Thresholding functional connectomes by means of mixture modeling

Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are t...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 171; pp. 402 - 414
Main Authors Bielczyk, Natalia Z., Walocha, Fabian, Ebel, Patrick W., Haak, Koen V., Llera, Alberto, Buitelaar, Jan K., Glennon, Jeffrey C., Beckmann, Christian F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2018
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.01.003

Cover

Loading…
Abstract Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. •Sparse functional connectomes are useful in analyzing and interpreting fMRI data.•We propose thresholding by means of mixture modeling and control of FDR.•We benchmark the approach on synthetic fMRI data against established methods.•We apply the method to the resting state and working memory task datasets from HCP500.•Results are reproducible on synthetic data and interpretable on experimental data.
AbstractList Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.
Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. • Sparse functional connectomes are useful in analyzing and interpreting fMRI data. • We propose thresholding by means of mixture modeling and control of FDR. • We benchmark the approach on synthetic fMRI data against established methods. • We apply the method to the resting state and working memory task datasets from HCP500. • Results are reproducible on synthetic data and interpretable on experimental data.
Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.
Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. •Sparse functional connectomes are useful in analyzing and interpreting fMRI data.•We propose thresholding by means of mixture modeling and control of FDR.•We benchmark the approach on synthetic fMRI data against established methods.•We apply the method to the resting state and working memory task datasets from HCP500.•Results are reproducible on synthetic data and interpretable on experimental data.
Author Walocha, Fabian
Llera, Alberto
Beckmann, Christian F.
Buitelaar, Jan K.
Glennon, Jeffrey C.
Ebel, Patrick W.
Bielczyk, Natalia Z.
Haak, Koen V.
AuthorAffiliation a Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
d Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
b Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
e Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
c University of Osnabrück, Neuer Graben 29/Schloss, 49074 Osnabrück, Germany
AuthorAffiliation_xml – name: b Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands
– name: d Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands
– name: e Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
– name: a Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– name: c University of Osnabrück, Neuer Graben 29/Schloss, 49074 Osnabrück, Germany
Author_xml – sequence: 1
  givenname: Natalia Z.
  surname: Bielczyk
  fullname: Bielczyk, Natalia Z.
  email: natalia.bielczyk@gmail.com
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 2
  givenname: Fabian
  surname: Walocha
  fullname: Walocha, Fabian
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 3
  givenname: Patrick W.
  surname: Ebel
  fullname: Ebel, Patrick W.
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 4
  givenname: Koen V.
  surname: Haak
  fullname: Haak, Koen V.
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 5
  givenname: Alberto
  surname: Llera
  fullname: Llera, Alberto
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 6
  givenname: Jan K.
  surname: Buitelaar
  fullname: Buitelaar, Jan K.
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 7
  givenname: Jeffrey C.
  surname: Glennon
  fullname: Glennon, Jeffrey C.
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
– sequence: 8
  givenname: Christian F.
  surname: Beckmann
  fullname: Beckmann, Christian F.
  organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29309896$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAUhVGVqnm0f6Gy1E03drm2sWFTpY3ShxQpm2SNGLieYYohBTvq_PtgJWnaWc0KJO757uGcU3Lkg0dCCqAVUOg-bSuPcwx2VGusagq8olBR2rwiJ0AFKwXr66PlzpqSA4hjcprSllIqoOVvyHEtGiq46E7I-c0mYtoEZ6xfF8Ps9WSDV67QwXvUUxgxFatdMaLyqQhDMdo_0xyxGINBlzVvyetBuYTvns4zcvvt8ubiR3l1_f3nxZerUrOunUohBoPKYMeAIvRGma6HmilOFYBhuKItcF33vGtNy9iqV52BVlDE3rRKd80Z-fzIvZtXIxqNforKybuYQ4g7GZSV_794u5HrcC-Z4JA_ngEfnwAx_J4xTXK0SaNzymOYk4QcCGO85zyPftgb3YY55lSSzGG3Td-03QJ8_6-jv1aew32xrGNIKeIgtZ3Ukm82aJ0EKpc25Va-tLks4JKCzG1mAN8DPO84QPr1UYq5k3uLUSZt0Ws0NuZapQn2EMj5HkTnyq1W7hfuDkM8AHjW14I
CitedBy_id crossref_primary_10_1016_j_neuroimage_2019_05_011
crossref_primary_10_1093_cercor_bhad178
crossref_primary_10_1002_hbm_25893
crossref_primary_10_3389_fnins_2020_00446
crossref_primary_10_1016_j_neuroimage_2018_05_058
crossref_primary_10_3389_fneur_2022_927481
crossref_primary_10_1016_j_neuroimage_2022_119659
crossref_primary_10_1162_netn_a_00099
crossref_primary_10_1016_j_sleep_2024_02_013
crossref_primary_10_1186_s13229_022_00529_y
crossref_primary_10_1162_netn_a_00062
crossref_primary_10_1016_j_neuroimage_2018_06_073
crossref_primary_10_1016_j_neuroimage_2018_09_059
crossref_primary_10_1089_brain_2020_0740
crossref_primary_10_1007_s00429_019_01866_0
crossref_primary_10_1016_j_jare_2019_01_001
crossref_primary_10_3390_math12192967
crossref_primary_10_1002_hbm_26669
crossref_primary_10_7554_eLife_44890
crossref_primary_10_1038_s41398_021_01284_z
crossref_primary_10_1038_s41582_021_00529_1
crossref_primary_10_1038_s44220_025_00396_5
Cites_doi 10.1073/pnas.0905267106
10.1016/j.biopsych.2011.05.018
10.1016/j.neuroimage.2013.05.012
10.1103/PhysRevLett.94.018102
10.1093/cercor/12.11.1202
10.1016/j.neuroimage.2012.09.052
10.1503/jpn.100006
10.1371/journal.pcbi.0030017
10.1016/0166-2236(92)90344-8
10.1016/j.neuroimage.2008.08.010
10.7554/eLife.03952
10.1214/009053606000001460
10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6
10.1093/cercor/11.4.287
10.3389/fnsys.2010.00147
10.1146/annurev.neuro.27.070203.144220
10.1073/pnas.0504136102
10.1016/j.neuroimage.2011.08.048
10.1371/journal.pone.0014788
10.1016/j.neuroimage.2009.10.003
10.1038/nn.4206
10.1016/j.neuroimage.2010.08.063
10.1093/biomet/40.3-4.318
10.1038/nn.4125
10.1093/cercor/bht040
10.1016/j.neuroimage.2005.12.016
10.1016/S0960-9822(00)00671-0
10.1073/pnas.0601417103
10.1523/JNEUROSCI.0333-10.2010
10.1016/j.neuroimage.2005.12.057
10.1523/JNEUROSCI.2874-10.2010
10.1093/cercor/1.1.1
10.1080/01621459.1990.10474929
10.1002/(SICI)1096-9861(19970303)379:1<21::AID-CNE3>3.0.CO;2-K
10.1371/journal.pone.0021570
10.1098/rstb.2005.1634
10.1002/hbm.20531
10.1038/pr.2016.49
10.1016/S0927-5398(03)00007-0
10.1038/nn.2905
10.1038/s41598-017-02334-7
10.1523/JNEUROSCI.0106-16.2016
10.1093/cercor/bhn256
10.1016/S0028-3932(02)00017-9
10.1586/14789450.1.2.239
10.1093/cercor/bhu277
10.1038/nrn2575
10.1016/j.biopsych.2006.09.020
10.1523/JNEUROSCI.23-10-03981.2003
10.1016/j.neuron.2011.02.025
10.1038/30918
10.1016/j.tics.2013.09.016
10.1037/0033-2909.86.2.420
10.1038/nn.3327
10.1038/nn.4500
10.1073/pnas.95.25.14863
10.1016/j.neuroimage.2014.03.034
10.1002/brb3.777
10.1016/0166-2236(83)90167-4
10.1371/journal.pone.0013701
10.3389/fnins.2015.00048
10.1016/j.neuroimage.2017.02.005
10.1038/nn.4135
10.1016/S1053-8119(03)00202-7
10.1016/j.neuroimage.2013.05.077
10.1016/S1053-8119(03)00142-3
10.1016/j.neuron.2007.10.012
10.1068/p070695
10.1016/j.neubiorev.2015.07.014
10.1093/cercor/6.1.39
10.1016/j.neuroimage.2012.02.018
10.1006/nimg.1998.0396
10.1038/nbt1406
10.1016/j.neuroimage.2013.05.033
10.1016/0166-2236(83)90190-X
10.1126/science.aad8127
10.1109/TMI.2003.822821
10.1214/aos/1176344136
10.1016/j.neuroimage.2016.06.035
10.1176/ajp.2007.164.3.450
10.1016/j.neuroimage.2013.11.046
10.1001/archgenpsychiatry.2009.152
10.1002/hbm.20182
10.1016/j.neuroimage.2011.09.015
10.1097/WCO.0b013e32832d93dd
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 1, 2018
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 1, 2018
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2018.01.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Collection
Biological science database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 414
ExternalDocumentID PMC5981009
29309896
10_1016_j_neuroimage_2018_01_003
S105381191830003X
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom--UK
Netherlands
GeographicLocations_xml – name: Netherlands
– name: United Kingdom--UK
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c564t-99fdeade6510e17dad67125a80a11d5eb0418c27864d455b7a6d1490ee7d4ac63
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:08:53 EDT 2025
Fri Jul 11 11:53:49 EDT 2025
Wed Aug 13 02:42:13 EDT 2025
Thu Apr 03 07:01:46 EDT 2025
Tue Jul 01 03:01:55 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Fri Feb 23 02:48:17 EST 2024
Tue Aug 26 20:08:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Mixture modeling
False discovery rate
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-99fdeade6510e17dad67125a80a11d5eb0418c27864d455b7a6d1490ee7d4ac63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Natalia Z. Bielczyk and Fabian Walocha contributed equally to this work.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S105381191830003X
PMID 29309896
PQID 2014373469
PQPubID 2031077
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5981009
proquest_miscellaneous_1989558788
proquest_journals_2014373469
pubmed_primary_29309896
crossref_citationtrail_10_1016_j_neuroimage_2018_01_003
crossref_primary_10_1016_j_neuroimage_2018_01_003
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_01_003
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_01_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
References Marcus, Harms, Snyder, Jenkinson, Wilson, Glasser, Barch, Archie, Burgess, Ramaratnam, Hodge, Horton, Herrick, Olsen, Mckay, House, Hileman, Reid, Harwell, Coalson, Schindler, Elam, Curtis, Essen (bib62) 2013; 80
van Essen, Maunsell (bib30) 1983; 6
Mishkin, Ungerleider, Macko (bib66) 1983; 6
Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Essen, Miller (bib84) 2015; 18
Chauvin, Mennes, Buitelaar, Beckmann (bib20) 2017
Warrington, Taylor (bib98) 1978; 7
Nichols, Das, Eickhoff, Evans, Glatard, Hanke, Kriegeskorte, Milham, Poldrack, Poline, Proal, Thirion, Essen, White, Yeo (bib69) 2017; 20
Rubinov, Sporns (bib74) 2010; 52
Box (bib16) 1953; 40
Amedi, Jacobson, Hendler, Malach, Zohary (bib4) 2001; 12
Bullmore, Sporns (bib17) 2009; 10
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib35) 2015; 18
Patel, Bowman, Rilling (bib71) 2006; 27
van den Heuvel, Mandl, Stam, Kahn, Pol (bib53) 2010; 30
Aurich, Filho, da Silva, Franco (bib6) 2015
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib75) 2014; 15
Silson, McKeefry, Rodgers, Gouws, Hymers, Morland (bib80) 2013; 16
Smith (bib81) 2016; 19
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib82) 2011; 54
Lynall, Bassett, Kerwin, McKenna, Kitzbichler, Muller, Bullmore (bib61) 2010; 30
Hyvärinen, Smith (bib55) 2013; 14
Arcaro, Honey, Mruczek, Kastner, Hasson (bib5) 2015; 4
Haak, Beckmann (bib49) 2017
Oldehinkel, Beckmann, Pruim, van Oort, Franke, Hartman, Hoekstra, Oosterlaan, Heslenfeld, Buitelaar, Mennes (bib70) 2016; 1
Güclü, van Gerven (bib47) 2015; 145
Vetter, Steding, Jurk, Ripke, Mennigen, Smolka (bib94) 2017; 7
Friston, Harrison, Penny (bib39) 2003; 19
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Essen (bib7) 2013; 80
Marrelec, Fransson (bib63) 2011; 6
Mulders, van Eijndhoven, Schene, Beckmann, Tendolkar (bib68) 2015; 56
Pellegrini, Haynor, Johnson (bib72) 2004; 1
Zhang, Wang, Wu, Kuang, Huang, He, Gong (bib103) 2011; 70
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib23) 2006; 103
Bielczyk, Llera, Buitelaar, Glennon, Beckmann (bib11) 2017; 7
Drobyshevsky, Baumann, Schneider (bib26) 2006; 31
Shrout, Fleiss (bib79) 1979; 86
Fox, Snyder, Vincent, Corbetta, Essen, Raichle (bib38) 2005; 102
Grill-Spector, Malach (bib46) 2004; 27
Courtney, Ungerleider, Keil, Haxby (bib22) 1996; 6
Tavor, Jones, Mars, Smith, Behrens, Jbabdi (bib88) 2016; 352
Grill-Spector, Kushnir, Hendler, Edelman, Itzchak, Malach (bib45) 1998; 6
Greicius, Flores, Menon, Glover, Solvason, Kenna, Reiss, Schatzberg (bib43) 2007; 62
Eisen, Spellman, Brown, Botstein (bib29) 1998; 95
Christensen (bib21) 2011
Tyszka, Kennedy, Paul, Adolphs (bib91) 2014; 24
Vittinghoff, Glidden, Shiboski, McCulloch (bib95) 2005
Stramaglia, Pellicoro, Angelini, Amico, Aerts, Cortés, Laureys, Marinazzo (bib87) 2017
Achard, Bullmore (bib1) 2007; 3
Zille, Calhoun, Stephen, Wilson, Wang (bib105) 2017
Uddin, Kelly, Biswal, Castellanos, Milham (bib92) 2009; 30
Ginestet, Nichols, Bullmore, Simmons (bib41) 2011
Felleman, Burkhalter, van Essen (bib32) 1997; 379
Rausch, Zhang, Haak, Mennes, Hermans, van Oort, van Wingen, Beckmann, Buitelaar, Groen (bib73) 2016; 7
Zhang, Wang, Yang, Wu, Li (bib104) 2011; 36
Fino, Yuste (bib36) 2011; 69
Bishop (bib13) 2006
Fischl, Sereno, Dale (bib37) 1999; 9
Soriano-Mas, Pujol, Ortiz, López-Solá, Hernández-Ribas, Deus, Alonso, Yücel, Pantelis, Menchon, Cardoner (bib86) 2009; 66
Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bib40) 2007; 163
Ledoit, Wolf (bib58) 2003; 10
Schwarz (bib77) 1978; 6
Ugurbil, Xu, Auerbach, Moeller, Vu, Duarte-Carvajalino, Lenglet, Wu, Schmitter, de Moortele, Strupp, Sapiro, Martino, Wang, Harel, Garwood, Chen, Feinberg, Smith, Miller, S. Jbabdi, Andersson, Behrens, Glasser, Essen, Yacoub (bib93) 2013; 80
Beckmann, DeLuca, Devlin, Smith (bib9) 2005; 360
Merhar, Gozdas, Tkach, Harpster, Schwartz, Kline-Fath, Leach, Altaye, Holland (bib65) 2016; 80
Tootell, Tsao, Vanduffel (bib90) 2003; 23
van den Heuvel, Stam, Boersma, Pol (bib54) 2008; 43
Llera, Vidaurre, Pruim, Beckmann (bib60) 2016
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib83) 2009; 106
Herting, Gautam, Chen, Mezherd, Vetter (bib51) 2017
Wang, Mruczek, Arcaro, Kastner (bib97) 2015; 25
van Wijk, Stam, Daffertshofer (bib101) 2010; 5
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib44) 2014; 95
de Schotten, Dell'Acqua, Forkel, Simmons, Vergani, Murphy, Catani (bib76) 2011; 14
Bola, Borchardt (bib15) 2016; 36
Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich, Barch, Ugurbil, Essen (bib85) 2013; 17
Eguiluz, Chialvo, Cecchi, Baliki, Apkarian (bib28) 2005; 94
Do, Batzoglou (bib25) 2008; 26
Welch (bib100) 1990; 85
Bassett, Bullmore (bib8) 2009; 22
Goodale, Milner (bib42) 1992; 15
Hagmann, Thiran, Jonasson, Vandergheynst, Clarke, Maeder, Meuli (bib50) 2003; 19
van den Heuvel, de Lange, Zalesky, Seguin, Yeo, Schmidt (bib52) 2017; 152
Beckmann, Smith (bib10) 2004; 23
Alexander-Bloch, Gogtay, Meunier, Birn, Clasen, Lalonde, Lenroot, Giedd, Bullmore (bib3) 2010; 4
James, Humphrey, Gati, Servos, Menon, Goodale (bib56) 2002; 40
Bielczyk, Uithol, van Mourik, Havenith, Anderson, Glennon, Buitelaar (bib12) 2017
Lerner, Hendler, Ben-Bashat, Harel, Malach (bib59) 2001; 11
Marrelec, Krainik, Duffau, Pélégrini-Issac, Lehéricy, Doyon, Benali (bib64) 2006; 32
Akaike (bib2) 1998
Güntürkün, Diekamp, Manns, Nottelmann, Prior, Schwarz, Skiba (bib48) 2000; 10
Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib31) 2013; 62
Mislove, Marcon, Gummadi, Druschel, Bhattacharjee (bib67) 2007
Efron (bib27) 2007; 35
Chai, Castañón, Ongür, Whitfield-Gabrieli (bib19) 2012; 59
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib57) 2012; 62
Fiecas, Ombao, Lunen, Baumgartner, Coimbra, Feng (bib34) 2013; 65
Felleman, Essen (bib33) 1991; 1
Thompson, Wang, Schork, Witoelar, Zuber, Xu, Werge, Holland, Andreassen, Dale (bib89) 2015
Zalesky, Fornito, Cocchi, Gollo, van den Heuvel, Breakspear (bib102) 2016; 142
Wandell, Dumoulin, Brewer (bib96) 2007; 56
Watts, Strogatz (bib99) 1998; 393
Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal, Petkova, Castellanos, Milham (bib78) 2009; 19
Box (10.1016/j.neuroimage.2018.01.003_bib16) 1953; 40
Merhar (10.1016/j.neuroimage.2018.01.003_bib65) 2016; 80
Marrelec (10.1016/j.neuroimage.2018.01.003_bib63) 2011; 6
Bullmore (10.1016/j.neuroimage.2018.01.003_bib17) 2009; 10
Watts (10.1016/j.neuroimage.2018.01.003_bib99) 1998; 393
Courtney (10.1016/j.neuroimage.2018.01.003_bib22) 1996; 6
Smith (10.1016/j.neuroimage.2018.01.003_bib83) 2009; 106
Felleman (10.1016/j.neuroimage.2018.01.003_bib32) 1997; 379
Fischl (10.1016/j.neuroimage.2018.01.003_bib37) 1999; 9
Hyvärinen (10.1016/j.neuroimage.2018.01.003_bib55) 2013; 14
Wandell (10.1016/j.neuroimage.2018.01.003_bib96) 2007; 56
Zhang (10.1016/j.neuroimage.2018.01.003_bib104) 2011; 36
Hagmann (10.1016/j.neuroimage.2018.01.003_bib50) 2003; 19
Akaike (10.1016/j.neuroimage.2018.01.003_bib2) 1998
Achard (10.1016/j.neuroimage.2018.01.003_bib1) 2007; 3
Tyszka (10.1016/j.neuroimage.2018.01.003_bib91) 2014; 24
Haak (10.1016/j.neuroimage.2018.01.003_bib49) 2017
Thompson (10.1016/j.neuroimage.2018.01.003_bib89) 2015
Garrity (10.1016/j.neuroimage.2018.01.003_bib40) 2007; 163
Grill-Spector (10.1016/j.neuroimage.2018.01.003_bib46) 2004; 27
Shrout (10.1016/j.neuroimage.2018.01.003_bib79) 1979; 86
Goodale (10.1016/j.neuroimage.2018.01.003_bib42) 1992; 15
van den Heuvel (10.1016/j.neuroimage.2018.01.003_bib54) 2008; 43
Chai (10.1016/j.neuroimage.2018.01.003_bib19) 2012; 59
Pellegrini (10.1016/j.neuroimage.2018.01.003_bib72) 2004; 1
Ginestet (10.1016/j.neuroimage.2018.01.003_bib41) 2011
Beckmann (10.1016/j.neuroimage.2018.01.003_bib10) 2004; 23
Bishop (10.1016/j.neuroimage.2018.01.003_bib13) 2006
Fiecas (10.1016/j.neuroimage.2018.01.003_bib34) 2013; 65
Damoiseaux (10.1016/j.neuroimage.2018.01.003_bib23) 2006; 103
Barch (10.1016/j.neuroimage.2018.01.003_bib7) 2013; 80
Finn (10.1016/j.neuroimage.2018.01.003_bib35) 2015; 18
Smith (10.1016/j.neuroimage.2018.01.003_bib82) 2011; 54
Beckmann (10.1016/j.neuroimage.2018.01.003_bib9) 2005; 360
Rausch (10.1016/j.neuroimage.2018.01.003_bib73) 2016; 7
Bola (10.1016/j.neuroimage.2018.01.003_bib15) 2016; 36
Bielczyk (10.1016/j.neuroimage.2018.01.003_bib11) 2017; 7
Warrington (10.1016/j.neuroimage.2018.01.003_bib98) 1978; 7
Vittinghoff (10.1016/j.neuroimage.2018.01.003_bib95) 2005
Christensen (10.1016/j.neuroimage.2018.01.003_bib21) 2011
Alexander-Bloch (10.1016/j.neuroimage.2018.01.003_bib3) 2010; 4
Patel (10.1016/j.neuroimage.2018.01.003_bib71) 2006; 27
Aurich (10.1016/j.neuroimage.2018.01.003_bib6) 2015
Mislove (10.1016/j.neuroimage.2018.01.003_bib67) 2007
Ledoit (10.1016/j.neuroimage.2018.01.003_bib58) 2003; 10
Friston (10.1016/j.neuroimage.2018.01.003_bib39) 2003; 19
Mulders (10.1016/j.neuroimage.2018.01.003_bib68) 2015; 56
Do (10.1016/j.neuroimage.2018.01.003_bib25) 2008; 26
Chauvin (10.1016/j.neuroimage.2018.01.003_bib20) 2017
Rubinov (10.1016/j.neuroimage.2018.01.003_bib74) 2010; 52
Zille (10.1016/j.neuroimage.2018.01.003_bib105) 2017
Vetter (10.1016/j.neuroimage.2018.01.003_bib94) 2017; 7
Smith (10.1016/j.neuroimage.2018.01.003_bib84) 2015; 18
Essen (10.1016/j.neuroimage.2018.01.003_bib31) 2013; 62
Güntürkün (10.1016/j.neuroimage.2018.01.003_bib48) 2000; 10
Felleman (10.1016/j.neuroimage.2018.01.003_bib33) 1991; 1
Herting (10.1016/j.neuroimage.2018.01.003_bib51) 2017
van Wijk (10.1016/j.neuroimage.2018.01.003_bib101) 2010; 5
Greicius (10.1016/j.neuroimage.2018.01.003_bib43) 2007; 62
Lynall (10.1016/j.neuroimage.2018.01.003_bib61) 2010; 30
Smith (10.1016/j.neuroimage.2018.01.003_bib85) 2013; 17
van Essen (10.1016/j.neuroimage.2018.01.003_bib30) 1983; 6
Amedi (10.1016/j.neuroimage.2018.01.003_bib4) 2001; 12
Eisen (10.1016/j.neuroimage.2018.01.003_bib29) 1998; 95
Drobyshevsky (10.1016/j.neuroimage.2018.01.003_bib26) 2006; 31
Smith (10.1016/j.neuroimage.2018.01.003_bib81) 2016; 19
van den Heuvel (10.1016/j.neuroimage.2018.01.003_bib53) 2010; 30
Mishkin (10.1016/j.neuroimage.2018.01.003_bib66) 1983; 6
Güclü (10.1016/j.neuroimage.2018.01.003_bib47) 2015; 145
Grill-Spector (10.1016/j.neuroimage.2018.01.003_bib45) 1998; 6
Llera (10.1016/j.neuroimage.2018.01.003_bib60) 2016
Marrelec (10.1016/j.neuroimage.2018.01.003_bib64) 2006; 32
Marcus (10.1016/j.neuroimage.2018.01.003_bib62) 2013; 80
Nichols (10.1016/j.neuroimage.2018.01.003_bib69) 2017; 20
Efron (10.1016/j.neuroimage.2018.01.003_bib27) 2007; 35
James (10.1016/j.neuroimage.2018.01.003_bib56) 2002; 40
Welch (10.1016/j.neuroimage.2018.01.003_bib100) 1990; 85
de Schotten (10.1016/j.neuroimage.2018.01.003_bib76) 2011; 14
Bielczyk (10.1016/j.neuroimage.2018.01.003_bib12)
Zalesky (10.1016/j.neuroimage.2018.01.003_bib102) 2016; 142
van den Heuvel (10.1016/j.neuroimage.2018.01.003_bib52) 2017; 152
Soriano-Mas (10.1016/j.neuroimage.2018.01.003_bib86) 2009; 66
Bassett (10.1016/j.neuroimage.2018.01.003_bib8) 2009; 22
Uddin (10.1016/j.neuroimage.2018.01.003_bib92) 2009; 30
Oldehinkel (10.1016/j.neuroimage.2018.01.003_bib70) 2016; 1
Fox (10.1016/j.neuroimage.2018.01.003_bib38) 2005; 102
Wang (10.1016/j.neuroimage.2018.01.003_bib97) 2015; 25
Tavor (10.1016/j.neuroimage.2018.01.003_bib88) 2016; 352
Tootell (10.1016/j.neuroimage.2018.01.003_bib90) 2003; 23
Fino (10.1016/j.neuroimage.2018.01.003_bib36) 2011; 69
Ugurbil (10.1016/j.neuroimage.2018.01.003_bib93) 2013; 80
Eguiluz (10.1016/j.neuroimage.2018.01.003_bib28) 2005; 94
Shehzad (10.1016/j.neuroimage.2018.01.003_bib78) 2009; 19
Arcaro (10.1016/j.neuroimage.2018.01.003_bib5) 2015; 4
Lerner (10.1016/j.neuroimage.2018.01.003_bib59) 2001; 11
Salimi-Khorshidi (10.1016/j.neuroimage.2018.01.003_bib75) 2014; 15
Stramaglia (10.1016/j.neuroimage.2018.01.003_bib87) 2017
Griffanti (10.1016/j.neuroimage.2018.01.003_bib44) 2014; 95
Jenkinson (10.1016/j.neuroimage.2018.01.003_bib57) 2012; 62
Zhang (10.1016/j.neuroimage.2018.01.003_bib103) 2011; 70
Schwarz (10.1016/j.neuroimage.2018.01.003_bib77) 1978; 6
Silson (10.1016/j.neuroimage.2018.01.003_bib80) 2013; 16
References_xml – volume: 15
  start-page: 20
  year: 1992
  end-page: 25
  ident: bib42
  article-title: Separate visual pathways for perception and action
  publication-title: Trends Neurosci.
– volume: 80
  start-page: 202
  year: 2013
  end-page: 219
  ident: bib62
  article-title: Human Connectome Project informatics: quality control, database services and data visualization
  publication-title: Neuroimage
– volume: 94
  year: 2005
  ident: bib28
  article-title: Scale-free brain functional networks
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 370
  year: 1983
  end-page: 375
  ident: bib30
  article-title: Hierarchical organization and functional streams in the visual cortex
  publication-title: Trends Neurosci.
– volume: 6
  year: 2011
  ident: bib63
  article-title: Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions
  publication-title: PLos One
– volume: 18
  start-page: 1565
  year: 2015
  end-page: 1567
  ident: bib84
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib9
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. Royal Soc. Lon. Series B
– volume: 26
  start-page: 897
  year: 2008
  end-page: 899
  ident: bib25
  article-title: What is the expectation maximization algorithm?
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 39
  year: 1996
  end-page: 49
  ident: bib22
  article-title: Object and spatial visual working memory activate separate neural systems in human cortex
  publication-title: Cerebr. Cortex
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib74
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– year: 2017
  ident: bib51
  article-title: Test-retest reliability of longitudinal task-based fMRI?implications for developmental studies
  publication-title: Develop. Cogn. Neurosci.
– volume: 3
  start-page: e17
  year: 2007
  ident: bib1
  article-title: Efficiency and cost of economical brain functional networks
  publication-title: PLoS Comput. Biol.
– volume: 142
  start-page: 407
  year: 2016
  end-page: 420
  ident: bib102
  article-title: Connectome sensitivity or specificity: which is more important?
  publication-title: Neuroimage
– volume: 30
  start-page: 15915
  year: 2010
  end-page: 15926
  ident: bib53
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
  publication-title: J. Neurosci.
– volume: 145
  start-page: 329
  year: 2015
  end-page: 336
  ident: bib47
  article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
  publication-title: Neuroimage
– year: 2017
  ident: bib49
  article-title: Objective analysis of the topological organization of the human cortical visual connectome suggests three visual pathways
  publication-title: Cortex
– volume: 30
  start-page: 625
  year: 2009
  end-page: 637
  ident: bib92
  article-title: Functional connectivity of default mode network components: correlation, anticorrelation, and causality
  publication-title: Hum. Brain Mapp.
– volume: 379
  start-page: 21
  year: 1997
  end-page: 47
  ident: bib32
  article-title: Cortical connections of areas v3 and vp of macaque monkey extrastriate visual cortex
  publication-title: J. Comp. Neurol.
– volume: 27
  start-page: 649
  year: 2004
  end-page: 677
  ident: bib46
  article-title: The human visual cortex
  publication-title: Annu. Rev. Neurosci.
– volume: 40
  start-page: 318
  year: 1953
  end-page: 335
  ident: bib16
  article-title: Non-normality and tests on variances
  publication-title: Biometrika
– volume: 152
  start-page: 437
  year: 2017
  end-page: 449
  ident: bib52
  article-title: Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations
  publication-title: Neuroimage
– volume: 7
  start-page: 2287
  year: 2017
  ident: bib94
  article-title: Reliability in adolescent fMRI within two years? A comparison of three tasks
  publication-title: Sci. Rep.
– volume: 6
  start-page: 316
  year: 1998
  end-page: 328
  ident: bib45
  article-title: A sequence of object-processing stages revealed by fMRI in the human occipital lobe
  publication-title: Hum. Brain Mapp.
– volume: 80
  start-page: 80
  year: 2013
  end-page: 104
  ident: bib93
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project
  publication-title: Neuroimage
– volume: 70
  start-page: 334
  year: 2011
  end-page: 342
  ident: bib103
  article-title: Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder
  publication-title: Biol. Psychiatr.
– volume: 10
  start-page: 603
  year: 2003
  end-page: 621
  ident: bib58
  article-title: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
  publication-title: J. Empir. Finance
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib7
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
– volume: 40
  start-page: 1706
  year: 2002
  end-page: 1714
  ident: bib56
  article-title: Haptic study of three-dimensional objects activates extrastriate visual areas
  publication-title: Neuropsychologia
– volume: 36
  start-page: 3633
  year: 2016
  end-page: 3635
  ident: bib15
  article-title: Cognitive processing involves dynamic reorganization of the whole-brain Network's functional community structure
  publication-title: J. Neurosci.
– year: 2017
  ident: bib87
  article-title: Conserved ising model on the human connectome
  publication-title: arXiV preprint
– volume: 5
  year: 2010
  ident: bib101
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLos One
– year: 2015
  ident: bib89
  article-title: An empirical bayes mixture model for effect size distributions in genome-wide association studies
  publication-title: PLoS Comput. Biol.
– volume: 1
  start-page: 239
  year: 2004
  end-page: 249
  ident: bib72
  article-title: Protein interaction networks
  publication-title: Expet Rev. Proteonomics
– volume: 56
  start-page: 190
  year: 2007
  end-page: 222
  ident: bib96
  article-title: Visual field maps in human cortex
  publication-title: Neuron
– volume: 36
  start-page: 23
  year: 2011
  end-page: 31
  ident: bib104
  article-title: L.C.L. Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder
  publication-title: J. Psychiatr. Neurosci.
– volume: 20
  start-page: 299
  year: 2017
  end-page: 303
  ident: bib69
  article-title: Best practices in data analysis and sharing in neuroimaging using MRI
  publication-title: Nat. Neurosci.
– volume: 4
  start-page: 147
  year: 2010
  ident: bib3
  article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
  publication-title: Front. Sys. Neurosci.
– volume: 66
  start-page: 1189
  year: 2009
  end-page: 1200
  ident: bib86
  article-title: Altered corticostriatal functional connectivity in obsessive-compulsive disorder
  publication-title: Arch. Gen. Psychiatr.
– volume: 23
  start-page: 3981
  year: 2003
  end-page: 3989
  ident: bib90
  article-title: Neuroimaging weighs in: humans meet macaques in “primate” visual cortex
  publication-title: J. Neurosci.
– year: 2017
  ident: bib105
  article-title: Fused estimation of sparse connectivity patterns from rest fMRI. Application to comparison of children and adult brains
  publication-title: IEEE Trans. Med. Imag.
– volume: 31
  start-page: 732
  year: 2006
  end-page: 744
  ident: bib26
  article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function
  publication-title: Neuroimage
– volume: 19
  start-page: 545
  year: 2003
  end-page: 554
  ident: bib50
  article-title: Dti mapping of human brain connectivity: statistical fibre tracking and virtual dissection
  publication-title: Neuroimage
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: bib33
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cerebr. Cortex
– volume: 11
  start-page: 287
  year: 2001
  end-page: 297
  ident: bib59
  article-title: A hierarchical axis of object processing stages in the human visual cortex
  publication-title: Cerebr. Cortex
– volume: 32
  start-page: 228
  year: 2006
  end-page: 237
  ident: bib64
  article-title: Partial correlation for functional brain interactivity investigation in functional mri
  publication-title: Neuroimage
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib35
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– year: 2017
  ident: bib20
  article-title: Assessing age-dependent multi-task functional co-activation changes using measures of task-potency
  publication-title: Develop. Cogn. Neurosci.
– volume: 59
  start-page: 1420
  year: 2012
  end-page: 1428
  ident: bib19
  article-title: Anticorrelations in resting state networks without global signal regression
  publication-title: Neuroimage
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib57
  publication-title: Neuroimage
– year: 2016
  ident: bib60
  article-title: Variational Mixture Models with Gamma or Inverse-gamma Components
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib77
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– year: 2015
  ident: bib6
  article-title: Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data
  publication-title: Front. Neurosci.
– year: 2011
  ident: bib21
  article-title: Plane Answers to Complex Questions
– volume: 19
  start-page: 7
  year: 2016
  end-page: 9
  ident: bib81
  article-title: Linking cognition to brain connectivity
  publication-title: Nat. Neurosci.
– start-page: 199
  year: 1998
  end-page: 213
  ident: bib2
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Selected Papers of Hirotugu Akaike
– volume: 22
  start-page: 340
  year: 2009
  end-page: 347
  ident: bib8
  article-title: Human brain networks in health and disease
  publication-title: Curr. Opin. Neurol.
– volume: 15
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib75
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 35
  start-page: 1351
  year: 2007
  end-page: 1377
  ident: bib27
  article-title: Size, power and false discovery rates
  publication-title: Ann. Stat.
– volume: 14
  start-page: 1245
  year: 2011
  end-page: 1246
  ident: bib76
  article-title: A lateralized brain network for visuospatial attention
  publication-title: Nat. Neurosci.
– year: 2005
  ident: bib95
  article-title: Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models
– year: 2011
  ident: bib41
  article-title: Brain network analysis: separating cost from topology using cost-integration
  publication-title: PLos One
– volume: 4
  year: 2015
  ident: bib5
  article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization
  publication-title: ELife
– volume: 43
  start-page: 528
  year: 2008
  end-page: 539
  ident: bib54
  article-title: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain
  publication-title: Neuroimage
– year: 2006
  ident: bib13
  article-title: Pattern Recognition and Machine Learning
– volume: 7
  start-page: 695
  year: 1978
  end-page: 705
  ident: bib98
  article-title: Two categorical stages of object recognition
  publication-title: Perception
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bib10
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imag.
– volume: 14
  start-page: 111
  year: 2013
  end-page: 152
  ident: bib55
  article-title: Pairwise likelihood ratios for estimation of non-Gaussian structural equation models
  publication-title: J. Mach. Learn. Res.
– volume: 80
  start-page: 43
  year: 2016
  end-page: 48
  ident: bib65
  article-title: Functional and structural connectivity of the visual system in infants with perinatal brain injury
  publication-title: Pediatr. Res.
– volume: 17
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib85
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cognit. Sci.
– year: 2017
  ident: bib12
  article-title: Causal Inference in functional magnetic resonance imaging
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib44
  article-title: Ica-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bib23
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– start-page: 29
  year: 2007
  end-page: 42
  ident: bib67
  article-title: Measurement and analysis of online social networks
  publication-title: IMC ’07 Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement
– volume: 25
  start-page: 3911
  year: 2015
  end-page: 3931
  ident: bib97
  article-title: Probabilistic maps of visual topography in human cortex
  publication-title: Cerebr. Cortex
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: bib99
  article-title: Collective dynamics of small-world networks
  publication-title: Nature
– volume: 65
  start-page: 231
  year: 2013
  end-page: 241
  ident: bib34
  article-title: Quantifying temporal correlations: a test-retest evaluation of functional connectivity in resting-state fMRI
  publication-title: Neuroimage
– volume: 30
  start-page: 9477
  year: 2010
  end-page: 9487
  ident: bib61
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: J. Neurosci.
– volume: 163
  start-page: 450
  year: 2007
  end-page: 457
  ident: bib40
  article-title: Aberrant “default mode” functional connectivity in schizophrenia
  publication-title: Am. J. Psychiatr.
– volume: 95
  start-page: 14863
  year: 1998
  end-page: 14868
  ident: bib29
  article-title: Cluster analysis and display of genome-wide expression patterns
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 1
  start-page: 353
  year: 2016
  end-page: 363
  ident: bib70
  article-title: Attention-deficit/hyperactivity disorder symptoms coincide with altered striatal connectivity
  publication-title: Biol. Psychiatr.: Cogn. Neurosci. Neuroimag.
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: bib82
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
– volume: 24
  start-page: 1894
  year: 2014
  end-page: 1905
  ident: bib91
  article-title: Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism
  publication-title: Cerebr. Cortex
– volume: 56
  start-page: 330
  year: 2015
  end-page: 344
  ident: bib68
  article-title: Resting-state functional connectivity in major depressive disorder: a review
  publication-title: Neurosci. Biobehav. Rev.
– volume: 69
  start-page: 1188
  year: 2011
  end-page: 1203
  ident: bib36
  article-title: Dense inhibitory connectivity in neocortex
  publication-title: Neuron
– volume: 27
  start-page: 267
  year: 2006
  end-page: 276
  ident: bib71
  article-title: Bayesian approach to determining connectivity of the human brain
  publication-title: Hum. Brain Mapp.
– volume: 352
  start-page: 216
  year: 2016
  end-page: 220
  ident: bib88
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: bib39
  article-title: Dynamic causal modeling
  publication-title: Neuroimage
– volume: 7
  year: 2016
  ident: bib73
  article-title: Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study
  publication-title: Mol. Autism.
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib38
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: bib17
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
– volume: 12
  start-page: 1202
  year: 2001
  end-page: 1212
  ident: bib4
  article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex
  publication-title: Cerebr. Cortex
– volume: 62
  start-page: 429
  year: 2007
  end-page: 437
  ident: bib43
  article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biol. Psychiatr.
– volume: 10
  start-page: 1079
  year: 2000
  end-page: 1081
  ident: bib48
  article-title: Asymmetry pays: visual lateralization improves discrimination success in pigeons
  publication-title: Curr. Biol.
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bib37
  article-title: Cortical surface-based analysis. ii: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
– volume: 7
  year: 2017
  ident: bib11
  article-title: The impact of haemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI
  publication-title: Brain and Behavior
– volume: 19
  start-page: 2209
  year: 2009
  end-page: 2229
  ident: bib78
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cerebr. Cortex
– volume: 6
  start-page: 414
  year: 1983
  end-page: 417
  ident: bib66
  article-title: Object vision and spatial vision: two cortical pathways
  publication-title: Trends Neurosci.
– volume: 86
  start-page: 420
  year: 1979
  end-page: 428
  ident: bib79
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
– volume: 85
  start-page: 693
  year: 1990
  end-page: 698
  ident: bib100
  article-title: Construction of permutation tests
  publication-title: J. Am. Stat. Assoc.
– volume: 16
  start-page: 267
  year: 2013
  end-page: 269
  ident: bib80
  article-title: Specialized and independent processing of orientation and shape in visual field maps lo1 and lo2
  publication-title: Nat. Neurosci.
– volume: 62
  start-page: 2222
  year: 2013
  end-page: 2231
  ident: bib31
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib83
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.003_bib83
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0905267106
– volume: 70
  start-page: 334
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib103
  article-title: Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2011.05.018
– volume: 1
  start-page: 353
  issue: 4
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib70
  article-title: Attention-deficit/hyperactivity disorder symptoms coincide with altered striatal connectivity
  publication-title: Biol. Psychiatr.: Cogn. Neurosci. Neuroimag.
– volume: 80
  start-page: 80
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib93
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.012
– volume: 94
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2018.01.003_bib28
  article-title: Scale-free brain functional networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.018102
– volume: 12
  start-page: 1202
  issue: 11
  year: 2001
  ident: 10.1016/j.neuroimage.2018.01.003_bib4
  article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/12.11.1202
– volume: 65
  start-page: 231
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib34
  article-title: Quantifying temporal correlations: a test-retest evaluation of functional connectivity in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.052
– volume: 36
  start-page: 23
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib104
  article-title: L.C.L. Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder
  publication-title: J. Psychiatr. Neurosci.
  doi: 10.1503/jpn.100006
– volume: 3
  start-page: e17
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2018.01.003_bib1
  article-title: Efficiency and cost of economical brain functional networks
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030017
– volume: 15
  start-page: 20
  issue: 1
  year: 1992
  ident: 10.1016/j.neuroimage.2018.01.003_bib42
  article-title: Separate visual pathways for perception and action
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(92)90344-8
– volume: 43
  start-page: 528
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2018.01.003_bib54
  article-title: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.08.010
– year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib20
  article-title: Assessing age-dependent multi-task functional co-activation changes using measures of task-potency
  publication-title: Develop. Cogn. Neurosci.
– volume: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib5
  article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization
  publication-title: ELife
  doi: 10.7554/eLife.03952
– volume: 35
  start-page: 1351
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2018.01.003_bib27
  article-title: Size, power and false discovery rates
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000001460
– volume: 6
  start-page: 316
  issue: 4
  year: 1998
  ident: 10.1016/j.neuroimage.2018.01.003_bib45
  article-title: A sequence of object-processing stages revealed by fMRI in the human occipital lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6
– ident: 10.1016/j.neuroimage.2018.01.003_bib12
– volume: 11
  start-page: 287
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2018.01.003_bib59
  article-title: A hierarchical axis of object processing stages in the human visual cortex
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/11.4.287
– volume: 4
  start-page: 147
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.003_bib3
  article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
  publication-title: Front. Sys. Neurosci.
  doi: 10.3389/fnsys.2010.00147
– volume: 27
  start-page: 649
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2018.01.003_bib46
  article-title: The human visual cortex
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.27.070203.144220
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: 10.1016/j.neuroimage.2018.01.003_bib38
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0504136102
– volume: 59
  start-page: 1420
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.003_bib19
  article-title: Anticorrelations in resting state networks without global signal regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.048
– volume: 6
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib63
  article-title: Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions
  publication-title: PLos One
  doi: 10.1371/journal.pone.0014788
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.003_bib74
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 19
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib81
  article-title: Linking cognition to brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4206
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib82
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 14
  start-page: 111
  issue: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib55
  article-title: Pairwise likelihood ratios for estimation of non-Gaussian structural equation models
  publication-title: J. Mach. Learn. Res.
– start-page: 199
  year: 1998
  ident: 10.1016/j.neuroimage.2018.01.003_bib2
  article-title: Information theory and an extension of the maximum likelihood principle
– year: 2005
  ident: 10.1016/j.neuroimage.2018.01.003_bib95
– volume: 40
  start-page: 318
  year: 1953
  ident: 10.1016/j.neuroimage.2018.01.003_bib16
  article-title: Non-normality and tests on variances
  publication-title: Biometrika
  doi: 10.1093/biomet/40.3-4.318
– volume: 18
  start-page: 1565
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib84
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4125
– volume: 24
  start-page: 1894
  issue: 7
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.003_bib91
  article-title: Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bht040
– volume: 31
  start-page: 732
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.003_bib26
  article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.016
– volume: 10
  start-page: 1079
  issue: 17
  year: 2000
  ident: 10.1016/j.neuroimage.2018.01.003_bib48
  article-title: Asymmetry pays: visual lateralization improves discrimination success in pigeons
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00671-0
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.003_bib23
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0601417103
– volume: 30
  start-page: 9477
  issue: 28
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.003_bib61
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 32
  start-page: 228
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.003_bib64
  article-title: Partial correlation for functional brain interactivity investigation in functional mri
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.057
– volume: 30
  start-page: 15915
  issue: 47
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.003_bib53
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2874-10.2010
– start-page: 29
  year: 2007
  ident: 10.1016/j.neuroimage.2018.01.003_bib67
  article-title: Measurement and analysis of online social networks
– volume: 1
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.neuroimage.2018.01.003_bib33
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 85
  start-page: 693
  year: 1990
  ident: 10.1016/j.neuroimage.2018.01.003_bib100
  article-title: Construction of permutation tests
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10474929
– volume: 379
  start-page: 21
  issue: 1
  year: 1997
  ident: 10.1016/j.neuroimage.2018.01.003_bib32
  article-title: Cortical connections of areas v3 and vp of macaque monkey extrastriate visual cortex
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19970303)379:1<21::AID-CNE3>3.0.CO;2-K
– year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib41
  article-title: Brain network analysis: separating cost from topology using cost-integration
  publication-title: PLos One
  doi: 10.1371/journal.pone.0021570
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: 10.1016/j.neuroimage.2018.01.003_bib9
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. Royal Soc. Lon. Series B
  doi: 10.1098/rstb.2005.1634
– year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib21
– year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib105
  article-title: Fused estimation of sparse connectivity patterns from rest fMRI. Application to comparison of children and adult brains
  publication-title: IEEE Trans. Med. Imag.
– volume: 30
  start-page: 625
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.003_bib92
  article-title: Functional connectivity of default mode network components: correlation, anticorrelation, and causality
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20531
– volume: 80
  start-page: 43
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib65
  article-title: Functional and structural connectivity of the visual system in infants with perinatal brain injury
  publication-title: Pediatr. Res.
  doi: 10.1038/pr.2016.49
– volume: 10
  start-page: 603
  issue: 5
  year: 2003
  ident: 10.1016/j.neuroimage.2018.01.003_bib58
  article-title: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
  publication-title: J. Empir. Finance
  doi: 10.1016/S0927-5398(03)00007-0
– volume: 14
  start-page: 1245
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib76
  article-title: A lateralized brain network for visuospatial attention
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2905
– volume: 7
  start-page: 2287
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib94
  article-title: Reliability in adolescent fMRI within two years? A comparison of three tasks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02334-7
– volume: 36
  start-page: 3633
  issue: 13
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib15
  article-title: Cognitive processing involves dynamic reorganization of the whole-brain Network's functional community structure
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0106-16.2016
– volume: 145
  start-page: 329
  issue: B
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib47
  article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
  publication-title: Neuroimage
– volume: 19
  start-page: 2209
  issue: 10
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.003_bib78
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhn256
– volume: 40
  start-page: 1706
  issue: 10
  year: 2002
  ident: 10.1016/j.neuroimage.2018.01.003_bib56
  article-title: Haptic study of three-dimensional objects activates extrastriate visual areas
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(02)00017-9
– volume: 1
  start-page: 239
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2018.01.003_bib72
  article-title: Protein interaction networks
  publication-title: Expet Rev. Proteonomics
  doi: 10.1586/14789450.1.2.239
– volume: 25
  start-page: 3911
  issue: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib97
  article-title: Probabilistic maps of visual topography in human cortex
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhu277
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.003_bib17
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 62
  start-page: 429
  issue: 5
  year: 2007
  ident: 10.1016/j.neuroimage.2018.01.003_bib43
  article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2006.09.020
– volume: 23
  start-page: 3981
  issue: 10
  year: 2003
  ident: 10.1016/j.neuroimage.2018.01.003_bib90
  article-title: Neuroimaging weighs in: humans meet macaques in “primate” visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-10-03981.2003
– year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib87
  article-title: Conserved ising model on the human connectome
  publication-title: arXiV preprint
– volume: 69
  start-page: 1188
  issue: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.003_bib36
  article-title: Dense inhibitory connectivity in neocortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.025
– volume: 393
  start-page: 440
  year: 1998
  ident: 10.1016/j.neuroimage.2018.01.003_bib99
  article-title: Collective dynamics of small-world networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 17
  start-page: 1
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib85
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2013.09.016
– volume: 86
  start-page: 420
  issue: 2
  year: 1979
  ident: 10.1016/j.neuroimage.2018.01.003_bib79
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 16
  start-page: 267
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib80
  article-title: Specialized and independent processing of orientation and shape in visual field maps lo1 and lo2
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3327
– volume: 20
  start-page: 299
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib69
  article-title: Best practices in data analysis and sharing in neuroimaging using MRI
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4500
– year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib60
– volume: 95
  start-page: 14863
  issue: 25
  year: 1998
  ident: 10.1016/j.neuroimage.2018.01.003_bib29
  article-title: Cluster analysis and display of genome-wide expression patterns
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.95.25.14863
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.003_bib44
  article-title: Ica-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 7
  issue: 8
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib11
  article-title: The impact of haemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI
  publication-title: Brain and Behavior
  doi: 10.1002/brb3.777
– volume: 6
  start-page: 370
  issue: 9
  year: 1983
  ident: 10.1016/j.neuroimage.2018.01.003_bib30
  article-title: Hierarchical organization and functional streams in the visual cortex
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(83)90167-4
– volume: 5
  issue: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.003_bib101
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLos One
  doi: 10.1371/journal.pone.0013701
– year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib6
  article-title: Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00048
– volume: 152
  start-page: 437
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib52
  article-title: Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.005
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib35
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 19
  start-page: 1273
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2018.01.003_bib39
  article-title: Dynamic causal modeling
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib51
  article-title: Test-retest reliability of longitudinal task-based fMRI?implications for developmental studies
  publication-title: Develop. Cogn. Neurosci.
– volume: 80
  start-page: 202
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib62
  article-title: Human Connectome Project informatics: quality control, database services and data visualization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.077
– volume: 19
  start-page: 545
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2018.01.003_bib50
  article-title: Dti mapping of human brain connectivity: statistical fibre tracking and virtual dissection
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00142-3
– volume: 7
  issue: 13
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib73
  article-title: Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study
  publication-title: Mol. Autism.
– volume: 56
  start-page: 190
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2018.01.003_bib96
  article-title: Visual field maps in human cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.10.012
– volume: 7
  start-page: 695
  issue: 6
  year: 1978
  ident: 10.1016/j.neuroimage.2018.01.003_bib98
  article-title: Two categorical stages of object recognition
  publication-title: Perception
  doi: 10.1068/p070695
– volume: 56
  start-page: 330
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib68
  article-title: Resting-state functional connectivity in major depressive disorder: a review
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.07.014
– volume: 6
  start-page: 39
  issue: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2018.01.003_bib22
  article-title: Object and spatial visual working memory activate separate neural systems in human cortex
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/6.1.39
– volume: 62
  start-page: 2222
  issue: 4
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib31
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2018.01.003_bib37
  article-title: Cortical surface-based analysis. ii: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– volume: 26
  start-page: 897
  year: 2008
  ident: 10.1016/j.neuroimage.2018.01.003_bib25
  article-title: What is the expectation maximization algorithm?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1406
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.003_bib7
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– year: 2017
  ident: 10.1016/j.neuroimage.2018.01.003_bib49
  article-title: Objective analysis of the topological organization of the human cortical visual connectome suggests three visual pathways
  publication-title: Cortex
– volume: 6
  start-page: 414
  year: 1983
  ident: 10.1016/j.neuroimage.2018.01.003_bib66
  article-title: Object vision and spatial vision: two cortical pathways
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(83)90190-X
– volume: 352
  start-page: 216
  issue: 6282
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib88
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
  doi: 10.1126/science.aad8127
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2018.01.003_bib10
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2003.822821
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.neuroimage.2018.01.003_bib77
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– year: 2006
  ident: 10.1016/j.neuroimage.2018.01.003_bib13
– volume: 142
  start-page: 407
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.003_bib102
  article-title: Connectome sensitivity or specificity: which is more important?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.035
– volume: 163
  start-page: 450
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2018.01.003_bib40
  article-title: Aberrant “default mode” functional connectivity in schizophrenia
  publication-title: Am. J. Psychiatr.
  doi: 10.1176/ajp.2007.164.3.450
– volume: 15
  start-page: 449
  issue: 90
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.003_bib75
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 66
  start-page: 1189
  issue: 11
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.003_bib86
  article-title: Altered corticostriatal functional connectivity in obsessive-compulsive disorder
  publication-title: Arch. Gen. Psychiatr.
  doi: 10.1001/archgenpsychiatry.2009.152
– volume: 27
  start-page: 267
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2018.01.003_bib71
  article-title: Bayesian approach to determining connectivity of the human brain
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20182
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.003_bib57
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– year: 2015
  ident: 10.1016/j.neuroimage.2018.01.003_bib89
  article-title: An empirical bayes mixture model for effect size distributions in genome-wide association studies
  publication-title: PLoS Comput. Biol.
– volume: 22
  start-page: 340
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.003_bib8
  article-title: Human brain networks in health and disease
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32832d93dd
SSID ssj0009148
Score 2.3934588
Snippet Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 402
SubjectTerms Brain - physiology
Brain architecture
Brain mapping
Brain research
Connectome - methods
False discovery rate
Functional connectivity
Functional magnetic resonance imaging
Hemispheric laterality
Humans
Information processing
Magnetic Resonance Imaging - methods
Mental task performance
Mixture modeling
Models, Neurological
Nerve Net - physiology
Neural networks
NMR
Noise
Nuclear magnetic resonance
Population
Short term memory
Time series
Visual cortex
Visual stimuli
Visual system
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZdBmUvY93aNVtbVNirwUr0y-xhG2MlFNqnBPImZEmmKYudzQ50__3ubNlZWxh5lg9s6U73Sff5O0I-TYItLCxswrXLEy5yl2QeDq4esqfS2cRN85ZtcStnC369FMt44VZHWmW_J7Ybta8c3pHDIZ2hCg-c5r5sfiXYNQqrq7GFxgvyEqXLkNKllmonust49yucmCYaHohMno7f1epFrtYQtUjw0q14Z98663l6eg4_n7Io_0lLV2_I64gn6bfOAY7IQSjfksObWDF_R77OYbHqWGOimMW6yz_qkOHimmodapr_oesAOYtWBV2vHrCoQNsWOWBzTBZXP-bfZ0nsmpA4IXmTZFnhkQUtIdoCU956qQDFWJ1axrwIecqZdhOlJfdciFxZ6eGYlIagPLdOTk_IqKzKcEpowafaSmZ5ASBRep0D9pISTDKuQsGLMVH9ZBkXJcWxs8VP03PH7s1umg1Os0kZypGOCRssN52sxh42Wb8epv9tFDY6A3v_HrafB9sILTrIsKf1Wb_8JoZ4bXYOOSaXwzAEJ1ZcbBmqbW2QkCaEVlqPyfvOW4bPBZyVwrCESXzkR8MDKPz9eKRc3bUC4CLTDLz7w_9f6yN5hd_QsTPPyKj5vQ3ngKCa_KINk7_M5hzW
  priority: 102
  providerName: ProQuest
Title Thresholding functional connectomes by means of mixture modeling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191830003X
https://dx.doi.org/10.1016/j.neuroimage.2018.01.003
https://www.ncbi.nlm.nih.gov/pubmed/29309896
https://www.proquest.com/docview/2014373469
https://www.proquest.com/docview/1989558788
https://pubmed.ncbi.nlm.nih.gov/PMC5981009
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuiDcLpTIS17Dxxk9xoaxaLa9VVVppb5ZjOyKIzVbsVoILv52ZxElZelmJS6LEGSkZz-Nz_HlMyKtJdJWDjs249mXGRekzE2DgGiB7Km0mvihbtsVczi74h4VY7JFpvxYGaZUp9ncxvY3W6c44aXN8WdfjL4AMIN3AeEMXiOwXuIKdK7Ty17-vaR6G8W45nCgyfDqxeTqOV1szsl6C5yLJS7cFPPvts26mqJsQ9F8m5V-p6eQeuZswJT3qXvs-2YvNA3L7c5o1f0jenkOHrdM8E8VM1v0ApB5ZLn6zWsY1LX_RZYS8RVcVXdY_cWKBttvkgMwjcnFyfD6dZWnnhMwLyTeZMVVAJrQEj4tMBRekAiTjdO4YCyKWOWfaT5SWPHAhSuVkgKFSHqMK3HlZPCb7zaqJTwmteKGdZI5XABRl0CXgLylBxHAVK16NiOqVZX0qK467W3y3PX_sm71Ws0U125xhSdIRYYPkZVdaYwcZ0_eH7ZeOQrCzEP93kH0zyG6Z2I7SB3332-Tma2zH0lBcmhF5OTSDg-Ksi2vi6mptkZQmhFZaj8iTzlqGzwWslUOzBCVu2dHwABb_3m5p6q9tEXBhNAPrfvZfH_Wc3MGrjsB5QPY3P67iCwBZm_Kw9SI4qoU6JLeOpmefTvH8_uNsDud3x_PTsz8tAi32
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEM-yUMBIcIwUJ7bjCCGerba0XSG0lXozju2IRWxSyFbQP8VvZBwnWUoltJeevRNtxuN5ZD5_A_AscbrUuLERk6aIGC9MlFssXC1Gz0zmiUmLFm0xFZMj9uGYH2_A7_4ujIdV9j6xddS2Nv4bORbp1LPwYDX36uR75KdG-e5qP0IjmMW-O_uJJVvzcu897u_zJNndmb2bRN1UgchwwZZRnpfWo4QFWqOjmdVWZBjltYw1pZa7ImZUmiSTglnGeZFpYbGMiJ3LLNNGpPjcK7DJUixlRrD5dmf68dOK5peycPmOp5GkNO-wQwFR1jJUzhfoJzykTLZ0of2wrosB8WLC-y9u869AuHsTbnQZLHkTTO4WbLjqNlw97Hr0d-D1DM2j6bpaxMfN8LmRGI-pMct64RpSnJGFwyhJ6pIs5r98G4O0Q3lQ5i4cXYpG78Goqit3H0jJUqkF1azEtFRYWWC2JwSK5CxzJSvHkPXKUqYjMfezNL6pHq32Va3UrLyaVUw9AeoY6CB5Eog81pDJ-_1Q_UVVdK0Ko80asi8G2S6ZCUnKmtLb_farzqk0anUExvB0WEZ34Hs8unL1aaM8BI5zmUk5hq1gLcPrYmYX47JAJZ6zo-EHnmr8_Eo1_9JSjvNcUrTuB___W0_g2mR2eKAO9qb7D-G6f5-ADd2G0fLHqXuE-duyeNwdGgKfL_uc_gElyls3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFDASHCPixK8IIUCUVUuh4tBKezOO7YhFbFLIVtC_xq9jnDhZSiW0l56dieLxPDOfZwCeZt5UBg82YcqWCeOlTQqHiatD7ylVkdm87NAWh2LvmL2f8dkG_B7uwgRY5WATO0PtGhv-kWOSTkMXHszmnlcRFvFpd_rq5HsSJkiFSuswTqMXkQN_9hPTt_bl_i6e9bMsm747eruXxAkDieWCLZOiqFxADAuUTE-lM05I9PhGpYZSx32ZMqpsJpVgjnFeSiMcphSp99IxY0WO770CV2XOadAxOZOrhr-U9dfweJ4oSouIIuqxZV2vyvkCLUYAl6mucegwtuuia7wY-v6L4PzLJU5vwPUYy5I3vfDdhA1f34Ktj7FafxteH6GgtLG-RYIH7X88EhvQNXbZLHxLyjOy8OgvSVORxfxXKGiQbjwP0tyB40vh513YrJvabwOpWK6MoIZVGKAKp0qM-4RAkoJJX7FqAnJglraxnXmYqvFND7i1r3rFZh3YrFMaWqFOgI6UJ31LjzVoiuE89HBlFY2sRr-zBu2LkTaGNX24sib1znD8OpqXVq-UYQJPxmU0DKHaY2rfnLY6gOE4V1KpCdzrpWXcLsZ4KS4LZOI5ORofCE3Hz6_U8y9d83FeKIrSff__n_UYtlA79Yf9w4MHcC1spweJ7sDm8sepf4iB3LJ81GkMgc-XraJ_AEqSXgc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thresholding+functional+connectomes+by+means+of+mixture+modeling&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bielczyk%2C+Natalia+Z.&rft.au=Walocha%2C+Fabian&rft.au=Ebel%2C+Patrick+W.&rft.au=Haak%2C+Koen+V.&rft.date=2018-05-01&rft.issn=1053-8119&rft.volume=171&rft.spage=402&rft.epage=414&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.01.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2018_01_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon