Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding
•Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our images.•Segmented cells are automatically classified to speed up the cell counting process.•Our method outperforms several open-access methods...
Saved in:
Published in | Journal of neuroscience methods Vol. 282; no. C; pp. 20 - 33 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.04.2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X |
DOI | 10.1016/j.jneumeth.2017.03.002 |
Cover
Loading…
Abstract | •Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our images.•Segmented cells are automatically classified to speed up the cell counting process.•Our method outperforms several open-access methods in literature.•Efficient cell detection can be used in several fluorescence analysis tasks.
Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility.
Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set.
Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings.
We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples.
The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. |
---|---|
AbstractList | BACKGROUNDImmunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility.NEW METHODDictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set.RESULTSOur method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings.COMPARISON WITH EXISTING METHODSWe compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples.CONCLUSIONThe proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. •Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our images.•Segmented cells are automatically classified to speed up the cell counting process.•Our method outperforms several open-access methods in literature.•Efficient cell detection can be used in several fluorescence analysis tasks. Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. |
Author | Grinberg, Lea T. Nguy, Austin Seeley, William Alegro, Maryana Ushizima, Daniela M. Theofilas, Panagiotis Castruita, Patricia A. Heinsen, Helmut |
AuthorAffiliation | d Berkeley Institute for Data Science, University of California Berkeley, Berkeley, CA, 94720 USA b Medical School of the University of São Paulo, Av. Reboucas 381, São Paulo, SP, 05401-000 Brazil a Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158 USA c Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720 USA |
AuthorAffiliation_xml | – name: a Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158 USA – name: c Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720 USA – name: d Berkeley Institute for Data Science, University of California Berkeley, Berkeley, CA, 94720 USA – name: b Medical School of the University of São Paulo, Av. Reboucas 381, São Paulo, SP, 05401-000 Brazil |
Author_xml | – sequence: 1 givenname: Maryana surname: Alegro fullname: Alegro, Maryana email: maryana.alegro@ucsf.edu organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA – sequence: 2 givenname: Panagiotis surname: Theofilas fullname: Theofilas, Panagiotis email: panos.theofilas@ucsf.edu organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA – sequence: 3 givenname: Austin surname: Nguy fullname: Nguy, Austin email: austin.nguy@ucsf.edu organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA – sequence: 4 givenname: Patricia A. surname: Castruita fullname: Castruita, Patricia A. email: alejandra.castcap@gmail.com organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA – sequence: 5 givenname: William surname: Seeley fullname: Seeley, William email: bill.seeley@ucsf.edu organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA – sequence: 6 givenname: Helmut surname: Heinsen fullname: Heinsen, Helmut email: heinsen@mail.uni-wuerzburg.de organization: Medical School of the University of São Paulo, Av. Reboucas 381, São Paulo, SP 05401-000, Brazil – sequence: 7 givenname: Daniela M. surname: Ushizima fullname: Ushizima, Daniela M. email: dushizima@lbl.gov organization: Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA – sequence: 8 givenname: Lea T. surname: Grinberg fullname: Grinberg, Lea T. email: lea.grinberg@ucsf.edu organization: Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28267565$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1413763$$D View this record in Osti.gov |
BookMark | eNqFUsFq3DAUFCWl2aT9hSB66sWuJNuSDaU0hKQtBHpJoDchS8-7WmxpK9mB_YD-d6XdJLS95CTxNG80782coRPnHSB0QUlJCeUft-XWwTLBvCkZoaIkVUkIe4VWtBWs4KL9eYJWCdgUhAlyis5i3BJC6o7wN-iUtYyLhjcr9Ptymf2kZuvWWMM4YgMz6Nl6h5UzWI8qRjtYrQ4l6_BmmZTDfVDpPoyLDxA1uBlPVgcftd_tsZ3UGiJeYiY19sCmwh6PoILLtcwcdypEwNqbVHmLXg9qjPDu8TxH9zfXd1ffitsfX79fXd4WuuH1XCimBaN1VZumasCoVrOOAhN936nOVAYGAn3TKUGposy0nYB2qFvOaU1ZZ0R1jj4feXdLP4HJwoMa5S4kyWEvvbLy3xdnN3LtH2TDCWlpmwjeHwl8nK2M2qZlbbR3Lu1Mpl8qwasE-vD4S_C_FoiznGzMy1UO_BJlsqipkxldhl78LehZyZNBCcCPgLzdGGB4hlAicxLkVj4lQeYkSFLJlITU-Om_xiT24GIazI4vt385tkOy48FCyMOC02BsyLMab1-i-AN5RNgd |
CitedBy_id | crossref_primary_10_3390_cimb44120406 crossref_primary_10_1111_ejn_14529 crossref_primary_10_1093_nar_gkaa312 crossref_primary_10_1038_s41598_019_41683_3 crossref_primary_10_1016_j_cmpb_2019_105028 crossref_primary_10_1002_sam_11429 crossref_primary_10_1098_rstb_2021_0118 crossref_primary_10_1016_j_jneumeth_2019_108348 crossref_primary_10_3389_fnana_2021_722443 crossref_primary_10_1186_s40708_019_0096_3 crossref_primary_10_1073_pnas_1918465117 crossref_primary_10_1364_BOE_11_000281 crossref_primary_10_1016_j_eswa_2018_05_015 crossref_primary_10_1016_j_jneumeth_2020_108708 crossref_primary_10_1016_j_neuroimage_2021_118790 crossref_primary_10_1038_s41377_022_00952_z |
Cites_doi | 10.1016/j.ab.2014.12.007 10.1046/j.0305-1846.2000.00291.x 10.1002/(SICI)1097-0320(19961201)25:4<303::AID-CYTO1>3.0.CO;2-E 10.1007/BF00274983 10.1590/S1980-57642010DN40200011 10.1016/S0734-189X(87)80186-X 10.1007/s10561-006-9022-z 10.1145/1553374.1553463 10.1002/cyto.a.10079 10.1038/srep26286 10.1016/j.jneumeth.2014.01.030 10.1137/070697653 10.1186/gb-2006-7-10-r100 10.1109/TIP.2009.2021081 10.2144/000112018 10.1111/j.1365-2818.1982.tb04628.x 10.1109/JPROC.2010.2040551 10.1186/s12575-015-0023-9 10.1016/j.jneumeth.2010.08.031 10.1007/s00401-011-0910-3 10.1371/journal.pone.0066198 10.1016/j.brainres.2008.08.060 10.1111/j.2517-6161.1996.tb02080.x 10.1016/S0076-6879(08)03613-6 10.1016/j.patrec.2005.10.010 10.1016/j.media.2012.05.012 10.1109/TSMC.1979.4310076 10.1007/s00441-015-2127-6 10.1109/TMI.2016.2528162 10.1109/TSP.2006.881199 10.1016/j.jneumeth.2013.08.018 10.1145/1273496.1273592 10.1369/0022155414531549 10.1109/TMI.2015.2458702 10.1371/journal.pone.0152528 10.4161/auto.20186 10.1016/S0165-0270(98)00066-1 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI 5PM |
DOI | 10.1016/j.jneumeth.2017.03.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 33 |
ExternalDocumentID | PMC5600818 1413763 28267565 10_1016_j_jneumeth_2017_03_002 S0165027017300596 |
Genre | Evaluation Study Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: K24 AG053435 – fundername: NIGMS NIH HHS grantid: TL4 GM118986 – fundername: NIA NIH HHS grantid: R01 AG040311 – fundername: NIA NIH HHS grantid: P01 AG019724 – fundername: NIA NIH HHS grantid: P50 AG023501 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 AALMO ABPIF ABPTK ABQIS OTOTI 5PM |
ID | FETCH-LOGICAL-c564t-a2c721434d535eda8c291e27bb9a9d3def0eb59a711a12d897e8f486614129d73 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 |
IngestDate | Thu Aug 21 18:33:56 EDT 2025 Thu May 18 18:30:09 EDT 2023 Thu Jul 10 22:37:10 EDT 2025 Mon Jul 21 05:52:02 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Tue Jul 01 02:57:07 EDT 2025 Fri Feb 23 02:33:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Image segmentation Microscopy Sparse models Immunofluorescence Postmortem human brain Dictionary learning |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-a2c721434d535eda8c291e27bb9a9d3def0eb59a711a12d897e8f486614129d73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 USDOE Mailing address: Grinberg Lab. 675 Nelson Rising Lane. Room 292F. San Francisco, CA. 94158. USA. Tel: +55 415-502-7229, Fax: +55 415-476-7963 |
OpenAccessLink | https://escholarship.org/content/qt8sx4j02b/qt8sx4j02b.pdf |
PMID | 28267565 |
PQID | 1875400093 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5600818 osti_scitechconnect_1413763 proquest_miscellaneous_1875400093 pubmed_primary_28267565 crossref_primary_10_1016_j_jneumeth_2017_03_002 crossref_citationtrail_10_1016_j_jneumeth_2017_03_002 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_03_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lee, Salama, Dunn, Delp (bib0175) 2015 Selinummi, Seppala, Yli-Harja, Puhakka (bib0295) 2005; 39 Ouertani, Amiri, Bettaib, Yazidi, Salah (bib0245) 2014 Soliman (bib0305) 2015; 17 Bergeest, Rohr (bib0020) 2012; 16 Davis, Mallat, Avellaneda (bib0060) 1997 Raina, Battle, Lee, Packer, Ng (bib0265) 2007 Ushizima, Bianchi, Carneiro (bib0325) 2014 Davis, Richter, Becker, Moyer, Sandouk, Skinner, Taubenberger (bib0055) 2014; 62 Ramirez, Sprechmann, Sapiro (bib0270) 2010 Lin, Adiga, Olson, Guzowski, Barnes, Roysam (bib0185) 2003; 56 Theofilas, Polichiso, Wang, Lima, Alho, Leite, Suemoto, Pasqualucci, Jacob-Filho, Heinsen, Group, Grinberg (bib0315) 2014; 226 Ushizima, Alessandra, Gomes, Carneiro (bib0330) 2013 Litjens, Sanchez, Timofeeva, Hermsen, Nagtegaal, Kovacs, van de Kaa, Bult, van Ginneken, van der Laak (bib0190) 2016; 6 Hastie, Tibshirani, Friedman (bib0140) 2009 Gonzalez, Richard, Woods (bib0120) 2007 Engan, Aese, Husoy (bib0100) 1999 Pizer, Amburn, Austin, Cromartie, Greer, Romeny, Zimmerman (bib0255) 1987; 39 Elter, Daum, Wittenberg (bib0095) 2006 Olson (bib0350) 2011; 15 Mairal, Sapiro, Elad (bib0205) 2008; 7 Dowson (bib0070) 1982; 128 Krizhevsky, Sutskever, Hinton (bib0165) 2012 Oppenheim (bib0235) 1989 Kadowaki, Karim (bib0155) 2009; 452 Duda, Hart, Stork (bib0075) 2001 Duong, Han (bib0080) 2013; 220 Mueller, Harmany, Mito, Kennedy, Kim, Dodd, Geradts, Kirsch, Willett, Brown, Ramanujam (bib0230) 2013; 8 Srinivasa, Fickus, Guo, Linstedt, Kovacevic (bib0310) 2009; 18 Clancy, Cauller (bib0050) 1998; 83 Herculano-Houzel, von Bartheld, Miller, Kaas (bib0150) 2015; 360 Grinberg, Ferretti, Farfel, Leite, Pasqualucci, Rosemberg, Nitrini, Saldiva, Filho (bib0125) 2007; 8 Montine, Phelps, Beach, Bigio, Cairns, Dickson, Duyckaerts, Frosch, Masliah, Mirra, Nelson, Schneider, Thal, Trojanowski, Vinters, Hyman, on Aging, Association (bib0225) 2012; 123 Grishagin (bib0130) 2015; 473 Mairal, Bach, Ponce, Sapiro (bib0200) 2009 Guo, Liu, Oerlemans, Lao, Wu, Lew (bib0135) 2016 Price, Hunter, Gough (bib0260) 1996; 25 Chen, Chefd’hotel (bib0040) 2014 Mao, Zhu, Zhang, Chen (bib0220) 2006 Ferretti, Damin, Brucki, Morillo, Perroco, Campora, Moreira, Balbino, Lima, Battela, Ruiz, Grinberg, Farfel, Leite, Suemoto, Pasqualucci, Rosemberg, Saldiva, Jacob-Filho1, Nitrini (bib0110) 2010; 4 LeCunn, Bengio, Hinton (bib0170) 2015 Dzyubachyk, Niessen, Meijering (bib0085) 2008 Otsu (bib0240) 1979; 9 Fish, Sweet, Deo, Lewis (bib0115) 2008; 1240 Baker, Tork, Hornung, Halasz (bib0015) 1989; 77 Lee, Raina, Ng (bib0180) 2007 Mairal, Bach, Ponce, Sapiro (bib0210) 2010 Padmanabhan, Eddy, Crowley (bib0250) 2010; 193 Aharon, Elad, Bruckstein (bib0010) 2006; 54. Diez-Fraile, Hecke, Guérin, D'Herde (bib0065) 2012 Kong, Wang, Teodoro, Liang, Zhu, Tucker-Burden, Brat (bib0160) 2015 Afshar, Sbalzarini (bib0005) 2016; 11 Mallat (bib0215) 1999 Bull, Gao, Antolovich (bib0025) 2014 Rosenfeldt, Nixon, Liu, Mah, Ryan (bib0275) 2012; 8 Fawcett (bib0340) 2003 Mahalanobis (bib0195) 1936; 2. Rubinstein, Bruckstein, Elad (bib0285) 2010; 98 Xu, Xiang, Liu, Gilmore, Wu, Tang, Madabhushi (bib0335) 2016; 35 Elad, Aharon (bib0090) 2006 Tibshirani (bib0320) 1996; 58 Fawcett (bib0345) 2006; 27 Heinsen, Arzberger, Schmit (bib0145) 2000; 20 Candes, Donoho (bib0030) 1999 Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat, Golland, Sabatini (bib0035) 2006; 7 Rub, Tredici, Schultz, Thal, Braak, Braak (bib0280) 2000; 26 Schnass (bib0290) 2015; 228 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0300) 2016; 35 Ciresan, Giusti, Gambardella, Schmidhuber (bib0045) 2013; 16 Otsu (10.1016/j.jneumeth.2017.03.002_bib0240) 1979; 9 Padmanabhan (10.1016/j.jneumeth.2017.03.002_bib0250) 2010; 193 Afshar (10.1016/j.jneumeth.2017.03.002_bib0005) 2016; 11 Mairal (10.1016/j.jneumeth.2017.03.002_bib0205) 2008; 7 Fawcett (10.1016/j.jneumeth.2017.03.002_bib0340) 2003 Heinsen (10.1016/j.jneumeth.2017.03.002_bib0145) 2000; 20 Tibshirani (10.1016/j.jneumeth.2017.03.002_bib0320) 1996; 58 Montine (10.1016/j.jneumeth.2017.03.002_bib0225) 2012; 123 Kadowaki (10.1016/j.jneumeth.2017.03.002_bib0155) 2009; 452 Lee (10.1016/j.jneumeth.2017.03.002_bib0180) 2007 Theofilas (10.1016/j.jneumeth.2017.03.002_bib0315) 2014; 226 Pizer (10.1016/j.jneumeth.2017.03.002_bib0255) 1987; 39 Kong (10.1016/j.jneumeth.2017.03.002_bib0160) 2015 Bull (10.1016/j.jneumeth.2017.03.002_bib0025) 2014 Dzyubachyk (10.1016/j.jneumeth.2017.03.002_bib0085) 2008 Lee (10.1016/j.jneumeth.2017.03.002_bib0175) 2015 Raina (10.1016/j.jneumeth.2017.03.002_bib0265) 2007 Soliman (10.1016/j.jneumeth.2017.03.002_bib0305) 2015; 17 Bergeest (10.1016/j.jneumeth.2017.03.002_bib0020) 2012; 16 Lin (10.1016/j.jneumeth.2017.03.002_bib0185) 2003; 56 Rosenfeldt (10.1016/j.jneumeth.2017.03.002_bib0275) 2012; 8 Duong (10.1016/j.jneumeth.2017.03.002_bib0080) 2013; 220 Chen (10.1016/j.jneumeth.2017.03.002_bib0040) 2014 Dowson (10.1016/j.jneumeth.2017.03.002_bib0070) 1982; 128 Olson (10.1016/j.jneumeth.2017.03.002_bib0350) 2011; 15 Davis (10.1016/j.jneumeth.2017.03.002_bib0055) 2014; 62 Davis (10.1016/j.jneumeth.2017.03.002_bib0060) 1997 Fawcett (10.1016/j.jneumeth.2017.03.002_bib0345) 2006; 27 Diez-Fraile (10.1016/j.jneumeth.2017.03.002_bib0065) 2012 Mallat (10.1016/j.jneumeth.2017.03.002_bib0215) 1999 Oppenheim (10.1016/j.jneumeth.2017.03.002_bib0235) 1989 Duda (10.1016/j.jneumeth.2017.03.002_bib0075) 2001 Mairal (10.1016/j.jneumeth.2017.03.002_bib0200) 2009 Clancy (10.1016/j.jneumeth.2017.03.002_bib0050) 1998; 83 Ushizima (10.1016/j.jneumeth.2017.03.002_bib0330) 2013 Rubinstein (10.1016/j.jneumeth.2017.03.002_bib0285) 2010; 98 Ushizima (10.1016/j.jneumeth.2017.03.002_bib0325) 2014 Litjens (10.1016/j.jneumeth.2017.03.002_bib0190) 2016; 6 LeCunn (10.1016/j.jneumeth.2017.03.002_bib0170) 2015 Srinivasa (10.1016/j.jneumeth.2017.03.002_bib0310) 2009; 18 Aharon (10.1016/j.jneumeth.2017.03.002_bib0010) 2006; 54. Krizhevsky (10.1016/j.jneumeth.2017.03.002_bib0165) 2012 Fish (10.1016/j.jneumeth.2017.03.002_bib0115) 2008; 1240 Elter (10.1016/j.jneumeth.2017.03.002_bib0095) 2006 Grishagin (10.1016/j.jneumeth.2017.03.002_bib0130) 2015; 473 Herculano-Houzel (10.1016/j.jneumeth.2017.03.002_bib0150) 2015; 360 Shin (10.1016/j.jneumeth.2017.03.002_bib0300) 2016; 35 Selinummi (10.1016/j.jneumeth.2017.03.002_bib0295) 2005; 39 Ciresan (10.1016/j.jneumeth.2017.03.002_bib0045) 2013; 16 Mairal (10.1016/j.jneumeth.2017.03.002_bib0210) 2010 Elad (10.1016/j.jneumeth.2017.03.002_bib0090) 2006 Mahalanobis (10.1016/j.jneumeth.2017.03.002_bib0195) 1936; 2. Grinberg (10.1016/j.jneumeth.2017.03.002_bib0125) 2007; 8 Price (10.1016/j.jneumeth.2017.03.002_bib0260) 1996; 25 Engan (10.1016/j.jneumeth.2017.03.002_bib0100) 1999 Xu (10.1016/j.jneumeth.2017.03.002_bib0335) 2016; 35 Candes (10.1016/j.jneumeth.2017.03.002_bib0030) 1999 Ramirez (10.1016/j.jneumeth.2017.03.002_bib0270) 2010 Baker (10.1016/j.jneumeth.2017.03.002_bib0015) 1989; 77 Ouertani (10.1016/j.jneumeth.2017.03.002_bib0245) 2014 Guo (10.1016/j.jneumeth.2017.03.002_bib0135) 2016 Gonzalez (10.1016/j.jneumeth.2017.03.002_bib0120) 2007 Mao (10.1016/j.jneumeth.2017.03.002_bib0220) 2006 Schnass (10.1016/j.jneumeth.2017.03.002_bib0290) 2015; 228 Carpenter (10.1016/j.jneumeth.2017.03.002_bib0035) 2006; 7 Hastie (10.1016/j.jneumeth.2017.03.002_bib0140) 2009 Mueller (10.1016/j.jneumeth.2017.03.002_bib0230) 2013; 8 Ferretti (10.1016/j.jneumeth.2017.03.002_bib0110) 2010; 4 Rub (10.1016/j.jneumeth.2017.03.002_bib0280) 2000; 26 |
References_xml | – volume: 18 start-page: 1817 year: 2009 end-page: 1829 ident: bib0310 article-title: Active mask segmentation of fluorescence microscope images publication-title: IEEE Trans. Image Process.: Publ. IEEE Sig. Process. Soc. – year: 2009 ident: bib0140 article-title: The Elements of Statistical Learning – volume: 54. year: 2006 ident: bib0010 article-title: The k-svd: an algorithm for designing of overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Sig. Process. – volume: 77 start-page: 257 year: 1989 end-page: 270 ident: bib0015 article-title: The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study publication-title: Exp. Brain Res. – year: 2014 ident: bib0025 article-title: Image segmentation using dictionary learning and compressed random features publication-title: Dig. Image Comput.: Techn. Appl – volume: 220 start-page: 46 year: 2013 end-page: 54 ident: bib0080 article-title: A multispectral led array for the reduction of background autofluorescence in brain tissue publication-title: J. Neurosci. Methods – volume: 39 year: 1987 ident: bib0255 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. – year: 2012 ident: bib0065 article-title: Optimizing Multiple Immunostaining of Neural Tissue. Applications of Immunocytochemistry – volume: 35 year: 2016 ident: bib0335 article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans. Med. Imaging – volume: 6 start-page: 26286 year: 2016 ident: bib0190 article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis publication-title: Sci. Rep. – volume: 123 start-page: 1 year: 2012 end-page: 11 ident: bib0225 article-title: National institute on aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach publication-title: Acta Neuropathol. – volume: 62 start-page: 405 year: 2014 end-page: 423 ident: bib0055 article-title: Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue publication-title: J. Histochem. Cytochem.: Off. J. Histochem. Soc. – volume: 1240 start-page: 62 year: 2008 end-page: 72 ident: bib0115 article-title: An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections publication-title: Brain Res. – year: 2007 ident: bib0265 article-title: Self-taught learning: transfer learning from unlabeled data publication-title: ICML – volume: 11 start-page: e0152528 year: 2016 ident: bib0005 article-title: A parallel distributed-memory particle method enables acquisition-rate segmentation of large fluorescence microscopy images publication-title: PLOS ONE – start-page: 11 year: 2010 ident: bib0210 article-title: Online learning for matrix factorization and sparse coding publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 553 year: 2000 end-page: 567 ident: bib0280 article-title: The evolution of Alzheimer's disease-related cytoskeletal pathology in the human raphe nuclei publication-title: Neuropathol. Appl. Neurobiol. – volume: 98 year: 2010 ident: bib0285 article-title: Dictionaries for sparse representation modeling publication-title: Proc. IEEE – volume: 39 start-page: 859 year: 2005 end-page: 863 ident: bib0295 article-title: Software for quantification of labeled bacteria from digital microscope images by automated image analysis publication-title: BioTechniques – year: 2006 ident: bib0095 article-title: Maximum-intensity-linking for segmentation of fluorescence-stained cells publication-title: MIAAB – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: bib0300 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – start-page: 17 year: 2007 ident: bib0180 article-title: Efficient sparse coding algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 1436 year: 2012 end-page: 1444 ident: bib0020 article-title: Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals publication-title: Med. Image Anal. – volume: 4 year: 2010 ident: bib0110 article-title: Post-mortem diagnosis of dementia by informant interview publication-title: Dementia and Neuropsychologia – volume: 56 start-page: 23 year: 2003 end-page: 36 ident: bib0185 article-title: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks publication-title: Cytometry A: J. Int. Soc. Anal. Cytol. – volume: 58 year: 1996 ident: bib0320 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc., Ser. B – volume: 16 start-page: 411 year: 2013 end-page: 418 ident: bib0045 article-title: Mitosis detection in breast cancer histology images with deep neural networks, Medical image computing and computer-assisted intervention: MICCAI publication-title: Int. Conf. Med. Image Comput. Comput.-Assist. Interv. – start-page: 1212 year: 2015 end-page: 1215 ident: bib0160 article-title: Automated cell segmentation with 3D fluorescence microscopy images publication-title: Proceedings/IEEE International Symposium on Biomedical Imaging: from nano to macro. IEEE International Symposium on Biomedical Imaging 2015 – volume: 7 start-page: R100 year: 2006 ident: bib0035 article-title: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol. – year: 2014 ident: bib0325 article-title: Segmentation of subcellular compartiments combining superpixel representation with voronoi diagrams publication-title: Int. Sympos. Biomed. Imaging – year: 2014 ident: bib0040 article-title: Deep learning based automatic immune cell detection for immunohistochemistry images publication-title: MICCAI – volume: 452 start-page: 199 year: 2009 end-page: 213 ident: bib0155 article-title: Cytosolic lc3 ratio as a quantitative index of macroautophagy publication-title: Methods Enzymol. – year: 2009 ident: bib0200 article-title: Online dictionary learning for sparse coding publication-title: ICML – year: 2012 ident: bib0165 article-title: Imagenet classification with deep convolutional neural networks publication-title: Neural Inf. Process. Syst – volume: 226 start-page: 171 year: 2014 end-page: 183 ident: bib0315 article-title: A novel approach for integrative studies on neurodegenerative diseases in human brains publication-title: J. Neurosci. Methods – year: 2013 ident: bib0330 article-title: Automated pap smear cell analysis: optimizing the cervix cytological examination publication-title: ICMLA – start-page: 1 year: 2003 end-page: 25 ident: bib0340 article-title: Roc graphs: notes and practical considerations for data mining researchers publication-title: Technical Report HPL-20034 – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib0345 article-title: An introduction to roc analysis publication-title: Pattern Recognit. Lett. – volume: 128 start-page: 261 year: 1982 end-page: 270 ident: bib0070 article-title: The evaluation of autofluorescence emission spectra derived from neuronal lipopigment publication-title: J. Microsc. – volume: 20 year: 2000 ident: bib0145 article-title: Celloidin mounting (embedding without infiltration) – a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations publication-title: J. Chem. Neuroanat. – year: 2010 ident: bib0270 article-title: Classification and clustering via dictionary learning with structured incoherence and shared features publication-title: CVPR – volume: 8 start-page: e66198 year: 2013 ident: bib0230 article-title: Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: application to the detection of residual disease in tumor margins publication-title: PLOS ONE – volume: 15 start-page: 85 year: 2011 end-page: 96 ident: bib0350 article-title: Particle shape factors and their use in image analysispart 1: Theory publication-title: J. GXP Complience – volume: 228 year: 2015 ident: bib0290 article-title: A personal introduction to theoretical dictionary learning publication-title: Internationale Mathematische Nachrichten – year: 2001 ident: bib0075 article-title: Pattern Classification – volume: 17 year: 2015 ident: bib0305 article-title: Cellprofiler: novel automated image segmentation procedure for super-resolution microscopy publication-title: Biol. Proced. Online – volume: 360 start-page: 29 year: 2015 end-page: 42 ident: bib0150 article-title: How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology publication-title: Cell Tissue Res. – volume: 193 start-page: 380 year: 2010 end-page: 384 ident: bib0250 article-title: A novel algorithm for optimal image thresholding of biological data publication-title: J. Neurosci. Methods – volume: 83 start-page: 97 year: 1998 end-page: 102 ident: bib0050 article-title: Reduction of background autofluorescence in brain sections following immersion in sodium borohydride publication-title: J. Neurosci. Methods – year: 2008 ident: bib0085 article-title: Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images publication-title: ISBI – year: 2015 ident: bib0175 article-title: Boundary fitting based segmentation of fluorescence microscopy images publication-title: SPIE Imaging Multimedia Anal. Web Mobile World – volume: 2. year: 1936 ident: bib0195 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 8 start-page: 151 year: 2007 ident: bib0125 article-title: Brain bank of the Brazilian aging brain study group - a milestone reached ad more than 1600 collected brains publication-title: Cell Tissue Bank – year: 1999 ident: bib0030 article-title: Curvelets – a surprisingly effective nonadaptive representation for objects with edges publication-title: Curves and Surface Fitting: Saint-Malo – start-page: 187 year: 2016 ident: bib0135 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing – year: 1989 ident: bib0235 article-title: Discrete-time Signal Processing – volume: 8 start-page: 963 year: 2012 end-page: 969 ident: bib0275 article-title: Analysis of macroautophagy by immunohistochemistry publication-title: Autophagy – start-page: 54 year: 2006 ident: bib0090 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 303 year: 1996 end-page: 316 ident: bib0260 article-title: Accuracy of least squares designed spatial fir filters for segmentation of images of fluorescence stained cell nuclei publication-title: Cytometry – year: 1999 ident: bib0215 article-title: A Wavelet Tour of Signal Processing – volume: 9 year: 1979 ident: bib0240 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – year: 2007 ident: bib0120 article-title: Digital Image Processing – volume: 473 start-page: 63 year: 2015 end-page: 65 ident: bib0130 article-title: Automatic cell counting with imagej publication-title: Anal. Biochem. – start-page: 521 year: 2015 ident: bib0170 article-title: Deep learning publication-title: Nature – year: 2006 ident: bib0220 article-title: A new method to assist small data set neural network learning publication-title: Int. Conf. Intell. Syst. Des. Appl – volume: 7 year: 2008 ident: bib0205 article-title: Learning multiscale sparse representations for image and video restoration publication-title: SIAM Multiscale Model. Simul. – start-page: 5 year: 1999 ident: bib0100 article-title: Method for optimal directions for frame design publication-title: IEEE Int. Conf. Acoust. Speech Sig. Process. – start-page: 4731 year: 2014 end-page: 4734 ident: bib0245 article-title: Adaptive automatic segmentation of leishmaniasis parasite in indirect immunofluorescence images publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2014 – start-page: 13 year: 1997 ident: bib0060 article-title: Adaptive greedy approximations publication-title: Constr. Approx. – year: 2007 ident: 10.1016/j.jneumeth.2017.03.002_bib0120 – year: 1999 ident: 10.1016/j.jneumeth.2017.03.002_bib0215 – year: 2006 ident: 10.1016/j.jneumeth.2017.03.002_bib0220 article-title: A new method to assist small data set neural network learning publication-title: Int. Conf. Intell. Syst. Des. Appl – year: 2010 ident: 10.1016/j.jneumeth.2017.03.002_bib0270 article-title: Classification and clustering via dictionary learning with structured incoherence and shared features publication-title: CVPR – volume: 473 start-page: 63 year: 2015 ident: 10.1016/j.jneumeth.2017.03.002_bib0130 article-title: Automatic cell counting with imagej publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.12.007 – year: 1989 ident: 10.1016/j.jneumeth.2017.03.002_bib0235 – volume: 26 start-page: 553 issue: 6 year: 2000 ident: 10.1016/j.jneumeth.2017.03.002_bib0280 article-title: The evolution of Alzheimer's disease-related cytoskeletal pathology in the human raphe nuclei publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1046/j.0305-1846.2000.00291.x – volume: 25 start-page: 303 issue: 4 year: 1996 ident: 10.1016/j.jneumeth.2017.03.002_bib0260 article-title: Accuracy of least squares designed spatial fir filters for segmentation of images of fluorescence stained cell nuclei publication-title: Cytometry doi: 10.1002/(SICI)1097-0320(19961201)25:4<303::AID-CYTO1>3.0.CO;2-E – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.jneumeth.2017.03.002_bib0015 article-title: The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study publication-title: Exp. Brain Res. doi: 10.1007/BF00274983 – start-page: 1212 year: 2015 ident: 10.1016/j.jneumeth.2017.03.002_bib0160 article-title: Automated cell segmentation with 3D fluorescence microscopy images – volume: 4 issue: 2 year: 2010 ident: 10.1016/j.jneumeth.2017.03.002_bib0110 article-title: Post-mortem diagnosis of dementia by informant interview publication-title: Dementia and Neuropsychologia doi: 10.1590/S1980-57642010DN40200011 – year: 2008 ident: 10.1016/j.jneumeth.2017.03.002_bib0085 article-title: Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images publication-title: ISBI – volume: 39 issue: 3 year: 1987 ident: 10.1016/j.jneumeth.2017.03.002_bib0255 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X – start-page: 5 year: 1999 ident: 10.1016/j.jneumeth.2017.03.002_bib0100 article-title: Method for optimal directions for frame design publication-title: IEEE Int. Conf. Acoust. Speech Sig. Process. – volume: 8 start-page: 151 year: 2007 ident: 10.1016/j.jneumeth.2017.03.002_bib0125 article-title: Brain bank of the Brazilian aging brain study group - a milestone reached ad more than 1600 collected brains publication-title: Cell Tissue Bank doi: 10.1007/s10561-006-9022-z – year: 2014 ident: 10.1016/j.jneumeth.2017.03.002_bib0040 article-title: Deep learning based automatic immune cell detection for immunohistochemistry images publication-title: MICCAI – year: 2009 ident: 10.1016/j.jneumeth.2017.03.002_bib0200 article-title: Online dictionary learning for sparse coding publication-title: ICML doi: 10.1145/1553374.1553463 – start-page: 17 year: 2007 ident: 10.1016/j.jneumeth.2017.03.002_bib0180 article-title: Efficient sparse coding algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 56 start-page: 23 issue: 1 year: 2003 ident: 10.1016/j.jneumeth.2017.03.002_bib0185 article-title: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks publication-title: Cytometry A: J. Int. Soc. Anal. Cytol. doi: 10.1002/cyto.a.10079 – start-page: 11 year: 2010 ident: 10.1016/j.jneumeth.2017.03.002_bib0210 article-title: Online learning for matrix factorization and sparse coding publication-title: J. Mach. Learn. Res. – year: 2013 ident: 10.1016/j.jneumeth.2017.03.002_bib0330 article-title: Automated pap smear cell analysis: optimizing the cervix cytological examination publication-title: ICMLA – volume: 6 start-page: 26286 year: 2016 ident: 10.1016/j.jneumeth.2017.03.002_bib0190 article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis publication-title: Sci. Rep. doi: 10.1038/srep26286 – volume: 16 start-page: 411 issue: Pt 2 year: 2013 ident: 10.1016/j.jneumeth.2017.03.002_bib0045 article-title: Mitosis detection in breast cancer histology images with deep neural networks, Medical image computing and computer-assisted intervention: MICCAI publication-title: Int. Conf. Med. Image Comput. Comput.-Assist. Interv. – volume: 226 start-page: 171 year: 2014 ident: 10.1016/j.jneumeth.2017.03.002_bib0315 article-title: A novel approach for integrative studies on neurodegenerative diseases in human brains publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.01.030 – volume: 7 issue: 1 year: 2008 ident: 10.1016/j.jneumeth.2017.03.002_bib0205 article-title: Learning multiscale sparse representations for image and video restoration publication-title: SIAM Multiscale Model. Simul. doi: 10.1137/070697653 – year: 2012 ident: 10.1016/j.jneumeth.2017.03.002_bib0165 article-title: Imagenet classification with deep convolutional neural networks publication-title: Neural Inf. Process. Syst – volume: 7 start-page: R100 issue: 10 year: 2006 ident: 10.1016/j.jneumeth.2017.03.002_bib0035 article-title: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol. doi: 10.1186/gb-2006-7-10-r100 – start-page: 54 year: 2006 ident: 10.1016/j.jneumeth.2017.03.002_bib0090 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. – volume: 18 start-page: 1817 issue: 8 year: 2009 ident: 10.1016/j.jneumeth.2017.03.002_bib0310 article-title: Active mask segmentation of fluorescence microscope images publication-title: IEEE Trans. Image Process.: Publ. IEEE Sig. Process. Soc. doi: 10.1109/TIP.2009.2021081 – start-page: 4731 year: 2014 ident: 10.1016/j.jneumeth.2017.03.002_bib0245 article-title: Adaptive automatic segmentation of leishmaniasis parasite in indirect immunofluorescence images – volume: 39 start-page: 859 issue: 6 year: 2005 ident: 10.1016/j.jneumeth.2017.03.002_bib0295 article-title: Software for quantification of labeled bacteria from digital microscope images by automated image analysis publication-title: BioTechniques doi: 10.2144/000112018 – volume: 128 start-page: 261 issue: Pt 3 year: 1982 ident: 10.1016/j.jneumeth.2017.03.002_bib0070 article-title: The evaluation of autofluorescence emission spectra derived from neuronal lipopigment publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1982.tb04628.x – year: 2001 ident: 10.1016/j.jneumeth.2017.03.002_bib0075 – year: 2006 ident: 10.1016/j.jneumeth.2017.03.002_bib0095 article-title: Maximum-intensity-linking for segmentation of fluorescence-stained cells publication-title: MIAAB – volume: 98 issue: 6 year: 2010 ident: 10.1016/j.jneumeth.2017.03.002_bib0285 article-title: Dictionaries for sparse representation modeling publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2040551 – volume: 17 year: 2015 ident: 10.1016/j.jneumeth.2017.03.002_bib0305 article-title: Cellprofiler: novel automated image segmentation procedure for super-resolution microscopy publication-title: Biol. Proced. Online doi: 10.1186/s12575-015-0023-9 – volume: 193 start-page: 380 issue: 2 year: 2010 ident: 10.1016/j.jneumeth.2017.03.002_bib0250 article-title: A novel algorithm for optimal image thresholding of biological data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.08.031 – volume: 123 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.jneumeth.2017.03.002_bib0225 article-title: National institute on aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach publication-title: Acta Neuropathol. doi: 10.1007/s00401-011-0910-3 – volume: 8 start-page: e66198 issue: 6 year: 2013 ident: 10.1016/j.jneumeth.2017.03.002_bib0230 article-title: Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: application to the detection of residual disease in tumor margins publication-title: PLOS ONE doi: 10.1371/journal.pone.0066198 – volume: 1240 start-page: 62 year: 2008 ident: 10.1016/j.jneumeth.2017.03.002_bib0115 article-title: An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections publication-title: Brain Res. doi: 10.1016/j.brainres.2008.08.060 – year: 2015 ident: 10.1016/j.jneumeth.2017.03.002_bib0175 article-title: Boundary fitting based segmentation of fluorescence microscopy images publication-title: SPIE Imaging Multimedia Anal. Web Mobile World – year: 2014 ident: 10.1016/j.jneumeth.2017.03.002_bib0025 article-title: Image segmentation using dictionary learning and compressed random features publication-title: Dig. Image Comput.: Techn. Appl – volume: 58 issue: 1 year: 1996 ident: 10.1016/j.jneumeth.2017.03.002_bib0320 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc., Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 452 start-page: 199 year: 2009 ident: 10.1016/j.jneumeth.2017.03.002_bib0155 article-title: Cytosolic lc3 ratio as a quantitative index of macroautophagy publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(08)03613-6 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.jneumeth.2017.03.002_bib0345 article-title: An introduction to roc analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – start-page: 1 year: 2003 ident: 10.1016/j.jneumeth.2017.03.002_bib0340 article-title: Roc graphs: notes and practical considerations for data mining researchers publication-title: Technical Report HPL-20034 – year: 2014 ident: 10.1016/j.jneumeth.2017.03.002_bib0325 article-title: Segmentation of subcellular compartiments combining superpixel representation with voronoi diagrams publication-title: Int. Sympos. Biomed. Imaging – volume: 16 start-page: 1436 issue: 7 year: 2012 ident: 10.1016/j.jneumeth.2017.03.002_bib0020 article-title: Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.05.012 – volume: 228 year: 2015 ident: 10.1016/j.jneumeth.2017.03.002_bib0290 article-title: A personal introduction to theoretical dictionary learning publication-title: Internationale Mathematische Nachrichten – volume: 20 issue: 49 year: 2000 ident: 10.1016/j.jneumeth.2017.03.002_bib0145 article-title: Celloidin mounting (embedding without infiltration) – a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations publication-title: J. Chem. Neuroanat. – volume: 9 issue: 1 year: 1979 ident: 10.1016/j.jneumeth.2017.03.002_bib0240 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 360 start-page: 29 issue: 1 year: 2015 ident: 10.1016/j.jneumeth.2017.03.002_bib0150 article-title: How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology publication-title: Cell Tissue Res. doi: 10.1007/s00441-015-2127-6 – start-page: 187 year: 2016 ident: 10.1016/j.jneumeth.2017.03.002_bib0135 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing – year: 2009 ident: 10.1016/j.jneumeth.2017.03.002_bib0140 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10.1016/j.jneumeth.2017.03.002_bib0300 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – year: 1999 ident: 10.1016/j.jneumeth.2017.03.002_bib0030 article-title: Curvelets – a surprisingly effective nonadaptive representation for objects with edges publication-title: Curves and Surface Fitting: Saint-Malo – volume: 54. issue: 11 year: 2006 ident: 10.1016/j.jneumeth.2017.03.002_bib0010 article-title: The k-svd: an algorithm for designing of overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Sig. Process. doi: 10.1109/TSP.2006.881199 – year: 2012 ident: 10.1016/j.jneumeth.2017.03.002_bib0065 – volume: 220 start-page: 46 issue: 1 year: 2013 ident: 10.1016/j.jneumeth.2017.03.002_bib0080 article-title: A multispectral led array for the reduction of background autofluorescence in brain tissue publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.08.018 – year: 2007 ident: 10.1016/j.jneumeth.2017.03.002_bib0265 article-title: Self-taught learning: transfer learning from unlabeled data publication-title: ICML doi: 10.1145/1273496.1273592 – volume: 15 start-page: 85 issue: 3 year: 2011 ident: 10.1016/j.jneumeth.2017.03.002_bib0350 article-title: Particle shape factors and their use in image analysispart 1: Theory publication-title: J. GXP Complience – volume: 62 start-page: 405 issue: 6 year: 2014 ident: 10.1016/j.jneumeth.2017.03.002_bib0055 article-title: Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue publication-title: J. Histochem. Cytochem.: Off. J. Histochem. Soc. doi: 10.1369/0022155414531549 – start-page: 521 year: 2015 ident: 10.1016/j.jneumeth.2017.03.002_bib0170 article-title: Deep learning publication-title: Nature – volume: 35 issue: 1 year: 2016 ident: 10.1016/j.jneumeth.2017.03.002_bib0335 article-title: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2458702 – volume: 11 start-page: e0152528 issue: 4 year: 2016 ident: 10.1016/j.jneumeth.2017.03.002_bib0005 article-title: A parallel distributed-memory particle method enables acquisition-rate segmentation of large fluorescence microscopy images publication-title: PLOS ONE doi: 10.1371/journal.pone.0152528 – volume: 8 start-page: 963 issue: 6 year: 2012 ident: 10.1016/j.jneumeth.2017.03.002_bib0275 article-title: Analysis of macroautophagy by immunohistochemistry publication-title: Autophagy doi: 10.4161/auto.20186 – start-page: 13 year: 1997 ident: 10.1016/j.jneumeth.2017.03.002_bib0060 article-title: Adaptive greedy approximations publication-title: Constr. Approx. – volume: 83 start-page: 97 issue: 2 year: 1998 ident: 10.1016/j.jneumeth.2017.03.002_bib0050 article-title: Reduction of background autofluorescence in brain sections following immersion in sodium borohydride publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(98)00066-1 – volume: 2. issue: 1 year: 1936 ident: 10.1016/j.jneumeth.2017.03.002_bib0195 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India |
SSID | ssj0004906 |
Score | 2.3034105 |
Snippet | •Our method detects and classifies cells in human brain fluorescence microscopy.•Dictionary learning and sparse coding learn to better represent cells in our... Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease... BACKGROUNDImmunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | Alzheimer Disease - pathology Brain - cytology Cell Count - methods Dictionary learning Fluorescent Antibody Technique - methods Humans Image Processing, Computer-Assisted - methods Image segmentation Immunofluorescence Machine Learning Microscopy Microscopy, Fluorescence - methods Pattern Recognition, Automated - methods Postmortem human brain Reproducibility of Results Sparse models |
Title | Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding |
URI | https://dx.doi.org/10.1016/j.jneumeth.2017.03.002 https://www.ncbi.nlm.nih.gov/pubmed/28267565 https://www.proquest.com/docview/1875400093 https://www.osti.gov/biblio/1413763 https://pubmed.ncbi.nlm.nih.gov/PMC5600818 |
Volume | 282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamIiEuCDZ-ZIPJSIhb1iR24vhYTUwFtF1g0m6WY7sj1epMbXPohdv-773nJGVFoB04tvWzkr7n5_fs772PkI9ZlbGikgnkJq6Meap5rHlp4wLJjySrDAsH-ucXxfSSf73Kr_bI6VALg7DK3vd3Pj146_6bcf9vjm_revwdC3EgqQKTYoFEBivYuUArP_n1G-bBZeDXxMF4X5k8qBKen8y9a5GpGSFeomt2mv1rgxo1sOb-Fof-Cad8sD-dvSDP-8CSTrpnf0n2nN8nBxMPSfViQz_RAPUMZ-j75Ol5f6N-QO4mLQzQCH6meIhPrVsHdJan2ltqMLhGNFFQIK09DaR-tEJmCTq7aZtl1w-KLhDZhzUuG1ovwEmtKELqr6mtw2x6uaE9Q8V1mBk82XLlqGlw83xFLs8-_zidxj01Q2zygq9jnRlIHTnjNme5s7o0mUxdJqpKammZdbPEVbnUIk11mtlSClfOeInBAAQYVrDXZOQb794SaoS2OajJyGTGhWUS5oCkxzImuJFlEZF80Icyfd9ypM-4UQNAba4GPSrUo0qYAj1GZLyVu-06dzwqIQd1qx0bVLC9PCp7hPaBcth81yBKCQThddGDR-TDYDYKli-qU3vXtCuVQr7Iw7lSRN50ZrR9WsiGIZ0r8oiIHQPbDsDW4Lu_-PpnaBGOcSyEYof_8UZH5Bl-wpuzNH9HRutl695DALaujsMKOyZPJl--TS_uAec3M8M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6FNh2GbZ2D697aMCwm5fYkh86BsWKdG1yWQv0JsiS0jponCKJD_kB-98jZTtrhg097BqLgh1SFCl95AfwOS5inhZygLmJy0MRaRFqkdswJfIjyQvD_YH-eJKOLsX3q-RqD467WhiCVba-v_Hp3lu3v_Tbf7N_V5b9H1SIg0kVmhT3JDKPYJ-6UyU92B-eno0mv8sjpafYpPF0ZTm4Vyg8-zqrXE1kzYTyypp-p_G_9qjeApfd30LRPxGV97aok-fwrI0t2bB5_Rew56oDOBxWmFfPN-wL82hPf4x-AI_H7aX6Ifwc1jhAE_6Z0Tk-s27tAVoV05VlhuJrAhR5HbKyYp7XjxVELsGmt_Vi2bSEYnMC91GZy4aVc_RTK0ao-mtmSz-bXm5YS1Jx7WdGZ7ZcOWYWtH--hMuTbxfHo7BlZwhNkop1qGOD2aPgwiY8cVbnJpaRi7OikFpabt104IpE6iyKdBTbXGYun4qc4gGMMWzGX0GvWlTuDTCTaZugmowcTEVmucQ5MO-xnGfCyDwNIOn0oUzbupwYNG5Vh1GbqU6PivSoBlyhHgPob-XumuYdD0rITt1qxwwV7jAPyh6RfZAc9d81BFRCQfxccuIBfOrMRuEKJnXqyi3qlYowZRT-aCmA140Zbd8WE2LM6NIkgGzHwLYDqDv47pOqvPFdwimUxWjs7X980Ud4MroYn6vz08nZETylJ3SRFiXvoLde1u49xmPr4kO73n4BSdM2dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automating+cell+detection+and+classification+in+human+brain+fluorescent+microscopy+images+using+dictionary+learning+and+sparse+coding&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Alegro%2C+Maryana&rft.au=Theofilas%2C+Panagiotis&rft.au=Nguy%2C+Austin&rft.au=Castruita%2C+Patricia+A&rft.date=2017-04-15&rft.eissn=1872-678X&rft.volume=282&rft.spage=20&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.03.002&rft_id=info%3Apmid%2F28267565&rft.externalDocID=28267565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |