Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A
Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts,...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 9; pp. 2204 - 2209 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A. Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940–overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment. |
---|---|
AbstractList | Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A. Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment. Prostate cancer is one of most common cancers in men worldwide, and osteoblastic bone metastasis is frequently observed in prostate cancer patients. However, the mechanisms responsible for the predominantly osteoblastic phenotype have not been fully elucidated. Cancer-secreted microRNAs (miRNAs) were recently shown to be significant in the modification of the tumor microenvironment. Here, hsa-miR-940, which was highly secreted by prostate cancer cells, promoted osteogenic differentiation of human mesenchymal stem cells in vitro, and induced extensive osteoblastic lesions in the bone metastatic microenvironment in vivo. Our study provides a demonstration that osteoblastic bone metastasis can be induced by miRNAs secreted by cancer cells in the bone microenvironment. Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A . Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940–overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment. Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting and Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment. Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment. |
Author | Akazawa, Chihiro Sato, Shingo Takeda, Shu Fukuda, Toru Futakuchi, Mitsuru Ochiya, Takahiro Ae, Keisuke Yao, Kenta Mabuchi, Yo Kanda, Hiroaki Sunamura, Satoko Ochi, Hiroki Kosaka, Nobuyoshi Okawa, Atsushi Hashimoto, Kyoko |
Author_xml | – sequence: 1 givenname: Kyoko surname: Hashimoto fullname: Hashimoto, Kyoko organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan – sequence: 2 givenname: Hiroki surname: Ochi fullname: Ochi, Hiroki organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan – sequence: 3 givenname: Satoko surname: Sunamura fullname: Sunamura, Satoko organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan – sequence: 4 givenname: Nobuyoshi surname: Kosaka fullname: Kosaka, Nobuyoshi organization: Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 104-0045 Tokyo, Japan – sequence: 5 givenname: Yo surname: Mabuchi fullname: Mabuchi, Yo organization: Department of Biochemistry and Biophysics, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan – sequence: 6 givenname: Toru surname: Fukuda fullname: Fukuda, Toru organization: Department of Food Science, Tokyo Seiei College, 124-8530 Tokyo, Japan – sequence: 7 givenname: Kenta surname: Yao fullname: Yao, Kenta organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan – sequence: 8 givenname: Hiroaki surname: Kanda fullname: Kanda, Hiroaki organization: Department of Pathology, The Cancer Institute of the Japanese Foundation for Cancer Research, 135-8550 Tokyo, Japan – sequence: 9 givenname: Keisuke surname: Ae fullname: Ae, Keisuke organization: Department of Orthopaedic Oncology, Cancer Institute Ariake Hospital, 135-8550 Tokyo, Japan – sequence: 10 givenname: Atsushi surname: Okawa fullname: Okawa, Atsushi organization: Department of Orthopaedic Surgery, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan – sequence: 11 givenname: Chihiro surname: Akazawa fullname: Akazawa, Chihiro organization: Department of Biochemistry and Biophysics, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan – sequence: 12 givenname: Takahiro surname: Ochiya fullname: Ochiya, Takahiro organization: Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 104-0045 Tokyo, Japan – sequence: 13 givenname: Mitsuru surname: Futakuchi fullname: Futakuchi, Mitsuru organization: Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 852-8523 Nagasaki, Japan – sequence: 14 givenname: Shu surname: Takeda fullname: Takeda, Shu organization: Division of Endocrinology, Toranomon Hospital Endocrine Center, 105-8470 Tokyo, Japan – sequence: 15 givenname: Shingo surname: Sato fullname: Sato, Shingo organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29440427$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1q3DAUhUVJaSZp1121CLLJxolkyT_aFMzQJIWUltCuhSxfz2iwJVeSB_IEfe3ITNK0gWqjxf3O4ejonqAj6ywg9J6SC0oqdjlZFS5oRStWMkqLV2hFiaBZyQU5QitC8iqrec6P0UkIO0KIKGryBh3ngnPC82qFfq-V1eCzANpDhA5vg8pGc5cJTrCx3awhYGWxCxFcO6gQjcbTFqyL9xMkAsct4DalwiPENFYLMBrtHdi98c6OYCPeG4Wj8huIxm5wc3dz3XynybfDV81XynjzFr3u1RDg3eN9in5eff6xvsluv11_WTe3mS5KHrNalLpiFIquKtsCagHQClG3Pei-BUZVmw4vVa5qgF50vO9qXXacgaoV44ydok8H32luR-h0CufVICdvRuXvpVNG_juxZis3bi-LmvGK5Mng_NHAu18zhChHEzQMg7Lg5iDzVHpOC1GJhJ69QHdu9jY9L1EJIoKQJdHHvxP9ifL0RwkoDkDqNAQPvdRmqdktAc0gKZHLLshlF-TzLiTd5Qvdk_X_FR8Oil2Izj8nKQtSibJgD68Uwms |
CitedBy_id | crossref_primary_10_1186_s12885_023_10904_4 crossref_primary_10_1111_iju_15043 crossref_primary_10_3389_fcell_2022_752818 crossref_primary_10_1016_j_ajog_2019_06_010 crossref_primary_10_3892_ol_2019_10776 crossref_primary_10_1016_j_bbcan_2019_01_008 crossref_primary_10_1155_sci_4397807 crossref_primary_10_15252_embr_202052289 crossref_primary_10_1016_j_lfs_2020_118024 crossref_primary_10_1507_endocrj_EJ21_0005 crossref_primary_10_1007_s11538_022_01117_0 crossref_primary_10_1002_jbmr_3891 crossref_primary_10_1186_s13046_021_01906_w crossref_primary_10_1016_j_bbcan_2021_188570 crossref_primary_10_1016_j_ijbiomac_2020_04_228 crossref_primary_10_1186_s13287_019_1306_x crossref_primary_10_3390_ijms19113523 crossref_primary_10_1002_jev2_12056 crossref_primary_10_1007_s10142_025_01531_2 crossref_primary_10_3748_wjg_v25_i31_4452 crossref_primary_10_1016_j_omtn_2021_01_031 crossref_primary_10_3389_fphar_2024_1438177 crossref_primary_10_3389_fonc_2021_722922 crossref_primary_10_1007_s11914_021_00677_9 crossref_primary_10_3390_cancers12071827 crossref_primary_10_1002_jbt_23666 crossref_primary_10_1038_s41419_021_04181_x crossref_primary_10_1101_cshperspect_a037275 crossref_primary_10_1111_jcmm_14832 crossref_primary_10_1134_S0006297921070014 crossref_primary_10_3389_fcell_2021_789674 crossref_primary_10_1016_j_canlet_2020_10_016 crossref_primary_10_3390_cancers12020351 crossref_primary_10_1038_s41392_025_02148_4 crossref_primary_10_3389_fonc_2023_1270104 crossref_primary_10_1016_j_gendis_2022_06_007 crossref_primary_10_1038_s41598_021_91278_0 crossref_primary_10_3390_cancers15010242 crossref_primary_10_1186_s13046_020_01570_6 crossref_primary_10_3390_jcm7030055 crossref_primary_10_1159_000512825 crossref_primary_10_1016_j_ajps_2023_100870 crossref_primary_10_3390_cancers15164027 crossref_primary_10_3390_cancers14225693 crossref_primary_10_3390_ijms20184609 crossref_primary_10_1007_s12015_022_10342_y crossref_primary_10_3389_fnhum_2023_1278501 crossref_primary_10_3390_ijms21186680 crossref_primary_10_1016_j_devcel_2019_04_011 crossref_primary_10_1038_s41392_021_00779_x crossref_primary_10_1155_2022_8446629 crossref_primary_10_3389_fendo_2023_1202493 crossref_primary_10_1186_s13046_021_01891_0 crossref_primary_10_1042_BSR20201337 crossref_primary_10_3390_ijms20236016 crossref_primary_10_1002_jcb_30127 crossref_primary_10_1038_s41420_022_01194_z crossref_primary_10_1016_j_abb_2023_109784 crossref_primary_10_3390_cancers13236020 crossref_primary_10_1016_j_ebiom_2018_09_052 crossref_primary_10_1186_s12951_021_00958_6 crossref_primary_10_1016_j_trecan_2019_11_007 crossref_primary_10_1186_s12967_019_1982_4 crossref_primary_10_3390_cancers15082243 crossref_primary_10_3390_ijms20194805 crossref_primary_10_3390_vetsci9120706 crossref_primary_10_3892_ol_2019_10110 crossref_primary_10_1002_jev2_12125 crossref_primary_10_1007_s11864_021_00898_1 crossref_primary_10_3390_jpm13050705 crossref_primary_10_1055_a_1514_1618 crossref_primary_10_3390_ijms232213993 crossref_primary_10_1016_j_lfs_2021_120216 crossref_primary_10_1038_s41586_024_07822_1 crossref_primary_10_1002_ctm2_353 crossref_primary_10_3389_fimmu_2024_1367373 crossref_primary_10_1158_0008_5472_CAN_21_1331 crossref_primary_10_1016_j_yexcr_2021_112518 crossref_primary_10_3390_ijms20163884 crossref_primary_10_1101_cshperspect_a036848 crossref_primary_10_3390_ijms20184600 crossref_primary_10_1186_s12951_022_01579_3 crossref_primary_10_1155_2019_8650846 crossref_primary_10_3389_fonc_2021_644109 crossref_primary_10_1016_j_cellsig_2022_110549 crossref_primary_10_1016_j_omtm_2021_05_016 crossref_primary_10_1007_s10142_022_00951_8 crossref_primary_10_3389_fbioe_2022_1091360 crossref_primary_10_3390_cancers13194798 crossref_primary_10_1002_ijc_32554 crossref_primary_10_1016_j_ijbiomac_2024_131874 crossref_primary_10_1016_j_prp_2019_04_003 crossref_primary_10_18632_aging_102232 crossref_primary_10_3390_mps6060118 crossref_primary_10_3389_fimmu_2023_1133160 crossref_primary_10_1111_and_14550 crossref_primary_10_1038_s41568_020_00299_w crossref_primary_10_3389_fonc_2021_628094 crossref_primary_10_3390_cancers13174380 crossref_primary_10_31857_S0320972521050055 crossref_primary_10_3389_fcell_2021_657219 crossref_primary_10_1186_s13578_022_00941_0 crossref_primary_10_1016_j_canlet_2018_07_037 crossref_primary_10_1038_s41419_020_2621_y crossref_primary_10_2147_BCTT_S432750 crossref_primary_10_3390_biology12050710 crossref_primary_10_1007_s40610_019_00119_7 crossref_primary_10_3389_fcell_2021_679527 crossref_primary_10_1155_2022_9093614 crossref_primary_10_3390_cancers14030811 crossref_primary_10_1016_j_bbadis_2020_165919 crossref_primary_10_3390_cancers16091717 crossref_primary_10_3390_ijms20153652 crossref_primary_10_1016_j_semcancer_2021_08_004 crossref_primary_10_3390_cells10112944 crossref_primary_10_1186_s12943_019_0964_8 crossref_primary_10_1038_s41388_018_0511_x crossref_primary_10_21769_BioProtoc_3151 crossref_primary_10_3389_fonc_2024_1358422 crossref_primary_10_1186_s12885_023_11673_w crossref_primary_10_1016_j_micinf_2022_104998 crossref_primary_10_1016_j_urolonc_2020_03_007 crossref_primary_10_1038_s41388_021_02011_0 crossref_primary_10_7717_peerj_14174 crossref_primary_10_1016_j_omtn_2019_04_027 crossref_primary_10_1007_s11914_018_0480_6 crossref_primary_10_1038_s41585_019_0261_8 crossref_primary_10_3390_cancers13174492 crossref_primary_10_38124_ijisrt_IJISRT24MAR416 crossref_primary_10_1002_ctm2_493 crossref_primary_10_15252_embj_2021109288 crossref_primary_10_3390_ijms20051079 crossref_primary_10_1002_biof_2036 crossref_primary_10_3389_fcell_2021_639514 crossref_primary_10_3390_ijms23031285 crossref_primary_10_3390_ijms20133236 crossref_primary_10_1016_j_omtn_2021_05_003 crossref_primary_10_3389_fgene_2021_632359 crossref_primary_10_2147_IJGM_S361981 crossref_primary_10_1002_jcp_31492 crossref_primary_10_1016_j_ncrna_2024_07_003 crossref_primary_10_1186_s12943_020_01199_1 crossref_primary_10_3389_fcell_2021_741183 crossref_primary_10_3389_fonc_2022_895164 crossref_primary_10_3390_molecules27010211 crossref_primary_10_1093_bioinformatics_btab262 crossref_primary_10_1096_fj_202401480R crossref_primary_10_3389_fonc_2022_1105745 crossref_primary_10_1016_j_prp_2024_155410 crossref_primary_10_1038_s41417_022_00563_1 crossref_primary_10_1186_s12943_024_01932_0 crossref_primary_10_1016_j_prp_2023_154440 crossref_primary_10_1155_2022_9133658 crossref_primary_10_1152_physrev_00012_2019 crossref_primary_10_3390_ijms19041136 crossref_primary_10_7717_peerj_17790 crossref_primary_10_1111_bph_14836 crossref_primary_10_1016_j_omtn_2022_05_034 crossref_primary_10_1042_CS20190008 crossref_primary_10_1016_j_canlet_2020_04_009 crossref_primary_10_4103_ijd_ijd_383_21 crossref_primary_10_1177_20417314241265897 crossref_primary_10_3390_cancers13194937 crossref_primary_10_3389_fonc_2020_00789 crossref_primary_10_1007_s00774_022_01362_2 crossref_primary_10_1016_j_bonr_2022_101606 crossref_primary_10_1186_s12943_020_01181_x crossref_primary_10_3390_biology10040318 crossref_primary_10_1007_s12010_024_05028_9 crossref_primary_10_1007_s12672_021_00437_2 crossref_primary_10_1016_j_canlet_2022_01_015 crossref_primary_10_1177_15330338231171463 crossref_primary_10_1111_cpr_12948 crossref_primary_10_32948_auo_2023_03_14 crossref_primary_10_1186_s13030_019_0171_2 crossref_primary_10_3390_ijms21103573 crossref_primary_10_3390_ijms24087208 crossref_primary_10_3390_cancers12051092 crossref_primary_10_1016_j_intimp_2022_108996 crossref_primary_10_1016_j_ebiom_2018_09_006 crossref_primary_10_1016_j_ejcb_2022_151209 crossref_primary_10_1210_endocr_bqab139 crossref_primary_10_1016_j_trecan_2020_09_006 crossref_primary_10_3389_fpain_2022_925013 |
Cites_doi | 10.1073/pnas.0909311106 10.1021/mp500099g 10.1038/ncomms4591 10.1172/JCI81130 10.1016/j.ccr.2014.03.007 10.1091/mbc.e04-07-0652 10.1038/nmeth.2089 10.1038/sj.onc.1208815 10.1158/0008-5472.CAN-03-1382 10.1002/med.20224 10.1172/JCI200422123 10.1186/gb-2010-11-8-r90 10.1038/nm1640 10.18632/oncotarget.15525 10.1016/j.ccell.2014.09.005 10.1073/pnas.1830978100 10.1016/j.febslet.2015.09.024 10.1111/j.1349-7006.2008.01012.x 10.1111/cas.12688 10.1126/science.1151651 10.1158/1535-7163.MCT-07-0234 10.1038/jhg.2016.89 10.1038/nmeth.3485 10.1016/j.addr.2012.08.007 10.1093/oxfordjournals.jbchem.a022505 10.1111/j.1749-6632.2011.06198.x 10.1016/j.devcel.2006.09.009 10.1359/jbmr.2001.16.8.1486 10.1016/j.cyto.2012.04.012 10.1242/dev.095448 10.1016/S1534-5807(04)00075-9 10.1016/S0092-8674(04)00045-5 10.7554/eLife.05005 10.1038/nature12115 10.1093/nar/gku1104 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright © 2018 the Author(s). Published by PNAS. Copyright National Academy of Sciences Feb 27, 2018 Copyright © 2018 the Author(s). Published by PNAS. 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright © 2018 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Feb 27, 2018 – notice: Copyright © 2018 the Author(s). Published by PNAS. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1717363115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Osteoblastic metastasis by cancer-secreted miR-940 |
EISSN | 1091-6490 |
EndPage | 2209 |
ExternalDocumentID | PMC5834702 29440427 10_1073_pnas_1717363115 26507965 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP17gk0210008 – fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST) grantid: JP17gm0610008 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c564t-896c731e5d76b5e89eeb998bfecfbe31abbbb46a2a8eef9d4fd8c6d43ea8a3433 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:09:41 EDT 2025 Fri Jul 11 15:10:04 EDT 2025 Mon Jun 30 08:35:42 EDT 2025 Mon Jul 21 06:00:21 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Tue Jul 01 03:19:46 EDT 2025 Fri May 30 11:17:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | bone microenvironment prostate cancer osteoblastic bone metastasis exosome cancer-secreted microRNA |
Language | English |
License | Copyright © 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c564t-896c731e5d76b5e89eeb998bfecfbe31abbbb46a2a8eef9d4fd8c6d43ea8a3433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: A.O., C.A., T.O., M.F., S.T., and S. Sato designed research; K.H. and S. Sunamura performed research; K.H., H.O., S. Sunamura, N.K., Y.M., T.F., K.Y., H.K., K.A., and S. Sato analyzed data; and K.H. and S. Sato wrote the paper. Edited by Owen N. Witte, Howard Hughes Medical Institute and University of California, Los Angeles, CA, and approved January 12, 2018 (received for review October 3, 2017) |
ORCID | 0000-0001-8008-3966 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5834702 |
PMID | 29440427 |
PQID | 2022109003 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5834702 proquest_miscellaneous_2002215979 proquest_journals_2022109003 pubmed_primary_29440427 crossref_citationtrail_10_1073_pnas_1717363115 crossref_primary_10_1073_pnas_1717363115 jstor_primary_26507965 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-27 |
PublicationDateYYYYMMDD | 2018-02-27 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Farrugia AN (e_1_3_3_6_2) 2003; 63 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 Thalmann GN (e_1_3_3_15_2) 1994; 54 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_29_2 Zhang J (e_1_3_3_30_2) 2009; 21 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 Yang J (e_1_3_3_27_2) 2001; 61 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 26226356 - Nat Methods. 2015 Aug;12(8):697 19038005 - Cancer Sci. 2009 Jan;100(1):71-81 16007172 - Oncogene. 2005 Oct 13;24(45):6848-54 28423620 - Oncotarget. 2017 Mar 21;8(12 ):20145-20164 24735924 - Cancer Cell. 2014 Apr 14;25(4):501-15 15599396 - J Clin Invest. 2004 Dec;114(12 ):1714-25 12941866 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10954-9 26974161 - J Clin Invest. 2016 Apr 1;126(4):1163-72 22921594 - Adv Drug Deliv Rev. 2013 Mar;65(3):383-90 23804498 - Development. 2013 Aug;140(15):3198-209 22579702 - Cytokine. 2012 Aug;59(2):252-7 27439682 - J Hum Genet. 2017 Jan;62(1):15-24 24742219 - Mol Pharm. 2014 Aug 4;11(8):2539-52 26267216 - Elife. 2015 Aug 12;4:null 17873881 - Nat Med. 2007 Oct;13(10):1234-40 24710016 - Nat Commun. 2014 Apr 07;5:3591 11454720 - Cancer Res. 2001 Jul 15;61(14):5652-9 18369135 - Science. 2008 Mar 28;319(5871):1785-6 22930834 - Nat Methods. 2012 Jul;9(7):671-5 25378301 - Nucleic Acids Res. 2015 Jan;43(Database issue):D146-52 19933329 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20794-9 20818675 - Med Res Rev. 2012 May;32(3):611-36 23644455 - Nature. 2013 May 23;497(7450):490-3 8168083 - Cancer Res. 1994 May 15;54(10):2577-81 17938257 - Mol Cancer Ther. 2007 Oct;6(10):2609-17 11499871 - J Bone Miner Res. 2001 Aug;16(8):1486-95 10502677 - J Biochem. 1999 Oct;126(4):694-9 22082367 - Ann N Y Acad Sci. 2011 Nov;1237:64-70 25940592 - Cancer Sci. 2015 Jul;106(7):819-24 15647378 - Mol Biol Cell. 2005 Mar;16(3):1491-9 17011485 - Dev Cell. 2006 Oct;11(4):441-50 14500379 - Cancer Res. 2003 Sep 1;63(17 ):5438-45 25446899 - Cancer Cell. 2014 Nov 10;26(5):707-21 26450370 - FEBS Lett. 2015 Oct 24;589(21):3302-8 14871830 - Cancer Res. 2004 Feb 1;64(3):994-9 14744438 - Cell. 2004 Jan 23;116(2):281-97 20799968 - Genome Biol. 2010;11(8):R90 19212629 - Oncol Rep. 2009 Mar;21(3):697-706 15068789 - Dev Cell. 2004 Apr;6(4):483-95 |
References_xml | – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0909311106 – ident: e_1_3_3_31_2 doi: 10.1021/mp500099g – ident: e_1_3_3_34_2 doi: 10.1038/ncomms4591 – ident: e_1_3_3_14_2 doi: 10.1172/JCI81130 – ident: e_1_3_3_22_2 doi: 10.1016/j.ccr.2014.03.007 – ident: e_1_3_3_33_2 doi: 10.1091/mbc.e04-07-0652 – volume: 61 start-page: 5652 year: 2001 ident: e_1_3_3_27_2 article-title: Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway publication-title: Cancer Res – ident: e_1_3_3_35_2 doi: 10.1038/nmeth.2089 – ident: e_1_3_3_4_2 doi: 10.1038/sj.onc.1208815 – volume: 63 start-page: 5438 year: 2003 ident: e_1_3_3_6_2 article-title: Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo publication-title: Cancer Res – ident: e_1_3_3_3_2 doi: 10.1158/0008-5472.CAN-03-1382 – ident: e_1_3_3_2_2 doi: 10.1002/med.20224 – ident: e_1_3_3_7_2 doi: 10.1172/JCI200422123 – volume: 54 start-page: 2577 year: 1994 ident: e_1_3_3_15_2 article-title: Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer publication-title: Cancer Res – ident: e_1_3_3_19_2 doi: 10.1186/gb-2010-11-8-r90 – ident: e_1_3_3_37_2 – ident: e_1_3_3_39_2 doi: 10.1038/nm1640 – ident: e_1_3_3_25_2 doi: 10.18632/oncotarget.15525 – ident: e_1_3_3_23_2 doi: 10.1016/j.ccell.2014.09.005 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.1830978100 – ident: e_1_3_3_12_2 doi: 10.1016/j.febslet.2015.09.024 – ident: e_1_3_3_21_2 doi: 10.1111/j.1349-7006.2008.01012.x – ident: e_1_3_3_24_2 doi: 10.1111/cas.12688 – ident: e_1_3_3_9_2 doi: 10.1126/science.1151651 – ident: e_1_3_3_1_2 doi: 10.1158/1535-7163.MCT-07-0234 – ident: e_1_3_3_32_2 doi: 10.1038/jhg.2016.89 – ident: e_1_3_3_20_2 doi: 10.1038/nmeth.3485 – ident: e_1_3_3_13_2 doi: 10.1016/j.addr.2012.08.007 – ident: e_1_3_3_40_2 doi: 10.1093/oxfordjournals.jbchem.a022505 – ident: e_1_3_3_26_2 doi: 10.1111/j.1749-6632.2011.06198.x – ident: e_1_3_3_10_2 doi: 10.1016/j.devcel.2006.09.009 – ident: e_1_3_3_16_2 doi: 10.1359/jbmr.2001.16.8.1486 – ident: e_1_3_3_36_2 doi: 10.1016/j.cyto.2012.04.012 – ident: e_1_3_3_28_2 doi: 10.1242/dev.095448 – ident: e_1_3_3_29_2 doi: 10.1016/S1534-5807(04)00075-9 – ident: e_1_3_3_8_2 doi: 10.1016/S0092-8674(04)00045-5 – ident: e_1_3_3_17_2 doi: 10.7554/eLife.05005 – ident: e_1_3_3_38_2 doi: 10.1038/nature12115 – volume: 21 start-page: 697 year: 2009 ident: e_1_3_3_30_2 article-title: MAG-2 promotes invasion, mobility and adherence capability of lung cancer cells by MMP-2, CD44 and intracellular calcium in vitro publication-title: Oncol Rep – ident: e_1_3_3_18_2 doi: 10.1093/nar/gku1104 – reference: 22921594 - Adv Drug Deliv Rev. 2013 Mar;65(3):383-90 – reference: 17938257 - Mol Cancer Ther. 2007 Oct;6(10):2609-17 – reference: 12941866 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10954-9 – reference: 19933329 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20794-9 – reference: 8168083 - Cancer Res. 1994 May 15;54(10):2577-81 – reference: 15599396 - J Clin Invest. 2004 Dec;114(12 ):1714-25 – reference: 19038005 - Cancer Sci. 2009 Jan;100(1):71-81 – reference: 28423620 - Oncotarget. 2017 Mar 21;8(12 ):20145-20164 – reference: 26226356 - Nat Methods. 2015 Aug;12(8):697 – reference: 17011485 - Dev Cell. 2006 Oct;11(4):441-50 – reference: 26974161 - J Clin Invest. 2016 Apr 1;126(4):1163-72 – reference: 27439682 - J Hum Genet. 2017 Jan;62(1):15-24 – reference: 19212629 - Oncol Rep. 2009 Mar;21(3):697-706 – reference: 18369135 - Science. 2008 Mar 28;319(5871):1785-6 – reference: 14500379 - Cancer Res. 2003 Sep 1;63(17 ):5438-45 – reference: 24742219 - Mol Pharm. 2014 Aug 4;11(8):2539-52 – reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97 – reference: 16007172 - Oncogene. 2005 Oct 13;24(45):6848-54 – reference: 26267216 - Elife. 2015 Aug 12;4:null – reference: 20799968 - Genome Biol. 2010;11(8):R90 – reference: 17873881 - Nat Med. 2007 Oct;13(10):1234-40 – reference: 11454720 - Cancer Res. 2001 Jul 15;61(14):5652-9 – reference: 10502677 - J Biochem. 1999 Oct;126(4):694-9 – reference: 22579702 - Cytokine. 2012 Aug;59(2):252-7 – reference: 24710016 - Nat Commun. 2014 Apr 07;5:3591 – reference: 14871830 - Cancer Res. 2004 Feb 1;64(3):994-9 – reference: 25446899 - Cancer Cell. 2014 Nov 10;26(5):707-21 – reference: 20818675 - Med Res Rev. 2012 May;32(3):611-36 – reference: 24735924 - Cancer Cell. 2014 Apr 14;25(4):501-15 – reference: 15647378 - Mol Biol Cell. 2005 Mar;16(3):1491-9 – reference: 25940592 - Cancer Sci. 2015 Jul;106(7):819-24 – reference: 25378301 - Nucleic Acids Res. 2015 Jan;43(Database issue):D146-52 – reference: 23804498 - Development. 2013 Aug;140(15):3198-209 – reference: 15068789 - Dev Cell. 2004 Apr;6(4):483-95 – reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5 – reference: 23644455 - Nature. 2013 May 23;497(7450):490-3 – reference: 22082367 - Ann N Y Acad Sci. 2011 Nov;1237:64-70 – reference: 11499871 - J Bone Miner Res. 2001 Aug;16(8):1486-95 – reference: 26450370 - FEBS Lett. 2015 Oct 24;589(21):3302-8 |
SSID | ssj0009580 |
Score | 2.6254156 |
Snippet | Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and... Prostate cancer is one of most common cancers in men worldwide, and osteoblastic bone metastasis is frequently observed in prostate cancer patients. However,... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2204 |
SubjectTerms | Adenocarcinoma - metabolism Animals Biocompatibility Biological Sciences Biomedical materials Biotechnology Bone cancer Bone Neoplasms - metabolism Bone Neoplasms - secondary Bone remodeling Bone Substitutes Bones Breast cancer Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell Line, Tumor Cell signaling Differentiation (biology) Exosomes Female Genotype & phenotype GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism Humans Implantation Lesions Male Mesenchymal Stromal Cells Mesenchyme Metastases Metastasis Mice MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA Neoplasms, Experimental - metabolism Osteoblastogenesis Osteoblasts Osteoclasts Osteolysis Phenotypes Prostate cancer Prostatic Neoplasms - metabolism Stem cells Tumor cell lines Tumor cells Tumors |
Title | Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A |
URI | https://www.jstor.org/stable/26507965 https://www.ncbi.nlm.nih.gov/pubmed/29440427 https://www.proquest.com/docview/2022109003 https://www.proquest.com/docview/2002215979 https://pubmed.ncbi.nlm.nih.gov/PMC5834702 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKuOEGMWBQGMhIXAxVKUnsOMllNa1UbCvVaKXdRXbiqFXXBC0J0ngB3oWn5DhxflqKNOhFVCWnrtXv6_E59vlB6D11o9gRoQnaL5IGjR1mCIsTg3HBTC9mghGVO3w5ZZMF_XztXPd6vzpRS0UuhuGPvXkl_4Mq3ANcVZbsPyDbDAo34D3gC1dAGK73wvhUQXZrZMr0U5bjMuPGZnVl-NQcgK9dqGgr1XoCkEwFmMmqOKuK6UrLjVcd4ShSsDM3MucqtwgENipEr5P_Nvi-4oMqYLzcQrmafBrNrPLQYTy6tAgddQ3cWbMgZnX4wbTebxy12StapWQDYzCbtr2QJ6q1E5Cn3L89v0vXabMJHC6r_towrfWqPcpK-KYoWyUNvvK8I3-eZnzNq5MpUdylMG53g8PyyoRxt6OTwaQxGK26ig7lnnu1Iq8SQzVj_a5atqsex3-sF6DgVJPjhGdDS8UjMFIPslWZe_olGC8uLoL52fX8AXpog0til4tAt8CzV1W-0BOry0i55OPO8FsWUBUEu8-92Y3S7Zg98yfosfZX8Kgi3yHqyeQpOqzhwye6bPmHZ-jnDhtxh41YsxHzBHfZiBs2ggQGsmDFRtyyEe-yEQMbccNGrNkI40ZYs_E5WozP5qcTQ7f5MEKH0dzwfBa6xJJO5DLhSM-XUvi-J2IZxkISiwt4UcZt7kkZ-xGNIy9kESWSe5xQQo7QQQKTe4kwFyZnHgd7CzyD2Pa9mDI7NqVjCp-5nPTRsP7pg1DXwFetWG6CMhbDJYHCKmix6qOT5gPfqvIvfxc9KrFs5GxwflyfwYPjGtxAK48ssMF2VjHRJszpXfMYVLs6r-OJTAslo4TA4_f76EXFhXZwXxX2tN0-crdY0giosvHbT5LVsiwf73iEuqb96h7f-xo9av-Rx-ggvy3kGzDCc_G2ZP9vi_fhRQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer-secreted+hsa-miR-940+induces+an+osteoblastic+phenotype+in+the+bone+metastatic+microenvironment+via+targeting+ARHGAP1+and+FAM134A&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hashimoto%2C+Kyoko&rft.au=Ochi%2C+Hiroki&rft.au=Sunamura%2C+Satoko&rft.au=Kosaka%2C+Nobuyoshi&rft.date=2018-02-27&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=9&rft.spage=2204&rft_id=info:doi/10.1073%2Fpnas.1717363115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |