Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A

Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts,...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 9; pp. 2204 - 2209
Main Authors Hashimoto, Kyoko, Ochi, Hiroki, Sunamura, Satoko, Kosaka, Nobuyoshi, Mabuchi, Yo, Fukuda, Toru, Yao, Kenta, Kanda, Hiroaki, Ae, Keisuke, Okawa, Atsushi, Akazawa, Chihiro, Ochiya, Takahiro, Futakuchi, Mitsuru, Takeda, Shu, Sato, Shingo
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A. Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940–overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.
AbstractList Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A. Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.
Prostate cancer is one of most common cancers in men worldwide, and osteoblastic bone metastasis is frequently observed in prostate cancer patients. However, the mechanisms responsible for the predominantly osteoblastic phenotype have not been fully elucidated. Cancer-secreted microRNAs (miRNAs) were recently shown to be significant in the modification of the tumor microenvironment. Here, hsa-miR-940, which was highly secreted by prostate cancer cells, promoted osteogenic differentiation of human mesenchymal stem cells in vitro, and induced extensive osteoblastic lesions in the bone metastatic microenvironment in vivo. Our study provides a demonstration that osteoblastic bone metastasis can be induced by miRNAs secreted by cancer cells in the bone microenvironment. Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A . Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940–overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.
Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting and Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.
Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and osteolytic-type bone metastasis, respectively. In metastatic lesions, tumor cells interact with many different cell types, including osteoblasts, osteoclasts, and mesenchymal stem cells, resulting in an osteoblastic or osteolytic phenotype. However, the mechanisms responsible for the modification of bone remodeling have not been fully elucidated. MicroRNAs (miRNAs) are transferred between cells via exosomes and serve as intercellular communication tools, and numerous studies have demonstrated that cancer-secreted miRNAs are capable of modifying the tumor microenvironment. Thus, cancer-secreted miRNAs can induce an osteoblastic or osteolytic phenotype in the bone metastatic microenvironment. In this study, we performed a comprehensive expression analysis of exosomal miRNAs secreted by several human cancer cell lines and identified eight types of human miRNAs that were highly expressed in exosomes from osteoblastic phenotype-inducing prostate cancer cell lines. One of these miRNAs, hsa-miR-940, significantly promoted the osteogenic differentiation of human mesenchymal stem cells in vitro by targeting ARHGAP1 and FAM134A Interestingly, although MDA-MB-231 breast cancer cells are commonly known as an osteolytic phenotype-inducing cancer cell line, the implantation of miR-940-overexpressing MDA-MB-231 cells induced extensive osteoblastic lesions in the resulting tumors by facilitating the osteogenic differentiation of host mesenchymal cells. Our results suggest that the phenotypes of bone metastases can be induced by miRNAs secreted by cancer cells in the bone microenvironment.
Author Akazawa, Chihiro
Sato, Shingo
Takeda, Shu
Fukuda, Toru
Futakuchi, Mitsuru
Ochiya, Takahiro
Ae, Keisuke
Yao, Kenta
Mabuchi, Yo
Kanda, Hiroaki
Sunamura, Satoko
Ochi, Hiroki
Kosaka, Nobuyoshi
Okawa, Atsushi
Hashimoto, Kyoko
Author_xml – sequence: 1
  givenname: Kyoko
  surname: Hashimoto
  fullname: Hashimoto, Kyoko
  organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
– sequence: 2
  givenname: Hiroki
  surname: Ochi
  fullname: Ochi, Hiroki
  organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
– sequence: 3
  givenname: Satoko
  surname: Sunamura
  fullname: Sunamura, Satoko
  organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
– sequence: 4
  givenname: Nobuyoshi
  surname: Kosaka
  fullname: Kosaka, Nobuyoshi
  organization: Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 104-0045 Tokyo, Japan
– sequence: 5
  givenname: Yo
  surname: Mabuchi
  fullname: Mabuchi, Yo
  organization: Department of Biochemistry and Biophysics, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
– sequence: 6
  givenname: Toru
  surname: Fukuda
  fullname: Fukuda, Toru
  organization: Department of Food Science, Tokyo Seiei College, 124-8530 Tokyo, Japan
– sequence: 7
  givenname: Kenta
  surname: Yao
  fullname: Yao, Kenta
  organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
– sequence: 8
  givenname: Hiroaki
  surname: Kanda
  fullname: Kanda, Hiroaki
  organization: Department of Pathology, The Cancer Institute of the Japanese Foundation for Cancer Research, 135-8550 Tokyo, Japan
– sequence: 9
  givenname: Keisuke
  surname: Ae
  fullname: Ae, Keisuke
  organization: Department of Orthopaedic Oncology, Cancer Institute Ariake Hospital, 135-8550 Tokyo, Japan
– sequence: 10
  givenname: Atsushi
  surname: Okawa
  fullname: Okawa, Atsushi
  organization: Department of Orthopaedic Surgery, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
– sequence: 11
  givenname: Chihiro
  surname: Akazawa
  fullname: Akazawa, Chihiro
  organization: Department of Biochemistry and Biophysics, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
– sequence: 12
  givenname: Takahiro
  surname: Ochiya
  fullname: Ochiya, Takahiro
  organization: Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 104-0045 Tokyo, Japan
– sequence: 13
  givenname: Mitsuru
  surname: Futakuchi
  fullname: Futakuchi, Mitsuru
  organization: Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 852-8523 Nagasaki, Japan
– sequence: 14
  givenname: Shu
  surname: Takeda
  fullname: Takeda, Shu
  organization: Division of Endocrinology, Toranomon Hospital Endocrine Center, 105-8470 Tokyo, Japan
– sequence: 15
  givenname: Shingo
  surname: Sato
  fullname: Sato, Shingo
  organization: Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Graduate School, 113-8510 Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29440427$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1q3DAUhUVJaSZp1121CLLJxolkyT_aFMzQJIWUltCuhSxfz2iwJVeSB_IEfe3ITNK0gWqjxf3O4ejonqAj6ywg9J6SC0oqdjlZFS5oRStWMkqLV2hFiaBZyQU5QitC8iqrec6P0UkIO0KIKGryBh3ngnPC82qFfq-V1eCzANpDhA5vg8pGc5cJTrCx3awhYGWxCxFcO6gQjcbTFqyL9xMkAsct4DalwiPENFYLMBrtHdi98c6OYCPeG4Wj8huIxm5wc3dz3XynybfDV81XynjzFr3u1RDg3eN9in5eff6xvsluv11_WTe3mS5KHrNalLpiFIquKtsCagHQClG3Pei-BUZVmw4vVa5qgF50vO9qXXacgaoV44ydok8H32luR-h0CufVICdvRuXvpVNG_juxZis3bi-LmvGK5Mng_NHAu18zhChHEzQMg7Lg5iDzVHpOC1GJhJ69QHdu9jY9L1EJIoKQJdHHvxP9ifL0RwkoDkDqNAQPvdRmqdktAc0gKZHLLshlF-TzLiTd5Qvdk_X_FR8Oil2Izj8nKQtSibJgD68Uwms
CitedBy_id crossref_primary_10_1186_s12885_023_10904_4
crossref_primary_10_1111_iju_15043
crossref_primary_10_3389_fcell_2022_752818
crossref_primary_10_1016_j_ajog_2019_06_010
crossref_primary_10_3892_ol_2019_10776
crossref_primary_10_1016_j_bbcan_2019_01_008
crossref_primary_10_1155_sci_4397807
crossref_primary_10_15252_embr_202052289
crossref_primary_10_1016_j_lfs_2020_118024
crossref_primary_10_1507_endocrj_EJ21_0005
crossref_primary_10_1007_s11538_022_01117_0
crossref_primary_10_1002_jbmr_3891
crossref_primary_10_1186_s13046_021_01906_w
crossref_primary_10_1016_j_bbcan_2021_188570
crossref_primary_10_1016_j_ijbiomac_2020_04_228
crossref_primary_10_1186_s13287_019_1306_x
crossref_primary_10_3390_ijms19113523
crossref_primary_10_1002_jev2_12056
crossref_primary_10_1007_s10142_025_01531_2
crossref_primary_10_3748_wjg_v25_i31_4452
crossref_primary_10_1016_j_omtn_2021_01_031
crossref_primary_10_3389_fphar_2024_1438177
crossref_primary_10_3389_fonc_2021_722922
crossref_primary_10_1007_s11914_021_00677_9
crossref_primary_10_3390_cancers12071827
crossref_primary_10_1002_jbt_23666
crossref_primary_10_1038_s41419_021_04181_x
crossref_primary_10_1101_cshperspect_a037275
crossref_primary_10_1111_jcmm_14832
crossref_primary_10_1134_S0006297921070014
crossref_primary_10_3389_fcell_2021_789674
crossref_primary_10_1016_j_canlet_2020_10_016
crossref_primary_10_3390_cancers12020351
crossref_primary_10_1038_s41392_025_02148_4
crossref_primary_10_3389_fonc_2023_1270104
crossref_primary_10_1016_j_gendis_2022_06_007
crossref_primary_10_1038_s41598_021_91278_0
crossref_primary_10_3390_cancers15010242
crossref_primary_10_1186_s13046_020_01570_6
crossref_primary_10_3390_jcm7030055
crossref_primary_10_1159_000512825
crossref_primary_10_1016_j_ajps_2023_100870
crossref_primary_10_3390_cancers15164027
crossref_primary_10_3390_cancers14225693
crossref_primary_10_3390_ijms20184609
crossref_primary_10_1007_s12015_022_10342_y
crossref_primary_10_3389_fnhum_2023_1278501
crossref_primary_10_3390_ijms21186680
crossref_primary_10_1016_j_devcel_2019_04_011
crossref_primary_10_1038_s41392_021_00779_x
crossref_primary_10_1155_2022_8446629
crossref_primary_10_3389_fendo_2023_1202493
crossref_primary_10_1186_s13046_021_01891_0
crossref_primary_10_1042_BSR20201337
crossref_primary_10_3390_ijms20236016
crossref_primary_10_1002_jcb_30127
crossref_primary_10_1038_s41420_022_01194_z
crossref_primary_10_1016_j_abb_2023_109784
crossref_primary_10_3390_cancers13236020
crossref_primary_10_1016_j_ebiom_2018_09_052
crossref_primary_10_1186_s12951_021_00958_6
crossref_primary_10_1016_j_trecan_2019_11_007
crossref_primary_10_1186_s12967_019_1982_4
crossref_primary_10_3390_cancers15082243
crossref_primary_10_3390_ijms20194805
crossref_primary_10_3390_vetsci9120706
crossref_primary_10_3892_ol_2019_10110
crossref_primary_10_1002_jev2_12125
crossref_primary_10_1007_s11864_021_00898_1
crossref_primary_10_3390_jpm13050705
crossref_primary_10_1055_a_1514_1618
crossref_primary_10_3390_ijms232213993
crossref_primary_10_1016_j_lfs_2021_120216
crossref_primary_10_1038_s41586_024_07822_1
crossref_primary_10_1002_ctm2_353
crossref_primary_10_3389_fimmu_2024_1367373
crossref_primary_10_1158_0008_5472_CAN_21_1331
crossref_primary_10_1016_j_yexcr_2021_112518
crossref_primary_10_3390_ijms20163884
crossref_primary_10_1101_cshperspect_a036848
crossref_primary_10_3390_ijms20184600
crossref_primary_10_1186_s12951_022_01579_3
crossref_primary_10_1155_2019_8650846
crossref_primary_10_3389_fonc_2021_644109
crossref_primary_10_1016_j_cellsig_2022_110549
crossref_primary_10_1016_j_omtm_2021_05_016
crossref_primary_10_1007_s10142_022_00951_8
crossref_primary_10_3389_fbioe_2022_1091360
crossref_primary_10_3390_cancers13194798
crossref_primary_10_1002_ijc_32554
crossref_primary_10_1016_j_ijbiomac_2024_131874
crossref_primary_10_1016_j_prp_2019_04_003
crossref_primary_10_18632_aging_102232
crossref_primary_10_3390_mps6060118
crossref_primary_10_3389_fimmu_2023_1133160
crossref_primary_10_1111_and_14550
crossref_primary_10_1038_s41568_020_00299_w
crossref_primary_10_3389_fonc_2021_628094
crossref_primary_10_3390_cancers13174380
crossref_primary_10_31857_S0320972521050055
crossref_primary_10_3389_fcell_2021_657219
crossref_primary_10_1186_s13578_022_00941_0
crossref_primary_10_1016_j_canlet_2018_07_037
crossref_primary_10_1038_s41419_020_2621_y
crossref_primary_10_2147_BCTT_S432750
crossref_primary_10_3390_biology12050710
crossref_primary_10_1007_s40610_019_00119_7
crossref_primary_10_3389_fcell_2021_679527
crossref_primary_10_1155_2022_9093614
crossref_primary_10_3390_cancers14030811
crossref_primary_10_1016_j_bbadis_2020_165919
crossref_primary_10_3390_cancers16091717
crossref_primary_10_3390_ijms20153652
crossref_primary_10_1016_j_semcancer_2021_08_004
crossref_primary_10_3390_cells10112944
crossref_primary_10_1186_s12943_019_0964_8
crossref_primary_10_1038_s41388_018_0511_x
crossref_primary_10_21769_BioProtoc_3151
crossref_primary_10_3389_fonc_2024_1358422
crossref_primary_10_1186_s12885_023_11673_w
crossref_primary_10_1016_j_micinf_2022_104998
crossref_primary_10_1016_j_urolonc_2020_03_007
crossref_primary_10_1038_s41388_021_02011_0
crossref_primary_10_7717_peerj_14174
crossref_primary_10_1016_j_omtn_2019_04_027
crossref_primary_10_1007_s11914_018_0480_6
crossref_primary_10_1038_s41585_019_0261_8
crossref_primary_10_3390_cancers13174492
crossref_primary_10_38124_ijisrt_IJISRT24MAR416
crossref_primary_10_1002_ctm2_493
crossref_primary_10_15252_embj_2021109288
crossref_primary_10_3390_ijms20051079
crossref_primary_10_1002_biof_2036
crossref_primary_10_3389_fcell_2021_639514
crossref_primary_10_3390_ijms23031285
crossref_primary_10_3390_ijms20133236
crossref_primary_10_1016_j_omtn_2021_05_003
crossref_primary_10_3389_fgene_2021_632359
crossref_primary_10_2147_IJGM_S361981
crossref_primary_10_1002_jcp_31492
crossref_primary_10_1016_j_ncrna_2024_07_003
crossref_primary_10_1186_s12943_020_01199_1
crossref_primary_10_3389_fcell_2021_741183
crossref_primary_10_3389_fonc_2022_895164
crossref_primary_10_3390_molecules27010211
crossref_primary_10_1093_bioinformatics_btab262
crossref_primary_10_1096_fj_202401480R
crossref_primary_10_3389_fonc_2022_1105745
crossref_primary_10_1016_j_prp_2024_155410
crossref_primary_10_1038_s41417_022_00563_1
crossref_primary_10_1186_s12943_024_01932_0
crossref_primary_10_1016_j_prp_2023_154440
crossref_primary_10_1155_2022_9133658
crossref_primary_10_1152_physrev_00012_2019
crossref_primary_10_3390_ijms19041136
crossref_primary_10_7717_peerj_17790
crossref_primary_10_1111_bph_14836
crossref_primary_10_1016_j_omtn_2022_05_034
crossref_primary_10_1042_CS20190008
crossref_primary_10_1016_j_canlet_2020_04_009
crossref_primary_10_4103_ijd_ijd_383_21
crossref_primary_10_1177_20417314241265897
crossref_primary_10_3390_cancers13194937
crossref_primary_10_3389_fonc_2020_00789
crossref_primary_10_1007_s00774_022_01362_2
crossref_primary_10_1016_j_bonr_2022_101606
crossref_primary_10_1186_s12943_020_01181_x
crossref_primary_10_3390_biology10040318
crossref_primary_10_1007_s12010_024_05028_9
crossref_primary_10_1007_s12672_021_00437_2
crossref_primary_10_1016_j_canlet_2022_01_015
crossref_primary_10_1177_15330338231171463
crossref_primary_10_1111_cpr_12948
crossref_primary_10_32948_auo_2023_03_14
crossref_primary_10_1186_s13030_019_0171_2
crossref_primary_10_3390_ijms21103573
crossref_primary_10_3390_ijms24087208
crossref_primary_10_3390_cancers12051092
crossref_primary_10_1016_j_intimp_2022_108996
crossref_primary_10_1016_j_ebiom_2018_09_006
crossref_primary_10_1016_j_ejcb_2022_151209
crossref_primary_10_1210_endocr_bqab139
crossref_primary_10_1016_j_trecan_2020_09_006
crossref_primary_10_3389_fpain_2022_925013
Cites_doi 10.1073/pnas.0909311106
10.1021/mp500099g
10.1038/ncomms4591
10.1172/JCI81130
10.1016/j.ccr.2014.03.007
10.1091/mbc.e04-07-0652
10.1038/nmeth.2089
10.1038/sj.onc.1208815
10.1158/0008-5472.CAN-03-1382
10.1002/med.20224
10.1172/JCI200422123
10.1186/gb-2010-11-8-r90
10.1038/nm1640
10.18632/oncotarget.15525
10.1016/j.ccell.2014.09.005
10.1073/pnas.1830978100
10.1016/j.febslet.2015.09.024
10.1111/j.1349-7006.2008.01012.x
10.1111/cas.12688
10.1126/science.1151651
10.1158/1535-7163.MCT-07-0234
10.1038/jhg.2016.89
10.1038/nmeth.3485
10.1016/j.addr.2012.08.007
10.1093/oxfordjournals.jbchem.a022505
10.1111/j.1749-6632.2011.06198.x
10.1016/j.devcel.2006.09.009
10.1359/jbmr.2001.16.8.1486
10.1016/j.cyto.2012.04.012
10.1242/dev.095448
10.1016/S1534-5807(04)00075-9
10.1016/S0092-8674(04)00045-5
10.7554/eLife.05005
10.1038/nature12115
10.1093/nar/gku1104
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Feb 27, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Feb 27, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1717363115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Osteoblastic metastasis by cancer-secreted miR-940
EISSN 1091-6490
EndPage 2209
ExternalDocumentID PMC5834702
29440427
10_1073_pnas_1717363115
26507965
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: JP17gk0210008
– fundername: MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
  grantid: JP17gm0610008
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c564t-896c731e5d76b5e89eeb998bfecfbe31abbbb46a2a8eef9d4fd8c6d43ea8a3433
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:09:41 EDT 2025
Fri Jul 11 15:10:04 EDT 2025
Mon Jun 30 08:35:42 EDT 2025
Mon Jul 21 06:00:21 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Tue Jul 01 03:19:46 EDT 2025
Fri May 30 11:17:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords bone microenvironment
prostate cancer
osteoblastic bone metastasis
exosome
cancer-secreted microRNA
Language English
License Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c564t-896c731e5d76b5e89eeb998bfecfbe31abbbb46a2a8eef9d4fd8c6d43ea8a3433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: A.O., C.A., T.O., M.F., S.T., and S. Sato designed research; K.H. and S. Sunamura performed research; K.H., H.O., S. Sunamura, N.K., Y.M., T.F., K.Y., H.K., K.A., and S. Sato analyzed data; and K.H. and S. Sato wrote the paper.
Edited by Owen N. Witte, Howard Hughes Medical Institute and University of California, Los Angeles, CA, and approved January 12, 2018 (received for review October 3, 2017)
ORCID 0000-0001-8008-3966
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5834702
PMID 29440427
PQID 2022109003
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5834702
proquest_miscellaneous_2002215979
proquest_journals_2022109003
pubmed_primary_29440427
crossref_citationtrail_10_1073_pnas_1717363115
crossref_primary_10_1073_pnas_1717363115
jstor_primary_26507965
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-27
PublicationDateYYYYMMDD 2018-02-27
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Farrugia AN (e_1_3_3_6_2) 2003; 63
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
Thalmann GN (e_1_3_3_15_2) 1994; 54
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_29_2
Zhang J (e_1_3_3_30_2) 2009; 21
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
Yang J (e_1_3_3_27_2) 2001; 61
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
26226356 - Nat Methods. 2015 Aug;12(8):697
19038005 - Cancer Sci. 2009 Jan;100(1):71-81
16007172 - Oncogene. 2005 Oct 13;24(45):6848-54
28423620 - Oncotarget. 2017 Mar 21;8(12 ):20145-20164
24735924 - Cancer Cell. 2014 Apr 14;25(4):501-15
15599396 - J Clin Invest. 2004 Dec;114(12 ):1714-25
12941866 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10954-9
26974161 - J Clin Invest. 2016 Apr 1;126(4):1163-72
22921594 - Adv Drug Deliv Rev. 2013 Mar;65(3):383-90
23804498 - Development. 2013 Aug;140(15):3198-209
22579702 - Cytokine. 2012 Aug;59(2):252-7
27439682 - J Hum Genet. 2017 Jan;62(1):15-24
24742219 - Mol Pharm. 2014 Aug 4;11(8):2539-52
26267216 - Elife. 2015 Aug 12;4:null
17873881 - Nat Med. 2007 Oct;13(10):1234-40
24710016 - Nat Commun. 2014 Apr 07;5:3591
11454720 - Cancer Res. 2001 Jul 15;61(14):5652-9
18369135 - Science. 2008 Mar 28;319(5871):1785-6
22930834 - Nat Methods. 2012 Jul;9(7):671-5
25378301 - Nucleic Acids Res. 2015 Jan;43(Database issue):D146-52
19933329 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20794-9
20818675 - Med Res Rev. 2012 May;32(3):611-36
23644455 - Nature. 2013 May 23;497(7450):490-3
8168083 - Cancer Res. 1994 May 15;54(10):2577-81
17938257 - Mol Cancer Ther. 2007 Oct;6(10):2609-17
11499871 - J Bone Miner Res. 2001 Aug;16(8):1486-95
10502677 - J Biochem. 1999 Oct;126(4):694-9
22082367 - Ann N Y Acad Sci. 2011 Nov;1237:64-70
25940592 - Cancer Sci. 2015 Jul;106(7):819-24
15647378 - Mol Biol Cell. 2005 Mar;16(3):1491-9
17011485 - Dev Cell. 2006 Oct;11(4):441-50
14500379 - Cancer Res. 2003 Sep 1;63(17 ):5438-45
25446899 - Cancer Cell. 2014 Nov 10;26(5):707-21
26450370 - FEBS Lett. 2015 Oct 24;589(21):3302-8
14871830 - Cancer Res. 2004 Feb 1;64(3):994-9
14744438 - Cell. 2004 Jan 23;116(2):281-97
20799968 - Genome Biol. 2010;11(8):R90
19212629 - Oncol Rep. 2009 Mar;21(3):697-706
15068789 - Dev Cell. 2004 Apr;6(4):483-95
References_xml – ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0909311106
– ident: e_1_3_3_31_2
  doi: 10.1021/mp500099g
– ident: e_1_3_3_34_2
  doi: 10.1038/ncomms4591
– ident: e_1_3_3_14_2
  doi: 10.1172/JCI81130
– ident: e_1_3_3_22_2
  doi: 10.1016/j.ccr.2014.03.007
– ident: e_1_3_3_33_2
  doi: 10.1091/mbc.e04-07-0652
– volume: 61
  start-page: 5652
  year: 2001
  ident: e_1_3_3_27_2
  article-title: Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway
  publication-title: Cancer Res
– ident: e_1_3_3_35_2
  doi: 10.1038/nmeth.2089
– ident: e_1_3_3_4_2
  doi: 10.1038/sj.onc.1208815
– volume: 63
  start-page: 5438
  year: 2003
  ident: e_1_3_3_6_2
  article-title: Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo
  publication-title: Cancer Res
– ident: e_1_3_3_3_2
  doi: 10.1158/0008-5472.CAN-03-1382
– ident: e_1_3_3_2_2
  doi: 10.1002/med.20224
– ident: e_1_3_3_7_2
  doi: 10.1172/JCI200422123
– volume: 54
  start-page: 2577
  year: 1994
  ident: e_1_3_3_15_2
  article-title: Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer
  publication-title: Cancer Res
– ident: e_1_3_3_19_2
  doi: 10.1186/gb-2010-11-8-r90
– ident: e_1_3_3_37_2
– ident: e_1_3_3_39_2
  doi: 10.1038/nm1640
– ident: e_1_3_3_25_2
  doi: 10.18632/oncotarget.15525
– ident: e_1_3_3_23_2
  doi: 10.1016/j.ccell.2014.09.005
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.1830978100
– ident: e_1_3_3_12_2
  doi: 10.1016/j.febslet.2015.09.024
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1349-7006.2008.01012.x
– ident: e_1_3_3_24_2
  doi: 10.1111/cas.12688
– ident: e_1_3_3_9_2
  doi: 10.1126/science.1151651
– ident: e_1_3_3_1_2
  doi: 10.1158/1535-7163.MCT-07-0234
– ident: e_1_3_3_32_2
  doi: 10.1038/jhg.2016.89
– ident: e_1_3_3_20_2
  doi: 10.1038/nmeth.3485
– ident: e_1_3_3_13_2
  doi: 10.1016/j.addr.2012.08.007
– ident: e_1_3_3_40_2
  doi: 10.1093/oxfordjournals.jbchem.a022505
– ident: e_1_3_3_26_2
  doi: 10.1111/j.1749-6632.2011.06198.x
– ident: e_1_3_3_10_2
  doi: 10.1016/j.devcel.2006.09.009
– ident: e_1_3_3_16_2
  doi: 10.1359/jbmr.2001.16.8.1486
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cyto.2012.04.012
– ident: e_1_3_3_28_2
  doi: 10.1242/dev.095448
– ident: e_1_3_3_29_2
  doi: 10.1016/S1534-5807(04)00075-9
– ident: e_1_3_3_8_2
  doi: 10.1016/S0092-8674(04)00045-5
– ident: e_1_3_3_17_2
  doi: 10.7554/eLife.05005
– ident: e_1_3_3_38_2
  doi: 10.1038/nature12115
– volume: 21
  start-page: 697
  year: 2009
  ident: e_1_3_3_30_2
  article-title: MAG-2 promotes invasion, mobility and adherence capability of lung cancer cells by MMP-2, CD44 and intracellular calcium in vitro
  publication-title: Oncol Rep
– ident: e_1_3_3_18_2
  doi: 10.1093/nar/gku1104
– reference: 22921594 - Adv Drug Deliv Rev. 2013 Mar;65(3):383-90
– reference: 17938257 - Mol Cancer Ther. 2007 Oct;6(10):2609-17
– reference: 12941866 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10954-9
– reference: 19933329 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20794-9
– reference: 8168083 - Cancer Res. 1994 May 15;54(10):2577-81
– reference: 15599396 - J Clin Invest. 2004 Dec;114(12 ):1714-25
– reference: 19038005 - Cancer Sci. 2009 Jan;100(1):71-81
– reference: 28423620 - Oncotarget. 2017 Mar 21;8(12 ):20145-20164
– reference: 26226356 - Nat Methods. 2015 Aug;12(8):697
– reference: 17011485 - Dev Cell. 2006 Oct;11(4):441-50
– reference: 26974161 - J Clin Invest. 2016 Apr 1;126(4):1163-72
– reference: 27439682 - J Hum Genet. 2017 Jan;62(1):15-24
– reference: 19212629 - Oncol Rep. 2009 Mar;21(3):697-706
– reference: 18369135 - Science. 2008 Mar 28;319(5871):1785-6
– reference: 14500379 - Cancer Res. 2003 Sep 1;63(17 ):5438-45
– reference: 24742219 - Mol Pharm. 2014 Aug 4;11(8):2539-52
– reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97
– reference: 16007172 - Oncogene. 2005 Oct 13;24(45):6848-54
– reference: 26267216 - Elife. 2015 Aug 12;4:null
– reference: 20799968 - Genome Biol. 2010;11(8):R90
– reference: 17873881 - Nat Med. 2007 Oct;13(10):1234-40
– reference: 11454720 - Cancer Res. 2001 Jul 15;61(14):5652-9
– reference: 10502677 - J Biochem. 1999 Oct;126(4):694-9
– reference: 22579702 - Cytokine. 2012 Aug;59(2):252-7
– reference: 24710016 - Nat Commun. 2014 Apr 07;5:3591
– reference: 14871830 - Cancer Res. 2004 Feb 1;64(3):994-9
– reference: 25446899 - Cancer Cell. 2014 Nov 10;26(5):707-21
– reference: 20818675 - Med Res Rev. 2012 May;32(3):611-36
– reference: 24735924 - Cancer Cell. 2014 Apr 14;25(4):501-15
– reference: 15647378 - Mol Biol Cell. 2005 Mar;16(3):1491-9
– reference: 25940592 - Cancer Sci. 2015 Jul;106(7):819-24
– reference: 25378301 - Nucleic Acids Res. 2015 Jan;43(Database issue):D146-52
– reference: 23804498 - Development. 2013 Aug;140(15):3198-209
– reference: 15068789 - Dev Cell. 2004 Apr;6(4):483-95
– reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5
– reference: 23644455 - Nature. 2013 May 23;497(7450):490-3
– reference: 22082367 - Ann N Y Acad Sci. 2011 Nov;1237:64-70
– reference: 11499871 - J Bone Miner Res. 2001 Aug;16(8):1486-95
– reference: 26450370 - FEBS Lett. 2015 Oct 24;589(21):3302-8
SSID ssj0009580
Score 2.6254156
Snippet Bone metastatic lesions are classified as osteoblastic or osteolytic lesions. Prostate and breast cancer patients frequently exhibit osteoblastic-type and...
Prostate cancer is one of most common cancers in men worldwide, and osteoblastic bone metastasis is frequently observed in prostate cancer patients. However,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2204
SubjectTerms Adenocarcinoma - metabolism
Animals
Biocompatibility
Biological Sciences
Biomedical materials
Biotechnology
Bone cancer
Bone Neoplasms - metabolism
Bone Neoplasms - secondary
Bone remodeling
Bone Substitutes
Bones
Breast cancer
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Line, Tumor
Cell signaling
Differentiation (biology)
Exosomes
Female
Genotype & phenotype
GTPase-Activating Proteins - genetics
GTPase-Activating Proteins - metabolism
Humans
Implantation
Lesions
Male
Mesenchymal Stromal Cells
Mesenchyme
Metastases
Metastasis
Mice
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Neoplasms, Experimental - metabolism
Osteoblastogenesis
Osteoblasts
Osteoclasts
Osteolysis
Phenotypes
Prostate cancer
Prostatic Neoplasms - metabolism
Stem cells
Tumor cell lines
Tumor cells
Tumors
Title Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A
URI https://www.jstor.org/stable/26507965
https://www.ncbi.nlm.nih.gov/pubmed/29440427
https://www.proquest.com/docview/2022109003
https://www.proquest.com/docview/2002215979
https://pubmed.ncbi.nlm.nih.gov/PMC5834702
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKuOEGMWBQGMhIXAxVKUnsOMllNa1UbCvVaKXdRXbiqFXXBC0J0ngB3oWn5DhxflqKNOhFVCWnrtXv6_E59vlB6D11o9gRoQnaL5IGjR1mCIsTg3HBTC9mghGVO3w5ZZMF_XztXPd6vzpRS0UuhuGPvXkl_4Mq3ANcVZbsPyDbDAo34D3gC1dAGK73wvhUQXZrZMr0U5bjMuPGZnVl-NQcgK9dqGgr1XoCkEwFmMmqOKuK6UrLjVcd4ShSsDM3MucqtwgENipEr5P_Nvi-4oMqYLzcQrmafBrNrPLQYTy6tAgddQ3cWbMgZnX4wbTebxy12StapWQDYzCbtr2QJ6q1E5Cn3L89v0vXabMJHC6r_towrfWqPcpK-KYoWyUNvvK8I3-eZnzNq5MpUdylMG53g8PyyoRxt6OTwaQxGK26ig7lnnu1Iq8SQzVj_a5atqsex3-sF6DgVJPjhGdDS8UjMFIPslWZe_olGC8uLoL52fX8AXpog0til4tAt8CzV1W-0BOry0i55OPO8FsWUBUEu8-92Y3S7Zg98yfosfZX8Kgi3yHqyeQpOqzhwye6bPmHZ-jnDhtxh41YsxHzBHfZiBs2ggQGsmDFRtyyEe-yEQMbccNGrNkI40ZYs_E5WozP5qcTQ7f5MEKH0dzwfBa6xJJO5DLhSM-XUvi-J2IZxkISiwt4UcZt7kkZ-xGNIy9kESWSe5xQQo7QQQKTe4kwFyZnHgd7CzyD2Pa9mDI7NqVjCp-5nPTRsP7pg1DXwFetWG6CMhbDJYHCKmix6qOT5gPfqvIvfxc9KrFs5GxwflyfwYPjGtxAK48ssMF2VjHRJszpXfMYVLs6r-OJTAslo4TA4_f76EXFhXZwXxX2tN0-crdY0giosvHbT5LVsiwf73iEuqb96h7f-xo9av-Rx-ggvy3kGzDCc_G2ZP9vi_fhRQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer-secreted+hsa-miR-940+induces+an+osteoblastic+phenotype+in+the+bone+metastatic+microenvironment+via+targeting+ARHGAP1+and+FAM134A&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hashimoto%2C+Kyoko&rft.au=Ochi%2C+Hiroki&rft.au=Sunamura%2C+Satoko&rft.au=Kosaka%2C+Nobuyoshi&rft.date=2018-02-27&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=9&rft.spage=2204&rft_id=info:doi/10.1073%2Fpnas.1717363115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon