc5CBqRUJUd6jatW3PcfrGD93lt33Xa3ZoZIdu2JGQvKecNq0_NqAZdHzTXWkrGGMN_mkDWnUVrZ-3VmWucz1nOtOfY1MlkCmA6xngQZGQVz1lGzg1AdGG393vBEz3n1qrW0Ke94_B9OB9kqn9ZBnfwQgTgvSEPGwEsz8oXgC4Byiw9__Nn5Ed0GL98fj05DG5xbC0JOb37ZNtkC__BAK-hX0aNYuSr9etyn8BRqdp1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+classification+of+ventricular+arrhythmia+based+on+phase-space+reconstruction+and+fuzzy+c-means+clustering&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chen%2C+Hanjie&rft.au=Das%2C+Saptarshi&rft.au=Morgan%2C+John+M&rft.au=Maharatna%2C+Koushik&rft.date=2022-03-01&rft.eissn=1879-0534&rft.volume=142&rft.spage=105180&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.105180&rft_id=info%3Apmid%2F35026575&rft.externalDocID=35026575 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |