Thresholding functional connectomes by means of mixture modeling
Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are t...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 171; pp. 402 - 414 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2018
Elsevier Limited Academic Press |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2018.01.003 |
Cover
Loading…
Abstract | Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution.
We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.
•Sparse functional connectomes are useful in analyzing and interpreting fMRI data.•We propose thresholding by means of mixture modeling and control of FDR.•We benchmark the approach on synthetic fMRI data against established methods.•We apply the method to the resting state and working memory task datasets from HCP500.•Results are reproducible on synthetic data and interpretable on experimental data. |
---|---|
AbstractList | Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. • Sparse functional connectomes are useful in analyzing and interpreting fMRI data. • We propose thresholding by means of mixture modeling and control of FDR. • We benchmark the approach on synthetic fMRI data against established methods. • We apply the method to the resting state and working memory task datasets from HCP500. • Results are reproducible on synthetic data and interpretable on experimental data. Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject.Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. •Sparse functional connectomes are useful in analyzing and interpreting fMRI data.•We propose thresholding by means of mixture modeling and control of FDR.•We benchmark the approach on synthetic fMRI data against established methods.•We apply the method to the resting state and working memory task datasets from HCP500.•Results are reproducible on synthetic data and interpretable on experimental data. |
Author | Walocha, Fabian Llera, Alberto Beckmann, Christian F. Buitelaar, Jan K. Glennon, Jeffrey C. Ebel, Patrick W. Bielczyk, Natalia Z. Haak, Koen V. |
AuthorAffiliation | a Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands d Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands b Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands e Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom c University of Osnabrück, Neuer Graben 29/Schloss, 49074 Osnabrück, Germany |
AuthorAffiliation_xml | – name: b Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Geert Groteplein Zuid 10, 6525GA Nijmegen, The Netherlands – name: d Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen, The Netherlands – name: e Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom – name: a Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – name: c University of Osnabrück, Neuer Graben 29/Schloss, 49074 Osnabrück, Germany |
Author_xml | – sequence: 1 givenname: Natalia Z. surname: Bielczyk fullname: Bielczyk, Natalia Z. email: natalia.bielczyk@gmail.com organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – sequence: 2 givenname: Fabian surname: Walocha fullname: Walocha, Fabian organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – sequence: 3 givenname: Patrick W. surname: Ebel fullname: Ebel, Patrick W. organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – sequence: 4 givenname: Koen V. surname: Haak fullname: Haak, Koen V. organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – sequence: 5 givenname: Alberto surname: Llera fullname: Llera, Alberto organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – sequence: 6 givenname: Jan K. surname: Buitelaar fullname: Buitelaar, Jan K. organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – sequence: 7 givenname: Jeffrey C. surname: Glennon fullname: Glennon, Jeffrey C. organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands – sequence: 8 givenname: Christian F. surname: Beckmann fullname: Beckmann, Christian F. organization: Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29309896$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv3CAUhVGVqnm0f6Gy1E03drm2sWFTpY3ShxQpm2SNGLieYYohBTvq_PtgJWnaWc0KJO757uGcU3Lkg0dCCqAVUOg-bSuPcwx2VGusagq8olBR2rwiJ0AFKwXr66PlzpqSA4hjcprSllIqoOVvyHEtGiq46E7I-c0mYtoEZ6xfF8Ps9WSDV67QwXvUUxgxFatdMaLyqQhDMdo_0xyxGINBlzVvyetBuYTvns4zcvvt8ubiR3l1_f3nxZerUrOunUohBoPKYMeAIvRGma6HmilOFYBhuKItcF33vGtNy9iqV52BVlDE3rRKd80Z-fzIvZtXIxqNforKybuYQ4g7GZSV_794u5HrcC-Z4JA_ngEfnwAx_J4xTXK0SaNzymOYk4QcCGO85zyPftgb3YY55lSSzGG3Td-03QJ8_6-jv1aew32xrGNIKeIgtZ3Ukm82aJ0EKpc25Va-tLks4JKCzG1mAN8DPO84QPr1UYq5k3uLUSZt0Ws0NuZapQn2EMj5HkTnyq1W7hfuDkM8AHjW14I |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2019_05_011 crossref_primary_10_1093_cercor_bhad178 crossref_primary_10_1002_hbm_25893 crossref_primary_10_3389_fnins_2020_00446 crossref_primary_10_1016_j_neuroimage_2018_05_058 crossref_primary_10_3389_fneur_2022_927481 crossref_primary_10_1016_j_neuroimage_2022_119659 crossref_primary_10_1162_netn_a_00099 crossref_primary_10_1016_j_sleep_2024_02_013 crossref_primary_10_1186_s13229_022_00529_y crossref_primary_10_1162_netn_a_00062 crossref_primary_10_1016_j_neuroimage_2018_06_073 crossref_primary_10_1016_j_neuroimage_2018_09_059 crossref_primary_10_1089_brain_2020_0740 crossref_primary_10_1007_s00429_019_01866_0 crossref_primary_10_1016_j_jare_2019_01_001 crossref_primary_10_3390_math12192967 crossref_primary_10_1002_hbm_26669 crossref_primary_10_7554_eLife_44890 crossref_primary_10_1038_s41398_021_01284_z crossref_primary_10_1038_s41582_021_00529_1 crossref_primary_10_1038_s44220_025_00396_5 |
Cites_doi | 10.1073/pnas.0905267106 10.1016/j.biopsych.2011.05.018 10.1016/j.neuroimage.2013.05.012 10.1103/PhysRevLett.94.018102 10.1093/cercor/12.11.1202 10.1016/j.neuroimage.2012.09.052 10.1503/jpn.100006 10.1371/journal.pcbi.0030017 10.1016/0166-2236(92)90344-8 10.1016/j.neuroimage.2008.08.010 10.7554/eLife.03952 10.1214/009053606000001460 10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6 10.1093/cercor/11.4.287 10.3389/fnsys.2010.00147 10.1146/annurev.neuro.27.070203.144220 10.1073/pnas.0504136102 10.1016/j.neuroimage.2011.08.048 10.1371/journal.pone.0014788 10.1016/j.neuroimage.2009.10.003 10.1038/nn.4206 10.1016/j.neuroimage.2010.08.063 10.1093/biomet/40.3-4.318 10.1038/nn.4125 10.1093/cercor/bht040 10.1016/j.neuroimage.2005.12.016 10.1016/S0960-9822(00)00671-0 10.1073/pnas.0601417103 10.1523/JNEUROSCI.0333-10.2010 10.1016/j.neuroimage.2005.12.057 10.1523/JNEUROSCI.2874-10.2010 10.1093/cercor/1.1.1 10.1080/01621459.1990.10474929 10.1002/(SICI)1096-9861(19970303)379:1<21::AID-CNE3>3.0.CO;2-K 10.1371/journal.pone.0021570 10.1098/rstb.2005.1634 10.1002/hbm.20531 10.1038/pr.2016.49 10.1016/S0927-5398(03)00007-0 10.1038/nn.2905 10.1038/s41598-017-02334-7 10.1523/JNEUROSCI.0106-16.2016 10.1093/cercor/bhn256 10.1016/S0028-3932(02)00017-9 10.1586/14789450.1.2.239 10.1093/cercor/bhu277 10.1038/nrn2575 10.1016/j.biopsych.2006.09.020 10.1523/JNEUROSCI.23-10-03981.2003 10.1016/j.neuron.2011.02.025 10.1038/30918 10.1016/j.tics.2013.09.016 10.1037/0033-2909.86.2.420 10.1038/nn.3327 10.1038/nn.4500 10.1073/pnas.95.25.14863 10.1016/j.neuroimage.2014.03.034 10.1002/brb3.777 10.1016/0166-2236(83)90167-4 10.1371/journal.pone.0013701 10.3389/fnins.2015.00048 10.1016/j.neuroimage.2017.02.005 10.1038/nn.4135 10.1016/S1053-8119(03)00202-7 10.1016/j.neuroimage.2013.05.077 10.1016/S1053-8119(03)00142-3 10.1016/j.neuron.2007.10.012 10.1068/p070695 10.1016/j.neubiorev.2015.07.014 10.1093/cercor/6.1.39 10.1016/j.neuroimage.2012.02.018 10.1006/nimg.1998.0396 10.1038/nbt1406 10.1016/j.neuroimage.2013.05.033 10.1016/0166-2236(83)90190-X 10.1126/science.aad8127 10.1109/TMI.2003.822821 10.1214/aos/1176344136 10.1016/j.neuroimage.2016.06.035 10.1176/ajp.2007.164.3.450 10.1016/j.neuroimage.2013.11.046 10.1001/archgenpsychiatry.2009.152 10.1002/hbm.20182 10.1016/j.neuroimage.2011.09.015 10.1097/WCO.0b013e32832d93dd |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 1, 2018 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 1, 2018 – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2018.01.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection (ProQuest) ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Collection Biological science database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 414 |
ExternalDocumentID | PMC5981009 29309896 10_1016_j_neuroimage_2018_01_003 S105381191830003X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom--UK Netherlands |
GeographicLocations_xml | – name: Netherlands – name: United Kingdom--UK |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c564t-99fdeade6510e17dad67125a80a11d5eb0418c27864d455b7a6d1490ee7d4ac63 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:08:53 EDT 2025 Fri Jul 11 11:53:49 EDT 2025 Wed Aug 13 02:42:13 EDT 2025 Thu Apr 03 07:01:46 EDT 2025 Tue Jul 01 03:01:55 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Fri Feb 23 02:48:17 EST 2024 Tue Aug 26 20:08:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity Mixture modeling False discovery rate |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-99fdeade6510e17dad67125a80a11d5eb0418c27864d455b7a6d1490ee7d4ac63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Natalia Z. Bielczyk and Fabian Walocha contributed equally to this work. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S105381191830003X |
PMID | 29309896 |
PQID | 2014373469 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5981009 proquest_miscellaneous_1989558788 proquest_journals_2014373469 pubmed_primary_29309896 crossref_citationtrail_10_1016_j_neuroimage_2018_01_003 crossref_primary_10_1016_j_neuroimage_2018_01_003 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_01_003 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_01_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 2018-05-00 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited Academic Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press |
References | Marcus, Harms, Snyder, Jenkinson, Wilson, Glasser, Barch, Archie, Burgess, Ramaratnam, Hodge, Horton, Herrick, Olsen, Mckay, House, Hileman, Reid, Harwell, Coalson, Schindler, Elam, Curtis, Essen (bib62) 2013; 80 van Essen, Maunsell (bib30) 1983; 6 Mishkin, Ungerleider, Macko (bib66) 1983; 6 Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Essen, Miller (bib84) 2015; 18 Chauvin, Mennes, Buitelaar, Beckmann (bib20) 2017 Warrington, Taylor (bib98) 1978; 7 Nichols, Das, Eickhoff, Evans, Glatard, Hanke, Kriegeskorte, Milham, Poldrack, Poline, Proal, Thirion, Essen, White, Yeo (bib69) 2017; 20 Rubinov, Sporns (bib74) 2010; 52 Box (bib16) 1953; 40 Amedi, Jacobson, Hendler, Malach, Zohary (bib4) 2001; 12 Bullmore, Sporns (bib17) 2009; 10 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib35) 2015; 18 Patel, Bowman, Rilling (bib71) 2006; 27 van den Heuvel, Mandl, Stam, Kahn, Pol (bib53) 2010; 30 Aurich, Filho, da Silva, Franco (bib6) 2015 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib75) 2014; 15 Silson, McKeefry, Rodgers, Gouws, Hymers, Morland (bib80) 2013; 16 Smith (bib81) 2016; 19 Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib82) 2011; 54 Lynall, Bassett, Kerwin, McKenna, Kitzbichler, Muller, Bullmore (bib61) 2010; 30 Hyvärinen, Smith (bib55) 2013; 14 Arcaro, Honey, Mruczek, Kastner, Hasson (bib5) 2015; 4 Haak, Beckmann (bib49) 2017 Oldehinkel, Beckmann, Pruim, van Oort, Franke, Hartman, Hoekstra, Oosterlaan, Heslenfeld, Buitelaar, Mennes (bib70) 2016; 1 Güclü, van Gerven (bib47) 2015; 145 Vetter, Steding, Jurk, Ripke, Mennigen, Smolka (bib94) 2017; 7 Friston, Harrison, Penny (bib39) 2003; 19 Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Essen (bib7) 2013; 80 Marrelec, Fransson (bib63) 2011; 6 Mulders, van Eijndhoven, Schene, Beckmann, Tendolkar (bib68) 2015; 56 Pellegrini, Haynor, Johnson (bib72) 2004; 1 Zhang, Wang, Wu, Kuang, Huang, He, Gong (bib103) 2011; 70 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib23) 2006; 103 Bielczyk, Llera, Buitelaar, Glennon, Beckmann (bib11) 2017; 7 Drobyshevsky, Baumann, Schneider (bib26) 2006; 31 Shrout, Fleiss (bib79) 1979; 86 Fox, Snyder, Vincent, Corbetta, Essen, Raichle (bib38) 2005; 102 Grill-Spector, Malach (bib46) 2004; 27 Courtney, Ungerleider, Keil, Haxby (bib22) 1996; 6 Tavor, Jones, Mars, Smith, Behrens, Jbabdi (bib88) 2016; 352 Grill-Spector, Kushnir, Hendler, Edelman, Itzchak, Malach (bib45) 1998; 6 Greicius, Flores, Menon, Glover, Solvason, Kenna, Reiss, Schatzberg (bib43) 2007; 62 Eisen, Spellman, Brown, Botstein (bib29) 1998; 95 Christensen (bib21) 2011 Tyszka, Kennedy, Paul, Adolphs (bib91) 2014; 24 Vittinghoff, Glidden, Shiboski, McCulloch (bib95) 2005 Stramaglia, Pellicoro, Angelini, Amico, Aerts, Cortés, Laureys, Marinazzo (bib87) 2017 Achard, Bullmore (bib1) 2007; 3 Zille, Calhoun, Stephen, Wilson, Wang (bib105) 2017 Uddin, Kelly, Biswal, Castellanos, Milham (bib92) 2009; 30 Ginestet, Nichols, Bullmore, Simmons (bib41) 2011 Felleman, Burkhalter, van Essen (bib32) 1997; 379 Rausch, Zhang, Haak, Mennes, Hermans, van Oort, van Wingen, Beckmann, Buitelaar, Groen (bib73) 2016; 7 Zhang, Wang, Yang, Wu, Li (bib104) 2011; 36 Fino, Yuste (bib36) 2011; 69 Bishop (bib13) 2006 Fischl, Sereno, Dale (bib37) 1999; 9 Soriano-Mas, Pujol, Ortiz, López-Solá, Hernández-Ribas, Deus, Alonso, Yücel, Pantelis, Menchon, Cardoner (bib86) 2009; 66 Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bib40) 2007; 163 Ledoit, Wolf (bib58) 2003; 10 Schwarz (bib77) 1978; 6 Ugurbil, Xu, Auerbach, Moeller, Vu, Duarte-Carvajalino, Lenglet, Wu, Schmitter, de Moortele, Strupp, Sapiro, Martino, Wang, Harel, Garwood, Chen, Feinberg, Smith, Miller, S. Jbabdi, Andersson, Behrens, Glasser, Essen, Yacoub (bib93) 2013; 80 Beckmann, DeLuca, Devlin, Smith (bib9) 2005; 360 Merhar, Gozdas, Tkach, Harpster, Schwartz, Kline-Fath, Leach, Altaye, Holland (bib65) 2016; 80 Tootell, Tsao, Vanduffel (bib90) 2003; 23 van den Heuvel, Stam, Boersma, Pol (bib54) 2008; 43 Llera, Vidaurre, Pruim, Beckmann (bib60) 2016 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib83) 2009; 106 Herting, Gautam, Chen, Mezherd, Vetter (bib51) 2017 Wang, Mruczek, Arcaro, Kastner (bib97) 2015; 25 van Wijk, Stam, Daffertshofer (bib101) 2010; 5 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay, Moeller, Xu, Yacoub, Baselli, Ugurbil, Miller, Smith (bib44) 2014; 95 de Schotten, Dell'Acqua, Forkel, Simmons, Vergani, Murphy, Catani (bib76) 2011; 14 Bola, Borchardt (bib15) 2016; 36 Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich, Barch, Ugurbil, Essen (bib85) 2013; 17 Eguiluz, Chialvo, Cecchi, Baliki, Apkarian (bib28) 2005; 94 Do, Batzoglou (bib25) 2008; 26 Welch (bib100) 1990; 85 Bassett, Bullmore (bib8) 2009; 22 Goodale, Milner (bib42) 1992; 15 Hagmann, Thiran, Jonasson, Vandergheynst, Clarke, Maeder, Meuli (bib50) 2003; 19 van den Heuvel, de Lange, Zalesky, Seguin, Yeo, Schmidt (bib52) 2017; 152 Beckmann, Smith (bib10) 2004; 23 Alexander-Bloch, Gogtay, Meunier, Birn, Clasen, Lalonde, Lenroot, Giedd, Bullmore (bib3) 2010; 4 James, Humphrey, Gati, Servos, Menon, Goodale (bib56) 2002; 40 Bielczyk, Uithol, van Mourik, Havenith, Anderson, Glennon, Buitelaar (bib12) 2017 Lerner, Hendler, Ben-Bashat, Harel, Malach (bib59) 2001; 11 Marrelec, Krainik, Duffau, Pélégrini-Issac, Lehéricy, Doyon, Benali (bib64) 2006; 32 Akaike (bib2) 1998 Güntürkün, Diekamp, Manns, Nottelmann, Prior, Schwarz, Skiba (bib48) 2000; 10 Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib31) 2013; 62 Mislove, Marcon, Gummadi, Druschel, Bhattacharjee (bib67) 2007 Efron (bib27) 2007; 35 Chai, Castañón, Ongür, Whitfield-Gabrieli (bib19) 2012; 59 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib57) 2012; 62 Fiecas, Ombao, Lunen, Baumgartner, Coimbra, Feng (bib34) 2013; 65 Felleman, Essen (bib33) 1991; 1 Thompson, Wang, Schork, Witoelar, Zuber, Xu, Werge, Holland, Andreassen, Dale (bib89) 2015 Zalesky, Fornito, Cocchi, Gollo, van den Heuvel, Breakspear (bib102) 2016; 142 Wandell, Dumoulin, Brewer (bib96) 2007; 56 Watts, Strogatz (bib99) 1998; 393 Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal, Petkova, Castellanos, Milham (bib78) 2009; 19 Box (10.1016/j.neuroimage.2018.01.003_bib16) 1953; 40 Merhar (10.1016/j.neuroimage.2018.01.003_bib65) 2016; 80 Marrelec (10.1016/j.neuroimage.2018.01.003_bib63) 2011; 6 Bullmore (10.1016/j.neuroimage.2018.01.003_bib17) 2009; 10 Watts (10.1016/j.neuroimage.2018.01.003_bib99) 1998; 393 Courtney (10.1016/j.neuroimage.2018.01.003_bib22) 1996; 6 Smith (10.1016/j.neuroimage.2018.01.003_bib83) 2009; 106 Felleman (10.1016/j.neuroimage.2018.01.003_bib32) 1997; 379 Fischl (10.1016/j.neuroimage.2018.01.003_bib37) 1999; 9 Hyvärinen (10.1016/j.neuroimage.2018.01.003_bib55) 2013; 14 Wandell (10.1016/j.neuroimage.2018.01.003_bib96) 2007; 56 Zhang (10.1016/j.neuroimage.2018.01.003_bib104) 2011; 36 Hagmann (10.1016/j.neuroimage.2018.01.003_bib50) 2003; 19 Akaike (10.1016/j.neuroimage.2018.01.003_bib2) 1998 Achard (10.1016/j.neuroimage.2018.01.003_bib1) 2007; 3 Tyszka (10.1016/j.neuroimage.2018.01.003_bib91) 2014; 24 Haak (10.1016/j.neuroimage.2018.01.003_bib49) 2017 Thompson (10.1016/j.neuroimage.2018.01.003_bib89) 2015 Garrity (10.1016/j.neuroimage.2018.01.003_bib40) 2007; 163 Grill-Spector (10.1016/j.neuroimage.2018.01.003_bib46) 2004; 27 Shrout (10.1016/j.neuroimage.2018.01.003_bib79) 1979; 86 Goodale (10.1016/j.neuroimage.2018.01.003_bib42) 1992; 15 van den Heuvel (10.1016/j.neuroimage.2018.01.003_bib54) 2008; 43 Chai (10.1016/j.neuroimage.2018.01.003_bib19) 2012; 59 Pellegrini (10.1016/j.neuroimage.2018.01.003_bib72) 2004; 1 Ginestet (10.1016/j.neuroimage.2018.01.003_bib41) 2011 Beckmann (10.1016/j.neuroimage.2018.01.003_bib10) 2004; 23 Bishop (10.1016/j.neuroimage.2018.01.003_bib13) 2006 Fiecas (10.1016/j.neuroimage.2018.01.003_bib34) 2013; 65 Damoiseaux (10.1016/j.neuroimage.2018.01.003_bib23) 2006; 103 Barch (10.1016/j.neuroimage.2018.01.003_bib7) 2013; 80 Finn (10.1016/j.neuroimage.2018.01.003_bib35) 2015; 18 Smith (10.1016/j.neuroimage.2018.01.003_bib82) 2011; 54 Beckmann (10.1016/j.neuroimage.2018.01.003_bib9) 2005; 360 Rausch (10.1016/j.neuroimage.2018.01.003_bib73) 2016; 7 Bola (10.1016/j.neuroimage.2018.01.003_bib15) 2016; 36 Bielczyk (10.1016/j.neuroimage.2018.01.003_bib11) 2017; 7 Warrington (10.1016/j.neuroimage.2018.01.003_bib98) 1978; 7 Vittinghoff (10.1016/j.neuroimage.2018.01.003_bib95) 2005 Christensen (10.1016/j.neuroimage.2018.01.003_bib21) 2011 Alexander-Bloch (10.1016/j.neuroimage.2018.01.003_bib3) 2010; 4 Patel (10.1016/j.neuroimage.2018.01.003_bib71) 2006; 27 Aurich (10.1016/j.neuroimage.2018.01.003_bib6) 2015 Mislove (10.1016/j.neuroimage.2018.01.003_bib67) 2007 Ledoit (10.1016/j.neuroimage.2018.01.003_bib58) 2003; 10 Friston (10.1016/j.neuroimage.2018.01.003_bib39) 2003; 19 Mulders (10.1016/j.neuroimage.2018.01.003_bib68) 2015; 56 Do (10.1016/j.neuroimage.2018.01.003_bib25) 2008; 26 Chauvin (10.1016/j.neuroimage.2018.01.003_bib20) 2017 Rubinov (10.1016/j.neuroimage.2018.01.003_bib74) 2010; 52 Zille (10.1016/j.neuroimage.2018.01.003_bib105) 2017 Vetter (10.1016/j.neuroimage.2018.01.003_bib94) 2017; 7 Smith (10.1016/j.neuroimage.2018.01.003_bib84) 2015; 18 Essen (10.1016/j.neuroimage.2018.01.003_bib31) 2013; 62 Güntürkün (10.1016/j.neuroimage.2018.01.003_bib48) 2000; 10 Felleman (10.1016/j.neuroimage.2018.01.003_bib33) 1991; 1 Herting (10.1016/j.neuroimage.2018.01.003_bib51) 2017 van Wijk (10.1016/j.neuroimage.2018.01.003_bib101) 2010; 5 Greicius (10.1016/j.neuroimage.2018.01.003_bib43) 2007; 62 Lynall (10.1016/j.neuroimage.2018.01.003_bib61) 2010; 30 Smith (10.1016/j.neuroimage.2018.01.003_bib85) 2013; 17 van Essen (10.1016/j.neuroimage.2018.01.003_bib30) 1983; 6 Amedi (10.1016/j.neuroimage.2018.01.003_bib4) 2001; 12 Eisen (10.1016/j.neuroimage.2018.01.003_bib29) 1998; 95 Drobyshevsky (10.1016/j.neuroimage.2018.01.003_bib26) 2006; 31 Smith (10.1016/j.neuroimage.2018.01.003_bib81) 2016; 19 van den Heuvel (10.1016/j.neuroimage.2018.01.003_bib53) 2010; 30 Mishkin (10.1016/j.neuroimage.2018.01.003_bib66) 1983; 6 Güclü (10.1016/j.neuroimage.2018.01.003_bib47) 2015; 145 Grill-Spector (10.1016/j.neuroimage.2018.01.003_bib45) 1998; 6 Llera (10.1016/j.neuroimage.2018.01.003_bib60) 2016 Marrelec (10.1016/j.neuroimage.2018.01.003_bib64) 2006; 32 Marcus (10.1016/j.neuroimage.2018.01.003_bib62) 2013; 80 Nichols (10.1016/j.neuroimage.2018.01.003_bib69) 2017; 20 Efron (10.1016/j.neuroimage.2018.01.003_bib27) 2007; 35 James (10.1016/j.neuroimage.2018.01.003_bib56) 2002; 40 Welch (10.1016/j.neuroimage.2018.01.003_bib100) 1990; 85 de Schotten (10.1016/j.neuroimage.2018.01.003_bib76) 2011; 14 Bielczyk (10.1016/j.neuroimage.2018.01.003_bib12) Zalesky (10.1016/j.neuroimage.2018.01.003_bib102) 2016; 142 van den Heuvel (10.1016/j.neuroimage.2018.01.003_bib52) 2017; 152 Soriano-Mas (10.1016/j.neuroimage.2018.01.003_bib86) 2009; 66 Bassett (10.1016/j.neuroimage.2018.01.003_bib8) 2009; 22 Uddin (10.1016/j.neuroimage.2018.01.003_bib92) 2009; 30 Oldehinkel (10.1016/j.neuroimage.2018.01.003_bib70) 2016; 1 Fox (10.1016/j.neuroimage.2018.01.003_bib38) 2005; 102 Wang (10.1016/j.neuroimage.2018.01.003_bib97) 2015; 25 Tavor (10.1016/j.neuroimage.2018.01.003_bib88) 2016; 352 Tootell (10.1016/j.neuroimage.2018.01.003_bib90) 2003; 23 Fino (10.1016/j.neuroimage.2018.01.003_bib36) 2011; 69 Ugurbil (10.1016/j.neuroimage.2018.01.003_bib93) 2013; 80 Eguiluz (10.1016/j.neuroimage.2018.01.003_bib28) 2005; 94 Shehzad (10.1016/j.neuroimage.2018.01.003_bib78) 2009; 19 Arcaro (10.1016/j.neuroimage.2018.01.003_bib5) 2015; 4 Lerner (10.1016/j.neuroimage.2018.01.003_bib59) 2001; 11 Salimi-Khorshidi (10.1016/j.neuroimage.2018.01.003_bib75) 2014; 15 Stramaglia (10.1016/j.neuroimage.2018.01.003_bib87) 2017 Griffanti (10.1016/j.neuroimage.2018.01.003_bib44) 2014; 95 Jenkinson (10.1016/j.neuroimage.2018.01.003_bib57) 2012; 62 Zhang (10.1016/j.neuroimage.2018.01.003_bib103) 2011; 70 Schwarz (10.1016/j.neuroimage.2018.01.003_bib77) 1978; 6 Silson (10.1016/j.neuroimage.2018.01.003_bib80) 2013; 16 |
References_xml | – volume: 15 start-page: 20 year: 1992 end-page: 25 ident: bib42 article-title: Separate visual pathways for perception and action publication-title: Trends Neurosci. – volume: 80 start-page: 202 year: 2013 end-page: 219 ident: bib62 article-title: Human Connectome Project informatics: quality control, database services and data visualization publication-title: Neuroimage – volume: 94 year: 2005 ident: bib28 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. – volume: 6 start-page: 370 year: 1983 end-page: 375 ident: bib30 article-title: Hierarchical organization and functional streams in the visual cortex publication-title: Trends Neurosci. – volume: 6 year: 2011 ident: bib63 article-title: Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions publication-title: PLos One – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: bib84 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib9 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. Royal Soc. Lon. Series B – volume: 26 start-page: 897 year: 2008 end-page: 899 ident: bib25 article-title: What is the expectation maximization algorithm? publication-title: Nat. Biotechnol. – volume: 6 start-page: 39 year: 1996 end-page: 49 ident: bib22 article-title: Object and spatial visual working memory activate separate neural systems in human cortex publication-title: Cerebr. Cortex – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib74 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – year: 2017 ident: bib51 article-title: Test-retest reliability of longitudinal task-based fMRI?implications for developmental studies publication-title: Develop. Cogn. Neurosci. – volume: 3 start-page: e17 year: 2007 ident: bib1 article-title: Efficiency and cost of economical brain functional networks publication-title: PLoS Comput. Biol. – volume: 142 start-page: 407 year: 2016 end-page: 420 ident: bib102 article-title: Connectome sensitivity or specificity: which is more important? publication-title: Neuroimage – volume: 30 start-page: 15915 year: 2010 end-page: 15926 ident: bib53 article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis publication-title: J. Neurosci. – volume: 145 start-page: 329 year: 2015 end-page: 336 ident: bib47 article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects publication-title: Neuroimage – year: 2017 ident: bib49 article-title: Objective analysis of the topological organization of the human cortical visual connectome suggests three visual pathways publication-title: Cortex – volume: 30 start-page: 625 year: 2009 end-page: 637 ident: bib92 article-title: Functional connectivity of default mode network components: correlation, anticorrelation, and causality publication-title: Hum. Brain Mapp. – volume: 379 start-page: 21 year: 1997 end-page: 47 ident: bib32 article-title: Cortical connections of areas v3 and vp of macaque monkey extrastriate visual cortex publication-title: J. Comp. Neurol. – volume: 27 start-page: 649 year: 2004 end-page: 677 ident: bib46 article-title: The human visual cortex publication-title: Annu. Rev. Neurosci. – volume: 40 start-page: 318 year: 1953 end-page: 335 ident: bib16 article-title: Non-normality and tests on variances publication-title: Biometrika – volume: 152 start-page: 437 year: 2017 end-page: 449 ident: bib52 article-title: Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations publication-title: Neuroimage – volume: 7 start-page: 2287 year: 2017 ident: bib94 article-title: Reliability in adolescent fMRI within two years? A comparison of three tasks publication-title: Sci. Rep. – volume: 6 start-page: 316 year: 1998 end-page: 328 ident: bib45 article-title: A sequence of object-processing stages revealed by fMRI in the human occipital lobe publication-title: Hum. Brain Mapp. – volume: 80 start-page: 80 year: 2013 end-page: 104 ident: bib93 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project publication-title: Neuroimage – volume: 70 start-page: 334 year: 2011 end-page: 342 ident: bib103 article-title: Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder publication-title: Biol. Psychiatr. – volume: 10 start-page: 603 year: 2003 end-page: 621 ident: bib58 article-title: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection publication-title: J. Empir. Finance – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: bib7 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage – volume: 40 start-page: 1706 year: 2002 end-page: 1714 ident: bib56 article-title: Haptic study of three-dimensional objects activates extrastriate visual areas publication-title: Neuropsychologia – volume: 36 start-page: 3633 year: 2016 end-page: 3635 ident: bib15 article-title: Cognitive processing involves dynamic reorganization of the whole-brain Network's functional community structure publication-title: J. Neurosci. – year: 2017 ident: bib87 article-title: Conserved ising model on the human connectome publication-title: arXiV preprint – volume: 5 year: 2010 ident: bib101 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLos One – year: 2015 ident: bib89 article-title: An empirical bayes mixture model for effect size distributions in genome-wide association studies publication-title: PLoS Comput. Biol. – volume: 1 start-page: 239 year: 2004 end-page: 249 ident: bib72 article-title: Protein interaction networks publication-title: Expet Rev. Proteonomics – volume: 56 start-page: 190 year: 2007 end-page: 222 ident: bib96 article-title: Visual field maps in human cortex publication-title: Neuron – volume: 36 start-page: 23 year: 2011 end-page: 31 ident: bib104 article-title: L.C.L. Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder publication-title: J. Psychiatr. Neurosci. – volume: 20 start-page: 299 year: 2017 end-page: 303 ident: bib69 article-title: Best practices in data analysis and sharing in neuroimaging using MRI publication-title: Nat. Neurosci. – volume: 4 start-page: 147 year: 2010 ident: bib3 article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia publication-title: Front. Sys. Neurosci. – volume: 66 start-page: 1189 year: 2009 end-page: 1200 ident: bib86 article-title: Altered corticostriatal functional connectivity in obsessive-compulsive disorder publication-title: Arch. Gen. Psychiatr. – volume: 23 start-page: 3981 year: 2003 end-page: 3989 ident: bib90 article-title: Neuroimaging weighs in: humans meet macaques in “primate” visual cortex publication-title: J. Neurosci. – year: 2017 ident: bib105 article-title: Fused estimation of sparse connectivity patterns from rest fMRI. Application to comparison of children and adult brains publication-title: IEEE Trans. Med. Imag. – volume: 31 start-page: 732 year: 2006 end-page: 744 ident: bib26 article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function publication-title: Neuroimage – volume: 19 start-page: 545 year: 2003 end-page: 554 ident: bib50 article-title: Dti mapping of human brain connectivity: statistical fibre tracking and virtual dissection publication-title: Neuroimage – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: bib33 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cerebr. Cortex – volume: 11 start-page: 287 year: 2001 end-page: 297 ident: bib59 article-title: A hierarchical axis of object processing stages in the human visual cortex publication-title: Cerebr. Cortex – volume: 32 start-page: 228 year: 2006 end-page: 237 ident: bib64 article-title: Partial correlation for functional brain interactivity investigation in functional mri publication-title: Neuroimage – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib35 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – year: 2017 ident: bib20 article-title: Assessing age-dependent multi-task functional co-activation changes using measures of task-potency publication-title: Develop. Cogn. Neurosci. – volume: 59 start-page: 1420 year: 2012 end-page: 1428 ident: bib19 article-title: Anticorrelations in resting state networks without global signal regression publication-title: Neuroimage – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib57 publication-title: Neuroimage – year: 2016 ident: bib60 article-title: Variational Mixture Models with Gamma or Inverse-gamma Components – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib77 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – year: 2015 ident: bib6 article-title: Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data publication-title: Front. Neurosci. – year: 2011 ident: bib21 article-title: Plane Answers to Complex Questions – volume: 19 start-page: 7 year: 2016 end-page: 9 ident: bib81 article-title: Linking cognition to brain connectivity publication-title: Nat. Neurosci. – start-page: 199 year: 1998 end-page: 213 ident: bib2 article-title: Information theory and an extension of the maximum likelihood principle publication-title: Selected Papers of Hirotugu Akaike – volume: 22 start-page: 340 year: 2009 end-page: 347 ident: bib8 article-title: Human brain networks in health and disease publication-title: Curr. Opin. Neurol. – volume: 15 start-page: 449 year: 2014 end-page: 468 ident: bib75 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 35 start-page: 1351 year: 2007 end-page: 1377 ident: bib27 article-title: Size, power and false discovery rates publication-title: Ann. Stat. – volume: 14 start-page: 1245 year: 2011 end-page: 1246 ident: bib76 article-title: A lateralized brain network for visuospatial attention publication-title: Nat. Neurosci. – year: 2005 ident: bib95 article-title: Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models – year: 2011 ident: bib41 article-title: Brain network analysis: separating cost from topology using cost-integration publication-title: PLos One – volume: 4 year: 2015 ident: bib5 article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization publication-title: ELife – volume: 43 start-page: 528 year: 2008 end-page: 539 ident: bib54 article-title: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain publication-title: Neuroimage – year: 2006 ident: bib13 article-title: Pattern Recognition and Machine Learning – volume: 7 start-page: 695 year: 1978 end-page: 705 ident: bib98 article-title: Two categorical stages of object recognition publication-title: Perception – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bib10 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imag. – volume: 14 start-page: 111 year: 2013 end-page: 152 ident: bib55 article-title: Pairwise likelihood ratios for estimation of non-Gaussian structural equation models publication-title: J. Mach. Learn. Res. – volume: 80 start-page: 43 year: 2016 end-page: 48 ident: bib65 article-title: Functional and structural connectivity of the visual system in infants with perinatal brain injury publication-title: Pediatr. Res. – volume: 17 start-page: 1 year: 2013 end-page: 17 ident: bib85 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cognit. Sci. – year: 2017 ident: bib12 article-title: Causal Inference in functional magnetic resonance imaging – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib44 article-title: Ica-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: bib23 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – start-page: 29 year: 2007 end-page: 42 ident: bib67 article-title: Measurement and analysis of online social networks publication-title: IMC ’07 Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement – volume: 25 start-page: 3911 year: 2015 end-page: 3931 ident: bib97 article-title: Probabilistic maps of visual topography in human cortex publication-title: Cerebr. Cortex – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: bib99 article-title: Collective dynamics of small-world networks publication-title: Nature – volume: 65 start-page: 231 year: 2013 end-page: 241 ident: bib34 article-title: Quantifying temporal correlations: a test-retest evaluation of functional connectivity in resting-state fMRI publication-title: Neuroimage – volume: 30 start-page: 9477 year: 2010 end-page: 9487 ident: bib61 article-title: Functional connectivity and brain networks in schizophrenia publication-title: J. Neurosci. – volume: 163 start-page: 450 year: 2007 end-page: 457 ident: bib40 article-title: Aberrant “default mode” functional connectivity in schizophrenia publication-title: Am. J. Psychiatr. – volume: 95 start-page: 14863 year: 1998 end-page: 14868 ident: bib29 article-title: Cluster analysis and display of genome-wide expression patterns publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 1 start-page: 353 year: 2016 end-page: 363 ident: bib70 article-title: Attention-deficit/hyperactivity disorder symptoms coincide with altered striatal connectivity publication-title: Biol. Psychiatr.: Cogn. Neurosci. Neuroimag. – volume: 54 start-page: 875 year: 2011 end-page: 891 ident: bib82 article-title: Network modelling methods for fMRI publication-title: Neuroimage – volume: 24 start-page: 1894 year: 2014 end-page: 1905 ident: bib91 article-title: Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism publication-title: Cerebr. Cortex – volume: 56 start-page: 330 year: 2015 end-page: 344 ident: bib68 article-title: Resting-state functional connectivity in major depressive disorder: a review publication-title: Neurosci. Biobehav. Rev. – volume: 69 start-page: 1188 year: 2011 end-page: 1203 ident: bib36 article-title: Dense inhibitory connectivity in neocortex publication-title: Neuron – volume: 27 start-page: 267 year: 2006 end-page: 276 ident: bib71 article-title: Bayesian approach to determining connectivity of the human brain publication-title: Hum. Brain Mapp. – volume: 352 start-page: 216 year: 2016 end-page: 220 ident: bib88 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: bib39 article-title: Dynamic causal modeling publication-title: Neuroimage – volume: 7 year: 2016 ident: bib73 article-title: Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study publication-title: Mol. Autism. – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib38 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: bib17 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. – volume: 12 start-page: 1202 year: 2001 end-page: 1212 ident: bib4 article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex publication-title: Cerebr. Cortex – volume: 62 start-page: 429 year: 2007 end-page: 437 ident: bib43 article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus publication-title: Biol. Psychiatr. – volume: 10 start-page: 1079 year: 2000 end-page: 1081 ident: bib48 article-title: Asymmetry pays: visual lateralization improves discrimination success in pigeons publication-title: Curr. Biol. – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bib37 article-title: Cortical surface-based analysis. ii: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage – volume: 7 year: 2017 ident: bib11 article-title: The impact of haemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI publication-title: Brain and Behavior – volume: 19 start-page: 2209 year: 2009 end-page: 2229 ident: bib78 article-title: The resting brain: unconstrained yet reliable publication-title: Cerebr. Cortex – volume: 6 start-page: 414 year: 1983 end-page: 417 ident: bib66 article-title: Object vision and spatial vision: two cortical pathways publication-title: Trends Neurosci. – volume: 86 start-page: 420 year: 1979 end-page: 428 ident: bib79 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. – volume: 85 start-page: 693 year: 1990 end-page: 698 ident: bib100 article-title: Construction of permutation tests publication-title: J. Am. Stat. Assoc. – volume: 16 start-page: 267 year: 2013 end-page: 269 ident: bib80 article-title: Specialized and independent processing of orientation and shape in visual field maps lo1 and lo2 publication-title: Nat. Neurosci. – volume: 62 start-page: 2222 year: 2013 end-page: 2231 ident: bib31 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib83 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.neuroimage.2018.01.003_bib83 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0905267106 – volume: 70 start-page: 334 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib103 article-title: Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2011.05.018 – volume: 1 start-page: 353 issue: 4 year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib70 article-title: Attention-deficit/hyperactivity disorder symptoms coincide with altered striatal connectivity publication-title: Biol. Psychiatr.: Cogn. Neurosci. Neuroimag. – volume: 80 start-page: 80 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib93 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.012 – volume: 94 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2018.01.003_bib28 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.018102 – volume: 12 start-page: 1202 issue: 11 year: 2001 ident: 10.1016/j.neuroimage.2018.01.003_bib4 article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex publication-title: Cerebr. Cortex doi: 10.1093/cercor/12.11.1202 – volume: 65 start-page: 231 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib34 article-title: Quantifying temporal correlations: a test-retest evaluation of functional connectivity in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.052 – volume: 36 start-page: 23 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib104 article-title: L.C.L. Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder publication-title: J. Psychiatr. Neurosci. doi: 10.1503/jpn.100006 – volume: 3 start-page: e17 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2018.01.003_bib1 article-title: Efficiency and cost of economical brain functional networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030017 – volume: 15 start-page: 20 issue: 1 year: 1992 ident: 10.1016/j.neuroimage.2018.01.003_bib42 article-title: Separate visual pathways for perception and action publication-title: Trends Neurosci. doi: 10.1016/0166-2236(92)90344-8 – volume: 43 start-page: 528 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2018.01.003_bib54 article-title: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.08.010 – year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib20 article-title: Assessing age-dependent multi-task functional co-activation changes using measures of task-potency publication-title: Develop. Cogn. Neurosci. – volume: 4 year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib5 article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization publication-title: ELife doi: 10.7554/eLife.03952 – volume: 35 start-page: 1351 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2018.01.003_bib27 article-title: Size, power and false discovery rates publication-title: Ann. Stat. doi: 10.1214/009053606000001460 – volume: 6 start-page: 316 issue: 4 year: 1998 ident: 10.1016/j.neuroimage.2018.01.003_bib45 article-title: A sequence of object-processing stages revealed by fMRI in the human occipital lobe publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6 – ident: 10.1016/j.neuroimage.2018.01.003_bib12 – volume: 11 start-page: 287 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2018.01.003_bib59 article-title: A hierarchical axis of object processing stages in the human visual cortex publication-title: Cerebr. Cortex doi: 10.1093/cercor/11.4.287 – volume: 4 start-page: 147 year: 2010 ident: 10.1016/j.neuroimage.2018.01.003_bib3 article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia publication-title: Front. Sys. Neurosci. doi: 10.3389/fnsys.2010.00147 – volume: 27 start-page: 649 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2018.01.003_bib46 article-title: The human visual cortex publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.27.070203.144220 – volume: 102 start-page: 9673 issue: 27 year: 2005 ident: 10.1016/j.neuroimage.2018.01.003_bib38 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0504136102 – volume: 59 start-page: 1420 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2018.01.003_bib19 article-title: Anticorrelations in resting state networks without global signal regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.048 – volume: 6 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib63 article-title: Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions publication-title: PLos One doi: 10.1371/journal.pone.0014788 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2018.01.003_bib74 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 19 start-page: 7 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib81 article-title: Linking cognition to brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4206 – volume: 54 start-page: 875 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib82 article-title: Network modelling methods for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 14 start-page: 111 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib55 article-title: Pairwise likelihood ratios for estimation of non-Gaussian structural equation models publication-title: J. Mach. Learn. Res. – start-page: 199 year: 1998 ident: 10.1016/j.neuroimage.2018.01.003_bib2 article-title: Information theory and an extension of the maximum likelihood principle – year: 2005 ident: 10.1016/j.neuroimage.2018.01.003_bib95 – volume: 40 start-page: 318 year: 1953 ident: 10.1016/j.neuroimage.2018.01.003_bib16 article-title: Non-normality and tests on variances publication-title: Biometrika doi: 10.1093/biomet/40.3-4.318 – volume: 18 start-page: 1565 issue: 11 year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib84 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – volume: 24 start-page: 1894 issue: 7 year: 2014 ident: 10.1016/j.neuroimage.2018.01.003_bib91 article-title: Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism publication-title: Cerebr. Cortex doi: 10.1093/cercor/bht040 – volume: 31 start-page: 732 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2018.01.003_bib26 article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.016 – volume: 10 start-page: 1079 issue: 17 year: 2000 ident: 10.1016/j.neuroimage.2018.01.003_bib48 article-title: Asymmetry pays: visual lateralization improves discrimination success in pigeons publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00671-0 – volume: 103 start-page: 13848 issue: 37 year: 2006 ident: 10.1016/j.neuroimage.2018.01.003_bib23 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0601417103 – volume: 30 start-page: 9477 issue: 28 year: 2010 ident: 10.1016/j.neuroimage.2018.01.003_bib61 article-title: Functional connectivity and brain networks in schizophrenia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 32 start-page: 228 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2018.01.003_bib64 article-title: Partial correlation for functional brain interactivity investigation in functional mri publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.057 – volume: 30 start-page: 15915 issue: 47 year: 2010 ident: 10.1016/j.neuroimage.2018.01.003_bib53 article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2874-10.2010 – start-page: 29 year: 2007 ident: 10.1016/j.neuroimage.2018.01.003_bib67 article-title: Measurement and analysis of online social networks – volume: 1 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.neuroimage.2018.01.003_bib33 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cerebr. Cortex doi: 10.1093/cercor/1.1.1 – volume: 85 start-page: 693 year: 1990 ident: 10.1016/j.neuroimage.2018.01.003_bib100 article-title: Construction of permutation tests publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1990.10474929 – volume: 379 start-page: 21 issue: 1 year: 1997 ident: 10.1016/j.neuroimage.2018.01.003_bib32 article-title: Cortical connections of areas v3 and vp of macaque monkey extrastriate visual cortex publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19970303)379:1<21::AID-CNE3>3.0.CO;2-K – year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib41 article-title: Brain network analysis: separating cost from topology using cost-integration publication-title: PLos One doi: 10.1371/journal.pone.0021570 – volume: 360 start-page: 1001 issue: 1457 year: 2005 ident: 10.1016/j.neuroimage.2018.01.003_bib9 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. Royal Soc. Lon. Series B doi: 10.1098/rstb.2005.1634 – year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib21 – year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib105 article-title: Fused estimation of sparse connectivity patterns from rest fMRI. Application to comparison of children and adult brains publication-title: IEEE Trans. Med. Imag. – volume: 30 start-page: 625 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2018.01.003_bib92 article-title: Functional connectivity of default mode network components: correlation, anticorrelation, and causality publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20531 – volume: 80 start-page: 43 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib65 article-title: Functional and structural connectivity of the visual system in infants with perinatal brain injury publication-title: Pediatr. Res. doi: 10.1038/pr.2016.49 – volume: 10 start-page: 603 issue: 5 year: 2003 ident: 10.1016/j.neuroimage.2018.01.003_bib58 article-title: Improved estimation of the covariance matrix of stock returns with an application to portfolio selection publication-title: J. Empir. Finance doi: 10.1016/S0927-5398(03)00007-0 – volume: 14 start-page: 1245 year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib76 article-title: A lateralized brain network for visuospatial attention publication-title: Nat. Neurosci. doi: 10.1038/nn.2905 – volume: 7 start-page: 2287 year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib94 article-title: Reliability in adolescent fMRI within two years? A comparison of three tasks publication-title: Sci. Rep. doi: 10.1038/s41598-017-02334-7 – volume: 36 start-page: 3633 issue: 13 year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib15 article-title: Cognitive processing involves dynamic reorganization of the whole-brain Network's functional community structure publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0106-16.2016 – volume: 145 start-page: 329 issue: B year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib47 article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects publication-title: Neuroimage – volume: 19 start-page: 2209 issue: 10 year: 2009 ident: 10.1016/j.neuroimage.2018.01.003_bib78 article-title: The resting brain: unconstrained yet reliable publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhn256 – volume: 40 start-page: 1706 issue: 10 year: 2002 ident: 10.1016/j.neuroimage.2018.01.003_bib56 article-title: Haptic study of three-dimensional objects activates extrastriate visual areas publication-title: Neuropsychologia doi: 10.1016/S0028-3932(02)00017-9 – volume: 1 start-page: 239 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2018.01.003_bib72 article-title: Protein interaction networks publication-title: Expet Rev. Proteonomics doi: 10.1586/14789450.1.2.239 – volume: 25 start-page: 3911 issue: 10 year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib97 article-title: Probabilistic maps of visual topography in human cortex publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhu277 – volume: 10 start-page: 186 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2018.01.003_bib17 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 62 start-page: 429 issue: 5 year: 2007 ident: 10.1016/j.neuroimage.2018.01.003_bib43 article-title: Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2006.09.020 – volume: 23 start-page: 3981 issue: 10 year: 2003 ident: 10.1016/j.neuroimage.2018.01.003_bib90 article-title: Neuroimaging weighs in: humans meet macaques in “primate” visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-10-03981.2003 – year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib87 article-title: Conserved ising model on the human connectome publication-title: arXiV preprint – volume: 69 start-page: 1188 issue: 6 year: 2011 ident: 10.1016/j.neuroimage.2018.01.003_bib36 article-title: Dense inhibitory connectivity in neocortex publication-title: Neuron doi: 10.1016/j.neuron.2011.02.025 – volume: 393 start-page: 440 year: 1998 ident: 10.1016/j.neuroimage.2018.01.003_bib99 article-title: Collective dynamics of small-world networks publication-title: Nature doi: 10.1038/30918 – volume: 17 start-page: 1 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib85 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2013.09.016 – volume: 86 start-page: 420 issue: 2 year: 1979 ident: 10.1016/j.neuroimage.2018.01.003_bib79 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – volume: 16 start-page: 267 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib80 article-title: Specialized and independent processing of orientation and shape in visual field maps lo1 and lo2 publication-title: Nat. Neurosci. doi: 10.1038/nn.3327 – volume: 20 start-page: 299 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib69 article-title: Best practices in data analysis and sharing in neuroimaging using MRI publication-title: Nat. Neurosci. doi: 10.1038/nn.4500 – year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib60 – volume: 95 start-page: 14863 issue: 25 year: 1998 ident: 10.1016/j.neuroimage.2018.01.003_bib29 article-title: Cluster analysis and display of genome-wide expression patterns publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.95.25.14863 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2018.01.003_bib44 article-title: Ica-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 7 issue: 8 year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib11 article-title: The impact of haemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI publication-title: Brain and Behavior doi: 10.1002/brb3.777 – volume: 6 start-page: 370 issue: 9 year: 1983 ident: 10.1016/j.neuroimage.2018.01.003_bib30 article-title: Hierarchical organization and functional streams in the visual cortex publication-title: Trends Neurosci. doi: 10.1016/0166-2236(83)90167-4 – volume: 5 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2018.01.003_bib101 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLos One doi: 10.1371/journal.pone.0013701 – year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib6 article-title: Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00048 – volume: 152 start-page: 437 year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib52 article-title: Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.005 – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib35 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 19 start-page: 1273 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2018.01.003_bib39 article-title: Dynamic causal modeling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib51 article-title: Test-retest reliability of longitudinal task-based fMRI?implications for developmental studies publication-title: Develop. Cogn. Neurosci. – volume: 80 start-page: 202 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib62 article-title: Human Connectome Project informatics: quality control, database services and data visualization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.077 – volume: 19 start-page: 545 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2018.01.003_bib50 article-title: Dti mapping of human brain connectivity: statistical fibre tracking and virtual dissection publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00142-3 – volume: 7 issue: 13 year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib73 article-title: Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study publication-title: Mol. Autism. – volume: 56 start-page: 190 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2018.01.003_bib96 article-title: Visual field maps in human cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.10.012 – volume: 7 start-page: 695 issue: 6 year: 1978 ident: 10.1016/j.neuroimage.2018.01.003_bib98 article-title: Two categorical stages of object recognition publication-title: Perception doi: 10.1068/p070695 – volume: 56 start-page: 330 year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib68 article-title: Resting-state functional connectivity in major depressive disorder: a review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.07.014 – volume: 6 start-page: 39 issue: 1 year: 1996 ident: 10.1016/j.neuroimage.2018.01.003_bib22 article-title: Object and spatial visual working memory activate separate neural systems in human cortex publication-title: Cerebr. Cortex doi: 10.1093/cercor/6.1.39 – volume: 62 start-page: 2222 issue: 4 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib31 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2018.01.003_bib37 article-title: Cortical surface-based analysis. ii: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – volume: 26 start-page: 897 year: 2008 ident: 10.1016/j.neuroimage.2018.01.003_bib25 article-title: What is the expectation maximization algorithm? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1406 – volume: 80 start-page: 169 year: 2013 ident: 10.1016/j.neuroimage.2018.01.003_bib7 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – year: 2017 ident: 10.1016/j.neuroimage.2018.01.003_bib49 article-title: Objective analysis of the topological organization of the human cortical visual connectome suggests three visual pathways publication-title: Cortex – volume: 6 start-page: 414 year: 1983 ident: 10.1016/j.neuroimage.2018.01.003_bib66 article-title: Object vision and spatial vision: two cortical pathways publication-title: Trends Neurosci. doi: 10.1016/0166-2236(83)90190-X – volume: 352 start-page: 216 issue: 6282 year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib88 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science doi: 10.1126/science.aad8127 – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2018.01.003_bib10 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2003.822821 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.neuroimage.2018.01.003_bib77 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – year: 2006 ident: 10.1016/j.neuroimage.2018.01.003_bib13 – volume: 142 start-page: 407 year: 2016 ident: 10.1016/j.neuroimage.2018.01.003_bib102 article-title: Connectome sensitivity or specificity: which is more important? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.035 – volume: 163 start-page: 450 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2018.01.003_bib40 article-title: Aberrant “default mode” functional connectivity in schizophrenia publication-title: Am. J. Psychiatr. doi: 10.1176/ajp.2007.164.3.450 – volume: 15 start-page: 449 issue: 90 year: 2014 ident: 10.1016/j.neuroimage.2018.01.003_bib75 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 66 start-page: 1189 issue: 11 year: 2009 ident: 10.1016/j.neuroimage.2018.01.003_bib86 article-title: Altered corticostriatal functional connectivity in obsessive-compulsive disorder publication-title: Arch. Gen. Psychiatr. doi: 10.1001/archgenpsychiatry.2009.152 – volume: 27 start-page: 267 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2018.01.003_bib71 article-title: Bayesian approach to determining connectivity of the human brain publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20182 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2018.01.003_bib57 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – year: 2015 ident: 10.1016/j.neuroimage.2018.01.003_bib89 article-title: An empirical bayes mixture model for effect size distributions in genome-wide association studies publication-title: PLoS Comput. Biol. – volume: 22 start-page: 340 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2018.01.003_bib8 article-title: Human brain networks in health and disease publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32832d93dd |
SSID | ssj0009148 |
Score | 2.3934588 |
Snippet | Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 402 |
SubjectTerms | Brain - physiology Brain architecture Brain mapping Brain research Connectome - methods False discovery rate Functional connectivity Functional magnetic resonance imaging Hemispheric laterality Humans Information processing Magnetic Resonance Imaging - methods Mental task performance Mixture modeling Models, Neurological Nerve Net - physiology Neural networks NMR Noise Nuclear magnetic resonance Population Short term memory Time series Visual cortex Visual stimuli Visual system |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZdBmUvY93aNVtbVNirwUr0y-xhG2MlFNqnBPImZEmmKYudzQ50__3ubNlZWxh5lg9s6U73Sff5O0I-TYItLCxswrXLEy5yl2QeDq4esqfS2cRN85ZtcStnC369FMt44VZHWmW_J7Ybta8c3pHDIZ2hCg-c5r5sfiXYNQqrq7GFxgvyEqXLkNKllmonust49yucmCYaHohMno7f1epFrtYQtUjw0q14Z98663l6eg4_n7Io_0lLV2_I64gn6bfOAY7IQSjfksObWDF_R77OYbHqWGOimMW6yz_qkOHimmodapr_oesAOYtWBV2vHrCoQNsWOWBzTBZXP-bfZ0nsmpA4IXmTZFnhkQUtIdoCU956qQDFWJ1axrwIecqZdhOlJfdciFxZ6eGYlIagPLdOTk_IqKzKcEpowafaSmZ5ASBRep0D9pISTDKuQsGLMVH9ZBkXJcWxs8VP03PH7s1umg1Os0kZypGOCRssN52sxh42Wb8epv9tFDY6A3v_HrafB9sILTrIsKf1Wb_8JoZ4bXYOOSaXwzAEJ1ZcbBmqbW2QkCaEVlqPyfvOW4bPBZyVwrCESXzkR8MDKPz9eKRc3bUC4CLTDLz7w_9f6yN5hd_QsTPPyKj5vQ3ngKCa_KINk7_M5hzW priority: 102 providerName: ProQuest |
Title | Thresholding functional connectomes by means of mixture modeling |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191830003X https://dx.doi.org/10.1016/j.neuroimage.2018.01.003 https://www.ncbi.nlm.nih.gov/pubmed/29309896 https://www.proquest.com/docview/2014373469 https://www.proquest.com/docview/1989558788 https://pubmed.ncbi.nlm.nih.gov/PMC5981009 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuiDcLpTIS17Dxxk9xoaxaLa9VVVppb5ZjOyKIzVbsVoILv52ZxElZelmJS6LEGSkZz-Nz_HlMyKtJdJWDjs249mXGRekzE2DgGiB7Km0mvihbtsVczi74h4VY7JFpvxYGaZUp9ncxvY3W6c44aXN8WdfjL4AMIN3AeEMXiOwXuIKdK7Ty17-vaR6G8W45nCgyfDqxeTqOV1szsl6C5yLJS7cFPPvts26mqJsQ9F8m5V-p6eQeuZswJT3qXvs-2YvNA3L7c5o1f0jenkOHrdM8E8VM1v0ApB5ZLn6zWsY1LX_RZYS8RVcVXdY_cWKBttvkgMwjcnFyfD6dZWnnhMwLyTeZMVVAJrQEj4tMBRekAiTjdO4YCyKWOWfaT5SWPHAhSuVkgKFSHqMK3HlZPCb7zaqJTwmteKGdZI5XABRl0CXgLylBxHAVK16NiOqVZX0qK467W3y3PX_sm71Ws0U125xhSdIRYYPkZVdaYwcZ0_eH7ZeOQrCzEP93kH0zyG6Z2I7SB3332-Tma2zH0lBcmhF5OTSDg-Ksi2vi6mptkZQmhFZaj8iTzlqGzwWslUOzBCVu2dHwABb_3m5p6q9tEXBhNAPrfvZfH_Wc3MGrjsB5QPY3P67iCwBZm_Kw9SI4qoU6JLeOpmefTvH8_uNsDud3x_PTsz8tAi32 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEM-yUMBIcIwUJ7bjCCGerba0XSG0lXozju2IRWxSyFbQP8VvZBwnWUoltJeevRNtxuN5ZD5_A_AscbrUuLERk6aIGC9MlFssXC1Gz0zmiUmLFm0xFZMj9uGYH2_A7_4ujIdV9j6xddS2Nv4bORbp1LPwYDX36uR75KdG-e5qP0IjmMW-O_uJJVvzcu897u_zJNndmb2bRN1UgchwwZZRnpfWo4QFWqOjmdVWZBjltYw1pZa7ImZUmiSTglnGeZFpYbGMiJ3LLNNGpPjcK7DJUixlRrD5dmf68dOK5peycPmOp5GkNO-wQwFR1jJUzhfoJzykTLZ0of2wrosB8WLC-y9u869AuHsTbnQZLHkTTO4WbLjqNlw97Hr0d-D1DM2j6bpaxMfN8LmRGI-pMct64RpSnJGFwyhJ6pIs5r98G4O0Q3lQ5i4cXYpG78Goqit3H0jJUqkF1azEtFRYWWC2JwSK5CxzJSvHkPXKUqYjMfezNL6pHq32Va3UrLyaVUw9AeoY6CB5Eog81pDJ-_1Q_UVVdK0Ko80asi8G2S6ZCUnKmtLb_farzqk0anUExvB0WEZ34Hs8unL1aaM8BI5zmUk5hq1gLcPrYmYX47JAJZ6zo-EHnmr8_Eo1_9JSjvNcUrTuB___W0_g2mR2eKAO9qb7D-G6f5-ADd2G0fLHqXuE-duyeNwdGgKfL_uc_gElyls3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFDASHCPixK8IIUCUVUuh4tBKezOO7YhFbFLIVtC_xq9jnDhZSiW0l56dieLxPDOfZwCeZt5UBg82YcqWCeOlTQqHiatD7ylVkdm87NAWh2LvmL2f8dkG_B7uwgRY5WATO0PtGhv-kWOSTkMXHszmnlcRFvFpd_rq5HsSJkiFSuswTqMXkQN_9hPTt_bl_i6e9bMsm747eruXxAkDieWCLZOiqFxADAuUTE-lM05I9PhGpYZSx32ZMqpsJpVgjnFeSiMcphSp99IxY0WO770CV2XOadAxOZOrhr-U9dfweJ4oSouIIuqxZV2vyvkCLUYAl6mucegwtuuia7wY-v6L4PzLJU5vwPUYy5I3vfDdhA1f34Ktj7FafxteH6GgtLG-RYIH7X88EhvQNXbZLHxLyjOy8OgvSVORxfxXKGiQbjwP0tyB40vh513YrJvabwOpWK6MoIZVGKAKp0qM-4RAkoJJX7FqAnJglraxnXmYqvFND7i1r3rFZh3YrFMaWqFOgI6UJ31LjzVoiuE89HBlFY2sRr-zBu2LkTaGNX24sib1znD8OpqXVq-UYQJPxmU0DKHaY2rfnLY6gOE4V1KpCdzrpWXcLsZ4KS4LZOI5ORofCE3Hz6_U8y9d83FeKIrSff__n_UYtlA79Yf9w4MHcC1spweJ7sDm8sepf4iB3LJ81GkMgc-XraJ_AEqSXgc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thresholding+functional+connectomes+by+means+of+mixture+modeling&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bielczyk%2C+Natalia+Z.&rft.au=Walocha%2C+Fabian&rft.au=Ebel%2C+Patrick+W.&rft.au=Haak%2C+Koen+V.&rft.date=2018-05-01&rft.issn=1053-8119&rft.volume=171&rft.spage=402&rft.epage=414&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.01.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2018_01_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |