Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding

•Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our images.•Segmented cells are automatically classified to speed up the cell counting process.•Our method outperforms several open-access methods...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 282; no. C; pp. 20 - 33
Main Authors Alegro, Maryana, Theofilas, Panagiotis, Nguy, Austin, Castruita, Patricia A., Seeley, William, Heinsen, Helmut, Ushizima, Daniela M., Grinberg, Lea T.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2017
Elsevier
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
DOI10.1016/j.jneumeth.2017.03.002

Cover

Loading…
Abstract •Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our images.•Segmented cells are automatically classified to speed up the cell counting process.•Our method outperforms several open-access methods in literature.•Efficient cell detection can be used in several fluorescence analysis tasks. Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks.
AbstractList BACKGROUNDImmunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility.NEW METHODDictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set.RESULTSOur method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings.COMPARISON WITH EXISTING METHODSWe compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples.CONCLUSIONThe proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks.
Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks.
•Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our images.•Segmented cells are automatically classified to speed up the cell counting process.•Our method outperforms several open-access methods in literature.•Efficient cell detection can be used in several fluorescence analysis tasks. Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks.
Author Grinberg, Lea T.
Nguy, Austin
Seeley, William
Alegro, Maryana
Ushizima, Daniela M.
Theofilas, Panagiotis
Castruita, Patricia A.
Heinsen, Helmut
AuthorAffiliation d Berkeley Institute for Data Science, University of California Berkeley, Berkeley, CA, 94720 USA
b Medical School of the University of São Paulo, Av. Reboucas 381, São Paulo, SP, 05401-000 Brazil
a Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158 USA
c Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720 USA
AuthorAffiliation_xml – name: a Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158 USA
– name: c Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720 USA
– name: d Berkeley Institute for Data Science, University of California Berkeley, Berkeley, CA, 94720 USA
– name: b Medical School of the University of São Paulo, Av. Reboucas 381, São Paulo, SP, 05401-000 Brazil
Author_xml – sequence: 1
  givenname: Maryana
  surname: Alegro
  fullname: Alegro, Maryana
  email: maryana.alegro@ucsf.edu
  organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
– sequence: 2
  givenname: Panagiotis
  surname: Theofilas
  fullname: Theofilas, Panagiotis
  email: panos.theofilas@ucsf.edu
  organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
– sequence: 3
  givenname: Austin
  surname: Nguy
  fullname: Nguy, Austin
  email: austin.nguy@ucsf.edu
  organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
– sequence: 4
  givenname: Patricia A.
  surname: Castruita
  fullname: Castruita, Patricia A.
  email: alejandra.castcap@gmail.com
  organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
– sequence: 5
  givenname: William
  surname: Seeley
  fullname: Seeley, William
  email: bill.seeley@ucsf.edu
  organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
– sequence: 6
  givenname: Helmut
  surname: Heinsen
  fullname: Heinsen, Helmut
  email: heinsen@mail.uni-wuerzburg.de
  organization: Medical School of the University of São Paulo, Av. Reboucas 381, São Paulo, SP 05401-000, Brazil
– sequence: 7
  givenname: Daniela M.
  surname: Ushizima
  fullname: Ushizima, Daniela M.
  email: dushizima@lbl.gov
  organization: Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
– sequence: 8
  givenname: Lea T.
  surname: Grinberg
  fullname: Grinberg, Lea T.
  email: lea.grinberg@ucsf.edu
  organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28267565$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1413763$$D View this record in Osti.gov
BookMark eNqFUsFq3DAUFCWl2aT9hSB66sWuJNuSDaU0hKQtBHpJoDchS8-7WmxpK9mB_YD-d6XdJLS95CTxNG80782coRPnHSB0QUlJCeUft-XWwTLBvCkZoaIkVUkIe4VWtBWs4KL9eYJWCdgUhAlyis5i3BJC6o7wN-iUtYyLhjcr9Ptymf2kZuvWWMM4YgMz6Nl6h5UzWI8qRjtYrQ4l6_BmmZTDfVDpPoyLDxA1uBlPVgcftd_tsZ3UGiJeYiY19sCmwh6PoILLtcwcdypEwNqbVHmLXg9qjPDu8TxH9zfXd1ffitsfX79fXd4WuuH1XCimBaN1VZumasCoVrOOAhN936nOVAYGAn3TKUGposy0nYB2qFvOaU1ZZ0R1jj4feXdLP4HJwoMa5S4kyWEvvbLy3xdnN3LtH2TDCWlpmwjeHwl8nK2M2qZlbbR3Lu1Mpl8qwasE-vD4S_C_FoiznGzMy1UO_BJlsqipkxldhl78LehZyZNBCcCPgLzdGGB4hlAicxLkVj4lQeYkSFLJlITU-Om_xiT24GIazI4vt385tkOy48FCyMOC02BsyLMab1-i-AN5RNgd
CitedBy_id crossref_primary_10_3390_cimb44120406
crossref_primary_10_1111_ejn_14529
crossref_primary_10_1093_nar_gkaa312
crossref_primary_10_1038_s41598_019_41683_3
crossref_primary_10_1016_j_cmpb_2019_105028
crossref_primary_10_1002_sam_11429
crossref_primary_10_1098_rstb_2021_0118
crossref_primary_10_1016_j_jneumeth_2019_108348
crossref_primary_10_3389_fnana_2021_722443
crossref_primary_10_1186_s40708_019_0096_3
crossref_primary_10_1073_pnas_1918465117
crossref_primary_10_1364_BOE_11_000281
crossref_primary_10_1016_j_eswa_2018_05_015
crossref_primary_10_1016_j_jneumeth_2020_108708
crossref_primary_10_1016_j_neuroimage_2021_118790
crossref_primary_10_1038_s41377_022_00952_z
Cites_doi 10.1016/j.ab.2014.12.007
10.1046/j.0305-1846.2000.00291.x
10.1002/(SICI)1097-0320(19961201)25:4<303::AID-CYTO1>3.0.CO;2-E
10.1007/BF00274983
10.1590/S1980-57642010DN40200011
10.1016/S0734-189X(87)80186-X
10.1007/s10561-006-9022-z
10.1145/1553374.1553463
10.1002/cyto.a.10079
10.1038/srep26286
10.1016/j.jneumeth.2014.01.030
10.1137/070697653
10.1186/gb-2006-7-10-r100
10.1109/TIP.2009.2021081
10.2144/000112018
10.1111/j.1365-2818.1982.tb04628.x
10.1109/JPROC.2010.2040551
10.1186/s12575-015-0023-9
10.1016/j.jneumeth.2010.08.031
10.1007/s00401-011-0910-3
10.1371/journal.pone.0066198
10.1016/j.brainres.2008.08.060
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0076-6879(08)03613-6
10.1016/j.patrec.2005.10.010
10.1016/j.media.2012.05.012
10.1109/TSMC.1979.4310076
10.1007/s00441-015-2127-6
10.1109/TMI.2016.2528162
10.1109/TSP.2006.881199
10.1016/j.jneumeth.2013.08.018
10.1145/1273496.1273592
10.1369/0022155414531549
10.1109/TMI.2015.2458702
10.1371/journal.pone.0152528
10.4161/auto.20186
10.1016/S0165-0270(98)00066-1
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1016/j.jneumeth.2017.03.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 33
ExternalDocumentID PMC5600818
1413763
28267565
10_1016_j_jneumeth_2017_03_002
S0165027017300596
Genre Evaluation Study
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: K24 AG053435
– fundername: NIGMS NIH HHS
  grantid: TL4 GM118986
– fundername: NIA NIH HHS
  grantid: R01 AG040311
– fundername: NIA NIH HHS
  grantid: P01 AG019724
– fundername: NIA NIH HHS
  grantid: P50 AG023501
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
AALMO
ABPIF
ABPTK
ABQIS
OTOTI
5PM
ID FETCH-LOGICAL-c564t-a2c721434d535eda8c291e27bb9a9d3def0eb59a711a12d897e8f486614129d73
IEDL.DBID .~1
ISSN 0165-0270
IngestDate Thu Aug 21 18:33:56 EDT 2025
Thu May 18 18:30:09 EDT 2023
Thu Jul 10 22:37:10 EDT 2025
Mon Jul 21 05:52:02 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Tue Jul 01 02:57:07 EDT 2025
Fri Feb 23 02:33:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Image segmentation
Microscopy
Sparse models
Immunofluorescence
Postmortem human brain
Dictionary learning
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-a2c721434d535eda8c291e27bb9a9d3def0eb59a711a12d897e8f486614129d73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
USDOE
Mailing address: Grinberg Lab. 675 Nelson Rising Lane. Room 292F. San Francisco, CA. 94158. USA. Tel: +55 415-502-7229, Fax: +55 415-476-7963
OpenAccessLink https://escholarship.org/content/qt8sx4j02b/qt8sx4j02b.pdf
PMID 28267565
PQID 1875400093
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5600818
osti_scitechconnect_1413763
proquest_miscellaneous_1875400093
pubmed_primary_28267565
crossref_primary_10_1016_j_jneumeth_2017_03_002
crossref_citationtrail_10_1016_j_jneumeth_2017_03_002
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lee, Salama, Dunn, Delp (bib0175) 2015
Selinummi, Seppala, Yli-Harja, Puhakka (bib0295) 2005; 39
Ouertani, Amiri, Bettaib, Yazidi, Salah (bib0245) 2014
Soliman (bib0305) 2015; 17
Bergeest, Rohr (bib0020) 2012; 16
Davis, Mallat, Avellaneda (bib0060) 1997
Raina, Battle, Lee, Packer, Ng (bib0265) 2007
Ushizima, Bianchi, Carneiro (bib0325) 2014
Davis, Richter, Becker, Moyer, Sandouk, Skinner, Taubenberger (bib0055) 2014; 62
Ramirez, Sprechmann, Sapiro (bib0270) 2010
Lin, Adiga, Olson, Guzowski, Barnes, Roysam (bib0185) 2003; 56
Theofilas, Polichiso, Wang, Lima, Alho, Leite, Suemoto, Pasqualucci, Jacob-Filho, Heinsen, Group, Grinberg (bib0315) 2014; 226
Ushizima, Alessandra, Gomes, Carneiro (bib0330) 2013
Litjens, Sanchez, Timofeeva, Hermsen, Nagtegaal, Kovacs, van de Kaa, Bult, van Ginneken, van der Laak (bib0190) 2016; 6
Hastie, Tibshirani, Friedman (bib0140) 2009
Gonzalez, Richard, Woods (bib0120) 2007
Engan, Aese, Husoy (bib0100) 1999
Pizer, Amburn, Austin, Cromartie, Greer, Romeny, Zimmerman (bib0255) 1987; 39
Elter, Daum, Wittenberg (bib0095) 2006
Olson (bib0350) 2011; 15
Mairal, Sapiro, Elad (bib0205) 2008; 7
Dowson (bib0070) 1982; 128
Krizhevsky, Sutskever, Hinton (bib0165) 2012
Oppenheim (bib0235) 1989
Kadowaki, Karim (bib0155) 2009; 452
Duda, Hart, Stork (bib0075) 2001
Duong, Han (bib0080) 2013; 220
Mueller, Harmany, Mito, Kennedy, Kim, Dodd, Geradts, Kirsch, Willett, Brown, Ramanujam (bib0230) 2013; 8
Srinivasa, Fickus, Guo, Linstedt, Kovacevic (bib0310) 2009; 18
Clancy, Cauller (bib0050) 1998; 83
Herculano-Houzel, von Bartheld, Miller, Kaas (bib0150) 2015; 360
Grinberg, Ferretti, Farfel, Leite, Pasqualucci, Rosemberg, Nitrini, Saldiva, Filho (bib0125) 2007; 8
Montine, Phelps, Beach, Bigio, Cairns, Dickson, Duyckaerts, Frosch, Masliah, Mirra, Nelson, Schneider, Thal, Trojanowski, Vinters, Hyman, on Aging, Association (bib0225) 2012; 123
Grishagin (bib0130) 2015; 473
Mairal, Bach, Ponce, Sapiro (bib0200) 2009
Guo, Liu, Oerlemans, Lao, Wu, Lew (bib0135) 2016
Price, Hunter, Gough (bib0260) 1996; 25
Chen, Chefd’hotel (bib0040) 2014
Mao, Zhu, Zhang, Chen (bib0220) 2006
Ferretti, Damin, Brucki, Morillo, Perroco, Campora, Moreira, Balbino, Lima, Battela, Ruiz, Grinberg, Farfel, Leite, Suemoto, Pasqualucci, Rosemberg, Saldiva, Jacob-Filho1, Nitrini (bib0110) 2010; 4
LeCunn, Bengio, Hinton (bib0170) 2015
Dzyubachyk, Niessen, Meijering (bib0085) 2008
Otsu (bib0240) 1979; 9
Fish, Sweet, Deo, Lewis (bib0115) 2008; 1240
Baker, Tork, Hornung, Halasz (bib0015) 1989; 77
Lee, Raina, Ng (bib0180) 2007
Mairal, Bach, Ponce, Sapiro (bib0210) 2010
Padmanabhan, Eddy, Crowley (bib0250) 2010; 193
Aharon, Elad, Bruckstein (bib0010) 2006; 54.
Diez-Fraile, Hecke, Guérin, D'Herde (bib0065) 2012
Kong, Wang, Teodoro, Liang, Zhu, Tucker-Burden, Brat (bib0160) 2015
Afshar, Sbalzarini (bib0005) 2016; 11
Mallat (bib0215) 1999
Bull, Gao, Antolovich (bib0025) 2014
Rosenfeldt, Nixon, Liu, Mah, Ryan (bib0275) 2012; 8
Fawcett (bib0340) 2003
Mahalanobis (bib0195) 1936; 2.
Rubinstein, Bruckstein, Elad (bib0285) 2010; 98
Xu, Xiang, Liu, Gilmore, Wu, Tang, Madabhushi (bib0335) 2016; 35
Elad, Aharon (bib0090) 2006
Tibshirani (bib0320) 1996; 58
Fawcett (bib0345) 2006; 27
Heinsen, Arzberger, Schmit (bib0145) 2000; 20
Candes, Donoho (bib0030) 1999
Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat, Golland, Sabatini (bib0035) 2006; 7
Rub, Tredici, Schultz, Thal, Braak, Braak (bib0280) 2000; 26
Schnass (bib0290) 2015; 228
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0300) 2016; 35
Ciresan, Giusti, Gambardella, Schmidhuber (bib0045) 2013; 16
Otsu (10.1016/j.jneumeth.2017.03.002_bib0240) 1979; 9
Padmanabhan (10.1016/j.jneumeth.2017.03.002_bib0250) 2010; 193
Afshar (10.1016/j.jneumeth.2017.03.002_bib0005) 2016; 11
Mairal (10.1016/j.jneumeth.2017.03.002_bib0205) 2008; 7
Fawcett (10.1016/j.jneumeth.2017.03.002_bib0340) 2003
Heinsen (10.1016/j.jneumeth.2017.03.002_bib0145) 2000; 20
Tibshirani (10.1016/j.jneumeth.2017.03.002_bib0320) 1996; 58
Montine (10.1016/j.jneumeth.2017.03.002_bib0225) 2012; 123
Kadowaki (10.1016/j.jneumeth.2017.03.002_bib0155) 2009; 452
Lee (10.1016/j.jneumeth.2017.03.002_bib0180) 2007
Theofilas (10.1016/j.jneumeth.2017.03.002_bib0315) 2014; 226
Pizer (10.1016/j.jneumeth.2017.03.002_bib0255) 1987; 39
Kong (10.1016/j.jneumeth.2017.03.002_bib0160) 2015
Bull (10.1016/j.jneumeth.2017.03.002_bib0025) 2014
Dzyubachyk (10.1016/j.jneumeth.2017.03.002_bib0085) 2008
Lee (10.1016/j.jneumeth.2017.03.002_bib0175) 2015
Raina (10.1016/j.jneumeth.2017.03.002_bib0265) 2007
Soliman (10.1016/j.jneumeth.2017.03.002_bib0305) 2015; 17
Bergeest (10.1016/j.jneumeth.2017.03.002_bib0020) 2012; 16
Lin (10.1016/j.jneumeth.2017.03.002_bib0185) 2003; 56
Rosenfeldt (10.1016/j.jneumeth.2017.03.002_bib0275) 2012; 8
Duong (10.1016/j.jneumeth.2017.03.002_bib0080) 2013; 220
Chen (10.1016/j.jneumeth.2017.03.002_bib0040) 2014
Dowson (10.1016/j.jneumeth.2017.03.002_bib0070) 1982; 128
Olson (10.1016/j.jneumeth.2017.03.002_bib0350) 2011; 15
Davis (10.1016/j.jneumeth.2017.03.002_bib0055) 2014; 62
Davis (10.1016/j.jneumeth.2017.03.002_bib0060) 1997
Fawcett (10.1016/j.jneumeth.2017.03.002_bib0345) 2006; 27
Diez-Fraile (10.1016/j.jneumeth.2017.03.002_bib0065) 2012
Mallat (10.1016/j.jneumeth.2017.03.002_bib0215) 1999
Oppenheim (10.1016/j.jneumeth.2017.03.002_bib0235) 1989
Duda (10.1016/j.jneumeth.2017.03.002_bib0075) 2001
Mairal (10.1016/j.jneumeth.2017.03.002_bib0200) 2009
Clancy (10.1016/j.jneumeth.2017.03.002_bib0050) 1998; 83
Ushizima (10.1016/j.jneumeth.2017.03.002_bib0330) 2013
Rubinstein (10.1016/j.jneumeth.2017.03.002_bib0285) 2010; 98
Ushizima (10.1016/j.jneumeth.2017.03.002_bib0325) 2014
Litjens (10.1016/j.jneumeth.2017.03.002_bib0190) 2016; 6
LeCunn (10.1016/j.jneumeth.2017.03.002_bib0170) 2015
Srinivasa (10.1016/j.jneumeth.2017.03.002_bib0310) 2009; 18
Aharon (10.1016/j.jneumeth.2017.03.002_bib0010) 2006; 54.
Krizhevsky (10.1016/j.jneumeth.2017.03.002_bib0165) 2012
Fish (10.1016/j.jneumeth.2017.03.002_bib0115) 2008; 1240
Elter (10.1016/j.jneumeth.2017.03.002_bib0095) 2006
Grishagin (10.1016/j.jneumeth.2017.03.002_bib0130) 2015; 473
Herculano-Houzel (10.1016/j.jneumeth.2017.03.002_bib0150) 2015; 360
Shin (10.1016/j.jneumeth.2017.03.002_bib0300) 2016; 35
Selinummi (10.1016/j.jneumeth.2017.03.002_bib0295) 2005; 39
Ciresan (10.1016/j.jneumeth.2017.03.002_bib0045) 2013; 16
Mairal (10.1016/j.jneumeth.2017.03.002_bib0210) 2010
Elad (10.1016/j.jneumeth.2017.03.002_bib0090) 2006
Mahalanobis (10.1016/j.jneumeth.2017.03.002_bib0195) 1936; 2.
Grinberg (10.1016/j.jneumeth.2017.03.002_bib0125) 2007; 8
Price (10.1016/j.jneumeth.2017.03.002_bib0260) 1996; 25
Engan (10.1016/j.jneumeth.2017.03.002_bib0100) 1999
Xu (10.1016/j.jneumeth.2017.03.002_bib0335) 2016; 35
Candes (10.1016/j.jneumeth.2017.03.002_bib0030) 1999
Ramirez (10.1016/j.jneumeth.2017.03.002_bib0270) 2010
Baker (10.1016/j.jneumeth.2017.03.002_bib0015) 1989; 77
Ouertani (10.1016/j.jneumeth.2017.03.002_bib0245) 2014
Guo (10.1016/j.jneumeth.2017.03.002_bib0135) 2016
Gonzalez (10.1016/j.jneumeth.2017.03.002_bib0120) 2007
Mao (10.1016/j.jneumeth.2017.03.002_bib0220) 2006
Schnass (10.1016/j.jneumeth.2017.03.002_bib0290) 2015; 228
Carpenter (10.1016/j.jneumeth.2017.03.002_bib0035) 2006; 7
Hastie (10.1016/j.jneumeth.2017.03.002_bib0140) 2009
Mueller (10.1016/j.jneumeth.2017.03.002_bib0230) 2013; 8
Ferretti (10.1016/j.jneumeth.2017.03.002_bib0110) 2010; 4
Rub (10.1016/j.jneumeth.2017.03.002_bib0280) 2000; 26
References_xml – volume: 18
  start-page: 1817
  year: 2009
  end-page: 1829
  ident: bib0310
  article-title: Active mask segmentation of fluorescence microscope images
  publication-title: IEEE Trans. Image Process.: Publ. IEEE Sig. Process. Soc.
– year: 2009
  ident: bib0140
  article-title: The Elements of Statistical Learning
– volume: 54.
  year: 2006
  ident: bib0010
  article-title: The k-svd: an algorithm for designing of overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Sig. Process.
– volume: 77
  start-page: 257
  year: 1989
  end-page: 270
  ident: bib0015
  article-title: The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study
  publication-title: Exp. Brain Res.
– year: 2014
  ident: bib0025
  article-title: Image segmentation using dictionary learning and compressed random features
  publication-title: Dig. Image Comput.: Techn. Appl
– volume: 220
  start-page: 46
  year: 2013
  end-page: 54
  ident: bib0080
  article-title: A multispectral led array for the reduction of background autofluorescence in brain tissue
  publication-title: J. Neurosci. Methods
– volume: 39
  year: 1987
  ident: bib0255
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
– year: 2012
  ident: bib0065
  article-title: Optimizing Multiple Immunostaining of Neural Tissue. Applications of Immunocytochemistry
– volume: 35
  year: 2016
  ident: bib0335
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 26286
  year: 2016
  ident: bib0190
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Sci. Rep.
– volume: 123
  start-page: 1
  year: 2012
  end-page: 11
  ident: bib0225
  article-title: National institute on aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach
  publication-title: Acta Neuropathol.
– volume: 62
  start-page: 405
  year: 2014
  end-page: 423
  ident: bib0055
  article-title: Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue
  publication-title: J. Histochem. Cytochem.: Off. J. Histochem. Soc.
– volume: 1240
  start-page: 62
  year: 2008
  end-page: 72
  ident: bib0115
  article-title: An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections
  publication-title: Brain Res.
– year: 2007
  ident: bib0265
  article-title: Self-taught learning: transfer learning from unlabeled data
  publication-title: ICML
– volume: 11
  start-page: e0152528
  year: 2016
  ident: bib0005
  article-title: A parallel distributed-memory particle method enables acquisition-rate segmentation of large fluorescence microscopy images
  publication-title: PLOS ONE
– start-page: 11
  year: 2010
  ident: bib0210
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 553
  year: 2000
  end-page: 567
  ident: bib0280
  article-title: The evolution of Alzheimer's disease-related cytoskeletal pathology in the human raphe nuclei
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 98
  year: 2010
  ident: bib0285
  article-title: Dictionaries for sparse representation modeling
  publication-title: Proc. IEEE
– volume: 39
  start-page: 859
  year: 2005
  end-page: 863
  ident: bib0295
  article-title: Software for quantification of labeled bacteria from digital microscope images by automated image analysis
  publication-title: BioTechniques
– year: 2006
  ident: bib0095
  article-title: Maximum-intensity-linking for segmentation of fluorescence-stained cells
  publication-title: MIAAB
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bib0300
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 17
  year: 2007
  ident: bib0180
  article-title: Efficient sparse coding algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 1436
  year: 2012
  end-page: 1444
  ident: bib0020
  article-title: Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals
  publication-title: Med. Image Anal.
– volume: 4
  year: 2010
  ident: bib0110
  article-title: Post-mortem diagnosis of dementia by informant interview
  publication-title: Dementia and Neuropsychologia
– volume: 56
  start-page: 23
  year: 2003
  end-page: 36
  ident: bib0185
  article-title: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks
  publication-title: Cytometry A: J. Int. Soc. Anal. Cytol.
– volume: 58
  year: 1996
  ident: bib0320
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc., Ser. B
– volume: 16
  start-page: 411
  year: 2013
  end-page: 418
  ident: bib0045
  article-title: Mitosis detection in breast cancer histology images with deep neural networks, Medical image computing and computer-assisted intervention: MICCAI
  publication-title: Int. Conf. Med. Image Comput. Comput.-Assist. Interv.
– start-page: 1212
  year: 2015
  end-page: 1215
  ident: bib0160
  article-title: Automated cell segmentation with 3D fluorescence microscopy images
  publication-title: Proceedings/IEEE International Symposium on Biomedical Imaging: from nano to macro. IEEE International Symposium on Biomedical Imaging 2015
– volume: 7
  start-page: R100
  year: 2006
  ident: bib0035
  article-title: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
– year: 2014
  ident: bib0325
  article-title: Segmentation of subcellular compartiments combining superpixel representation with voronoi diagrams
  publication-title: Int. Sympos. Biomed. Imaging
– year: 2014
  ident: bib0040
  article-title: Deep learning based automatic immune cell detection for immunohistochemistry images
  publication-title: MICCAI
– volume: 452
  start-page: 199
  year: 2009
  end-page: 213
  ident: bib0155
  article-title: Cytosolic lc3 ratio as a quantitative index of macroautophagy
  publication-title: Methods Enzymol.
– year: 2009
  ident: bib0200
  article-title: Online dictionary learning for sparse coding
  publication-title: ICML
– year: 2012
  ident: bib0165
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Neural Inf. Process. Syst
– volume: 226
  start-page: 171
  year: 2014
  end-page: 183
  ident: bib0315
  article-title: A novel approach for integrative studies on neurodegenerative diseases in human brains
  publication-title: J. Neurosci. Methods
– year: 2013
  ident: bib0330
  article-title: Automated pap smear cell analysis: optimizing the cervix cytological examination
  publication-title: ICMLA
– start-page: 1
  year: 2003
  end-page: 25
  ident: bib0340
  article-title: Roc graphs: notes and practical considerations for data mining researchers
  publication-title: Technical Report HPL-20034
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0345
  article-title: An introduction to roc analysis
  publication-title: Pattern Recognit. Lett.
– volume: 128
  start-page: 261
  year: 1982
  end-page: 270
  ident: bib0070
  article-title: The evaluation of autofluorescence emission spectra derived from neuronal lipopigment
  publication-title: J. Microsc.
– volume: 20
  year: 2000
  ident: bib0145
  article-title: Celloidin mounting (embedding without infiltration) – a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations
  publication-title: J. Chem. Neuroanat.
– year: 2010
  ident: bib0270
  article-title: Classification and clustering via dictionary learning with structured incoherence and shared features
  publication-title: CVPR
– volume: 8
  start-page: e66198
  year: 2013
  ident: bib0230
  article-title: Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: application to the detection of residual disease in tumor margins
  publication-title: PLOS ONE
– volume: 15
  start-page: 85
  year: 2011
  end-page: 96
  ident: bib0350
  article-title: Particle shape factors and their use in image analysispart 1: Theory
  publication-title: J. GXP Complience
– volume: 228
  year: 2015
  ident: bib0290
  article-title: A personal introduction to theoretical dictionary learning
  publication-title: Internationale Mathematische Nachrichten
– year: 2001
  ident: bib0075
  article-title: Pattern Classification
– volume: 17
  year: 2015
  ident: bib0305
  article-title: Cellprofiler: novel automated image segmentation procedure for super-resolution microscopy
  publication-title: Biol. Proced. Online
– volume: 360
  start-page: 29
  year: 2015
  end-page: 42
  ident: bib0150
  article-title: How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology
  publication-title: Cell Tissue Res.
– volume: 193
  start-page: 380
  year: 2010
  end-page: 384
  ident: bib0250
  article-title: A novel algorithm for optimal image thresholding of biological data
  publication-title: J. Neurosci. Methods
– volume: 83
  start-page: 97
  year: 1998
  end-page: 102
  ident: bib0050
  article-title: Reduction of background autofluorescence in brain sections following immersion in sodium borohydride
  publication-title: J. Neurosci. Methods
– year: 2008
  ident: bib0085
  article-title: Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images
  publication-title: ISBI
– year: 2015
  ident: bib0175
  article-title: Boundary fitting based segmentation of fluorescence microscopy images
  publication-title: SPIE Imaging Multimedia Anal. Web Mobile World
– volume: 2.
  year: 1936
  ident: bib0195
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 8
  start-page: 151
  year: 2007
  ident: bib0125
  article-title: Brain bank of the Brazilian aging brain study group - a milestone reached ad more than 1600 collected brains
  publication-title: Cell Tissue Bank
– year: 1999
  ident: bib0030
  article-title: Curvelets – a surprisingly effective nonadaptive representation for objects with edges
  publication-title: Curves and Surface Fitting: Saint-Malo
– start-page: 187
  year: 2016
  ident: bib0135
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– year: 1989
  ident: bib0235
  article-title: Discrete-time Signal Processing
– volume: 8
  start-page: 963
  year: 2012
  end-page: 969
  ident: bib0275
  article-title: Analysis of macroautophagy by immunohistochemistry
  publication-title: Autophagy
– start-page: 54
  year: 2006
  ident: bib0090
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 303
  year: 1996
  end-page: 316
  ident: bib0260
  article-title: Accuracy of least squares designed spatial fir filters for segmentation of images of fluorescence stained cell nuclei
  publication-title: Cytometry
– year: 1999
  ident: bib0215
  article-title: A Wavelet Tour of Signal Processing
– volume: 9
  year: 1979
  ident: bib0240
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2007
  ident: bib0120
  article-title: Digital Image Processing
– volume: 473
  start-page: 63
  year: 2015
  end-page: 65
  ident: bib0130
  article-title: Automatic cell counting with imagej
  publication-title: Anal. Biochem.
– start-page: 521
  year: 2015
  ident: bib0170
  article-title: Deep learning
  publication-title: Nature
– year: 2006
  ident: bib0220
  article-title: A new method to assist small data set neural network learning
  publication-title: Int. Conf. Intell. Syst. Des. Appl
– volume: 7
  year: 2008
  ident: bib0205
  article-title: Learning multiscale sparse representations for image and video restoration
  publication-title: SIAM Multiscale Model. Simul.
– start-page: 5
  year: 1999
  ident: bib0100
  article-title: Method for optimal directions for frame design
  publication-title: IEEE Int. Conf. Acoust. Speech Sig. Process.
– start-page: 4731
  year: 2014
  end-page: 4734
  ident: bib0245
  article-title: Adaptive automatic segmentation of leishmaniasis parasite in indirect immunofluorescence images
  publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2014
– start-page: 13
  year: 1997
  ident: bib0060
  article-title: Adaptive greedy approximations
  publication-title: Constr. Approx.
– year: 2007
  ident: 10.1016/j.jneumeth.2017.03.002_bib0120
– year: 1999
  ident: 10.1016/j.jneumeth.2017.03.002_bib0215
– year: 2006
  ident: 10.1016/j.jneumeth.2017.03.002_bib0220
  article-title: A new method to assist small data set neural network learning
  publication-title: Int. Conf. Intell. Syst. Des. Appl
– year: 2010
  ident: 10.1016/j.jneumeth.2017.03.002_bib0270
  article-title: Classification and clustering via dictionary learning with structured incoherence and shared features
  publication-title: CVPR
– volume: 473
  start-page: 63
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.002_bib0130
  article-title: Automatic cell counting with imagej
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.12.007
– year: 1989
  ident: 10.1016/j.jneumeth.2017.03.002_bib0235
– volume: 26
  start-page: 553
  issue: 6
  year: 2000
  ident: 10.1016/j.jneumeth.2017.03.002_bib0280
  article-title: The evolution of Alzheimer's disease-related cytoskeletal pathology in the human raphe nuclei
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1046/j.0305-1846.2000.00291.x
– volume: 25
  start-page: 303
  issue: 4
  year: 1996
  ident: 10.1016/j.jneumeth.2017.03.002_bib0260
  article-title: Accuracy of least squares designed spatial fir filters for segmentation of images of fluorescence stained cell nuclei
  publication-title: Cytometry
  doi: 10.1002/(SICI)1097-0320(19961201)25:4<303::AID-CYTO1>3.0.CO;2-E
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.jneumeth.2017.03.002_bib0015
  article-title: The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00274983
– start-page: 1212
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.002_bib0160
  article-title: Automated cell segmentation with 3D fluorescence microscopy images
– volume: 4
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.002_bib0110
  article-title: Post-mortem diagnosis of dementia by informant interview
  publication-title: Dementia and Neuropsychologia
  doi: 10.1590/S1980-57642010DN40200011
– year: 2008
  ident: 10.1016/j.jneumeth.2017.03.002_bib0085
  article-title: Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images
  publication-title: ISBI
– volume: 39
  issue: 3
  year: 1987
  ident: 10.1016/j.jneumeth.2017.03.002_bib0255
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– start-page: 5
  year: 1999
  ident: 10.1016/j.jneumeth.2017.03.002_bib0100
  article-title: Method for optimal directions for frame design
  publication-title: IEEE Int. Conf. Acoust. Speech Sig. Process.
– volume: 8
  start-page: 151
  year: 2007
  ident: 10.1016/j.jneumeth.2017.03.002_bib0125
  article-title: Brain bank of the Brazilian aging brain study group - a milestone reached ad more than 1600 collected brains
  publication-title: Cell Tissue Bank
  doi: 10.1007/s10561-006-9022-z
– year: 2014
  ident: 10.1016/j.jneumeth.2017.03.002_bib0040
  article-title: Deep learning based automatic immune cell detection for immunohistochemistry images
  publication-title: MICCAI
– year: 2009
  ident: 10.1016/j.jneumeth.2017.03.002_bib0200
  article-title: Online dictionary learning for sparse coding
  publication-title: ICML
  doi: 10.1145/1553374.1553463
– start-page: 17
  year: 2007
  ident: 10.1016/j.jneumeth.2017.03.002_bib0180
  article-title: Efficient sparse coding algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 56
  start-page: 23
  issue: 1
  year: 2003
  ident: 10.1016/j.jneumeth.2017.03.002_bib0185
  article-title: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks
  publication-title: Cytometry A: J. Int. Soc. Anal. Cytol.
  doi: 10.1002/cyto.a.10079
– start-page: 11
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.002_bib0210
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: 10.1016/j.jneumeth.2017.03.002_bib0330
  article-title: Automated pap smear cell analysis: optimizing the cervix cytological examination
  publication-title: ICMLA
– volume: 6
  start-page: 26286
  year: 2016
  ident: 10.1016/j.jneumeth.2017.03.002_bib0190
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep26286
– volume: 16
  start-page: 411
  issue: Pt 2
  year: 2013
  ident: 10.1016/j.jneumeth.2017.03.002_bib0045
  article-title: Mitosis detection in breast cancer histology images with deep neural networks, Medical image computing and computer-assisted intervention: MICCAI
  publication-title: Int. Conf. Med. Image Comput. Comput.-Assist. Interv.
– volume: 226
  start-page: 171
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.002_bib0315
  article-title: A novel approach for integrative studies on neurodegenerative diseases in human brains
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.01.030
– volume: 7
  issue: 1
  year: 2008
  ident: 10.1016/j.jneumeth.2017.03.002_bib0205
  article-title: Learning multiscale sparse representations for image and video restoration
  publication-title: SIAM Multiscale Model. Simul.
  doi: 10.1137/070697653
– year: 2012
  ident: 10.1016/j.jneumeth.2017.03.002_bib0165
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Neural Inf. Process. Syst
– volume: 7
  start-page: R100
  issue: 10
  year: 2006
  ident: 10.1016/j.jneumeth.2017.03.002_bib0035
  article-title: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-10-r100
– start-page: 54
  year: 2006
  ident: 10.1016/j.jneumeth.2017.03.002_bib0090
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 18
  start-page: 1817
  issue: 8
  year: 2009
  ident: 10.1016/j.jneumeth.2017.03.002_bib0310
  article-title: Active mask segmentation of fluorescence microscope images
  publication-title: IEEE Trans. Image Process.: Publ. IEEE Sig. Process. Soc.
  doi: 10.1109/TIP.2009.2021081
– start-page: 4731
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.002_bib0245
  article-title: Adaptive automatic segmentation of leishmaniasis parasite in indirect immunofluorescence images
– volume: 39
  start-page: 859
  issue: 6
  year: 2005
  ident: 10.1016/j.jneumeth.2017.03.002_bib0295
  article-title: Software for quantification of labeled bacteria from digital microscope images by automated image analysis
  publication-title: BioTechniques
  doi: 10.2144/000112018
– volume: 128
  start-page: 261
  issue: Pt 3
  year: 1982
  ident: 10.1016/j.jneumeth.2017.03.002_bib0070
  article-title: The evaluation of autofluorescence emission spectra derived from neuronal lipopigment
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1982.tb04628.x
– year: 2001
  ident: 10.1016/j.jneumeth.2017.03.002_bib0075
– year: 2006
  ident: 10.1016/j.jneumeth.2017.03.002_bib0095
  article-title: Maximum-intensity-linking for segmentation of fluorescence-stained cells
  publication-title: MIAAB
– volume: 98
  issue: 6
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.002_bib0285
  article-title: Dictionaries for sparse representation modeling
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2040551
– volume: 17
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.002_bib0305
  article-title: Cellprofiler: novel automated image segmentation procedure for super-resolution microscopy
  publication-title: Biol. Proced. Online
  doi: 10.1186/s12575-015-0023-9
– volume: 193
  start-page: 380
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.002_bib0250
  article-title: A novel algorithm for optimal image thresholding of biological data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.08.031
– volume: 123
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.jneumeth.2017.03.002_bib0225
  article-title: National institute on aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-011-0910-3
– volume: 8
  start-page: e66198
  issue: 6
  year: 2013
  ident: 10.1016/j.jneumeth.2017.03.002_bib0230
  article-title: Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: application to the detection of residual disease in tumor margins
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0066198
– volume: 1240
  start-page: 62
  year: 2008
  ident: 10.1016/j.jneumeth.2017.03.002_bib0115
  article-title: An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.08.060
– year: 2015
  ident: 10.1016/j.jneumeth.2017.03.002_bib0175
  article-title: Boundary fitting based segmentation of fluorescence microscopy images
  publication-title: SPIE Imaging Multimedia Anal. Web Mobile World
– year: 2014
  ident: 10.1016/j.jneumeth.2017.03.002_bib0025
  article-title: Image segmentation using dictionary learning and compressed random features
  publication-title: Dig. Image Comput.: Techn. Appl
– volume: 58
  issue: 1
  year: 1996
  ident: 10.1016/j.jneumeth.2017.03.002_bib0320
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc., Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 452
  start-page: 199
  year: 2009
  ident: 10.1016/j.jneumeth.2017.03.002_bib0155
  article-title: Cytosolic lc3 ratio as a quantitative index of macroautophagy
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(08)03613-6
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.jneumeth.2017.03.002_bib0345
  article-title: An introduction to roc analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– start-page: 1
  year: 2003
  ident: 10.1016/j.jneumeth.2017.03.002_bib0340
  article-title: Roc graphs: notes and practical considerations for data mining researchers
  publication-title: Technical Report HPL-20034
– year: 2014
  ident: 10.1016/j.jneumeth.2017.03.002_bib0325
  article-title: Segmentation of subcellular compartiments combining superpixel representation with voronoi diagrams
  publication-title: Int. Sympos. Biomed. Imaging
– volume: 16
  start-page: 1436
  issue: 7
  year: 2012
  ident: 10.1016/j.jneumeth.2017.03.002_bib0020
  article-title: Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.05.012
– volume: 228
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.002_bib0290
  article-title: A personal introduction to theoretical dictionary learning
  publication-title: Internationale Mathematische Nachrichten
– volume: 20
  issue: 49
  year: 2000
  ident: 10.1016/j.jneumeth.2017.03.002_bib0145
  article-title: Celloidin mounting (embedding without infiltration) – a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations
  publication-title: J. Chem. Neuroanat.
– volume: 9
  issue: 1
  year: 1979
  ident: 10.1016/j.jneumeth.2017.03.002_bib0240
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 360
  start-page: 29
  issue: 1
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.002_bib0150
  article-title: How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-015-2127-6
– start-page: 187
  year: 2016
  ident: 10.1016/j.jneumeth.2017.03.002_bib0135
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– year: 2009
  ident: 10.1016/j.jneumeth.2017.03.002_bib0140
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.jneumeth.2017.03.002_bib0300
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– year: 1999
  ident: 10.1016/j.jneumeth.2017.03.002_bib0030
  article-title: Curvelets – a surprisingly effective nonadaptive representation for objects with edges
  publication-title: Curves and Surface Fitting: Saint-Malo
– volume: 54.
  issue: 11
  year: 2006
  ident: 10.1016/j.jneumeth.2017.03.002_bib0010
  article-title: The k-svd: an algorithm for designing of overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Sig. Process.
  doi: 10.1109/TSP.2006.881199
– year: 2012
  ident: 10.1016/j.jneumeth.2017.03.002_bib0065
– volume: 220
  start-page: 46
  issue: 1
  year: 2013
  ident: 10.1016/j.jneumeth.2017.03.002_bib0080
  article-title: A multispectral led array for the reduction of background autofluorescence in brain tissue
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.08.018
– year: 2007
  ident: 10.1016/j.jneumeth.2017.03.002_bib0265
  article-title: Self-taught learning: transfer learning from unlabeled data
  publication-title: ICML
  doi: 10.1145/1273496.1273592
– volume: 15
  start-page: 85
  issue: 3
  year: 2011
  ident: 10.1016/j.jneumeth.2017.03.002_bib0350
  article-title: Particle shape factors and their use in image analysispart 1: Theory
  publication-title: J. GXP Complience
– volume: 62
  start-page: 405
  issue: 6
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.002_bib0055
  article-title: Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue
  publication-title: J. Histochem. Cytochem.: Off. J. Histochem. Soc.
  doi: 10.1369/0022155414531549
– start-page: 521
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.002_bib0170
  article-title: Deep learning
  publication-title: Nature
– volume: 35
  issue: 1
  year: 2016
  ident: 10.1016/j.jneumeth.2017.03.002_bib0335
  article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 11
  start-page: e0152528
  issue: 4
  year: 2016
  ident: 10.1016/j.jneumeth.2017.03.002_bib0005
  article-title: A parallel distributed-memory particle method enables acquisition-rate segmentation of large fluorescence microscopy images
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0152528
– volume: 8
  start-page: 963
  issue: 6
  year: 2012
  ident: 10.1016/j.jneumeth.2017.03.002_bib0275
  article-title: Analysis of macroautophagy by immunohistochemistry
  publication-title: Autophagy
  doi: 10.4161/auto.20186
– start-page: 13
  year: 1997
  ident: 10.1016/j.jneumeth.2017.03.002_bib0060
  article-title: Adaptive greedy approximations
  publication-title: Constr. Approx.
– volume: 83
  start-page: 97
  issue: 2
  year: 1998
  ident: 10.1016/j.jneumeth.2017.03.002_bib0050
  article-title: Reduction of background autofluorescence in brain sections following immersion in sodium borohydride
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(98)00066-1
– volume: 2.
  issue: 1
  year: 1936
  ident: 10.1016/j.jneumeth.2017.03.002_bib0195
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
SSID ssj0004906
Score 2.3034105
Snippet •Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our...
Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease...
BACKGROUNDImmunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Alzheimer Disease - pathology
Brain - cytology
Cell Count - methods
Dictionary learning
Fluorescent Antibody Technique - methods
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Immunofluorescence
Machine Learning
Microscopy
Microscopy, Fluorescence - methods
Pattern Recognition, Automated - methods
Postmortem human brain
Reproducibility of Results
Sparse models
Title Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding
URI https://dx.doi.org/10.1016/j.jneumeth.2017.03.002
https://www.ncbi.nlm.nih.gov/pubmed/28267565
https://www.proquest.com/docview/1875400093
https://www.osti.gov/biblio/1413763
https://pubmed.ncbi.nlm.nih.gov/PMC5600818
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamIiEuCDZ-ZIPJSIhb1iR24vhYTUwFtF1g0m6WY7sj1epMbXPohdv-773nJGVFoB04tvWzkr7n5_fs772PkI9ZlbGikgnkJq6Meap5rHlp4wLJjySrDAsH-ucXxfSSf73Kr_bI6VALg7DK3vd3Pj146_6bcf9vjm_revwdC3EgqQKTYoFEBivYuUArP_n1G-bBZeDXxMF4X5k8qBKen8y9a5GpGSFeomt2mv1rgxo1sOb-Fof-Cad8sD-dvSDP-8CSTrpnf0n2nN8nBxMPSfViQz_RAPUMZ-j75Ol5f6N-QO4mLQzQCH6meIhPrVsHdJan2ltqMLhGNFFQIK09DaR-tEJmCTq7aZtl1w-KLhDZhzUuG1ovwEmtKELqr6mtw2x6uaE9Q8V1mBk82XLlqGlw83xFLs8-_zidxj01Q2zygq9jnRlIHTnjNme5s7o0mUxdJqpKammZdbPEVbnUIk11mtlSClfOeInBAAQYVrDXZOQb794SaoS2OajJyGTGhWUS5oCkxzImuJFlEZF80Icyfd9ypM-4UQNAba4GPSrUo0qYAj1GZLyVu-06dzwqIQd1qx0bVLC9PCp7hPaBcth81yBKCQThddGDR-TDYDYKli-qU3vXtCuVQr7Iw7lSRN50ZrR9WsiGIZ0r8oiIHQPbDsDW4Lu_-PpnaBGOcSyEYof_8UZH5Bl-wpuzNH9HRutl695DALaujsMKOyZPJl--TS_uAec3M8M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6FNh2GbZ2D697aMCwm5fYkh86BsWKdG1yWQv0JsiS0jponCKJD_kB-98jZTtrhg097BqLgh1SFCl95AfwOS5inhZygLmJy0MRaRFqkdswJfIjyQvD_YH-eJKOLsX3q-RqD467WhiCVba-v_Hp3lu3v_Tbf7N_V5b9H1SIg0kVmhT3JDKPYJ-6UyU92B-eno0mv8sjpafYpPF0ZTm4Vyg8-zqrXE1kzYTyypp-p_G_9qjeApfd30LRPxGV97aok-fwrI0t2bB5_Rew56oDOBxWmFfPN-wL82hPf4x-AI_H7aX6Ifwc1jhAE_6Z0Tk-s27tAVoV05VlhuJrAhR5HbKyYp7XjxVELsGmt_Vi2bSEYnMC91GZy4aVc_RTK0ao-mtmSz-bXm5YS1Jx7WdGZ7ZcOWYWtH--hMuTbxfHo7BlZwhNkop1qGOD2aPgwiY8cVbnJpaRi7OikFpabt104IpE6iyKdBTbXGYun4qc4gGMMWzGX0GvWlTuDTCTaZugmowcTEVmucQ5MO-xnGfCyDwNIOn0oUzbupwYNG5Vh1GbqU6PivSoBlyhHgPob-XumuYdD0rITt1qxwwV7jAPyh6RfZAc9d81BFRCQfxccuIBfOrMRuEKJnXqyi3qlYowZRT-aCmA140Zbd8WE2LM6NIkgGzHwLYDqDv47pOqvPFdwimUxWjs7X980Ud4MroYn6vz08nZETylJ3SRFiXvoLde1u49xmPr4kO73n4BSdM2dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+cell+detection+and+classification+in+human+brain+fluorescent+microscopy+images+using+dictionary+learning+and+sparse+coding&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Alegro%2C+Maryana&rft.au=Theofilas%2C+Panagiotis&rft.au=Nguy%2C+Austin&rft.au=Castruita%2C+Patricia+A&rft.date=2017-04-15&rft.eissn=1872-678X&rft.volume=282&rft.spage=20&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.03.002&rft_id=info%3Apmid%2F28267565&rft.externalDocID=28267565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon