Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics

A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular s...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 13; no. 6; p. e1002181
Main Authors Johenning, Friedrich W., Theis, Anne-Kathrin, Pannasch, Ulrike, Rückl, Martin, Rüdiger, Sten, Schmitz, Dietmar
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.1002181

Cover

Abstract A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient enhancement is compartmentalized and independent of the dendritic Ca2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca2+ release in these nanodomains induces a new form of Ca2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns.
AbstractList A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca 2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca 2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca 2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca 2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca 2+ transient. Spines regulate bAP Ca 2+ influx independent of each other, as bAP-Ca 2+ transient enhancement is compartmentalized and independent of the dendritic Ca 2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca 2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca 2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca 2+ release in these nanodomains induces a new form of Ca 2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns. A combination of two-photon calcium imaging, electrophysiology, and modelling shows how ryanodine receptors (a type of intracellular calcium channel) generate a signalling nanodomain within individual dendritic spines, enabling compartmentalized plasticity of calcium dynamics. Experiences change neuronal circuits, and these circuit changes outlast the initial experiences. This means that, in neurons, the fast electrical activity encoding experiences needs to be transduced into longer-lived biochemical and structural changes. A key mediator between these two timescales of neuronal activity is the Ca 2+ ion. Ca 2+ serves both as an electric charge carrier mediating fast voltage changes at the membrane and as a second messenger activating intracellular signalling cascades. Even within the spatial confines of dendritic spines, the specialized domains of dendrites that receive synaptic connections, Ca 2+ encodes a versatile array of specific functions. In this study, we first demonstrate that voltage-gated Ca 2+ channels and ryanodine receptors, intracellular channels located on the membrane of the endoplasmic reticulum through which Ca 2+ can be released into the cytosol, are electrochemically coupled in single dendritic spines. We identify how ryanodine receptors induce enhancement of the Ca 2+ influx, mediated by the opening of voltage-gated Ca 2+ channels, induced by action potentials in a compartmentalized, spine-specific manner. Within the femtoliter volume of a single spine, specificity of this route of Ca 2+ -signalling is achieved by a signalling nanodomain centred on the ryanodine receptor. Our work stresses the role of the ryanodine receptor not only as an ion channel releasing Ca 2+ from the endoplasmic reticulum but also as a macromolecular complex generating specificity of Ca 2+ -signalling within the spatial constraints of a single spine.
  A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient enhancement is compartmentalized and independent of the dendritic Ca2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca2+ release in these nanodomains induces a new form of Ca2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns.
A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient enhancement is compartmentalized and independent of the dendritic Ca2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca2+ release in these nanodomains induces a new form of Ca2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns.
Author Johenning, Friedrich W.
Rüdiger, Sten
Pannasch, Ulrike
Rückl, Martin
Schmitz, Dietmar
Theis, Anne-Kathrin
AuthorAffiliation 2 Berlin Institute of Health (BIH), Berlin, Germany
6 DZNE- German Center for Neurodegenerative Diseases, Berlin, Germany
The Salk Institute for Biological Studies, UNITED STATES
3 Institute of Physics, Humboldt Universität, Berlin, Germany
1 Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
5 Cluster of Excellence ‘NeuroCure’, Charité-Universitätsmedizin, Berlin, Germany
4 Bernstein Center for Computational Neuroscience, Berlin, Germany
AuthorAffiliation_xml – name: 1 Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
– name: 4 Bernstein Center for Computational Neuroscience, Berlin, Germany
– name: The Salk Institute for Biological Studies, UNITED STATES
– name: 5 Cluster of Excellence ‘NeuroCure’, Charité-Universitätsmedizin, Berlin, Germany
– name: 6 DZNE- German Center for Neurodegenerative Diseases, Berlin, Germany
– name: 3 Institute of Physics, Humboldt Universität, Berlin, Germany
– name: 2 Berlin Institute of Health (BIH), Berlin, Germany
Author_xml – sequence: 1
  givenname: Friedrich W.
  surname: Johenning
  fullname: Johenning, Friedrich W.
– sequence: 2
  givenname: Anne-Kathrin
  surname: Theis
  fullname: Theis, Anne-Kathrin
– sequence: 3
  givenname: Ulrike
  surname: Pannasch
  fullname: Pannasch, Ulrike
– sequence: 4
  givenname: Martin
  surname: Rückl
  fullname: Rückl, Martin
– sequence: 5
  givenname: Sten
  surname: Rüdiger
  fullname: Rüdiger, Sten
– sequence: 6
  givenname: Dietmar
  surname: Schmitz
  fullname: Schmitz, Dietmar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26098891$$D View this record in MEDLINE/PubMed
BookMark eNp9UsuO0zAUjdAg5gF_gCDL2aTYjvNigTQqr0qVQENZWzc3N8VVYgc7Gal_j9umaIYFK1v2edj3nOvowlhDUfSaswVPC_5uZydnoFsMtbYLzpjgJX8WXfFMZklRltnFo_1ldO39LmBEJcoX0aXIWVWWFb-KNvd7MLbRhuJ7QhpG6-I7HPUDjNqaeGWaCcnHa2u2yYZcH3_vwI8a9biPbRv_GA7MJXSopz7-uDfQa_Qvo-ctdJ5ezetN9PPzp83ya7L-9mW1vFsnmOVyTEBgTQIgq0FIXoHMM0GSEyAiy1uZCc4oZ6Jl2CJBWom6SZFBnXIgbOv0Jnp70h0669U8EK94XuVllma8CIjVCdFY2KnB6R7cXlnQ6nhg3VaBC9_pSDVNzqHClIEM1jWrClm3rURWEmt4g0Hrw-w21T01SGZ00D0RfXpj9C-1tQ9KyiLPyzQI3M4Czv6eyI-q1x6p68CQnY7v5ozLIhMB-uax11-Tc3AB8P4EQGe9d9SqEMkxs2CtO8WZOrTkPBR1aImaWxLI8h_yWf-_tD_-GMcN
CitedBy_id crossref_primary_10_1038_s41467_020_18024_4
crossref_primary_10_1016_j_mito_2022_03_002
crossref_primary_10_1140_epje_i2016_16108_4
crossref_primary_10_1155_2018_5056181
crossref_primary_10_3389_fncel_2018_00109
crossref_primary_10_1162_neco_a_01458
crossref_primary_10_1016_j_nlm_2016_07_023
crossref_primary_10_1098_rstb_2023_0241
crossref_primary_10_3390_cells12091236
crossref_primary_10_1177_1073858418785334
crossref_primary_10_3389_fcell_2020_611735
crossref_primary_10_1371_journal_pbio_2006202
crossref_primary_10_1523_JNEUROSCI_1157_19_2019
crossref_primary_10_3389_fncel_2022_1054950
crossref_primary_10_1038_s41418_020_0584_2
crossref_primary_10_12688_f1000research_161106_1
crossref_primary_10_3390_mi10090599
crossref_primary_10_1089_neur_2022_0044
crossref_primary_10_1177_1073858415613277
crossref_primary_10_1089_ars_2017_7277
crossref_primary_10_3389_fninf_2018_00047
crossref_primary_10_3390_biom14121617
crossref_primary_10_3389_fphys_2024_1359560
crossref_primary_10_1007_s10827_023_00862_y
crossref_primary_10_1126_science_abm1670
crossref_primary_10_3389_fphys_2021_759707
crossref_primary_10_1021_acsnano_8b08742
crossref_primary_10_1093_cercor_bhw212
crossref_primary_10_1523_JNEUROSCI_2843_20_2021
crossref_primary_10_3390_cells11142167
crossref_primary_10_1371_journal_pcbi_1010069
crossref_primary_10_1073_pnas_1605216113
crossref_primary_10_1371_journal_pbio_1002182
crossref_primary_10_1038_s42003_022_03124_2
crossref_primary_10_1152_physrev_00010_2015
crossref_primary_10_1177_25152564231185011
crossref_primary_10_1186_s13578_017_0155_5
Cites_doi 10.1038/25547
10.1371/journal.pbio.1000190
10.1038/nature11554
10.1113/jphysiol.2005.098947
10.1038/35036035
10.1073/pnas.1210735110
10.1073/pnas.0605412104
10.1523/JNEUROSCI.5847-08.2009
10.1146/annurev-neuro-062111-150455
10.1152/physrev.00012.2013
10.1093/cercor/bhs315
10.1016/j.neuron.2004.11.016
10.1016/j.neuron.2005.01.003
10.1113/jphysiol.2009.184960
10.1038/25541
10.1038/35046076
10.1073/pnas.0905110106
10.1152/jn.2002.88.3.1270
10.1007/s00607-008-0003-x
10.1016/j.conb.2007.04.003
10.1073/pnas.1013580108
10.1093/cvr/cvr143
10.1523/JNEUROSCI.20-05-01791.2000
10.1146/annurev.biochem.76.053105.094237
10.1007/s00607-008-0004-9
10.1038/nrn3168
10.1093/cercor/bhs320
10.1155/2010/108190
10.1016/S0021-9258(19)85166-9
10.1016/j.pbiomolbio.2004.06.009
10.1523/JNEUROSCI.2474-10.2010
10.1146/annurev.ne.17.030194.002013
10.1371/journal.pcbi.1003965
10.1073/pnas.0608755103
10.1016/j.neuron.2010.12.009
10.1038/375682a0
10.1073/pnas.062510599
10.1523/JNEUROSCI.4561-10.2011
10.1016/j.cell.2012.06.052
10.1038/351751a0
10.1038/nn.3496
10.1126/science.1114816
10.1073/pnas.241516898
10.1152/jn.00422.2013
10.1016/j.neuron.2008.08.020
10.1038/sj.bjp.0704988
10.1016/S0006-3495(96)79272-X
10.1523/JNEUROSCI.1677-04.2004
10.1523/JNEUROSCI.2702-08.2008
10.1523/JNEUROSCI.5881-08.2009
10.1016/S0896-6273(02)00573-1
10.1038/nn1112
10.1096/fasebj.14.2.290
10.1038/81781
10.1523/JNEUROSCI.0573-09.2009
10.1038/nn1449
10.1111/j.1469-7793.1997.013bl.x
10.1016/j.neuron.2007.05.026
10.1016/S0031-6997(24)01313-9
10.1016/S0896-6273(00)80683-2
10.1016/S0896-6273(00)81125-3
10.1523/JNEUROSCI.19-11-04325.1999
10.1016/S0006-3495(02)75149-7
ContentType Journal Article
Copyright 2015 Johenning et al 2015 Johenning et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Johenning FW, Theis A-K, Pannasch U, Rückl M, Rüdiger S, Schmitz D (2015) Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics. PLoS Biol 13(6): e1002181. doi:10.1371/journal.pbio.1002181
Copyright_xml – notice: 2015 Johenning et al 2015 Johenning et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Johenning FW, Theis A-K, Pannasch U, Rückl M, Rüdiger S, Schmitz D (2015) Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics. PLoS Biol 13(6): e1002181. doi:10.1371/journal.pbio.1002181
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.1002181
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Long-Term Plasticity of Spine Calcium Dynamics
EISSN 1545-7885
EndPage e1002181
ExternalDocumentID 1696853517
oai_doaj_org_article_dd61a9c30a4f45b0974bff4c08e0d1dc
PMC4476683
26098891
10_1371_journal_pbio_1002181
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
PYCSY
QF4
QN7
RNS
RPM
RZL
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
.GJ
3V.
AGJBV
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
M~E
NPM
RIG
WOQ
YIN
7X8
PJZUB
PPXIY
PQGLB
PUEGO
5PM
-
AAPBV
ABFLS
ABPTK
ADACO
BBAFP
CZG
PQEST
PQUKI
PRINS
ZA5
ID FETCH-LOGICAL-c564t-a2cbe2aa5ba2419a4652e41eaccc06f45210e602f0cfcea392bd3c0ab31aecfb3
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Fri Nov 26 17:13:08 EST 2021
Wed Aug 27 01:31:46 EDT 2025
Thu Aug 21 18:16:30 EDT 2025
Fri Sep 05 07:55:00 EDT 2025
Wed Feb 19 02:33:53 EST 2025
Thu Jul 03 08:23:34 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-a2cbe2aa5ba2419a4652e41eaccc06f45210e602f0cfcea392bd3c0ab31aecfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: FWJ AKT UP MR SR DS. Performed the experiments: FWJ AKT UP. Analyzed the data: FWJ AKT MR. Contributed reagents/materials/analysis tools: MR SR. Wrote the paper: FWJ AKT UP MR SR DS.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1002181
PMID 26098891
PQID 1691014752
PQPubID 23479
ParticipantIDs plos_journals_1696853517
doaj_primary_oai_doaj_org_article_dd61a9c30a4f45b0974bff4c08e0d1dc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4476683
proquest_miscellaneous_1691014752
pubmed_primary_26098891
crossref_citationtrail_10_1371_journal_pbio_1002181
crossref_primary_10_1371_journal_pbio_1002181
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References BL Bloodgood (ref37) 2009; 7
I Llano (ref26) 2000; 3
HR Ramay (ref64) 2011; 91
WN Ross (ref27) 2012; 13
LM Palmer (ref43) 2009; 29
W Zhao (ref52) 2000; 14
AM Stranahan (ref57) 2010; 2010
N Emptage (ref9) 1999; 22
JL Plotkin (ref15) 2013; 110
EA Finch (ref7) 1998; 396
T Hayama (ref50) 2013; 16
M Blatt (ref60) 2008; 82
A Lorincz (ref22) 2007; 104
JR Chalifoux (ref32) 2011; 31
Q Li (ref54) 2014; 24
I Goussakov (ref56) 2010; 30
A Grunditz (ref36) 2008; 28
H Ozaki (ref28) 2002; 137
P Beed (ref58) 2010; 68
K Holthoff (ref42) 2010; 588
J Kim (ref33) 2007; 54
R Yuste (ref6) 1995; 375
S Manita (ref18) 2009; 29
VM Sandler (ref24) 1999; 19
T Nakamura (ref13) 1999; 24
JL Sutko (ref20) 1997; 49
AJGD Holtmaat (ref59) 2005; 45
CR Raymond (ref11) 2005; 570
TM Hoogland (ref30) 2004; 24
KM Harris (ref3) 1994; 17
X Liu (ref55) 2012; 150
N Holbro (ref12) 2009; 106
EA Sobie (ref63) 2002; 83
UV Nägerl (ref41) 2004; 44
HK Kato (ref47) 2009; 29
BL Sabatini (ref1) 2002; 33
DR Laver (ref19) 1996; 71
O Garaschuk (ref16) 1997; 502
MT Harnett (ref38) 2012; 491
C Sala (ref14) 2014; 94
J Waters (ref46) 2005; 87
TJ Ngo-Anh (ref34) 2005; 8
R Araya (ref45) 2006; 103
BL Bloodgood (ref4) 2007; 17
Y Kovalchuk (ref10) 2000; 20
R Zalk (ref51) 2007; 76
BL Bloodgood (ref35) 2005; 310
SM Dudek (ref49) 2002; 99
MJ Berridge (ref2) 2000; 1
M Rückl (ref62) 2015; 11
MJ Higley (ref5) 2008; 59
H Takechi (ref8) 1998; 396
AT Gulledge (ref39) 2012; 7
PS McPherson (ref25) 1993; 268
YF Lu (ref17) 2002; 88
GG Du (ref21) 2001; 98
BL Sabatini (ref31) 2000; 408
R Yasuda (ref29) 2003; 6
R Yuste (ref40) 2013; 36
P Bastian (ref61) 2008; 82
R Yasuda (ref23) 2004; 219
MA Popovic (ref44) 2014; 24
T Adasme (ref53) 2011; 108
I Bezprozvanny (ref65) 1991; 351
O Bukalo (ref48) 2013; 110
References_xml – volume: 396
  start-page: 757
  issue: 6713
  year: 1998
  ident: ref8
  article-title: A new class of synaptic response involving calcium release in dendritic spines
  publication-title: Nature
  doi: 10.1038/25547
– volume: 7
  start-page: e1000190
  issue: 9
  year: 2009
  ident: ref37
  article-title: Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000190
– volume: 491
  start-page: 599
  issue: 7425
  year: 2012
  ident: ref38
  article-title: Synaptic amplification by dendritic spines enhances input cooperativity
  publication-title: Nature
  doi: 10.1038/nature11554
– volume: 570
  start-page: 97
  issue: 1
  year: 2005
  ident: ref11
  article-title: Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2005.098947
– volume: 1
  start-page: 11
  issue: 1
  year: 2000
  ident: ref2
  article-title: The versatility and universality of calcium signalling
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/35036035
– volume: 110
  start-page: 5175
  issue: 13
  year: 2013
  ident: ref48
  article-title: Synaptic plasticity by antidromic firing during hippocampal network oscillations
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1210735110
– volume: 104
  start-page: 1033
  issue: 3
  year: 2007
  ident: ref22
  article-title: Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0605412104
– volume: 29
  start-page: 6897
  issue: 21
  year: 2009
  ident: ref43
  article-title: Membrane potential changes in dendritic spines during action potentials and synaptic input
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5847-08.2009
– volume: 36
  start-page: 429
  issue: 1
  year: 2013
  ident: ref40
  article-title: Electrical Compartmentalization in Dendritic Spines
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-062111-150455
– volume: 219
  start-page: l5
  year: 2004
  ident: ref23
  article-title: Imaging calcium concentration dynamics in small neuronal compartments
  publication-title: Sci STKE
– volume: 94
  start-page: 141
  issue: 1
  year: 2014
  ident: ref14
  article-title: Dendritic spines: the locus of structural and functional plasticity
  publication-title: Physiological Reviews
  doi: 10.1152/physrev.00012.2013
– volume: 24
  start-page: 353
  issue: 2
  year: 2014
  ident: ref54
  article-title: Making Synapses Strong: Metaplasticity Prolongs Associativity of Long-Term Memory by Switching Synaptic Tag Mechanisms
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs315
– volume: 44
  start-page: 759
  issue: 5
  year: 2004
  ident: ref41
  article-title: Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.11.016
– volume: 7
  start-page: e36007
  issue: 4
  year: 2012
  ident: ref39
  article-title: Electrical Advantages of Dendritic Spines. Mansvelder HD, editor
– volume: 45
  start-page: 279
  issue: 2
  year: 2005
  ident: ref59
  article-title: Transient and Persistent Dendritic Spines in the Neocortex In Vivo
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.01.003
– volume: 588
  start-page: 1085
  issue: Pt 7
  year: 2010
  ident: ref42
  article-title: Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2009.184960
– volume: 396
  start-page: 753
  issue: 6713
  year: 1998
  ident: ref7
  article-title: Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites
  publication-title: Nature
  doi: 10.1038/25541
– volume: 408
  start-page: 589
  issue: 6812
  year: 2000
  ident: ref31
  article-title: Analysis of calcium channels in single spines using optical fluctuation analysis
  publication-title: Nature
  doi: 10.1038/35046076
– volume: 106
  start-page: 15055
  issue: 35
  year: 2009
  ident: ref12
  article-title: Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0905110106
– volume: 88
  start-page: 1270
  issue: 3
  year: 2002
  ident: ref17
  article-title: Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2002.88.3.1270
– volume: 82
  start-page: 103
  year: 2008
  ident: ref60
  article-title: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework
  publication-title: Computing
  doi: 10.1007/s00607-008-0003-x
– volume: 17
  start-page: 345
  issue: 3
  year: 2007
  ident: ref4
  article-title: Ca2+ signaling in dendritic spines
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2007.04.003
– volume: 108
  start-page: 3029
  issue: 7
  year: 2011
  ident: ref53
  article-title: Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1013580108
– volume: 91
  start-page: 598
  issue: 4
  year: 2011
  ident: ref64
  article-title: Recovery of cardiac calcium release is controlled by sarcoplasmic reticulum refilling and ryanodine receptor sensitivity
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvr143
– volume: 20
  start-page: 1791
  issue: 5
  year: 2000
  ident: ref10
  article-title: NMDA receptor-mediated subthreshold Ca(2+) signals in spines of hippocampal neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-05-01791.2000
– volume: 76
  start-page: 367
  issue: 1
  year: 2007
  ident: ref51
  article-title: Modulation of the Ryanodine Receptor and Intracellular Calcium
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.76.053105.094237
– volume: 82
  start-page: 121
  year: 2008
  ident: ref61
  article-title: A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE
  publication-title: Computing
  doi: 10.1007/s00607-008-0004-9
– volume: 13
  start-page: 157
  issue: 3
  year: 2012
  ident: ref27
  article-title: Understanding calcium waves and sparks in central neurons
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3168
– volume: 24
  start-page: 385
  issue: 2
  year: 2014
  ident: ref44
  article-title: Cortical Dendritic Spine Heads Are Not Electrically Isolated by the Spine Neck from Membrane Potential Signals in Parent Dendrites
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs320
– volume: 2010
  start-page: 108190
  year: 2010
  ident: ref57
  article-title: Selective Vulnerability of Neurons in Layer II of the Entorhinal Cortex during Aging and Alzheimer's Disease
  publication-title: Neural Plasticity
  doi: 10.1155/2010/108190
– volume: 268
  start-page: 13765
  issue: 19
  year: 1993
  ident: ref25
  article-title: The ryanodine receptor/Ca2+ release channel
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)85166-9
– volume: 87
  start-page: 145
  issue: 1
  year: 2005
  ident: ref46
  article-title: Backpropagating action potentials in neurones: measurement, mechanisms and potential functions
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2004.06.009
– volume: 30
  start-page: 12128
  issue: 36
  year: 2010
  ident: ref56
  article-title: NMDA-Mediated Ca2+ Influx Drives Aberrant Ryanodine Receptor Activation in Dendrites of Young Alzheimer's Disease Mice
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2474-10.2010
– volume: 17
  start-page: 341
  year: 1994
  ident: ref3
  article-title: Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.ne.17.030194.002013
– volume: 11
  start-page: e1003965
  issue: 1
  year: 2015
  ident: ref62
  article-title: Modulation of Elementary Calcium Release Mediates a Transition from Puffs to Waves in an IP3R Cluster Model
  publication-title: PLoS Comp Biol
  doi: 10.1371/journal.pcbi.1003965
– volume: 103
  start-page: 17961
  issue: 47
  year: 2006
  ident: ref45
  article-title: The spine neck filters membrane potentials
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0608755103
– volume: 68
  start-page: 1059
  issue: 6
  year: 2010
  ident: ref58
  article-title: Analysis of excitatory microcircuitry in the medial entorhinal cortex reveals cell-type-specific differences
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.12.009
– volume: 375
  start-page: 682
  issue: 6533
  year: 1995
  ident: ref6
  article-title: Dendritic spines as basic functional units of neuronal integration
  publication-title: Nature
  doi: 10.1038/375682a0
– volume: 99
  start-page: 3962
  issue: 6
  year: 2002
  ident: ref49
  article-title: Somatic action potentials are sufficient for late-phase LTP-related cell signaling
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.062510599
– volume: 31
  start-page: 4221
  issue: 11
  year: 2011
  ident: ref32
  article-title: GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4561-10.2011
– volume: 150
  start-page: 1055
  issue: 5
  year: 2012
  ident: ref55
  article-title: Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.052
– volume: 351
  start-page: 751
  issue: 6329
  year: 1991
  ident: ref65
  article-title: Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum
  publication-title: Nature
  doi: 10.1038/351751a0
– volume: 16
  start-page: 1409
  issue: 10
  year: 2013
  ident: ref50
  article-title: GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3496
– volume: 310
  start-page: 866
  issue: 5749
  year: 2005
  ident: ref35
  article-title: Neuronal activity regulates diffusion across the neck of dendritic spines
  publication-title: Science
  doi: 10.1126/science.1114816
– volume: 98
  start-page: 13625
  issue: 24
  year: 2001
  ident: ref21
  article-title: Ryanodine sensitizes the cardiac Ca(2+) release channel (ryanodine receptor isoform 2) to Ca(2+) activation and dissociates as the channel is closed by Ca(2+) depletion
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.241516898
– volume: 110
  start-page: 2325
  issue: 10
  year: 2013
  ident: ref15
  article-title: Regulation of dendritic calcium release in striatal spiny projection neurons
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00422.2013
– volume: 59
  start-page: 902
  issue: 6
  year: 2008
  ident: ref5
  article-title: Calcium Signaling in Dendrites and Spines: Practical and Functional Considerations
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.08.020
– volume: 137
  start-page: 1207
  issue: 8
  year: 2002
  ident: ref28
  article-title: Inhibitory mechanism of xestospongin-C on contraction and ion channels in the intestinal smooth muscle
  publication-title: British Journal of Pharmacology
  doi: 10.1038/sj.bjp.0704988
– volume: 71
  start-page: 732
  issue: 2
  year: 1996
  ident: ref19
  article-title: Response of ryanodine receptor channels to Ca2+ steps produced by rapid solution exchange
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(96)79272-X
– volume: 24
  start-page: 8416
  issue: 39
  year: 2004
  ident: ref30
  article-title: Facilitation of L-Type Ca2+ Channels in Dendritic Spines by Activation of 2 Adrenergic Receptors
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1677-04.2004
– volume: 28
  start-page: 13457
  issue: 50
  year: 2008
  ident: ref36
  article-title: Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2702-08.2008
– volume: 29
  start-page: 11153
  issue: 36
  year: 2009
  ident: ref47
  article-title: Non-Hebbian Synaptic Plasticity Induced by Repetitive Postsynaptic Action Potentials
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5881-08.2009
– volume: 33
  start-page: 439
  issue: 3
  year: 2002
  ident: ref1
  article-title: The life cycle of Ca(2+) ions in dendritic spines
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00573-1
– volume: 6
  start-page: 948
  issue: 9
  year: 2003
  ident: ref29
  article-title: Plasticity of calcium channels in dendritic spines
  publication-title: Nat Neurosci
  doi: 10.1038/nn1112
– volume: 14
  start-page: 290
  issue: 2
  year: 2000
  ident: ref52
  article-title: Spatial learning induced changes in expression of the ryanodine type II receptor in the rat hippocampus
  publication-title: FASEB J
  doi: 10.1096/fasebj.14.2.290
– volume: 3
  start-page: 1256
  issue: 12
  year: 2000
  ident: ref26
  article-title: Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients
  publication-title: Nat Neurosci
  doi: 10.1038/81781
– volume: 29
  start-page: 7833
  issue: 24
  year: 2009
  ident: ref18
  article-title: Synaptic Activation and Membrane Potential Changes Modulate the Frequency of Spontaneous Elementary Ca2+ Release Events in the Dendrites of Pyramidal Neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0573-09.2009
– volume: 8
  start-page: 642
  issue: 5
  year: 2005
  ident: ref34
  article-title: SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines
  publication-title: Nat Neurosci
  doi: 10.1038/nn1449
– volume: 502
  start-page: 13
  issue: 1
  year: 1997
  ident: ref16
  article-title: Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones
  publication-title: The Journal of Physiology
  doi: 10.1111/j.1469-7793.1997.013bl.x
– volume: 54
  start-page: 933
  issue: 6
  year: 2007
  ident: ref33
  article-title: Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.05.026
– volume: 49
  start-page: 53
  issue: 1
  year: 1997
  ident: ref20
  article-title: The pharmacology of ryanodine and related compounds
  publication-title: Pharmacol Rev
  doi: 10.1016/S0031-6997(24)01313-9
– volume: 22
  start-page: 115
  issue: 1
  year: 1999
  ident: ref9
  article-title: Single synaptic events evoke NMDA receptor–mediated release of calcium from internal stores in hippocampal dendritic spines
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80683-2
– volume: 24
  start-page: 727
  issue: 3
  year: 1999
  ident: ref13
  article-title: Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81125-3
– volume: 19
  start-page: 4325
  issue: 11
  year: 1999
  ident: ref24
  article-title: Calcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-11-04325.1999
– volume: 83
  start-page: 59
  issue: 1
  year: 2002
  ident: ref63
  article-title: Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium-induced calcium release
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75149-7
SSID ssj0022928
Score 2.3361218
Snippet A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major...
A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca 2+ is a major...
  A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1002181
SubjectTerms Action Potentials
Animals
CA1 Region, Hippocampal - metabolism
Calcium
Calcium - metabolism
Data analysis
Dendritic Spines - metabolism
Endoplasmic reticulum
Entorhinal Cortex - metabolism
Experiments
Gene expression
Neuronal Plasticity
Patch-Clamp Techniques
Rats, Wistar
Rodents
Ryanodine Receptor Calcium Release Channel - metabolism
Signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9B33hQq9utHb8jHNgxDSUtoN5GYkedQubOylu3vYf9-RZS_ZUsilV1vC8sxoHmj0fYR8jBAUYCAslWplqVwLJZqyKCOA8NqhhbXpovCXr-biWl3e6Js7VF-pJyzDA2fBHbWt4a4OkjkVlfYM818fowrMAmt5G5L3ZTWbiqmx1BL1wKqaoGZwO1dyvDQnK3406ujT0s_7AYCUW74XlAbs_oR1uuhX_8o7_26fvBOPzp-Qx2MiSY_zDzwlD6B7Rh5masntczL7vnVdj4EJKGaGsMTSmh6HicuMJsYO9BD0qu9-ljP0zvQbptGpw3q9pX2kP5Zp5olbhPnmlp5m2vrVC3J9fjY7uShHBoUyaKPWpRPBg3BOe4eRunbKaAGKo7MNgRmUJxZ8YJiILMQADnMl38rAnJfcQYheviQHXd_BIaHGBs6lqzQWbAqCdQwV6UO0SiirOC-InETYhBFePLFcLJrhzKzCMiMLpkmCb0bBF6TczVpmeI17xn9O2tmNTeDYwwM0mWY0meY-kynIYdLt9IFVwxNCkJaaVwX5MOm7wX2WDk9cB_1mGJNojSstCvIq63-3CqwJa2trXF21Zxl7y9x_081_DVjeSlXGWPn6f_zXG_II0zmdG9nekoP17w28w5Rp7d8Pu-MPAroXvA
  priority: 102
  providerName: Directory of Open Access Journals
Title Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/26098891
https://www.proquest.com/docview/1691014752
https://pubmed.ncbi.nlm.nih.gov/PMC4476683
https://doaj.org/article/dd61a9c30a4f45b0974bff4c08e0d1dc
http://dx.doi.org/10.1371/journal.pbio.1002181
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja9wwFBZpQqGX0j1O20GFXh0kWYt9KCVJE0LbhDSdgbkZSZaSgak9mQU6_75Psj10SkqhFx9syctb9N6zpO9D6L13ljsIhCnnVZZyXbkUTJml3jlmhAYLq8JG4YtLeT7in8divIN6ztZOgIt7S7vAJzWaTw9_3q0_gsN_iKwNivadDmdm0kRIURr2Yu9BbJKhHLvgm3kFxorIthogaMDNVdZtpvvbXQJUsCRFnhd0K25FeP8AhzptFvelpn-usPwtZJ09QY-7XBMftcbxFO24-hl62LJPrp-j4fVa1w3ELocheXQzqL7xke3pznAg9YBBBH9t6pt0CAM4voJMOyzCXq5x4_H3Weh5oqd2svqBP7XM9osXaHR2Ojw5TzuShdQKyZepZtY4prUwGgRWaC4Fc5zCeGwtkZ5DeCdOEuaJ9dZpSKdMlVmiTUa1s95kL9Fu3dRuH2GZW0ozrQTUdNzZXBPQtbE-54znnNIEZb0IS9shkAcijGkZp9UUVCKtYMqgg7LTQYLSTa9Zi8Dxj_bHQTubtgE_O55o5jdl545lVUmqC5sRzeETDYGqynjPLckdqWhlE7QfdNs_YFHSACIkMkFVgt71-i7BFcP8iq5ds4ptAvOxEixBr1r9b96iN6MEqS3L2HrN7Sv15DbCfXOupMyzg__u-Ro9gjRPtAvc3qDd5Xzl3kIqtTQD9ECN1QDtHZ9eXl0P4g8JOH75lg-i3_wC0H0lrQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ryanodine+Receptor+Activation+Induces+Long-Term+Plasticity+of+Spine+Calcium+Dynamics&rft.jtitle=PLoS+biology&rft.au=Johenning%2C+Friedrich+W.&rft.au=Theis%2C+Anne-Kathrin&rft.au=Pannasch%2C+Ulrike&rft.au=R%C3%BCckl%2C+Martin&rft.date=2015-06-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=13&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pbio.1002181&rft_id=info%3Apmid%2F26098891&rft.externalDocID=PMC4476683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon