Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading

Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) bas...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 291; no. Pt 1; p. 132843
Main Authors Aryal, Nabin, Zhang, Yifeng, Bajracharya, Suman, Pant, Deepak, Chen, Xuyuan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading. [Display omitted] •Microbial electrochemical approach for biogas upgrading is extensively scrutinized.•Data related to operational parameters for process optimization are discussed.•Applied potential and cathodic catalyst are the keys to reactor performances.•Insight associated with reactor configuration and resource recovery are provided.
AbstractList Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There are limited literature critically reviewing the latest scientific development on the Bioelectrochemical (BES) based biogas upgrading technology, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode material tested in BES reactor. This review analyzes the reported performance and identifies the crucial parameters to be considered for future optimization, which is currently missing. In this review, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. The three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading. [Display omitted] •Microbial electrochemical approach for biogas upgrading is extensively scrutinized.•Data related to operational parameters for process optimization are discussed.•Applied potential and cathodic catalyst are the keys to reactor performances.•Insight associated with reactor configuration and resource recovery are provided.
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO ) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO reduction efficiency, methane (CH ) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO to CH . Most of the studies on the biogas upgrading process conclude hydrogen (H ) mediated electron transfer mechanism in BES biogas upgrading.
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO₂) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO₂ reduction efficiency, methane (CH₄) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO₂ to CH₄. Most of the studies on the biogas upgrading process conclude hydrogen (H₂) mediated electron transfer mechanism in BES biogas upgrading.
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.
ArticleNumber 132843
Author Aryal, Nabin
Zhang, Yifeng
Bajracharya, Suman
Pant, Deepak
Chen, Xuyuan
Author_xml – sequence: 1
  givenname: Nabin
  orcidid: 0000-0002-1035-4561
  surname: Aryal
  fullname: Aryal, Nabin
  email: nabin.aryal@usn.no
  organization: Department of Microsystems, University of South-Eastern Norway, Borre, Norway
– sequence: 2
  givenname: Yifeng
  orcidid: 0000-0002-2832-2277
  surname: Zhang
  fullname: Zhang, Yifeng
  organization: Department of Environmental Engineering, Technical University of Denmark, Denmark
– sequence: 3
  givenname: Suman
  surname: Bajracharya
  fullname: Bajracharya, Suman
  organization: Biochemical Process Engineering Department, Luleå University of Technology, Sweden
– sequence: 4
  givenname: Deepak
  orcidid: 0000-0002-1425-9588
  surname: Pant
  fullname: Pant, Deepak
  organization: Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
– sequence: 5
  givenname: Xuyuan
  surname: Chen
  fullname: Chen, Xuyuan
  organization: Department of Microsystems, University of South-Eastern Norway, Borre, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34767847$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87859$$DView record from Swedish Publication Index
BookMark eNqNkUtv1DAUhS1URKeFv4DCjgUZ_Ha8QtXwlIrY8FhajnMzvaNMHOykPH49HqZUiA1d2df6ztH1OWfkZIwjEPKE0TWjTD_frcMV7GOeriDBmlPO1kzwRop7ZMUaY2vGbXNCVpRKVWsl1Ck5y3lHaREr-4CcCmm0aaRZkS_vMaTYoh8qGCDMKR6sMZTZT1OKvoy5in0VfGrjWHUYv2MH1TLjgD_9jOWtj6lqMW59rpZpm3yH4_Yhud_7IcOjm_OcfHr96uPmbX354c27zcVlHZSWc21b31DDRduDVMZqK2i5gOmVFyxoq1nfQpAAnNGOaQtSaKuAa6-597IX5-TZ0Td_g2lp3ZRw79MPFz26l_j5wsW0dcO8uMY0yhb86REvX_u6QJ7dHnOAYfAjxCU7roWWVkkl_48qa6TlipmCPr5Bl3YP3e0Sf2IugD0CJeucE_S3CKPuUKnbub8qdYdK3bHSon3xjzbg_Dv4OXkc7uSwOTpAKeIaIbkcEMYAHaZSuesi3sHlF4IixeM
CitedBy_id crossref_primary_10_1016_j_biteb_2024_101940
crossref_primary_10_1016_j_jenvman_2023_118785
crossref_primary_10_3390_fermentation11010040
crossref_primary_10_1021_acs_energyfuels_2c04122
crossref_primary_10_1016_j_rser_2024_114704
crossref_primary_10_3390_fermentation9070610
crossref_primary_10_1016_j_rineng_2025_104673
crossref_primary_10_1186_s13068_024_02592_4
crossref_primary_10_1016_j_envres_2022_113006
crossref_primary_10_1016_j_hazadv_2024_100573
crossref_primary_10_3389_fmicb_2022_1055494
crossref_primary_10_1016_j_scitotenv_2022_157824
crossref_primary_10_1016_j_scitotenv_2024_175814
crossref_primary_10_1007_s10311_022_01468_z
crossref_primary_10_1016_j_psep_2024_06_102
crossref_primary_10_1016_j_jenvman_2024_120733
crossref_primary_10_3846_mla_2024_21297
crossref_primary_10_1016_j_oneear_2023_02_011
crossref_primary_10_1016_j_biortech_2022_127385
crossref_primary_10_1007_s11783_025_1921_y
crossref_primary_10_1039_D4NJ01053A
crossref_primary_10_3846_mla_2023_17242
crossref_primary_10_55708_js0104013
crossref_primary_10_1016_j_cej_2022_137079
crossref_primary_10_1016_j_jpowsour_2024_235461
crossref_primary_10_1016_j_biotechadv_2023_108218
crossref_primary_10_1016_j_chemosphere_2023_139616
crossref_primary_10_1016_j_biotechadv_2024_108474
crossref_primary_10_1016_j_ceja_2025_100722
crossref_primary_10_1007_s11157_024_09708_0
crossref_primary_10_1016_j_biotechadv_2024_108372
Cites_doi 10.1021/acs.est.6b02101
10.1016/j.apenergy.2020.115101
10.1016/j.elecom.2014.05.026
10.1016/j.biortech.2015.06.058
10.1016/j.watres.2018.10.092
10.1016/j.ijhydene.2019.06.189
10.1016/j.ijhydene.2016.08.206
10.1039/C4EW00066H
10.1016/j.chemosphere.2021.132188
10.1016/j.biortech.2020.124177
10.1038/s42004-019-0145-0
10.1021/es8019353
10.1007/BF00218466
10.1039/C5RA09039C
10.1039/D1RA00920F
10.1016/j.jenvman.2021.113374
10.1016/j.bioelechem.2019.03.011
10.1007/s11356-016-7196-x
10.1007/s00253-009-2378-9
10.3390/chemengineering2030043
10.1016/j.jes.2015.07.006
10.1128/mBio.00496-15
10.1002/bit.21821
10.1016/j.watres.2020.116679
10.3390/ijms18040874
10.1016/j.bej.2016.11.003
10.1021/acs.est.7b01574
10.1016/j.electacta.2020.135887
10.1016/j.enconman.2018.04.074
10.1016/j.bej.2019.107393
10.1016/j.biortech.2013.12.046
10.1016/j.tibtech.2020.08.006
10.3390/en14020503
10.1021/es803531g
10.1002/adfm.201804860
10.1016/j.ijhydene.2018.08.051
10.1039/C7GC01801K
10.1021/acssuschemeng.1c02260
10.1016/j.biortech.2019.122448
10.1021/acssuschemeng.1c03212
10.1016/j.tibtech.2008.04.008
10.1039/C8TA05322G
10.1016/S0043-1354(02)00077-5
10.1016/j.biortech.2017.03.038
10.1016/j.tibtech.2016.08.010
10.1016/j.biortech.2017.09.021
10.1016/j.bej.2020.107886
10.1016/j.renene.2016.03.002
10.1016/j.biortech.2017.08.095
10.1016/j.biotechadv.2018.01.011
10.1016/j.biortech.2018.06.013
10.1016/j.jenvman.2003.11.001
10.1126/science.1217412
10.1016/j.cej.2019.03.119
10.3389/fmicb.2019.02563
10.1016/j.jcou.2017.11.006
10.1016/j.ijhydene.2009.03.004
10.1002/fuce.201700048
10.1016/j.biortech.2017.09.097
10.1021/acs.est.5b04431
10.1126/science.237.4814.509
10.1016/j.jhazmat.2021.125992
10.1016/j.tibtech.2014.10.004
10.1016/j.scitotenv.2020.142668
10.1016/j.scitotenv.2019.06.361
10.1016/j.wasman.2019.02.023
10.1016/j.watres.2021.117055
10.1021/jacs.5b00037
10.1016/j.rser.2015.06.029
10.1016/j.biortech.2014.09.127
10.1016/j.biortech.2019.121877
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.chemosphere.2021.132843
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID oai_DiVA_org_ltu_87859
34767847
10_1016_j_chemosphere_2021_132843
S0045653521033154
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADXHL
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAYXX
AGRNS
BNPGV
CITATION
RIG
AACTN
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
SSH
7S9
L.6
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c564t-9ba80723bfe45796930e45e7f5a31c6961fbec4ee210d169e43695e26a62aa4f3
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Thu Aug 21 06:29:26 EDT 2025
Fri Jul 11 07:29:48 EDT 2025
Fri Jul 11 01:38:21 EDT 2025
Wed Feb 19 02:27:20 EST 2025
Thu Jul 31 00:26:45 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Sat Aug 23 17:12:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Electromethanogens
Ex-situ
Biomethane
In-situ
CO2 reduction
Bioelectrochemical system
CO reduction
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-9ba80723bfe45796930e45e7f5a31c6961fbec4ee210d169e43695e26a62aa4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1035-4561
0000-0002-1425-9588
0000-0002-2832-2277
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0045653521033154
PMID 34767847
PQID 2597492517
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_87859
proquest_miscellaneous_2636495454
proquest_miscellaneous_2597492517
pubmed_primary_34767847
crossref_primary_10_1016_j_chemosphere_2021_132843
crossref_citationtrail_10_1016_j_chemosphere_2021_132843
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2021_132843
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gao, Zhang, Xu, Teng (bib35) 2021; 190
Zhou, Xing, Xu, Su, Zhang (bib79) 2020; 269
Gadkari, Haji, Beigi, Aryal, Sadhukhan, Mirza Beigi, Aryal, Sadhukhan (bib33) 2021; 11
Bian, Xu, Katuri, Saikaly (bib18) 2021; 319
Geppert, Liu, van Eerten-Jansen, Weidner, Buisman, ter Heijne (bib36) 2016
Rozendal, Hamelers, Rabaey, Keller, Buisman (bib64) 2008; 26
Li, Alaimo, Kim, Kado, Peppers, Xue, Wan, Green, Zhang, Jenkins, Vogel, Wuertz, Young, Kleeman (bib51) 2019
Zeppilli, Mattia, Villano, Majone (bib75) 2017; 17
Geppert, Liu, Weidner, Heijne (bib37) 2019; 44
Zeppilli, Cristiani, Armi, Villano (bib74) 2021; 167
(bib40) 2017
Colombo, Marzorati, Lucchini, Cristiani, Pant, Schievano (bib25) 2017; 237
Schievano, Goglio, Erckert, Marzorati, Rago, Cristiani (bib65) 2018; 1
Nancharaiah, Venkata Mohan, Lens (bib59) 2015; 195
Jiang, May, Lu, Liang, Huang, Ren, Lu, Liang, Huang, Ren (bib41) 2019; 149
Kvist, Aryal (bib49) 2019; 87
Gong, English, Pant, Patzke, Protti, Zhang (bib38) 2021; 9
Logan (bib57) 2010; 85
Krieg, Sydow, Schröder, Schrader, Holtmann (bib48) 2014; 32
Aryal, Kvist (bib7) 2018; 2
Bajracharya, Krige, Matsakas, Rova, Christakopoulos (bib12) 2022; 287
Christodoulou, Okoroafor, Parry, Velasquez-Orta (bib23) 2017; 22
Sun, Li, Yan, Liu, Yu, Yu (bib68) 2015
Zeppilli, Paiano, Torres, Pant (bib76) 2021; 130155
Alqahtani, Bajracharya, Katuri, Ali, Xu, Alarawi, Saikaly (bib3) 2020; 766
Aryal, Ottosen, Kofoed, Pant (bib10) 2021
Jin, Zhang, Li, Zhao, Angelidaki (bib42) 2017; 51
Fu, Li, Pan, Huang, Li, Cui, Liu, Tan, Li (bib32) 2020; 297
Kelly, He (bib45) 2013; 153
Tartakovsky, Lebrun, Guiot, Bock (bib69) 2021; 45
Zeppilli, Simoni, Paiano, Majone (bib78) 2019
Aryal, Kvist, Ammam, Pant, Ottosen (bib8) 2018
Hernández-Flores, Poggi-Varaldo, Solorza-Feria (bib39) 2016; 41
Liu, Xiao, Li, Chen, Sun, Cheng, Li, Dang, Smith, Holmes (bib53) 2021; 197
Bo, Zhu, Zhang, Tao, He, Li, Yan (bib20) 2014; 45
Corbellini, Kougias, Treu, Bassani, Malpei, Angelidaki (bib26) 2018; 168
Alqahtani, Bajracharya, Katuri, Ali, Ragab, Michoud, Daffonchio, Saikaly (bib2) 2019; 10
Bajracharya, Vanbroekhoven, Buisman, Pant, Strik (bib14) 2016; 23
Liu, Charles, Ho, Cord-Ruwisch, Cheng (bib55) 2017; 245
Aryal, Ammam, Patil, Pant (bib6) 2017; 19
Christodoulou, Velasquez-Orta (bib24) 2016
Fu, Angelidaki, Zhang (bib31) 2021; 39
Park, Lee, Tian, Jun (bib61) 2018; 247
Aryal, Wan, Overgaard, Stoot, Chen, Tremblay, Zhang (bib11) 2019; 128
Aryal, Mørck Ottosen, Bentien, Pant, Wegener Kofoed (bib9) 2021
Singh, Noori, Verma (bib66) 2020; 338
Zeppilli, Paiano, Villano, Majone (bib77) 2019; 152
Daniels, Belay, Rajagopal, Weimer (bib27) 1987; 273
Xu, Wang, Holmes (bib72) 2014; 173
Du, Chen, Chen, Meyer (bib29) 2015; 137
Jourdin, Freguia, Flexer, Keller (bib43) 2016; 50
Cerrillo, Burgos, Bonmatí (bib21) 2021; 14
Bian, Alqahtani, Katuri, Liu, Bajracharya, Lai, Saikaly (bib17) 2018; 6
Gajaraj, Huang, Zheng, Hu (bib34) 2017; 117
Yin, Zhu, Zhan, Bo, Yang, Tao, He, Li, Yan (bib73) 2016; 42
Cheng, Xing, Call, Logan (bib22) 2009; 43
Kokkoli, Zhang, Angelidaki (bib46) 2018; 247
Blasco-Gómez, Batlle-Vilanova, Villano, Balaguer, Colprim, Puig (bib19) 2017; 18
Nelabhotla, Pant, Dinamarca (bib80) 2021
Torres, Marcus, Rittmann (bib71) 2008; 100
Murto, Björnsson, Mattiasson (bib58) 2004; 70
Patel, Patel, Kumar, Mondal, Singh, Khan, Singh (bib62) 2021; 297
Ahring, Sandberg, Angelidaki (bib1) 1995; 43
Batlle-Vilanova, Rovira-Alsina, Puig, Balaguer, Icaran, Monsalvo, Rogalla, Colprim (bib16) 2019
Rodríguez Arredondo, Kuntke, Jeremiasse, Sleutels, Buisman, ter Heijne (bib63) 2015; 1
Deutzmann, Sahin, Spormann (bib28) 2015; 6
Liu, Yuan, Gu, Chen, Sun, Li, Li, Dang, Smith, Holmes (bib54) 2020; 11368−11375
Nogueira, Melo, Purkhold, Wuertz, Wagner (bib60) 2003; 37
Alqahtani, Katuri, Bajracharya, Yu, Lai, Saikaly (bib4) 2018; 28
Lee, Nagendranatha Reddy, Min (bib50) 2019; 44
Kracke, Wong, Maegaard, Deutzmann, Hubert, Hahn, Jaramillo, Spormann (bib47) 2019; 2
Batlle-Vilanova, Puig, Gonzalez-Olmos, Vilajeliu-Pons, Balaguer, Colprim (bib15) 2015; 5
Sleutels, Hamelers, Rozendal, Buisman (bib67) 2009; 34
Kaur, Singh, Chhabra, Marwaha, Kim, Tripathi (bib44) 2021; 417
Liu, Sun, Zhao, Dang, Holmes (bib52) 2019; 291
Elsamadony, Elreedy, Mostafa, Fujii, Gescher, Yekta, Schnu (bib30) 2021
Angelidaki, Treu, Tsapekos, Luo, Campanaro, Wenzel, Kougias (bib5) 2018
Bajracharya, Sharma, Mohanakrishna, Dominguez Benetton, Strik, Sarma, Pant (bib13) 2016; 98
Logan, Rabaey (bib56) 2012; 337
Torres, Lee, Rittmann (bib70) 2008; 42
Kvist (10.1016/j.chemosphere.2021.132843_bib49) 2019; 87
Zeppilli (10.1016/j.chemosphere.2021.132843_bib74) 2021; 167
Zhou (10.1016/j.chemosphere.2021.132843_bib79) 2020; 269
Kokkoli (10.1016/j.chemosphere.2021.132843_bib46) 2018; 247
Nogueira (10.1016/j.chemosphere.2021.132843_bib60) 2003; 37
Batlle-Vilanova (10.1016/j.chemosphere.2021.132843_bib15) 2015; 5
Aryal (10.1016/j.chemosphere.2021.132843_bib10) 2021
Logan (10.1016/j.chemosphere.2021.132843_bib57) 2010; 85
Geppert (10.1016/j.chemosphere.2021.132843_bib37) 2019; 44
Bajracharya (10.1016/j.chemosphere.2021.132843_bib13) 2016; 98
Liu (10.1016/j.chemosphere.2021.132843_bib54) 2020; 11368−11375
Bian (10.1016/j.chemosphere.2021.132843_bib18) 2021; 319
Singh (10.1016/j.chemosphere.2021.132843_bib66) 2020; 338
Aryal (10.1016/j.chemosphere.2021.132843_bib7) 2018; 2
Geppert (10.1016/j.chemosphere.2021.132843_bib36) 2016
Park (10.1016/j.chemosphere.2021.132843_bib61) 2018; 247
Bajracharya (10.1016/j.chemosphere.2021.132843_bib14) 2016; 23
Tartakovsky (10.1016/j.chemosphere.2021.132843_bib69) 2021; 45
Zeppilli (10.1016/j.chemosphere.2021.132843_bib77) 2019; 152
Ahring (10.1016/j.chemosphere.2021.132843_bib1) 1995; 43
Bajracharya (10.1016/j.chemosphere.2021.132843_bib12) 2022; 287
Christodoulou (10.1016/j.chemosphere.2021.132843_bib23) 2017; 22
Blasco-Gómez (10.1016/j.chemosphere.2021.132843_bib19) 2017; 18
Rodríguez Arredondo (10.1016/j.chemosphere.2021.132843_bib63) 2015; 1
Sleutels (10.1016/j.chemosphere.2021.132843_bib67) 2009; 34
Alqahtani (10.1016/j.chemosphere.2021.132843_bib3) 2020; 766
Batlle-Vilanova (10.1016/j.chemosphere.2021.132843_bib16) 2019
Yin (10.1016/j.chemosphere.2021.132843_bib73) 2016; 42
Sun (10.1016/j.chemosphere.2021.132843_bib68) 2015
Patel (10.1016/j.chemosphere.2021.132843_bib62) 2021; 297
Colombo (10.1016/j.chemosphere.2021.132843_bib25) 2017; 237
Corbellini (10.1016/j.chemosphere.2021.132843_bib26) 2018; 168
Torres (10.1016/j.chemosphere.2021.132843_bib71) 2008; 100
Zeppilli (10.1016/j.chemosphere.2021.132843_bib78) 2019
Kracke (10.1016/j.chemosphere.2021.132843_bib47) 2019; 2
Aryal (10.1016/j.chemosphere.2021.132843_bib9) 2021
Jiang (10.1016/j.chemosphere.2021.132843_bib41) 2019; 149
Zeppilli (10.1016/j.chemosphere.2021.132843_bib76) 2021; 130155
Angelidaki (10.1016/j.chemosphere.2021.132843_bib5) 2018
Jourdin (10.1016/j.chemosphere.2021.132843_bib43) 2016; 50
Liu (10.1016/j.chemosphere.2021.132843_bib52) 2019; 291
Kelly (10.1016/j.chemosphere.2021.132843_bib45) 2013; 153
Cheng (10.1016/j.chemosphere.2021.132843_bib22) 2009; 43
Lee (10.1016/j.chemosphere.2021.132843_bib50) 2019; 44
Liu (10.1016/j.chemosphere.2021.132843_bib53) 2021; 197
Aryal (10.1016/j.chemosphere.2021.132843_bib11) 2019; 128
Liu (10.1016/j.chemosphere.2021.132843_bib55) 2017; 245
Aryal (10.1016/j.chemosphere.2021.132843_bib6) 2017; 19
Murto (10.1016/j.chemosphere.2021.132843_bib58) 2004; 70
Christodoulou (10.1016/j.chemosphere.2021.132843_bib24) 2016
Daniels (10.1016/j.chemosphere.2021.132843_bib27) 1987; 273
Gadkari (10.1016/j.chemosphere.2021.132843_bib33) 2021; 11
Alqahtani (10.1016/j.chemosphere.2021.132843_bib4) 2018; 28
Fu (10.1016/j.chemosphere.2021.132843_bib31) 2021; 39
Fu (10.1016/j.chemosphere.2021.132843_bib32) 2020; 297
Jin (10.1016/j.chemosphere.2021.132843_bib42) 2017; 51
Bo (10.1016/j.chemosphere.2021.132843_bib20) 2014; 45
Xu (10.1016/j.chemosphere.2021.132843_bib72) 2014; 173
(10.1016/j.chemosphere.2021.132843_bib40) 2017
Gong (10.1016/j.chemosphere.2021.132843_bib38) 2021; 9
Kaur (10.1016/j.chemosphere.2021.132843_bib44) 2021; 417
Gajaraj (10.1016/j.chemosphere.2021.132843_bib34) 2017; 117
Krieg (10.1016/j.chemosphere.2021.132843_bib48) 2014; 32
Nancharaiah (10.1016/j.chemosphere.2021.132843_bib59) 2015; 195
Schievano (10.1016/j.chemosphere.2021.132843_bib65) 2018; 1
Zeppilli (10.1016/j.chemosphere.2021.132843_bib75) 2017; 17
Li (10.1016/j.chemosphere.2021.132843_bib51) 2019
Rozendal (10.1016/j.chemosphere.2021.132843_bib64) 2008; 26
Du (10.1016/j.chemosphere.2021.132843_bib29) 2015; 137
Aryal (10.1016/j.chemosphere.2021.132843_bib8) 2018
Cerrillo (10.1016/j.chemosphere.2021.132843_bib21) 2021; 14
Torres (10.1016/j.chemosphere.2021.132843_bib70) 2008; 42
Hernández-Flores (10.1016/j.chemosphere.2021.132843_bib39) 2016; 41
Bian (10.1016/j.chemosphere.2021.132843_bib17) 2018; 6
Elsamadony (10.1016/j.chemosphere.2021.132843_bib30) 2021
Nelabhotla (10.1016/j.chemosphere.2021.132843_bib80) 2021
Logan (10.1016/j.chemosphere.2021.132843_bib56) 2012; 337
Gao (10.1016/j.chemosphere.2021.132843_bib35) 2021; 190
Alqahtani (10.1016/j.chemosphere.2021.132843_bib2) 2019; 10
Deutzmann (10.1016/j.chemosphere.2021.132843_bib28) 2015; 6
References_xml – volume: 41
  start-page: 23354
  year: 2016
  end-page: 23362
  ident: bib39
  article-title: Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 19
  start-page: 5748
  year: 2017
  end-page: 5760
  ident: bib6
  article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide
  publication-title: Green Chem.
– volume: 98
  start-page: 153
  year: 2016
  end-page: 170
  ident: bib13
  article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond
  publication-title: Renew. Energy
– volume: 237
  start-page: 240
  year: 2017
  end-page: 248
  ident: bib25
  article-title: Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater
  publication-title: Bioresour. Technol.
– volume: 11368−11375
  year: 2020
  ident: bib54
  article-title: Enhancement of bioelectrochemical CO
  publication-title: ACS Sustain. Chem. Eng.
– year: 2018
  ident: bib8
  article-title: An overview of microbial biogas enrichment
  publication-title: Bioresour. Technol.
– volume: 11
  start-page: 9921
  year: 2021
  end-page: 9932
  ident: bib33
  article-title: Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid?
  publication-title: RSC Adv.
– volume: 287
  start-page: 132188
  year: 2022
  ident: bib12
  article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  publication-title: Chemosphere
– year: 2017
  ident: bib40
  article-title: Biogas for Road Vehicles Technologu Brief
– volume: 195
  start-page: 102
  year: 2015
  end-page: 114
  ident: bib59
  article-title: Metals removal and recovery in bioelectrochemical systems: a review
  publication-title: Bioresour. Technol.
– start-page: 187
  year: 2021
  end-page: 221
  ident: bib80
  article-title: Power-to-gas for methanation
  publication-title: Emerging Technologies and Biological Systems for Biogas Upgrading
– volume: 197
  start-page: 117055
  year: 2021
  ident: bib53
  article-title: High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input
  publication-title: Water Res.
– volume: 173
  start-page: 392
  year: 2014
  end-page: 398
  ident: bib72
  article-title: Bioelectrochemical removal of carbon dioxide (CO
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 2563
  year: 2019
  ident: bib2
  article-title: Enrichment of marinobacter sp. and halophilic homoacetogens at the biocathode of microbial electrosynthesis system inoculated with red sea brine pool
  publication-title: Front. Microbiol.
– volume: 117
  start-page: 105
  year: 2017
  end-page: 112
  ident: bib34
  article-title: Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion
  publication-title: Biochem. Eng. J.
– volume: 766
  start-page: 142668
  year: 2020
  ident: bib3
  article-title: Enrichment of salt-tolerant CO
  publication-title: Sci. Total Environ.
– volume: 247
  start-page: 380
  year: 2018
  end-page: 386
  ident: bib46
  article-title: Microbial electrochemical separation of CO
  publication-title: Bioresour. Technol.
– volume: 45
  year: 2021
  ident: bib69
  article-title: A comparison of microbial and bioelectrochemical approaches for biogas upgrade through carbon dioxide conversion to methane
  publication-title: Sustain. Energy Technol. Assessments
– volume: 51
  start-page: 9371
  year: 2017
  end-page: 9378
  ident: bib42
  article-title: Microbial electrolytic capture, separation and regeneration of CO
  publication-title: Environ. Sci. Technol.
– year: 2016
  ident: bib24
  article-title: Microbial electrosynthesis and anaerobic fermentation: an economic evaluation for acetic acid production from CO
  publication-title: Environ. Sci. Technol. acs.est.6b02101
– volume: 319
  start-page: 124177
  year: 2021
  ident: bib18
  article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO
  publication-title: Bioresour. Technol.
– volume: 50
  start-page: 1982
  year: 2016
  end-page: 1989
  ident: bib43
  article-title: Bringing high-rate, CO
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 101
  year: 2004
  end-page: 107
  ident: bib58
  article-title: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure
  publication-title: J. Environ. Manag.
– year: 2018
  ident: bib5
  article-title: Biogas upgrading and utilization: current status and perspectives
  publication-title: Biotechnol. Adv.
– year: 2016
  ident: bib36
  article-title: Bioelectrochemical power-to-gas: state of the art and future perspectives
  publication-title: Trends Biotechnol.
– volume: 100
  start-page: 872
  year: 2008
  end-page: 881
  ident: bib71
  article-title: Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
  publication-title: Biotechnol. Bioeng.
– volume: 167
  start-page: 107886
  year: 2021
  ident: bib74
  article-title: Potentiostatic vs galvanostatic operation of a Microbial Electrolysis Cell for ammonium recovery and biogas upgrading
  publication-title: Biochem. Eng. J.
– volume: 22
  start-page: 407
  year: 2017
  end-page: 408
  ident: bib23
  article-title: The use of carbon dioxide in microbial electrosynthesis: advancements, sustainability and economic feasibility
  publication-title: J. CO
– volume: 130155
  year: 2021
  ident: bib76
  article-title: A critical evaluation of the pH split and associated effects in bioelectrochemical processes
  publication-title: Chem. Eng. J.
– year: 2021
  ident: bib9
  article-title: Bioelectrochemical Systems for Biogas Upgrading and Biomethane Production, Emerging Technologies and Biological Systems for Biogas Upgrading
– volume: 14
  start-page: 503
  year: 2021
  ident: bib21
  article-title: Biogas upgrading and ammonia recovery from livestock manure digestates in a combined electromethanogenic biocathode—hydrophobic membrane system
  publication-title: Energies
– volume: 245
  start-page: 1168
  year: 2017
  end-page: 1175
  ident: bib55
  article-title: Bioelectrochemical enhancement of anaerobic digestion: comparing single- and two-chamber reactor configurations at thermophilic conditions
  publication-title: Bioresour. Technol.
– volume: 297
  start-page: 113374
  year: 2021
  ident: bib62
  article-title: Advancements in spontaneous microbial desalination technology for sustainable water purification and simultaneous power generation: a review
  publication-title: J. Environ. Manag.
– volume: 297
  start-page: 122448
  year: 2020
  ident: bib32
  article-title: A single microbial electrochemical system for CO
  publication-title: Bioresour. Technol.
– volume: 128
  start-page: 83
  year: 2019
  end-page: 93
  ident: bib11
  article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode
  publication-title: Bioelectrochemistry
– volume: 43
  start-page: 559
  year: 1995
  end-page: 565
  ident: bib1
  article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 32
  start-page: 645
  year: 2014
  end-page: 655
  ident: bib48
  article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion
  publication-title: Trends Biotechnol.
– volume: 6
  start-page: 17201
  year: 2018
  end-page: 17211
  ident: bib17
  article-title: Porous nickel hollow fi ber cathodes coated with CNTs for e ffi cient microbial electrosynthesis of acetate from CO
  publication-title: J. Mater. Chem.
– volume: 85
  start-page: 1665
  year: 2010
  end-page: 1671
  ident: bib57
  article-title: Scaling up microbial fuel cells and other bioelectrochemical systems
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 43
  start-page: 3953
  year: 2009
  end-page: 3958
  ident: bib22
  article-title: Direct biological conversion of electrical current into methane by electromethanogenesis
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 45
  year: 2019
  ident: bib47
  article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis
  publication-title: Commun. Chem.
– start-page: 466
  year: 2019
  end-page: 476
  ident: bib78
  article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading
  publication-title: Chem. Eng. J.
– volume: 149
  start-page: 42
  year: 2019
  end-page: 55
  ident: bib41
  article-title: Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation
  publication-title: Water Res.
– volume: 17
  start-page: 593
  year: 2017
  end-page: 600
  ident: bib75
  article-title: Three-chamber bioelectrochemical system for biogas upgrading and nutrient recovery
  publication-title: Fuel Cell.
– year: 2015
  ident: bib68
  article-title: Selection of appropriate biogas upgrading technology- a review of biogas cleaning, upgrading and utilization
  publication-title: Renew. Sustain. Energy Rev.
– volume: 45
  start-page: 67
  year: 2014
  end-page: 70
  ident: bib20
  article-title: A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor
  publication-title: Electrochem. Commun.
– volume: 26
  start-page: 450
  year: 2008
  end-page: 459
  ident: bib64
  article-title: Towards practical implementation of bioelectrochemical wastewater treatment
  publication-title: Trends Biotechnol.
– volume: 37
  start-page: 2531
  year: 2003
  ident: bib60
  article-title: Erratum: nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon (Water Research (2002) 36 (469-481) PII: S0043135401002299
  publication-title: Water Res.
– volume: 1
  start-page: 57
  year: 2018
  ident: bib65
  article-title: Organic waste and bioelectrochemical systems: a future interface between electricity and methane distribution grids
  publication-title: Detritus
– volume: 338
  start-page: 135887
  year: 2020
  ident: bib66
  article-title: Efficient bio-electroreduction of CO
  publication-title: Electrochim. Acta
– volume: 152
  start-page: 107393
  year: 2019
  ident: bib77
  article-title: Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading
  publication-title: Biochem. Eng. J.
– volume: 28
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib4
  article-title: Porous hollow fiber nickel electrodes for effective supply and reduction of carbon dioxide to methane through microbial electrosynthesis
  publication-title: Adv. Funct. Mater.
– volume: 269
  start-page: 115101
  year: 2020
  ident: bib79
  article-title: Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode
  publication-title: Appl. Energy
– volume: 39
  start-page: 336
  year: 2021
  end-page: 347
  ident: bib31
  article-title: In situ biogas upgrading by CO
  publication-title: Trends Biotechnol.
– volume: 44
  start-page: 2380
  year: 2019
  end-page: 2389
  ident: bib50
  article-title: In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations
  publication-title: Int. J. Hydrogen Energy
– volume: 168
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib26
  article-title: Hybrid biogas upgrading in a two-stage thermophilic reactor
  publication-title: Energy Convers. Manag.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib28
  article-title: Extracellular enzymes facilitate electron uptake in biocorrosion and
  publication-title: mBio
– volume: 137
  start-page: 3193
  year: 2015
  end-page: 3196
  ident: bib29
  article-title: A half-reaction alternative to water oxidation: chloride oxidation to chlorine catalyzed by silver ion
  publication-title: J. Am. Chem. Soc.
– year: 2019
  ident: bib51
  article-title: Composition and toxicity of biogas produced from different feedstocks in California
  publication-title: Environ. Sci. Technol.
– year: 2021
  ident: bib30
  article-title: Perspectives on potential applications of nanometal derivatives in gaseous bioenergy pathways: mechanisms, life cycle, and toxicity
  publication-title: ACS Sustain. Chem. Eng.
– volume: 23
  start-page: 22292
  year: 2016
  end-page: 22308
  ident: bib14
  article-title: Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide
  publication-title: Environ. Sci. Pollut. Res.
– year: 2019
  ident: bib16
  article-title: Biogas upgrading, CO
  publication-title: Sci. Total Environ.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 32
  ident: bib19
  article-title: On the edge of research and technological application: a critical review of electromethanogenesis
  publication-title: Int. J. Mol. Sci.
– volume: 9
  start-page: 7179
  year: 2021
  end-page: 7181
  ident: bib38
  article-title: Power-to-X: lighting the path to a net-zero-emission future
  publication-title: ACS Sustain. Chem. Eng.
– volume: 273
  start-page: 509
  year: 1987
  end-page: 511
  ident: bib27
  article-title: Bacterial methanogenesis and growth from CO
  publication-title: Science
– volume: 153
  start-page: 351
  year: 2013
  end-page: 360
  ident: bib45
  article-title: Nutrients removal and recovery in bioelectrochemical systems: a review
  publication-title: Bioresour. Technol.
– volume: 34
  start-page: 3612
  year: 2009
  end-page: 3620
  ident: bib67
  article-title: Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes
  publication-title: Int. J. Hydrogen Energy
– volume: 417
  start-page: 125992
  year: 2021
  ident: bib44
  article-title: A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications
  publication-title: J. Hazard Mater.
– volume: 337
  start-page: 686
  year: 2012
  end-page: 690
  ident: bib56
  article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
  publication-title: Science
– volume: 247
  start-page: 226
  year: 2018
  end-page: 233
  ident: bib61
  article-title: Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 22
  year: 2015
  end-page: 33
  ident: bib63
  article-title: Bioelectrochemical systems for nitrogen removal and recovery from wastewater
  publication-title: Environ. Sci. Water Res. Technol.
– volume: 2
  start-page: 43
  year: 2018
  ident: bib7
  article-title: Alternative of biogas injection into the Danish gas grid system—a study from demand perspective
  publication-title: ChemEngineering
– volume: 291
  start-page: 121877
  year: 2019
  ident: bib52
  article-title: Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer
  publication-title: Bioresour. Technol.
– volume: 190
  start-page: 116679
  year: 2021
  ident: bib35
  article-title: Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading
  publication-title: Water Res.
– volume: 44
  start-page: 21464
  year: 2019
  end-page: 21469
  ident: bib37
  article-title: Redox-flow battery design for a methane-producing bioelectrochemical system
  publication-title: Int. J. Hydrogen Energy
– year: 2021
  ident: bib10
  article-title: Emerging Technologies and Biological Systems for Biogas Upgrading
– volume: 42
  start-page: 210
  year: 2016
  end-page: 214
  ident: bib73
  article-title: Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina
  publication-title: J. Environ. Sci. (China)
– volume: 87
  start-page: 295
  year: 2019
  end-page: 300
  ident: bib49
  article-title: Methane loss from commercially operating biogas upgrading plants
  publication-title: Waste Manag.
– volume: 5
  start-page: 52243
  year: 2015
  end-page: 52251
  ident: bib15
  article-title: Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode
  publication-title: RSC Adv.
– volume: 42
  start-page: 8773
  year: 2008
  end-page: 8777
  ident: bib70
  article-title: Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells
  publication-title: Environ. Sci. Technol.
– year: 2016
  ident: 10.1016/j.chemosphere.2021.132843_bib24
  article-title: Microbial electrosynthesis and anaerobic fermentation: an economic evaluation for acetic acid production from CO2 and CO
  publication-title: Environ. Sci. Technol. acs.est.6b02101
  doi: 10.1021/acs.est.6b02101
– volume: 269
  start-page: 115101
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132843_bib79
  article-title: Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115101
– volume: 45
  start-page: 67
  year: 2014
  ident: 10.1016/j.chemosphere.2021.132843_bib20
  article-title: A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.05.026
– volume: 195
  start-page: 102
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132843_bib59
  article-title: Metals removal and recovery in bioelectrochemical systems: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.06.058
– volume: 149
  start-page: 42
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib41
  article-title: Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.092
– volume: 44
  start-page: 21464
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib37
  article-title: Redox-flow battery design for a methane-producing bioelectrochemical system
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.189
– volume: 41
  start-page: 23354
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132843_bib39
  article-title: Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.206
– volume: 1
  start-page: 22
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132843_bib63
  article-title: Bioelectrochemical systems for nitrogen removal and recovery from wastewater
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C4EW00066H
– volume: 287
  start-page: 132188
  year: 2022
  ident: 10.1016/j.chemosphere.2021.132843_bib12
  article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132188
– volume: 319
  start-page: 124177
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib18
  article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124177
– volume: 2
  start-page: 45
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib47
  article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0145-0
– volume: 42
  start-page: 8773
  year: 2008
  ident: 10.1016/j.chemosphere.2021.132843_bib70
  article-title: Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8019353
– volume: 43
  start-page: 559
  year: 1995
  ident: 10.1016/j.chemosphere.2021.132843_bib1
  article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00218466
– volume: 5
  start-page: 52243
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132843_bib15
  article-title: Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode
  publication-title: RSC Adv.
  doi: 10.1039/C5RA09039C
– volume: 11
  start-page: 9921
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib33
  article-title: Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid?
  publication-title: RSC Adv.
  doi: 10.1039/D1RA00920F
– volume: 297
  start-page: 113374
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib62
  article-title: Advancements in spontaneous microbial desalination technology for sustainable water purification and simultaneous power generation: a review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113374
– year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib51
  article-title: Composition and toxicity of biogas produced from different feedstocks in California
  publication-title: Environ. Sci. Technol.
– volume: 130155
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib76
  article-title: A critical evaluation of the pH split and associated effects in bioelectrochemical processes
  publication-title: Chem. Eng. J.
– volume: 128
  start-page: 83
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib11
  article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2019.03.011
– volume: 23
  start-page: 22292
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132843_bib14
  article-title: Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7196-x
– volume: 85
  start-page: 1665
  year: 2010
  ident: 10.1016/j.chemosphere.2021.132843_bib57
  article-title: Scaling up microbial fuel cells and other bioelectrochemical systems
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2378-9
– volume: 2
  start-page: 43
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib7
  article-title: Alternative of biogas injection into the Danish gas grid system—a study from demand perspective
  publication-title: ChemEngineering
  doi: 10.3390/chemengineering2030043
– volume: 42
  start-page: 210
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132843_bib73
  article-title: Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/j.jes.2015.07.006
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132843_bib28
  article-title: Extracellular enzymes facilitate electron uptake in biocorrosion and
  publication-title: mBio
  doi: 10.1128/mBio.00496-15
– volume: 100
  start-page: 872
  year: 2008
  ident: 10.1016/j.chemosphere.2021.132843_bib71
  article-title: Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21821
– volume: 11368−11375
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132843_bib54
  article-title: Enhancement of bioelectrochemical CO2 reduction with a carbon brush electrode via direct electron transfer
  publication-title: ACS Sustain. Chem. Eng.
– volume: 190
  start-page: 116679
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib35
  article-title: Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116679
– volume: 18
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib19
  article-title: On the edge of research and technological application: a critical review of electromethanogenesis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18040874
– volume: 117
  start-page: 105
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib34
  article-title: Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2016.11.003
– volume: 51
  start-page: 9371
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib42
  article-title: Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01574
– volume: 338
  start-page: 135887
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132843_bib66
  article-title: Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135887
– volume: 168
  start-page: 1
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib26
  article-title: Hybrid biogas upgrading in a two-stage thermophilic reactor
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.04.074
– volume: 152
  start-page: 107393
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib77
  article-title: Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2019.107393
– volume: 153
  start-page: 351
  year: 2013
  ident: 10.1016/j.chemosphere.2021.132843_bib45
  article-title: Nutrients removal and recovery in bioelectrochemical systems: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.12.046
– volume: 39
  start-page: 336
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib31
  article-title: In situ biogas upgrading by CO2-to-CH4 bioconversion
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.08.006
– volume: 14
  start-page: 503
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib21
  article-title: Biogas upgrading and ammonia recovery from livestock manure digestates in a combined electromethanogenic biocathode—hydrophobic membrane system
  publication-title: Energies
  doi: 10.3390/en14020503
– volume: 43
  start-page: 3953
  year: 2009
  ident: 10.1016/j.chemosphere.2021.132843_bib22
  article-title: Direct biological conversion of electrical current into methane by electromethanogenesis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803531g
– volume: 28
  start-page: 1
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib4
  article-title: Porous hollow fiber nickel electrodes for effective supply and reduction of carbon dioxide to methane through microbial electrosynthesis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804860
– volume: 1
  start-page: 57
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib65
  article-title: Organic waste and bioelectrochemical systems: a future interface between electricity and methane distribution grids
  publication-title: Detritus
– volume: 44
  start-page: 2380
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib50
  article-title: In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.08.051
– volume: 19
  start-page: 5748
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib6
  article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide
  publication-title: Green Chem.
  doi: 10.1039/C7GC01801K
– year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib30
  article-title: Perspectives on potential applications of nanometal derivatives in gaseous bioenergy pathways: mechanisms, life cycle, and toxicity
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c02260
– volume: 297
  start-page: 122448
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132843_bib32
  article-title: A single microbial electrochemical system for CO2 reduction and simultaneous biogas purification, upgrading and sulfur recovery
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122448
– volume: 9
  start-page: 7179
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib38
  article-title: Power-to-X: lighting the path to a net-zero-emission future
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c03212
– volume: 26
  start-page: 450
  year: 2008
  ident: 10.1016/j.chemosphere.2021.132843_bib64
  article-title: Towards practical implementation of bioelectrochemical wastewater treatment
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2008.04.008
– volume: 6
  start-page: 17201
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib17
  article-title: Porous nickel hollow fi ber cathodes coated with CNTs for e ffi cient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA05322G
– volume: 37
  start-page: 2531
  year: 2003
  ident: 10.1016/j.chemosphere.2021.132843_bib60
  article-title: Erratum: nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon (Water Research (2002) 36 (469-481) PII: S0043135401002299
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00077-5
– volume: 237
  start-page: 240
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib25
  article-title: Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.038
– year: 2016
  ident: 10.1016/j.chemosphere.2021.132843_bib36
  article-title: Bioelectrochemical power-to-gas: state of the art and future perspectives
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.08.010
– volume: 247
  start-page: 226
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib61
  article-title: Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.021
– volume: 167
  start-page: 107886
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib74
  article-title: Potentiostatic vs galvanostatic operation of a Microbial Electrolysis Cell for ammonium recovery and biogas upgrading
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2020.107886
– volume: 98
  start-page: 153
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132843_bib13
  article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.03.002
– volume: 245
  start-page: 1168
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib55
  article-title: Bioelectrochemical enhancement of anaerobic digestion: comparing single- and two-chamber reactor configurations at thermophilic conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.095
– year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib40
– year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib5
  article-title: Biogas upgrading and utilization: current status and perspectives
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.01.011
– year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib8
  article-title: An overview of microbial biogas enrichment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.06.013
– volume: 45
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib69
  article-title: A comparison of microbial and bioelectrochemical approaches for biogas upgrade through carbon dioxide conversion to methane
  publication-title: Sustain. Energy Technol. Assessments
– volume: 70
  start-page: 101
  year: 2004
  ident: 10.1016/j.chemosphere.2021.132843_bib58
  article-title: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2003.11.001
– volume: 337
  start-page: 686
  year: 2012
  ident: 10.1016/j.chemosphere.2021.132843_bib56
  article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
  publication-title: Science
  doi: 10.1126/science.1217412
– start-page: 466
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib78
  article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.119
– volume: 10
  start-page: 2563
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib2
  article-title: Enrichment of marinobacter sp. and halophilic homoacetogens at the biocathode of microbial electrosynthesis system inoculated with red sea brine pool
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02563
– volume: 22
  start-page: 407
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib23
  article-title: The use of carbon dioxide in microbial electrosynthesis: advancements, sustainability and economic feasibility
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.11.006
– start-page: 187
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib80
  article-title: Power-to-gas for methanation
– volume: 34
  start-page: 3612
  year: 2009
  ident: 10.1016/j.chemosphere.2021.132843_bib67
  article-title: Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.03.004
– volume: 17
  start-page: 593
  year: 2017
  ident: 10.1016/j.chemosphere.2021.132843_bib75
  article-title: Three-chamber bioelectrochemical system for biogas upgrading and nutrient recovery
  publication-title: Fuel Cell.
  doi: 10.1002/fuce.201700048
– year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib9
– volume: 247
  start-page: 380
  year: 2018
  ident: 10.1016/j.chemosphere.2021.132843_bib46
  article-title: Microbial electrochemical separation of CO2 for biogas upgrading
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.097
– volume: 50
  start-page: 1982
  year: 2016
  ident: 10.1016/j.chemosphere.2021.132843_bib43
  article-title: Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04431
– volume: 273
  start-page: 509
  year: 1987
  ident: 10.1016/j.chemosphere.2021.132843_bib27
  article-title: Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons
  publication-title: Science
  doi: 10.1126/science.237.4814.509
– volume: 417
  start-page: 125992
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib44
  article-title: A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.125992
– volume: 32
  start-page: 645
  year: 2014
  ident: 10.1016/j.chemosphere.2021.132843_bib48
  article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.10.004
– volume: 766
  start-page: 142668
  year: 2020
  ident: 10.1016/j.chemosphere.2021.132843_bib3
  article-title: Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142668
– year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib16
  article-title: Biogas upgrading, CO2 valorisation and economic revaluation of bioelectrochemical systems through anodic chlorine production in the framework of wastewater treatment plants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.361
– volume: 87
  start-page: 295
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib49
  article-title: Methane loss from commercially operating biogas upgrading plants
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.02.023
– volume: 197
  start-page: 117055
  year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib53
  article-title: High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117055
– volume: 137
  start-page: 3193
  year: 2015
  ident: 10.1016/j.chemosphere.2021.132843_bib29
  article-title: A half-reaction alternative to water oxidation: chloride oxidation to chlorine catalyzed by silver ion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00037
– year: 2021
  ident: 10.1016/j.chemosphere.2021.132843_bib10
– year: 2015
  ident: 10.1016/j.chemosphere.2021.132843_bib68
  article-title: Selection of appropriate biogas upgrading technology- a review of biogas cleaning, upgrading and utilization
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.06.029
– volume: 173
  start-page: 392
  year: 2014
  ident: 10.1016/j.chemosphere.2021.132843_bib72
  article-title: Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.09.127
– volume: 291
  start-page: 121877
  year: 2019
  ident: 10.1016/j.chemosphere.2021.132843_bib52
  article-title: Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121877
SSID ssj0001659
Score 2.5298076
SecondaryResourceType review_article
Snippet Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added...
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO ) reduction and biomethane (or value-added...
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO₂) reduction and biomethane (or value-added...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 132843
SubjectTerms Biochemical Process Engineering
Bioelectrochemical system
bioelectrochemistry
Biofuels
biogas
Biokemisk processteknik
Biomethane
Bioreactors
carbon dioxide
Carbon Dioxide - analysis
cathodes
CO2 reduction
Electromethanogens
electron transfer
Ex-situ
Hydrogen
In-situ
Methane
value added
Title Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading
URI https://dx.doi.org/10.1016/j.chemosphere.2021.132843
https://www.ncbi.nlm.nih.gov/pubmed/34767847
https://www.proquest.com/docview/2597492517
https://www.proquest.com/docview/2636495454
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87859
Volume 291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUAvFZTXtlC5EhzTruNXLPWyWlotoPZEoTfLduxV0JKs9iGVC78dO3G2PASqxC1KbMmZmdjfKPN9A_CalFw46W3GbSkyamWRaWFkxoUl3mDKiIl854tLPrmi76_Z9RaMey5MLKtMe3-3p7e7dbpzkqx5Mq-qyPGNaCQACDwkJCCByGCnIkb58ffbMg_MWQeBKcvi6AdwdFvjFezytVlG_n5UzMzxccjNCkr-dkb9iUF_ExhtD6XzR7Cb0CQadQt-DFuu3oOH476J2x7cP2tVqb89gc8XVau5FIan1jc2aQWgXlfcLVHjkdUL09SorJqbqnQoBOYscTVRALjIVM1UL9F6Pl205fdP4er87ON4kqWuCpllnK4yaXQxFDkx3tFIRJVkGC6c8EwTbLnk2Ae_UueCXUvMpaOES-ZyrnmuNfXkGWzXTe1eAArg0uCSSUt5SQvvdIG9i0KVpvQ-JJ4DKHo7Kpskx2Pni5nqa8u-qJ9coKILVOeCAeSbqfNOd-Muk057Z6lfgkiF8-Eu0496B6vgpvjnRNeuWS9VHtMuGdXd_jGGEx6yTcroAJ530bFZOQlxKQIOGMCbLlw2T6K699vq00g1i6mardaqEAWT-__3Igewk0eWRlsq9xK2V4u1exWw08octh_HIdwbvfswufwBfjsb0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VraC9ICgUlqcrwTF0HT8SS1xWS6st7e6phd4s27FXQUuy2odU_j124iwvgSpxixKP5MxMxt8oM98AvCEFz6xwJuGmyBJqRJ6oTIuEZ4Y4jSkjOvQ7T6Z8fEU_XrPrHRh1vTChrDLG_jamN9E63jmO2jxelGXo8Q1oxAMIPCDEI4E7sBvYqVgPdodn5-PpNiBjzloUTFkSBO7B0Y8yL6-ar_UqtPAH0swUv_PpWU7J346pP2Hobxyjzbl0-gDuR0CJhu2eH8KOrQ5gb9TNcTuAuycNMfW3R_B5Uja0S355nH5jIl0A6qjF7QrVDhm11HWFirK-KQuLvG_OY7sm8hgX6bKeqRXaLGbLpgL_MVydnlyOxkkcrJAYxuk6EVrlgywl2lkaelEFGfgLmzmmCDZccOy8aam1XrUF5sJSwgWzKVc8VYo6cgi9qq7sU0AeX2pcMGEoL2jurMqxs4GrUhfO-dyzD3mnR2ki63gYfjGXXXnZF_mTCWQwgWxN0Id0K7poqTduI_S-M5b8xY-kPyJuI37UGVh6M4WfJ6qy9WYl05B5iUDw9o81nHCfcHov7MOT1ju2Oyc087iAeum3rbtsnwSC7w_lp6GslzM5X29knuVMPPu_F3kNe-PLyYW8OJueP4f9NDRtNJVzL6C3Xm7sSw-l1vpV_FS-AyA4HoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+electrochemical+approaches+of+carbon+dioxide+utilization+for+biogas+upgrading&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Aryal%2C+Nabin&rft.au=Zhang%2C+Yifeng&rft.au=Bajracharya%2C+Suman&rft.au=Pant%2C+Deepak&rft.date=2022-03-01&rft.issn=0045-6535&rft.volume=291&rft.spage=132843&rft_id=info:doi/10.1016%2Fj.chemosphere.2021.132843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2021_132843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon