Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading
Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) bas...
Saved in:
Published in | Chemosphere (Oxford) Vol. 291; no. Pt 1; p. 132843 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.
[Display omitted]
•Microbial electrochemical approach for biogas upgrading is extensively scrutinized.•Data related to operational parameters for process optimization are discussed.•Applied potential and cathodic catalyst are the keys to reactor performances.•Insight associated with reactor configuration and resource recovery are provided. |
---|---|
AbstractList | Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There are limited literature critically reviewing the latest scientific development on the Bioelectrochemical (BES) based biogas upgrading technology, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode material tested in BES reactor. This review analyzes the reported performance and identifies the crucial parameters to be considered for future optimization, which is currently missing. In this review, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. The three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading. Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading. [Display omitted] •Microbial electrochemical approach for biogas upgrading is extensively scrutinized.•Data related to operational parameters for process optimization are discussed.•Applied potential and cathodic catalyst are the keys to reactor performances.•Insight associated with reactor configuration and resource recovery are provided. Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO ) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO reduction efficiency, methane (CH ) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO to CH . Most of the studies on the biogas upgrading process conclude hydrogen (H ) mediated electron transfer mechanism in BES biogas upgrading. Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO₂) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO₂ reduction efficiency, methane (CH₄) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO₂ to CH₄. Most of the studies on the biogas upgrading process conclude hydrogen (H₂) mediated electron transfer mechanism in BES biogas upgrading. Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading. |
ArticleNumber | 132843 |
Author | Aryal, Nabin Zhang, Yifeng Bajracharya, Suman Pant, Deepak Chen, Xuyuan |
Author_xml | – sequence: 1 givenname: Nabin orcidid: 0000-0002-1035-4561 surname: Aryal fullname: Aryal, Nabin email: nabin.aryal@usn.no organization: Department of Microsystems, University of South-Eastern Norway, Borre, Norway – sequence: 2 givenname: Yifeng orcidid: 0000-0002-2832-2277 surname: Zhang fullname: Zhang, Yifeng organization: Department of Environmental Engineering, Technical University of Denmark, Denmark – sequence: 3 givenname: Suman surname: Bajracharya fullname: Bajracharya, Suman organization: Biochemical Process Engineering Department, Luleå University of Technology, Sweden – sequence: 4 givenname: Deepak orcidid: 0000-0002-1425-9588 surname: Pant fullname: Pant, Deepak organization: Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium – sequence: 5 givenname: Xuyuan surname: Chen fullname: Chen, Xuyuan organization: Department of Microsystems, University of South-Eastern Norway, Borre, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34767847$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87859$$DView record from Swedish Publication Index |
BookMark | eNqNkUtv1DAUhS1URKeFv4DCjgUZ_Ha8QtXwlIrY8FhajnMzvaNMHOykPH49HqZUiA1d2df6ztH1OWfkZIwjEPKE0TWjTD_frcMV7GOeriDBmlPO1kzwRop7ZMUaY2vGbXNCVpRKVWsl1Ck5y3lHaREr-4CcCmm0aaRZkS_vMaTYoh8qGCDMKR6sMZTZT1OKvoy5in0VfGrjWHUYv2MH1TLjgD_9jOWtj6lqMW59rpZpm3yH4_Yhud_7IcOjm_OcfHr96uPmbX354c27zcVlHZSWc21b31DDRduDVMZqK2i5gOmVFyxoq1nfQpAAnNGOaQtSaKuAa6-597IX5-TZ0Td_g2lp3ZRw79MPFz26l_j5wsW0dcO8uMY0yhb86REvX_u6QJ7dHnOAYfAjxCU7roWWVkkl_48qa6TlipmCPr5Bl3YP3e0Sf2IugD0CJeucE_S3CKPuUKnbub8qdYdK3bHSon3xjzbg_Dv4OXkc7uSwOTpAKeIaIbkcEMYAHaZSuesi3sHlF4IixeM |
CitedBy_id | crossref_primary_10_1016_j_biteb_2024_101940 crossref_primary_10_1016_j_jenvman_2023_118785 crossref_primary_10_3390_fermentation11010040 crossref_primary_10_1021_acs_energyfuels_2c04122 crossref_primary_10_1016_j_rser_2024_114704 crossref_primary_10_3390_fermentation9070610 crossref_primary_10_1016_j_rineng_2025_104673 crossref_primary_10_1186_s13068_024_02592_4 crossref_primary_10_1016_j_envres_2022_113006 crossref_primary_10_1016_j_hazadv_2024_100573 crossref_primary_10_3389_fmicb_2022_1055494 crossref_primary_10_1016_j_scitotenv_2022_157824 crossref_primary_10_1016_j_scitotenv_2024_175814 crossref_primary_10_1007_s10311_022_01468_z crossref_primary_10_1016_j_psep_2024_06_102 crossref_primary_10_1016_j_jenvman_2024_120733 crossref_primary_10_3846_mla_2024_21297 crossref_primary_10_1016_j_oneear_2023_02_011 crossref_primary_10_1016_j_biortech_2022_127385 crossref_primary_10_1007_s11783_025_1921_y crossref_primary_10_1039_D4NJ01053A crossref_primary_10_3846_mla_2023_17242 crossref_primary_10_55708_js0104013 crossref_primary_10_1016_j_cej_2022_137079 crossref_primary_10_1016_j_jpowsour_2024_235461 crossref_primary_10_1016_j_biotechadv_2023_108218 crossref_primary_10_1016_j_chemosphere_2023_139616 crossref_primary_10_1016_j_biotechadv_2024_108474 crossref_primary_10_1016_j_ceja_2025_100722 crossref_primary_10_1007_s11157_024_09708_0 crossref_primary_10_1016_j_biotechadv_2024_108372 |
Cites_doi | 10.1021/acs.est.6b02101 10.1016/j.apenergy.2020.115101 10.1016/j.elecom.2014.05.026 10.1016/j.biortech.2015.06.058 10.1016/j.watres.2018.10.092 10.1016/j.ijhydene.2019.06.189 10.1016/j.ijhydene.2016.08.206 10.1039/C4EW00066H 10.1016/j.chemosphere.2021.132188 10.1016/j.biortech.2020.124177 10.1038/s42004-019-0145-0 10.1021/es8019353 10.1007/BF00218466 10.1039/C5RA09039C 10.1039/D1RA00920F 10.1016/j.jenvman.2021.113374 10.1016/j.bioelechem.2019.03.011 10.1007/s11356-016-7196-x 10.1007/s00253-009-2378-9 10.3390/chemengineering2030043 10.1016/j.jes.2015.07.006 10.1128/mBio.00496-15 10.1002/bit.21821 10.1016/j.watres.2020.116679 10.3390/ijms18040874 10.1016/j.bej.2016.11.003 10.1021/acs.est.7b01574 10.1016/j.electacta.2020.135887 10.1016/j.enconman.2018.04.074 10.1016/j.bej.2019.107393 10.1016/j.biortech.2013.12.046 10.1016/j.tibtech.2020.08.006 10.3390/en14020503 10.1021/es803531g 10.1002/adfm.201804860 10.1016/j.ijhydene.2018.08.051 10.1039/C7GC01801K 10.1021/acssuschemeng.1c02260 10.1016/j.biortech.2019.122448 10.1021/acssuschemeng.1c03212 10.1016/j.tibtech.2008.04.008 10.1039/C8TA05322G 10.1016/S0043-1354(02)00077-5 10.1016/j.biortech.2017.03.038 10.1016/j.tibtech.2016.08.010 10.1016/j.biortech.2017.09.021 10.1016/j.bej.2020.107886 10.1016/j.renene.2016.03.002 10.1016/j.biortech.2017.08.095 10.1016/j.biotechadv.2018.01.011 10.1016/j.biortech.2018.06.013 10.1016/j.jenvman.2003.11.001 10.1126/science.1217412 10.1016/j.cej.2019.03.119 10.3389/fmicb.2019.02563 10.1016/j.jcou.2017.11.006 10.1016/j.ijhydene.2009.03.004 10.1002/fuce.201700048 10.1016/j.biortech.2017.09.097 10.1021/acs.est.5b04431 10.1126/science.237.4814.509 10.1016/j.jhazmat.2021.125992 10.1016/j.tibtech.2014.10.004 10.1016/j.scitotenv.2020.142668 10.1016/j.scitotenv.2019.06.361 10.1016/j.wasman.2019.02.023 10.1016/j.watres.2021.117055 10.1021/jacs.5b00037 10.1016/j.rser.2015.06.029 10.1016/j.biortech.2014.09.127 10.1016/j.biortech.2019.121877 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.chemosphere.2021.132843 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | oai_DiVA_org_ltu_87859 34767847 10_1016_j_chemosphere_2021_132843 S0045653521033154 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADXHL AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAYXX AGRNS BNPGV CITATION RIG AACTN AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM PKN 7X8 SSH 7S9 L.6 ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c564t-9ba80723bfe45796930e45e7f5a31c6961fbec4ee210d169e43695e26a62aa4f3 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Thu Aug 21 06:29:26 EDT 2025 Fri Jul 11 07:29:48 EDT 2025 Fri Jul 11 01:38:21 EDT 2025 Wed Feb 19 02:27:20 EST 2025 Thu Jul 31 00:26:45 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 Sat Aug 23 17:12:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 1 |
Keywords | Electromethanogens Ex-situ Biomethane In-situ CO2 reduction Bioelectrochemical system CO reduction |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-9ba80723bfe45796930e45e7f5a31c6961fbec4ee210d169e43695e26a62aa4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1035-4561 0000-0002-1425-9588 0000-0002-2832-2277 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0045653521033154 |
PMID | 34767847 |
PQID | 2597492517 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_87859 proquest_miscellaneous_2636495454 proquest_miscellaneous_2597492517 pubmed_primary_34767847 crossref_primary_10_1016_j_chemosphere_2021_132843 crossref_citationtrail_10_1016_j_chemosphere_2021_132843 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2021_132843 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gao, Zhang, Xu, Teng (bib35) 2021; 190 Zhou, Xing, Xu, Su, Zhang (bib79) 2020; 269 Gadkari, Haji, Beigi, Aryal, Sadhukhan, Mirza Beigi, Aryal, Sadhukhan (bib33) 2021; 11 Bian, Xu, Katuri, Saikaly (bib18) 2021; 319 Geppert, Liu, van Eerten-Jansen, Weidner, Buisman, ter Heijne (bib36) 2016 Rozendal, Hamelers, Rabaey, Keller, Buisman (bib64) 2008; 26 Li, Alaimo, Kim, Kado, Peppers, Xue, Wan, Green, Zhang, Jenkins, Vogel, Wuertz, Young, Kleeman (bib51) 2019 Zeppilli, Mattia, Villano, Majone (bib75) 2017; 17 Geppert, Liu, Weidner, Heijne (bib37) 2019; 44 Zeppilli, Cristiani, Armi, Villano (bib74) 2021; 167 (bib40) 2017 Colombo, Marzorati, Lucchini, Cristiani, Pant, Schievano (bib25) 2017; 237 Schievano, Goglio, Erckert, Marzorati, Rago, Cristiani (bib65) 2018; 1 Nancharaiah, Venkata Mohan, Lens (bib59) 2015; 195 Jiang, May, Lu, Liang, Huang, Ren, Lu, Liang, Huang, Ren (bib41) 2019; 149 Kvist, Aryal (bib49) 2019; 87 Gong, English, Pant, Patzke, Protti, Zhang (bib38) 2021; 9 Logan (bib57) 2010; 85 Krieg, Sydow, Schröder, Schrader, Holtmann (bib48) 2014; 32 Aryal, Kvist (bib7) 2018; 2 Bajracharya, Krige, Matsakas, Rova, Christakopoulos (bib12) 2022; 287 Christodoulou, Okoroafor, Parry, Velasquez-Orta (bib23) 2017; 22 Sun, Li, Yan, Liu, Yu, Yu (bib68) 2015 Zeppilli, Paiano, Torres, Pant (bib76) 2021; 130155 Alqahtani, Bajracharya, Katuri, Ali, Xu, Alarawi, Saikaly (bib3) 2020; 766 Aryal, Ottosen, Kofoed, Pant (bib10) 2021 Jin, Zhang, Li, Zhao, Angelidaki (bib42) 2017; 51 Fu, Li, Pan, Huang, Li, Cui, Liu, Tan, Li (bib32) 2020; 297 Kelly, He (bib45) 2013; 153 Tartakovsky, Lebrun, Guiot, Bock (bib69) 2021; 45 Zeppilli, Simoni, Paiano, Majone (bib78) 2019 Aryal, Kvist, Ammam, Pant, Ottosen (bib8) 2018 Hernández-Flores, Poggi-Varaldo, Solorza-Feria (bib39) 2016; 41 Liu, Xiao, Li, Chen, Sun, Cheng, Li, Dang, Smith, Holmes (bib53) 2021; 197 Bo, Zhu, Zhang, Tao, He, Li, Yan (bib20) 2014; 45 Corbellini, Kougias, Treu, Bassani, Malpei, Angelidaki (bib26) 2018; 168 Alqahtani, Bajracharya, Katuri, Ali, Ragab, Michoud, Daffonchio, Saikaly (bib2) 2019; 10 Bajracharya, Vanbroekhoven, Buisman, Pant, Strik (bib14) 2016; 23 Liu, Charles, Ho, Cord-Ruwisch, Cheng (bib55) 2017; 245 Aryal, Ammam, Patil, Pant (bib6) 2017; 19 Christodoulou, Velasquez-Orta (bib24) 2016 Fu, Angelidaki, Zhang (bib31) 2021; 39 Park, Lee, Tian, Jun (bib61) 2018; 247 Aryal, Wan, Overgaard, Stoot, Chen, Tremblay, Zhang (bib11) 2019; 128 Aryal, Mørck Ottosen, Bentien, Pant, Wegener Kofoed (bib9) 2021 Singh, Noori, Verma (bib66) 2020; 338 Zeppilli, Paiano, Villano, Majone (bib77) 2019; 152 Daniels, Belay, Rajagopal, Weimer (bib27) 1987; 273 Xu, Wang, Holmes (bib72) 2014; 173 Du, Chen, Chen, Meyer (bib29) 2015; 137 Jourdin, Freguia, Flexer, Keller (bib43) 2016; 50 Cerrillo, Burgos, Bonmatí (bib21) 2021; 14 Bian, Alqahtani, Katuri, Liu, Bajracharya, Lai, Saikaly (bib17) 2018; 6 Gajaraj, Huang, Zheng, Hu (bib34) 2017; 117 Yin, Zhu, Zhan, Bo, Yang, Tao, He, Li, Yan (bib73) 2016; 42 Cheng, Xing, Call, Logan (bib22) 2009; 43 Kokkoli, Zhang, Angelidaki (bib46) 2018; 247 Blasco-Gómez, Batlle-Vilanova, Villano, Balaguer, Colprim, Puig (bib19) 2017; 18 Nelabhotla, Pant, Dinamarca (bib80) 2021 Torres, Marcus, Rittmann (bib71) 2008; 100 Murto, Björnsson, Mattiasson (bib58) 2004; 70 Patel, Patel, Kumar, Mondal, Singh, Khan, Singh (bib62) 2021; 297 Ahring, Sandberg, Angelidaki (bib1) 1995; 43 Batlle-Vilanova, Rovira-Alsina, Puig, Balaguer, Icaran, Monsalvo, Rogalla, Colprim (bib16) 2019 Rodríguez Arredondo, Kuntke, Jeremiasse, Sleutels, Buisman, ter Heijne (bib63) 2015; 1 Deutzmann, Sahin, Spormann (bib28) 2015; 6 Liu, Yuan, Gu, Chen, Sun, Li, Li, Dang, Smith, Holmes (bib54) 2020; 11368−11375 Nogueira, Melo, Purkhold, Wuertz, Wagner (bib60) 2003; 37 Alqahtani, Katuri, Bajracharya, Yu, Lai, Saikaly (bib4) 2018; 28 Lee, Nagendranatha Reddy, Min (bib50) 2019; 44 Kracke, Wong, Maegaard, Deutzmann, Hubert, Hahn, Jaramillo, Spormann (bib47) 2019; 2 Batlle-Vilanova, Puig, Gonzalez-Olmos, Vilajeliu-Pons, Balaguer, Colprim (bib15) 2015; 5 Sleutels, Hamelers, Rozendal, Buisman (bib67) 2009; 34 Kaur, Singh, Chhabra, Marwaha, Kim, Tripathi (bib44) 2021; 417 Liu, Sun, Zhao, Dang, Holmes (bib52) 2019; 291 Elsamadony, Elreedy, Mostafa, Fujii, Gescher, Yekta, Schnu (bib30) 2021 Angelidaki, Treu, Tsapekos, Luo, Campanaro, Wenzel, Kougias (bib5) 2018 Bajracharya, Sharma, Mohanakrishna, Dominguez Benetton, Strik, Sarma, Pant (bib13) 2016; 98 Logan, Rabaey (bib56) 2012; 337 Torres, Lee, Rittmann (bib70) 2008; 42 Kvist (10.1016/j.chemosphere.2021.132843_bib49) 2019; 87 Zeppilli (10.1016/j.chemosphere.2021.132843_bib74) 2021; 167 Zhou (10.1016/j.chemosphere.2021.132843_bib79) 2020; 269 Kokkoli (10.1016/j.chemosphere.2021.132843_bib46) 2018; 247 Nogueira (10.1016/j.chemosphere.2021.132843_bib60) 2003; 37 Batlle-Vilanova (10.1016/j.chemosphere.2021.132843_bib15) 2015; 5 Aryal (10.1016/j.chemosphere.2021.132843_bib10) 2021 Logan (10.1016/j.chemosphere.2021.132843_bib57) 2010; 85 Geppert (10.1016/j.chemosphere.2021.132843_bib37) 2019; 44 Bajracharya (10.1016/j.chemosphere.2021.132843_bib13) 2016; 98 Liu (10.1016/j.chemosphere.2021.132843_bib54) 2020; 11368−11375 Bian (10.1016/j.chemosphere.2021.132843_bib18) 2021; 319 Singh (10.1016/j.chemosphere.2021.132843_bib66) 2020; 338 Aryal (10.1016/j.chemosphere.2021.132843_bib7) 2018; 2 Geppert (10.1016/j.chemosphere.2021.132843_bib36) 2016 Park (10.1016/j.chemosphere.2021.132843_bib61) 2018; 247 Bajracharya (10.1016/j.chemosphere.2021.132843_bib14) 2016; 23 Tartakovsky (10.1016/j.chemosphere.2021.132843_bib69) 2021; 45 Zeppilli (10.1016/j.chemosphere.2021.132843_bib77) 2019; 152 Ahring (10.1016/j.chemosphere.2021.132843_bib1) 1995; 43 Bajracharya (10.1016/j.chemosphere.2021.132843_bib12) 2022; 287 Christodoulou (10.1016/j.chemosphere.2021.132843_bib23) 2017; 22 Blasco-Gómez (10.1016/j.chemosphere.2021.132843_bib19) 2017; 18 Rodríguez Arredondo (10.1016/j.chemosphere.2021.132843_bib63) 2015; 1 Sleutels (10.1016/j.chemosphere.2021.132843_bib67) 2009; 34 Alqahtani (10.1016/j.chemosphere.2021.132843_bib3) 2020; 766 Batlle-Vilanova (10.1016/j.chemosphere.2021.132843_bib16) 2019 Yin (10.1016/j.chemosphere.2021.132843_bib73) 2016; 42 Sun (10.1016/j.chemosphere.2021.132843_bib68) 2015 Patel (10.1016/j.chemosphere.2021.132843_bib62) 2021; 297 Colombo (10.1016/j.chemosphere.2021.132843_bib25) 2017; 237 Corbellini (10.1016/j.chemosphere.2021.132843_bib26) 2018; 168 Torres (10.1016/j.chemosphere.2021.132843_bib71) 2008; 100 Zeppilli (10.1016/j.chemosphere.2021.132843_bib78) 2019 Kracke (10.1016/j.chemosphere.2021.132843_bib47) 2019; 2 Aryal (10.1016/j.chemosphere.2021.132843_bib9) 2021 Jiang (10.1016/j.chemosphere.2021.132843_bib41) 2019; 149 Zeppilli (10.1016/j.chemosphere.2021.132843_bib76) 2021; 130155 Angelidaki (10.1016/j.chemosphere.2021.132843_bib5) 2018 Jourdin (10.1016/j.chemosphere.2021.132843_bib43) 2016; 50 Liu (10.1016/j.chemosphere.2021.132843_bib52) 2019; 291 Kelly (10.1016/j.chemosphere.2021.132843_bib45) 2013; 153 Cheng (10.1016/j.chemosphere.2021.132843_bib22) 2009; 43 Lee (10.1016/j.chemosphere.2021.132843_bib50) 2019; 44 Liu (10.1016/j.chemosphere.2021.132843_bib53) 2021; 197 Aryal (10.1016/j.chemosphere.2021.132843_bib11) 2019; 128 Liu (10.1016/j.chemosphere.2021.132843_bib55) 2017; 245 Aryal (10.1016/j.chemosphere.2021.132843_bib6) 2017; 19 Murto (10.1016/j.chemosphere.2021.132843_bib58) 2004; 70 Christodoulou (10.1016/j.chemosphere.2021.132843_bib24) 2016 Daniels (10.1016/j.chemosphere.2021.132843_bib27) 1987; 273 Gadkari (10.1016/j.chemosphere.2021.132843_bib33) 2021; 11 Alqahtani (10.1016/j.chemosphere.2021.132843_bib4) 2018; 28 Fu (10.1016/j.chemosphere.2021.132843_bib31) 2021; 39 Fu (10.1016/j.chemosphere.2021.132843_bib32) 2020; 297 Jin (10.1016/j.chemosphere.2021.132843_bib42) 2017; 51 Bo (10.1016/j.chemosphere.2021.132843_bib20) 2014; 45 Xu (10.1016/j.chemosphere.2021.132843_bib72) 2014; 173 (10.1016/j.chemosphere.2021.132843_bib40) 2017 Gong (10.1016/j.chemosphere.2021.132843_bib38) 2021; 9 Kaur (10.1016/j.chemosphere.2021.132843_bib44) 2021; 417 Gajaraj (10.1016/j.chemosphere.2021.132843_bib34) 2017; 117 Krieg (10.1016/j.chemosphere.2021.132843_bib48) 2014; 32 Nancharaiah (10.1016/j.chemosphere.2021.132843_bib59) 2015; 195 Schievano (10.1016/j.chemosphere.2021.132843_bib65) 2018; 1 Zeppilli (10.1016/j.chemosphere.2021.132843_bib75) 2017; 17 Li (10.1016/j.chemosphere.2021.132843_bib51) 2019 Rozendal (10.1016/j.chemosphere.2021.132843_bib64) 2008; 26 Du (10.1016/j.chemosphere.2021.132843_bib29) 2015; 137 Aryal (10.1016/j.chemosphere.2021.132843_bib8) 2018 Cerrillo (10.1016/j.chemosphere.2021.132843_bib21) 2021; 14 Torres (10.1016/j.chemosphere.2021.132843_bib70) 2008; 42 Hernández-Flores (10.1016/j.chemosphere.2021.132843_bib39) 2016; 41 Bian (10.1016/j.chemosphere.2021.132843_bib17) 2018; 6 Elsamadony (10.1016/j.chemosphere.2021.132843_bib30) 2021 Nelabhotla (10.1016/j.chemosphere.2021.132843_bib80) 2021 Logan (10.1016/j.chemosphere.2021.132843_bib56) 2012; 337 Gao (10.1016/j.chemosphere.2021.132843_bib35) 2021; 190 Alqahtani (10.1016/j.chemosphere.2021.132843_bib2) 2019; 10 Deutzmann (10.1016/j.chemosphere.2021.132843_bib28) 2015; 6 |
References_xml | – volume: 41 start-page: 23354 year: 2016 end-page: 23362 ident: bib39 article-title: Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells publication-title: Int. J. Hydrogen Energy – volume: 19 start-page: 5748 year: 2017 end-page: 5760 ident: bib6 article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide publication-title: Green Chem. – volume: 98 start-page: 153 year: 2016 end-page: 170 ident: bib13 article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond publication-title: Renew. Energy – volume: 237 start-page: 240 year: 2017 end-page: 248 ident: bib25 article-title: Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater publication-title: Bioresour. Technol. – volume: 11368−11375 year: 2020 ident: bib54 article-title: Enhancement of bioelectrochemical CO publication-title: ACS Sustain. Chem. Eng. – year: 2018 ident: bib8 article-title: An overview of microbial biogas enrichment publication-title: Bioresour. Technol. – volume: 11 start-page: 9921 year: 2021 end-page: 9932 ident: bib33 article-title: Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid? publication-title: RSC Adv. – volume: 287 start-page: 132188 year: 2022 ident: bib12 article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata publication-title: Chemosphere – year: 2017 ident: bib40 article-title: Biogas for Road Vehicles Technologu Brief – volume: 195 start-page: 102 year: 2015 end-page: 114 ident: bib59 article-title: Metals removal and recovery in bioelectrochemical systems: a review publication-title: Bioresour. Technol. – start-page: 187 year: 2021 end-page: 221 ident: bib80 article-title: Power-to-gas for methanation publication-title: Emerging Technologies and Biological Systems for Biogas Upgrading – volume: 197 start-page: 117055 year: 2021 ident: bib53 article-title: High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input publication-title: Water Res. – volume: 173 start-page: 392 year: 2014 end-page: 398 ident: bib72 article-title: Bioelectrochemical removal of carbon dioxide (CO publication-title: Bioresour. Technol. – volume: 10 start-page: 2563 year: 2019 ident: bib2 article-title: Enrichment of marinobacter sp. and halophilic homoacetogens at the biocathode of microbial electrosynthesis system inoculated with red sea brine pool publication-title: Front. Microbiol. – volume: 117 start-page: 105 year: 2017 end-page: 112 ident: bib34 article-title: Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion publication-title: Biochem. Eng. J. – volume: 766 start-page: 142668 year: 2020 ident: bib3 article-title: Enrichment of salt-tolerant CO publication-title: Sci. Total Environ. – volume: 247 start-page: 380 year: 2018 end-page: 386 ident: bib46 article-title: Microbial electrochemical separation of CO publication-title: Bioresour. Technol. – volume: 45 year: 2021 ident: bib69 article-title: A comparison of microbial and bioelectrochemical approaches for biogas upgrade through carbon dioxide conversion to methane publication-title: Sustain. Energy Technol. Assessments – volume: 51 start-page: 9371 year: 2017 end-page: 9378 ident: bib42 article-title: Microbial electrolytic capture, separation and regeneration of CO publication-title: Environ. Sci. Technol. – year: 2016 ident: bib24 article-title: Microbial electrosynthesis and anaerobic fermentation: an economic evaluation for acetic acid production from CO publication-title: Environ. Sci. Technol. acs.est.6b02101 – volume: 319 start-page: 124177 year: 2021 ident: bib18 article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO publication-title: Bioresour. Technol. – volume: 50 start-page: 1982 year: 2016 end-page: 1989 ident: bib43 article-title: Bringing high-rate, CO publication-title: Environ. Sci. Technol. – volume: 70 start-page: 101 year: 2004 end-page: 107 ident: bib58 article-title: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure publication-title: J. Environ. Manag. – year: 2018 ident: bib5 article-title: Biogas upgrading and utilization: current status and perspectives publication-title: Biotechnol. Adv. – year: 2016 ident: bib36 article-title: Bioelectrochemical power-to-gas: state of the art and future perspectives publication-title: Trends Biotechnol. – volume: 100 start-page: 872 year: 2008 end-page: 881 ident: bib71 article-title: Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria publication-title: Biotechnol. Bioeng. – volume: 167 start-page: 107886 year: 2021 ident: bib74 article-title: Potentiostatic vs galvanostatic operation of a Microbial Electrolysis Cell for ammonium recovery and biogas upgrading publication-title: Biochem. Eng. J. – volume: 22 start-page: 407 year: 2017 end-page: 408 ident: bib23 article-title: The use of carbon dioxide in microbial electrosynthesis: advancements, sustainability and economic feasibility publication-title: J. CO – volume: 130155 year: 2021 ident: bib76 article-title: A critical evaluation of the pH split and associated effects in bioelectrochemical processes publication-title: Chem. Eng. J. – year: 2021 ident: bib9 article-title: Bioelectrochemical Systems for Biogas Upgrading and Biomethane Production, Emerging Technologies and Biological Systems for Biogas Upgrading – volume: 14 start-page: 503 year: 2021 ident: bib21 article-title: Biogas upgrading and ammonia recovery from livestock manure digestates in a combined electromethanogenic biocathode—hydrophobic membrane system publication-title: Energies – volume: 245 start-page: 1168 year: 2017 end-page: 1175 ident: bib55 article-title: Bioelectrochemical enhancement of anaerobic digestion: comparing single- and two-chamber reactor configurations at thermophilic conditions publication-title: Bioresour. Technol. – volume: 297 start-page: 113374 year: 2021 ident: bib62 article-title: Advancements in spontaneous microbial desalination technology for sustainable water purification and simultaneous power generation: a review publication-title: J. Environ. Manag. – volume: 297 start-page: 122448 year: 2020 ident: bib32 article-title: A single microbial electrochemical system for CO publication-title: Bioresour. Technol. – volume: 128 start-page: 83 year: 2019 end-page: 93 ident: bib11 article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode publication-title: Bioelectrochemistry – volume: 43 start-page: 559 year: 1995 end-page: 565 ident: bib1 article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors publication-title: Appl. Microbiol. Biotechnol. – volume: 32 start-page: 645 year: 2014 end-page: 655 ident: bib48 article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion publication-title: Trends Biotechnol. – volume: 6 start-page: 17201 year: 2018 end-page: 17211 ident: bib17 article-title: Porous nickel hollow fi ber cathodes coated with CNTs for e ffi cient microbial electrosynthesis of acetate from CO publication-title: J. Mater. Chem. – volume: 85 start-page: 1665 year: 2010 end-page: 1671 ident: bib57 article-title: Scaling up microbial fuel cells and other bioelectrochemical systems publication-title: Appl. Microbiol. Biotechnol. – volume: 43 start-page: 3953 year: 2009 end-page: 3958 ident: bib22 article-title: Direct biological conversion of electrical current into methane by electromethanogenesis publication-title: Environ. Sci. Technol. – volume: 2 start-page: 45 year: 2019 ident: bib47 article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis publication-title: Commun. Chem. – start-page: 466 year: 2019 end-page: 476 ident: bib78 article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading publication-title: Chem. Eng. J. – volume: 149 start-page: 42 year: 2019 end-page: 55 ident: bib41 article-title: Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation publication-title: Water Res. – volume: 17 start-page: 593 year: 2017 end-page: 600 ident: bib75 article-title: Three-chamber bioelectrochemical system for biogas upgrading and nutrient recovery publication-title: Fuel Cell. – year: 2015 ident: bib68 article-title: Selection of appropriate biogas upgrading technology- a review of biogas cleaning, upgrading and utilization publication-title: Renew. Sustain. Energy Rev. – volume: 45 start-page: 67 year: 2014 end-page: 70 ident: bib20 article-title: A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor publication-title: Electrochem. Commun. – volume: 26 start-page: 450 year: 2008 end-page: 459 ident: bib64 article-title: Towards practical implementation of bioelectrochemical wastewater treatment publication-title: Trends Biotechnol. – volume: 37 start-page: 2531 year: 2003 ident: bib60 article-title: Erratum: nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon (Water Research (2002) 36 (469-481) PII: S0043135401002299 publication-title: Water Res. – volume: 1 start-page: 57 year: 2018 ident: bib65 article-title: Organic waste and bioelectrochemical systems: a future interface between electricity and methane distribution grids publication-title: Detritus – volume: 338 start-page: 135887 year: 2020 ident: bib66 article-title: Efficient bio-electroreduction of CO publication-title: Electrochim. Acta – volume: 152 start-page: 107393 year: 2019 ident: bib77 article-title: Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading publication-title: Biochem. Eng. J. – volume: 28 start-page: 1 year: 2018 end-page: 8 ident: bib4 article-title: Porous hollow fiber nickel electrodes for effective supply and reduction of carbon dioxide to methane through microbial electrosynthesis publication-title: Adv. Funct. Mater. – volume: 269 start-page: 115101 year: 2020 ident: bib79 article-title: Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode publication-title: Appl. Energy – volume: 39 start-page: 336 year: 2021 end-page: 347 ident: bib31 article-title: In situ biogas upgrading by CO publication-title: Trends Biotechnol. – volume: 44 start-page: 2380 year: 2019 end-page: 2389 ident: bib50 article-title: In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations publication-title: Int. J. Hydrogen Energy – volume: 168 start-page: 1 year: 2018 end-page: 10 ident: bib26 article-title: Hybrid biogas upgrading in a two-stage thermophilic reactor publication-title: Energy Convers. Manag. – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: bib28 article-title: Extracellular enzymes facilitate electron uptake in biocorrosion and publication-title: mBio – volume: 137 start-page: 3193 year: 2015 end-page: 3196 ident: bib29 article-title: A half-reaction alternative to water oxidation: chloride oxidation to chlorine catalyzed by silver ion publication-title: J. Am. Chem. Soc. – year: 2019 ident: bib51 article-title: Composition and toxicity of biogas produced from different feedstocks in California publication-title: Environ. Sci. Technol. – year: 2021 ident: bib30 article-title: Perspectives on potential applications of nanometal derivatives in gaseous bioenergy pathways: mechanisms, life cycle, and toxicity publication-title: ACS Sustain. Chem. Eng. – volume: 23 start-page: 22292 year: 2016 end-page: 22308 ident: bib14 article-title: Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide publication-title: Environ. Sci. Pollut. Res. – year: 2019 ident: bib16 article-title: Biogas upgrading, CO publication-title: Sci. Total Environ. – volume: 18 start-page: 1 year: 2017 end-page: 32 ident: bib19 article-title: On the edge of research and technological application: a critical review of electromethanogenesis publication-title: Int. J. Mol. Sci. – volume: 9 start-page: 7179 year: 2021 end-page: 7181 ident: bib38 article-title: Power-to-X: lighting the path to a net-zero-emission future publication-title: ACS Sustain. Chem. Eng. – volume: 273 start-page: 509 year: 1987 end-page: 511 ident: bib27 article-title: Bacterial methanogenesis and growth from CO publication-title: Science – volume: 153 start-page: 351 year: 2013 end-page: 360 ident: bib45 article-title: Nutrients removal and recovery in bioelectrochemical systems: a review publication-title: Bioresour. Technol. – volume: 34 start-page: 3612 year: 2009 end-page: 3620 ident: bib67 article-title: Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes publication-title: Int. J. Hydrogen Energy – volume: 417 start-page: 125992 year: 2021 ident: bib44 article-title: A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications publication-title: J. Hazard Mater. – volume: 337 start-page: 686 year: 2012 end-page: 690 ident: bib56 article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies publication-title: Science – volume: 247 start-page: 226 year: 2018 end-page: 233 ident: bib61 article-title: Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell publication-title: Bioresour. Technol. – volume: 1 start-page: 22 year: 2015 end-page: 33 ident: bib63 article-title: Bioelectrochemical systems for nitrogen removal and recovery from wastewater publication-title: Environ. Sci. Water Res. Technol. – volume: 2 start-page: 43 year: 2018 ident: bib7 article-title: Alternative of biogas injection into the Danish gas grid system—a study from demand perspective publication-title: ChemEngineering – volume: 291 start-page: 121877 year: 2019 ident: bib52 article-title: Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer publication-title: Bioresour. Technol. – volume: 190 start-page: 116679 year: 2021 ident: bib35 article-title: Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading publication-title: Water Res. – volume: 44 start-page: 21464 year: 2019 end-page: 21469 ident: bib37 article-title: Redox-flow battery design for a methane-producing bioelectrochemical system publication-title: Int. J. Hydrogen Energy – year: 2021 ident: bib10 article-title: Emerging Technologies and Biological Systems for Biogas Upgrading – volume: 42 start-page: 210 year: 2016 end-page: 214 ident: bib73 article-title: Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina publication-title: J. Environ. Sci. (China) – volume: 87 start-page: 295 year: 2019 end-page: 300 ident: bib49 article-title: Methane loss from commercially operating biogas upgrading plants publication-title: Waste Manag. – volume: 5 start-page: 52243 year: 2015 end-page: 52251 ident: bib15 article-title: Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode publication-title: RSC Adv. – volume: 42 start-page: 8773 year: 2008 end-page: 8777 ident: bib70 article-title: Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells publication-title: Environ. Sci. Technol. – year: 2016 ident: 10.1016/j.chemosphere.2021.132843_bib24 article-title: Microbial electrosynthesis and anaerobic fermentation: an economic evaluation for acetic acid production from CO2 and CO publication-title: Environ. Sci. Technol. acs.est.6b02101 doi: 10.1021/acs.est.6b02101 – volume: 269 start-page: 115101 year: 2020 ident: 10.1016/j.chemosphere.2021.132843_bib79 article-title: Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115101 – volume: 45 start-page: 67 year: 2014 ident: 10.1016/j.chemosphere.2021.132843_bib20 article-title: A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.05.026 – volume: 195 start-page: 102 year: 2015 ident: 10.1016/j.chemosphere.2021.132843_bib59 article-title: Metals removal and recovery in bioelectrochemical systems: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.058 – volume: 149 start-page: 42 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib41 article-title: Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation publication-title: Water Res. doi: 10.1016/j.watres.2018.10.092 – volume: 44 start-page: 21464 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib37 article-title: Redox-flow battery design for a methane-producing bioelectrochemical system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.189 – volume: 41 start-page: 23354 year: 2016 ident: 10.1016/j.chemosphere.2021.132843_bib39 article-title: Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.206 – volume: 1 start-page: 22 year: 2015 ident: 10.1016/j.chemosphere.2021.132843_bib63 article-title: Bioelectrochemical systems for nitrogen removal and recovery from wastewater publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C4EW00066H – volume: 287 start-page: 132188 year: 2022 ident: 10.1016/j.chemosphere.2021.132843_bib12 article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132188 – volume: 319 start-page: 124177 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib18 article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124177 – volume: 2 start-page: 45 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib47 article-title: Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis publication-title: Commun. Chem. doi: 10.1038/s42004-019-0145-0 – volume: 42 start-page: 8773 year: 2008 ident: 10.1016/j.chemosphere.2021.132843_bib70 article-title: Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells publication-title: Environ. Sci. Technol. doi: 10.1021/es8019353 – volume: 43 start-page: 559 year: 1995 ident: 10.1016/j.chemosphere.2021.132843_bib1 article-title: Volatile fatty acids as indicators of process imbalance in anaerobic digestors publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00218466 – volume: 5 start-page: 52243 year: 2015 ident: 10.1016/j.chemosphere.2021.132843_bib15 article-title: Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode publication-title: RSC Adv. doi: 10.1039/C5RA09039C – volume: 11 start-page: 9921 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib33 article-title: Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid? publication-title: RSC Adv. doi: 10.1039/D1RA00920F – volume: 297 start-page: 113374 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib62 article-title: Advancements in spontaneous microbial desalination technology for sustainable water purification and simultaneous power generation: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113374 – year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib51 article-title: Composition and toxicity of biogas produced from different feedstocks in California publication-title: Environ. Sci. Technol. – volume: 130155 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib76 article-title: A critical evaluation of the pH split and associated effects in bioelectrochemical processes publication-title: Chem. Eng. J. – volume: 128 start-page: 83 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib11 article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2019.03.011 – volume: 23 start-page: 22292 year: 2016 ident: 10.1016/j.chemosphere.2021.132843_bib14 article-title: Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7196-x – volume: 85 start-page: 1665 year: 2010 ident: 10.1016/j.chemosphere.2021.132843_bib57 article-title: Scaling up microbial fuel cells and other bioelectrochemical systems publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2378-9 – volume: 2 start-page: 43 year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib7 article-title: Alternative of biogas injection into the Danish gas grid system—a study from demand perspective publication-title: ChemEngineering doi: 10.3390/chemengineering2030043 – volume: 42 start-page: 210 year: 2016 ident: 10.1016/j.chemosphere.2021.132843_bib73 article-title: Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2015.07.006 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2021.132843_bib28 article-title: Extracellular enzymes facilitate electron uptake in biocorrosion and publication-title: mBio doi: 10.1128/mBio.00496-15 – volume: 100 start-page: 872 year: 2008 ident: 10.1016/j.chemosphere.2021.132843_bib71 article-title: Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21821 – volume: 11368−11375 year: 2020 ident: 10.1016/j.chemosphere.2021.132843_bib54 article-title: Enhancement of bioelectrochemical CO2 reduction with a carbon brush electrode via direct electron transfer publication-title: ACS Sustain. Chem. Eng. – volume: 190 start-page: 116679 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib35 article-title: Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading publication-title: Water Res. doi: 10.1016/j.watres.2020.116679 – volume: 18 start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib19 article-title: On the edge of research and technological application: a critical review of electromethanogenesis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18040874 – volume: 117 start-page: 105 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib34 article-title: Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2016.11.003 – volume: 51 start-page: 9371 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib42 article-title: Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01574 – volume: 338 start-page: 135887 year: 2020 ident: 10.1016/j.chemosphere.2021.132843_bib66 article-title: Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135887 – volume: 168 start-page: 1 year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib26 article-title: Hybrid biogas upgrading in a two-stage thermophilic reactor publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.04.074 – volume: 152 start-page: 107393 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib77 article-title: Anodic vs cathodic potentiostatic control of a methane producing microbial electrolysis cell aimed at biogas upgrading publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2019.107393 – volume: 153 start-page: 351 year: 2013 ident: 10.1016/j.chemosphere.2021.132843_bib45 article-title: Nutrients removal and recovery in bioelectrochemical systems: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.046 – volume: 39 start-page: 336 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib31 article-title: In situ biogas upgrading by CO2-to-CH4 bioconversion publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.08.006 – volume: 14 start-page: 503 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib21 article-title: Biogas upgrading and ammonia recovery from livestock manure digestates in a combined electromethanogenic biocathode—hydrophobic membrane system publication-title: Energies doi: 10.3390/en14020503 – volume: 43 start-page: 3953 year: 2009 ident: 10.1016/j.chemosphere.2021.132843_bib22 article-title: Direct biological conversion of electrical current into methane by electromethanogenesis publication-title: Environ. Sci. Technol. doi: 10.1021/es803531g – volume: 28 start-page: 1 year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib4 article-title: Porous hollow fiber nickel electrodes for effective supply and reduction of carbon dioxide to methane through microbial electrosynthesis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804860 – volume: 1 start-page: 57 year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib65 article-title: Organic waste and bioelectrochemical systems: a future interface between electricity and methane distribution grids publication-title: Detritus – volume: 44 start-page: 2380 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib50 article-title: In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.08.051 – volume: 19 start-page: 5748 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib6 article-title: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide publication-title: Green Chem. doi: 10.1039/C7GC01801K – year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib30 article-title: Perspectives on potential applications of nanometal derivatives in gaseous bioenergy pathways: mechanisms, life cycle, and toxicity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c02260 – volume: 297 start-page: 122448 year: 2020 ident: 10.1016/j.chemosphere.2021.132843_bib32 article-title: A single microbial electrochemical system for CO2 reduction and simultaneous biogas purification, upgrading and sulfur recovery publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122448 – volume: 9 start-page: 7179 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib38 article-title: Power-to-X: lighting the path to a net-zero-emission future publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c03212 – volume: 26 start-page: 450 year: 2008 ident: 10.1016/j.chemosphere.2021.132843_bib64 article-title: Towards practical implementation of bioelectrochemical wastewater treatment publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2008.04.008 – volume: 6 start-page: 17201 year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib17 article-title: Porous nickel hollow fi ber cathodes coated with CNTs for e ffi cient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata publication-title: J. Mater. Chem. doi: 10.1039/C8TA05322G – volume: 37 start-page: 2531 year: 2003 ident: 10.1016/j.chemosphere.2021.132843_bib60 article-title: Erratum: nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon (Water Research (2002) 36 (469-481) PII: S0043135401002299 publication-title: Water Res. doi: 10.1016/S0043-1354(02)00077-5 – volume: 237 start-page: 240 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib25 article-title: Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.038 – year: 2016 ident: 10.1016/j.chemosphere.2021.132843_bib36 article-title: Bioelectrochemical power-to-gas: state of the art and future perspectives publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.08.010 – volume: 247 start-page: 226 year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib61 article-title: Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.021 – volume: 167 start-page: 107886 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib74 article-title: Potentiostatic vs galvanostatic operation of a Microbial Electrolysis Cell for ammonium recovery and biogas upgrading publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2020.107886 – volume: 98 start-page: 153 year: 2016 ident: 10.1016/j.chemosphere.2021.132843_bib13 article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond publication-title: Renew. Energy doi: 10.1016/j.renene.2016.03.002 – volume: 245 start-page: 1168 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib55 article-title: Bioelectrochemical enhancement of anaerobic digestion: comparing single- and two-chamber reactor configurations at thermophilic conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.095 – year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib40 – year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib5 article-title: Biogas upgrading and utilization: current status and perspectives publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.01.011 – year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib8 article-title: An overview of microbial biogas enrichment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.06.013 – volume: 45 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib69 article-title: A comparison of microbial and bioelectrochemical approaches for biogas upgrade through carbon dioxide conversion to methane publication-title: Sustain. Energy Technol. Assessments – volume: 70 start-page: 101 year: 2004 ident: 10.1016/j.chemosphere.2021.132843_bib58 article-title: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2003.11.001 – volume: 337 start-page: 686 year: 2012 ident: 10.1016/j.chemosphere.2021.132843_bib56 article-title: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies publication-title: Science doi: 10.1126/science.1217412 – start-page: 466 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib78 article-title: Two-side cathode microbial electrolysis cell for nutrients recovery and biogas upgrading publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.119 – volume: 10 start-page: 2563 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib2 article-title: Enrichment of marinobacter sp. and halophilic homoacetogens at the biocathode of microbial electrosynthesis system inoculated with red sea brine pool publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02563 – volume: 22 start-page: 407 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib23 article-title: The use of carbon dioxide in microbial electrosynthesis: advancements, sustainability and economic feasibility publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.11.006 – start-page: 187 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib80 article-title: Power-to-gas for methanation – volume: 34 start-page: 3612 year: 2009 ident: 10.1016/j.chemosphere.2021.132843_bib67 article-title: Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.03.004 – volume: 17 start-page: 593 year: 2017 ident: 10.1016/j.chemosphere.2021.132843_bib75 article-title: Three-chamber bioelectrochemical system for biogas upgrading and nutrient recovery publication-title: Fuel Cell. doi: 10.1002/fuce.201700048 – year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib9 – volume: 247 start-page: 380 year: 2018 ident: 10.1016/j.chemosphere.2021.132843_bib46 article-title: Microbial electrochemical separation of CO2 for biogas upgrading publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.097 – volume: 50 start-page: 1982 year: 2016 ident: 10.1016/j.chemosphere.2021.132843_bib43 article-title: Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04431 – volume: 273 start-page: 509 year: 1987 ident: 10.1016/j.chemosphere.2021.132843_bib27 article-title: Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons publication-title: Science doi: 10.1126/science.237.4814.509 – volume: 417 start-page: 125992 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib44 article-title: A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.125992 – volume: 32 start-page: 645 year: 2014 ident: 10.1016/j.chemosphere.2021.132843_bib48 article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.10.004 – volume: 766 start-page: 142668 year: 2020 ident: 10.1016/j.chemosphere.2021.132843_bib3 article-title: Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142668 – year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib16 article-title: Biogas upgrading, CO2 valorisation and economic revaluation of bioelectrochemical systems through anodic chlorine production in the framework of wastewater treatment plants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.361 – volume: 87 start-page: 295 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib49 article-title: Methane loss from commercially operating biogas upgrading plants publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.02.023 – volume: 197 start-page: 117055 year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib53 article-title: High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input publication-title: Water Res. doi: 10.1016/j.watres.2021.117055 – volume: 137 start-page: 3193 year: 2015 ident: 10.1016/j.chemosphere.2021.132843_bib29 article-title: A half-reaction alternative to water oxidation: chloride oxidation to chlorine catalyzed by silver ion publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00037 – year: 2021 ident: 10.1016/j.chemosphere.2021.132843_bib10 – year: 2015 ident: 10.1016/j.chemosphere.2021.132843_bib68 article-title: Selection of appropriate biogas upgrading technology- a review of biogas cleaning, upgrading and utilization publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.06.029 – volume: 173 start-page: 392 year: 2014 ident: 10.1016/j.chemosphere.2021.132843_bib72 article-title: Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.127 – volume: 291 start-page: 121877 year: 2019 ident: 10.1016/j.chemosphere.2021.132843_bib52 article-title: Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121877 |
SSID | ssj0001659 |
Score | 2.5298076 |
SecondaryResourceType | review_article |
Snippet | Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added... Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO ) reduction and biomethane (or value-added... Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO₂) reduction and biomethane (or value-added... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 132843 |
SubjectTerms | Biochemical Process Engineering Bioelectrochemical system bioelectrochemistry Biofuels biogas Biokemisk processteknik Biomethane Bioreactors carbon dioxide Carbon Dioxide - analysis cathodes CO2 reduction Electromethanogens electron transfer Ex-situ Hydrogen In-situ Methane value added |
Title | Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading |
URI | https://dx.doi.org/10.1016/j.chemosphere.2021.132843 https://www.ncbi.nlm.nih.gov/pubmed/34767847 https://www.proquest.com/docview/2597492517 https://www.proquest.com/docview/2636495454 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87859 |
Volume | 291 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUAvFZTXtlC5EhzTruNXLPWyWlotoPZEoTfLduxV0JKs9iGVC78dO3G2PASqxC1KbMmZmdjfKPN9A_CalFw46W3GbSkyamWRaWFkxoUl3mDKiIl854tLPrmi76_Z9RaMey5MLKtMe3-3p7e7dbpzkqx5Mq-qyPGNaCQACDwkJCCByGCnIkb58ffbMg_MWQeBKcvi6AdwdFvjFezytVlG_n5UzMzxccjNCkr-dkb9iUF_ExhtD6XzR7Cb0CQadQt-DFuu3oOH476J2x7cP2tVqb89gc8XVau5FIan1jc2aQWgXlfcLVHjkdUL09SorJqbqnQoBOYscTVRALjIVM1UL9F6Pl205fdP4er87ON4kqWuCpllnK4yaXQxFDkx3tFIRJVkGC6c8EwTbLnk2Ae_UueCXUvMpaOES-ZyrnmuNfXkGWzXTe1eAArg0uCSSUt5SQvvdIG9i0KVpvQ-JJ4DKHo7Kpskx2Pni5nqa8u-qJ9coKILVOeCAeSbqfNOd-Muk057Z6lfgkiF8-Eu0496B6vgpvjnRNeuWS9VHtMuGdXd_jGGEx6yTcroAJ530bFZOQlxKQIOGMCbLlw2T6K699vq00g1i6mardaqEAWT-__3Igewk0eWRlsq9xK2V4u1exWw08octh_HIdwbvfswufwBfjsb0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VraC9ICgUlqcrwTF0HT8SS1xWS6st7e6phd4s27FXQUuy2odU_j124iwvgSpxixKP5MxMxt8oM98AvCEFz6xwJuGmyBJqRJ6oTIuEZ4Y4jSkjOvQ7T6Z8fEU_XrPrHRh1vTChrDLG_jamN9E63jmO2jxelGXo8Q1oxAMIPCDEI4E7sBvYqVgPdodn5-PpNiBjzloUTFkSBO7B0Y8yL6-ar_UqtPAH0swUv_PpWU7J346pP2Hobxyjzbl0-gDuR0CJhu2eH8KOrQ5gb9TNcTuAuycNMfW3R_B5Uja0S355nH5jIl0A6qjF7QrVDhm11HWFirK-KQuLvG_OY7sm8hgX6bKeqRXaLGbLpgL_MVydnlyOxkkcrJAYxuk6EVrlgywl2lkaelEFGfgLmzmmCDZccOy8aam1XrUF5sJSwgWzKVc8VYo6cgi9qq7sU0AeX2pcMGEoL2jurMqxs4GrUhfO-dyzD3mnR2ki63gYfjGXXXnZF_mTCWQwgWxN0Id0K7poqTduI_S-M5b8xY-kPyJuI37UGVh6M4WfJ6qy9WYl05B5iUDw9o81nHCfcHov7MOT1ju2Oyc087iAeum3rbtsnwSC7w_lp6GslzM5X29knuVMPPu_F3kNe-PLyYW8OJueP4f9NDRtNJVzL6C3Xm7sSw-l1vpV_FS-AyA4HoE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+electrochemical+approaches+of+carbon+dioxide+utilization+for+biogas+upgrading&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Aryal%2C+Nabin&rft.au=Zhang%2C+Yifeng&rft.au=Bajracharya%2C+Suman&rft.au=Pant%2C+Deepak&rft.date=2022-03-01&rft.issn=0045-6535&rft.volume=291&rft.spage=132843&rft_id=info:doi/10.1016%2Fj.chemosphere.2021.132843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2021_132843 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |