Estimation of brain functional connectivity from hypercapnia BOLD MRI data: Validation in a lifespan cohort of 170 subjects

Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 186; pp. 455 - 463
Main Authors Hou, Xirui, Liu, Peiying, Gu, Hong, Chan, Micaela, Li, Yang, Peng, Shin-Lei, Wig, Gagan, Yang, Yihong, Park, Denise, Lu, Hanzhang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.11.028

Cover

Abstract Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase. •Hypercapnia BOLD data can be used to compute functional connectivity metrics.•ICA, region based, and graph-theory based results were all feasible.•Hypercapnia FC metrics were compatible with those obtained with resting-state data.•Hypercapnia FC metrics showed age-dependence similar to those in resting-state data.
AbstractList Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20–88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54±0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N=39) revealed a similar correlation of 0.57±0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase.
Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase. •Hypercapnia BOLD data can be used to compute functional connectivity metrics.•ICA, region based, and graph-theory based results were all feasible.•Hypercapnia FC metrics were compatible with those obtained with resting-state data.•Hypercapnia FC metrics showed age-dependence similar to those in resting-state data.
Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase.
Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase.Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase.
Author Liu, Peiying
Yang, Yihong
Wig, Gagan
Gu, Hong
Hou, Xirui
Chan, Micaela
Lu, Hanzhang
Li, Yang
Park, Denise
Peng, Shin-Lei
AuthorAffiliation e. Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
d. Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
f. Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
b. The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
g. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
h. Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
c. F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
a. Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
AuthorAffiliation_xml – name: e. Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
– name: d. Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
– name: f. Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
– name: a. Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
– name: g. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
– name: c. F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
– name: h. Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
– name: b. The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
Author_xml – sequence: 1
  givenname: Xirui
  surname: Hou
  fullname: Hou, Xirui
  organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– sequence: 2
  givenname: Peiying
  surname: Liu
  fullname: Liu, Peiying
  organization: The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– sequence: 3
  givenname: Hong
  surname: Gu
  fullname: Gu, Hong
  organization: Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
– sequence: 4
  givenname: Micaela
  surname: Chan
  fullname: Chan, Micaela
  organization: Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
– sequence: 5
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– sequence: 6
  givenname: Shin-Lei
  surname: Peng
  fullname: Peng, Shin-Lei
  organization: The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
– sequence: 7
  givenname: Gagan
  surname: Wig
  fullname: Wig, Gagan
  organization: Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
– sequence: 8
  givenname: Yihong
  surname: Yang
  fullname: Yang, Yihong
  organization: Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
– sequence: 9
  givenname: Denise
  surname: Park
  fullname: Park, Denise
  organization: Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
– sequence: 10
  givenname: Hanzhang
  surname: Lu
  fullname: Lu, Hanzhang
  email: hanzhang.lu@jhu.edu
  organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30463025$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhiNURC_wCsgSGzYJduzEDgsELS1UGlQJAVvL8aXjwWMHOxlpxMvXYVoKs5qVb__5zu9zzmlx5IPXRQEQrBBE7ZtV5fUUg12LW13VELEKoQrW7ElxgmDXlF1D66N53-CSIdQdF6cprSCEHSLsWXGMIWkxrJuT4vdlGjNmtMGDYEAfhfXATF7ON8IBGbzX-bCx4xaYGNZguR10lGLwVoDzm8VH8OXrNVBiFG_BD-Gs2rEyRQBnjU6D8JmyDHGcEyAKQZr6VWam58VTI1zSL-7Xs-L71eW3i8_l4ubT9cWHRSmblowlayijAnas0xT3Xctq0hPCOkwgVm3T9wgbZVCnFDaEGoWVprA2bWsEJabv8Vnxbscdpn6tldR-jMLxIeaPxy0PwvL_X7xd8tuw4S3GrIE0A17fA2L4Nek08rVNUjsnvA5T4jXCLGsRI1n6ak-6ClPMlZxVLUUEZ11WvfzX0V8rD315tCxjSClqw6Ud_1Q2G7SOI8jnQeAr_jgIfB4EjhDPg5ABbA_wkOOA0PNdqM492VgdeZJWe6mVjbltXAV7COT9HkQ6660U7qfeHoa4A2UB6yk
CitedBy_id crossref_primary_10_1073_pnas_2314596120
crossref_primary_10_1016_j_nbas_2023_100105
crossref_primary_10_1093_cercor_bhab187
crossref_primary_10_1016_j_bbi_2020_01_006
crossref_primary_10_1016_j_neuroimage_2022_119823
crossref_primary_10_1080_10807039_2022_2146574
crossref_primary_10_1111_psyp_14159
crossref_primary_10_1073_pnas_2411245122
crossref_primary_10_1016_j_pnpbp_2025_111252
crossref_primary_10_1109_JSTQE_2020_3019283
crossref_primary_10_1002_brb3_1516
crossref_primary_10_1016_j_neuroimage_2021_118754
crossref_primary_10_1007_s00429_021_02361_1
crossref_primary_10_1002_hbm_70169
crossref_primary_10_3389_fnagi_2019_00132
crossref_primary_10_3389_fnagi_2022_951076
crossref_primary_10_1016_j_neuroimage_2019_116365
Cites_doi 10.1001/jamapsychiatry.2013.4091
10.1093/cercor/bhq224
10.1016/j.neuroimage.2016.09.063
10.1016/j.neurobiolaging.2013.10.081
10.1016/j.neuroimage.2016.04.006
10.1073/pnas.1415122111
10.1016/j.neuroimage.2006.02.048
10.1523/JNEUROSCI.3874-05.2006
10.1177/1971400917750375
10.1038/jcbfm.2010.153
10.1111/j.1749-6632.2010.05947.x
10.1073/pnas.0504136102
10.1073/pnas.0905267106
10.1016/j.neuroimage.2018.02.066
10.1098/rstb.2005.1634
10.1016/j.neuroimage.2016.02.051
10.1016/j.neuroimage.2009.04.048
10.1523/JNEUROSCI.4494-11.2012
10.7554/eLife.15252
10.1089/brain.2014.0286
10.1016/j.tics.2017.09.006
10.3389/fnins.2017.00115
10.1016/j.neuroimage.2009.10.003
10.1038/nrn1929
10.1016/j.neuroimage.2014.07.067
10.1073/pnas.0811879106
10.1016/j.neuroimage.2006.11.051
10.1073/pnas.0405148101
10.3389/fpsyg.2015.00663
10.1038/nrn2201
10.1016/j.neuroimage.2015.02.018
10.1016/j.neuroimage.2011.03.069
10.1016/j.dcn.2013.11.004
10.1016/j.neuroimage.2016.05.025
10.1093/cercor/bhx230
10.1073/pnas.0135058100
10.1016/j.neuroimage.2005.08.035
10.1073/pnas.1018985108
10.1016/j.neuroimage.2008.09.029
10.1002/hbm.21242
10.1002/hbm.22897
10.1002/mrm.1910340409
10.1016/j.neuroimage.2009.10.080
10.1016/j.neuron.2014.05.014
10.1371/journal.pbio.0060159
10.1152/jn.00338.2011
10.1002/hbm.22886
10.1002/hbm.21333
10.1016/j.tics.2004.07.008
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 1, 2019
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 1, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2018.11.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 463
ExternalDocumentID PMC6338507
30463025
10_1016_j_neuroimage_2018_11_028
S1053811918321062
Genre Validation Study
Research Support, N.I.H., Intramural
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Texas
GeographicLocations_xml – name: Texas
– name: United States--US
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG006265
– fundername: NIA NIH HHS
  grantid: R01 AG042753
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NINDS NIH HHS
  grantid: R01 NS106702
– fundername: NIMH NIH HHS
  grantid: R01 MH084021
– fundername: NIA NIH HHS
  grantid: R37 AG006265
– fundername: NIA NIH HHS
  grantid: R00 AG036848
– fundername: NINDS NIH HHS
  grantid: R01 NS106711
– fundername: NINDS NIH HHS
  grantid: R21 NS095342
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c564t-85787a0989e73b96824b44893403d65bb13fdf19dd3f47fd3de702f66fa74fbb3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:17:25 EDT 2025
Fri Sep 05 12:10:49 EDT 2025
Wed Aug 13 02:42:21 EDT 2025
Wed Feb 19 02:30:35 EST 2025
Tue Jul 01 03:02:05 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:36:56 EST 2024
Tue Aug 26 20:02:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
ROIs
MPRAGE
ICA
MNI
Hypercapnia
Cerebrovascular reactivity
EtCO2
FDR
CO2 inhalation
Aging
ICs
Resting-state functional MRI
BOLD
FC
CVR
CO inhalation
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-85787a0989e73b96824b44893403d65bb13fdf19dd3f47fd3de702f66fa74fbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6338507
PMID 30463025
PQID 2167143331
PQPubID 2031077
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6338507
proquest_miscellaneous_2138633184
proquest_journals_2167143331
pubmed_primary_30463025
crossref_citationtrail_10_1016_j_neuroimage_2018_11_028
crossref_primary_10_1016_j_neuroimage_2018_11_028
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_11_028
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_11_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Lerman, Gu, Loughead, Ruparel, Yang, Stein (bib28) 2014; 71
Rubinov, Sporns (bib40) 2010; 52
King, Sheng, Liu, Maroules, Rubin, Peshock, McColl, Lu (bib27) 2018; 31
Song, Birn, Boly, Meier, Nair, Meyerand, Prabhakaran (bib44) 2014; 4
Chan, Park, Savalia, Petersen, Wig (bib9) 2014; 111
Vij, Nomi, Dajani, Uddin (bib47) 2018; 173
Zuo, Kelly, Adelstein, Klein, Castellanos, Milham (bib53) 2010; 49
Cocchi, Sale, L.G, Bell, Nguyen, Zalesky, Breakspear, Mattingley (bib12) 2016; 5
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib43) 2009; 106
Greicius, Krasnow, Reiss, Menon (bib24) 2003; 100
Lu, Liu, Yezhuvath, Cheng, Marshall, Ge (bib32) 2014
Yeo, Tandi, Chee (bib52) 2015; 111
Betzel, Byrge, He, Goni, Zuo, Sporns (bib4) 2014; 102
Bassett, Wymbs, Porter, Mucha, Carlson, Grafton (bib2) 2011; 108
Cao, Wang, Dai, Cao, Jiang, Fan, Song, Xia, Shu, Dong, Milham, Castellanos, Zuo, He (bib8) 2014; 7
Liang, Wang, Yan, Shu, Xu, Gong, He (bib29) 2012; 7
Sala-Llonch, Bartres-Faz, Junque (bib42) 2015; 6
Filippini, MacIntosh, Hough, Goodwin, Frisoni, Smith, Matthews, Beckmann, Mackay (bib18) 2009; 106
Liu, Welch, Li, Gu, King, Yang, Pinho, Lu (bib31) 2017; 146
Wig (bib48) 2017; 21
De Luca, Beckmann, De Stefano, Matthews, Smith (bib16) 2006; 29
Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib37) 2017; 27
Rubinov, Sporns (bib41) 2011; 56
Cole, Bassett, Power, Braver, Petersen (bib14) 2014; 83
Park, Polk, Park, Minear, Savage, Smith (bib38) 2004; 101
Golestani, Wei, Chen (bib23) 2016; 138
Park, Carp, Kennedy, Rodrigue, Bischof, Huang, Rieck, Polk, Park (bib39) 2012; 32
Thesen, Leontiev, Song, Dehghani, Hagler, Huang, Buxton, Halgren (bib46) 2012; 33
Xu, Uh, Brier, Hart, Yezhuvath, Gu, Yang, Lu (bib50) 2011; 31
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib51) 2011; 106
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib20) 2005; 102
Marshall, Uh, Lurie, Lu, Milham, Ge (bib34) 2015; 36
Fair, Schlaggar, Cohen, Miezin, Dosenbach, Wenger, Fox, Snyder, Raichle, Petersen (bib17) 2007; 35
Birn, Diamond, Smith, Bandettini (bib5) 2006; 31
Sporns, Chialvo, Kaiser, Hilgetag (bib45) 2004; 8
Craddock, James, Holtzheimer, Hu, Mayberg (bib15) 2012; 33
Fox, Raichle (bib19) 2007; 8
Achard, Salvador, Whitcher, Suckling, Bullmore (bib1) 2006; 26
Ganger, Hahn, Kublbock, Kranz, Spies, Vanicek, Seiger, Sladky, Windischberger, Kasper, Lanzenberger (bib21) 2015; 36
Biswal, Yetkin, Haughton, Hyde (bib6) 1995; 34
Cole, Smith, Beckmann (bib13) 2010; 4
Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib25) 2008; 6
Lu, Xu, Rodrigue, Kennedy, Cheng, Flicker, Hebrank, Uh, Park (bib33) 2011; 21
Chang, Glover (bib11) 2009; 47
Chang, Cunningham, Glover (bib10) 2009; 44
Nickerson, Smith, Ongur, Beckmann (bib36) 2017; 11
Iraji, Calhoun, Wiseman, Davoodi-Bojd, Avanaki, Haacke, Kou (bib26) 2016; 134
Beckmann, DeLuca, Devlin, Smith (bib3) 2005; 360
Golestani, Kwinta, Strother, Khatamian, Chen (bib22) 2016; 132
Wig, Schlaggar, Petersen (bib49) 2011; 1224
Matthews, Honey, Bullmore (bib35) 2006; 7
Brier, Thomas, Fagan, Hassenstab, Holtzman, Benzinger, Morris, Ances (bib7) 2014; 35
Liu, J, Lu (bib30) 2017
Thesen (10.1016/j.neuroimage.2018.11.028_bib46) 2012; 33
Golestani (10.1016/j.neuroimage.2018.11.028_bib23) 2016; 138
Liang (10.1016/j.neuroimage.2018.11.028_bib29) 2012; 7
Cole (10.1016/j.neuroimage.2018.11.028_bib14) 2014; 83
Song (10.1016/j.neuroimage.2018.11.028_bib44) 2014; 4
Filippini (10.1016/j.neuroimage.2018.11.028_bib18) 2009; 106
Sporns (10.1016/j.neuroimage.2018.11.028_bib45) 2004; 8
Yeo (10.1016/j.neuroimage.2018.11.028_bib51) 2011; 106
Rubinov (10.1016/j.neuroimage.2018.11.028_bib40) 2010; 52
Smith (10.1016/j.neuroimage.2018.11.028_bib43) 2009; 106
Marshall (10.1016/j.neuroimage.2018.11.028_bib34) 2015; 36
Fox (10.1016/j.neuroimage.2018.11.028_bib20) 2005; 102
Yeo (10.1016/j.neuroimage.2018.11.028_bib52) 2015; 111
Chan (10.1016/j.neuroimage.2018.11.028_bib9) 2014; 111
Cole (10.1016/j.neuroimage.2018.11.028_bib13) 2010; 4
Wig (10.1016/j.neuroimage.2018.11.028_bib48) 2017; 21
King (10.1016/j.neuroimage.2018.11.028_bib27) 2018; 31
Brier (10.1016/j.neuroimage.2018.11.028_bib7) 2014; 35
Lu (10.1016/j.neuroimage.2018.11.028_bib33) 2011; 21
Park (10.1016/j.neuroimage.2018.11.028_bib38) 2004; 101
Sala-Llonch (10.1016/j.neuroimage.2018.11.028_bib42) 2015; 6
Zuo (10.1016/j.neuroimage.2018.11.028_bib53) 2010; 49
Chang (10.1016/j.neuroimage.2018.11.028_bib10) 2009; 44
Achard (10.1016/j.neuroimage.2018.11.028_bib1) 2006; 26
Fair (10.1016/j.neuroimage.2018.11.028_bib17) 2007; 35
Xu (10.1016/j.neuroimage.2018.11.028_bib50) 2011; 31
Liu (10.1016/j.neuroimage.2018.11.028_bib30) 2017
Cocchi (10.1016/j.neuroimage.2018.11.028_bib12) 2016; 5
Greicius (10.1016/j.neuroimage.2018.11.028_bib24) 2003; 100
Lu (10.1016/j.neuroimage.2018.11.028_bib32) 2014
Matthews (10.1016/j.neuroimage.2018.11.028_bib35) 2006; 7
Beckmann (10.1016/j.neuroimage.2018.11.028_bib3) 2005; 360
Cao (10.1016/j.neuroimage.2018.11.028_bib8) 2014; 7
Betzel (10.1016/j.neuroimage.2018.11.028_bib4) 2014; 102
Craddock (10.1016/j.neuroimage.2018.11.028_bib15) 2012; 33
De Luca (10.1016/j.neuroimage.2018.11.028_bib16) 2006; 29
Iraji (10.1016/j.neuroimage.2018.11.028_bib26) 2016; 134
Vij (10.1016/j.neuroimage.2018.11.028_bib47) 2018; 173
Noble (10.1016/j.neuroimage.2018.11.028_bib37) 2017; 27
Golestani (10.1016/j.neuroimage.2018.11.028_bib22) 2016; 132
Rubinov (10.1016/j.neuroimage.2018.11.028_bib41) 2011; 56
Biswal (10.1016/j.neuroimage.2018.11.028_bib6) 1995; 34
Birn (10.1016/j.neuroimage.2018.11.028_bib5) 2006; 31
Hagmann (10.1016/j.neuroimage.2018.11.028_bib25) 2008; 6
Lerman (10.1016/j.neuroimage.2018.11.028_bib28) 2014; 71
Park (10.1016/j.neuroimage.2018.11.028_bib39) 2012; 32
Liu (10.1016/j.neuroimage.2018.11.028_bib31) 2017; 146
Nickerson (10.1016/j.neuroimage.2018.11.028_bib36) 2017; 11
Chang (10.1016/j.neuroimage.2018.11.028_bib11) 2009; 47
Wig (10.1016/j.neuroimage.2018.11.028_bib49) 2011; 1224
Bassett (10.1016/j.neuroimage.2018.11.028_bib2) 2011; 108
Ganger (10.1016/j.neuroimage.2018.11.028_bib21) 2015; 36
Fox (10.1016/j.neuroimage.2018.11.028_bib19) 2007; 8
References_xml – volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bib19
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
– volume: 36
  start-page: 3912
  year: 2015
  end-page: 3921
  ident: bib34
  article-title: The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI
  publication-title: Hum. Brain Mapp.
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: bib51
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– volume: 33
  start-page: 715
  year: 2012
  end-page: 726
  ident: bib46
  article-title: Depression of cortical activity in humans by mild hypercapnia
  publication-title: Hum. Brain Mapp.
– volume: 21
  start-page: 981
  year: 2017
  end-page: 996
  ident: bib48
  article-title: Segregated systems of human brain networks
  publication-title: Trends Cognit. Sci.
– volume: 146
  start-page: 715
  year: 2017
  end-page: 723
  ident: bib31
  article-title: Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI
  publication-title: Neuroimage
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib6
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– volume: 101
  start-page: 13091
  year: 2004
  end-page: 13095
  ident: bib38
  article-title: Aging reduces neural specialization in ventral visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1224
  start-page: 126
  year: 2011
  end-page: 146
  ident: bib49
  article-title: Concepts and principles in the analysis of brain networks
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 32
  start-page: 2154
  year: 2012
  end-page: 2158
  ident: bib39
  article-title: Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample
  publication-title: J. Neurosci.
– volume: 6
  start-page: 663
  year: 2015
  ident: bib42
  article-title: Reorganization of brain networks in aging: a review of functional connectivity studies
  publication-title: Front. Psychol.
– volume: 7
  start-page: 732
  year: 2006
  end-page: 744
  ident: bib35
  article-title: Applications of fMRI in translational medicine and clinical practice
  publication-title: Nat. Rev. Neurosci.
– volume: 11
  year: 2017
  ident: bib36
  article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses
  publication-title: Front. Neurosci.
– volume: 47
  start-page: 1381
  year: 2009
  end-page: 1393
  ident: bib11
  article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI
  publication-title: Neuroimage
– volume: 5
  year: 2016
  ident: bib12
  article-title: A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields
  publication-title: Elife
– volume: 7
  start-page: 76
  year: 2014
  end-page: 93
  ident: bib8
  article-title: Topological organization of the human brain functional connectome across the lifespan
  publication-title: Dev. Cogn. Neurosci.
– volume: 111
  start-page: E4997
  year: 2014
  end-page: E5006
  ident: bib9
  article-title: Decreased segregation of brain systems across the healthy adult lifespan
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 44
  start-page: 857
  year: 2009
  end-page: 869
  ident: bib10
  article-title: Influence of heart rate on the BOLD signal: the cardiac response function
  publication-title: Neuroimage
– volume: 8
  start-page: 418
  year: 2004
  end-page: 425
  ident: bib45
  article-title: Organization, development and function of complex brain networks
  publication-title: Trends Cognit. Sci.
– volume: 56
  start-page: 2068
  year: 2011
  end-page: 2079
  ident: bib41
  article-title: Weight-conserving characterization of complex functional brain networks
  publication-title: Neuroimage
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib40
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 26
  start-page: 63
  year: 2006
  end-page: 72
  ident: bib1
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci.
– volume: 21
  start-page: 1426
  year: 2011
  end-page: 1434
  ident: bib33
  article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan
  publication-title: Cerebr. Cortex
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib43
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 111
  start-page: 147
  year: 2015
  end-page: 158
  ident: bib52
  article-title: Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation
  publication-title: Neuroimage
– volume: 102
  start-page: 345
  year: 2014
  end-page: 357
  ident: bib4
  article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan
  publication-title: Neuroimage
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib20
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 108
  start-page: 7641
  year: 2011
  end-page: 7646
  ident: bib2
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 29
  start-page: 1359
  year: 2006
  end-page: 1367
  ident: bib16
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain
  publication-title: Neuroimage
– volume: 7
  year: 2012
  ident: bib29
  article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study
  publication-title: PloS One
– volume: 71
  start-page: 523
  year: 2014
  end-page: 530
  ident: bib28
  article-title: Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function
  publication-title: JAMA Psychiatry
– volume: 134
  start-page: 494
  year: 2016
  end-page: 507
  ident: bib26
  article-title: The connectivity domain: analyzing resting state fMRI data using feature-based data-driven and model-based methods
  publication-title: Neuroimage
– volume: 4
  start-page: 662
  year: 2014
  end-page: 676
  ident: bib44
  article-title: Age-related reorganizational changes in modularity and functional connectivity of human brain networks
  publication-title: Brain Connect.
– volume: 35
  start-page: 396
  year: 2007
  end-page: 405
  ident: bib17
  article-title: A method for using blocked and event-related fMRI data to study “resting state” functional connectivity
  publication-title: Neuroimage
– year: 2014
  ident: bib32
  article-title: MRI mapping of cerebrovascular reactivity via gas inhalation challenges
  publication-title: J. Vis. Exp.
– volume: 4
  start-page: 8
  year: 2010
  ident: bib13
  article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data
  publication-title: Front. Syst. Neurosci.
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib3
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 31
  start-page: 1536
  year: 2006
  end-page: 1548
  ident: bib5
  article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI
  publication-title: Neuroimage
– volume: 83
  start-page: 238
  year: 2014
  end-page: 251
  ident: bib14
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
– volume: 132
  start-page: 301
  year: 2016
  end-page: 313
  ident: bib22
  article-title: The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: the influence of basal carbon dioxide
  publication-title: Neuroimage
– volume: 36
  start-page: 4053
  year: 2015
  end-page: 4063
  ident: bib21
  article-title: Comparison of continuously acquired resting state and extracted analogues from active tasks
  publication-title: Hum. Brain Mapp.
– volume: 6
  start-page: e159
  year: 2008
  ident: bib25
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
– volume: 138
  start-page: 147
  year: 2016
  end-page: 163
  ident: bib23
  article-title: Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: validation in healthy adults
  publication-title: Neuroimage
– volume: 31
  start-page: 253
  year: 2018
  end-page: 261
  ident: bib27
  article-title: Detrimental effect of systemic vascular risk factors on brain hemodynamic function assessed with MRI
  publication-title: NeuroRadiol. J.
– volume: 33
  start-page: 1914
  year: 2012
  end-page: 1928
  ident: bib15
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
– year: 2017
  ident: bib30
  article-title: Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review
  publication-title: Neuroimage
– volume: 49
  start-page: 2163
  year: 2010
  end-page: 2177
  ident: bib53
  article-title: Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach
  publication-title: Neuroimage
– volume: 35
  start-page: 757
  year: 2014
  end-page: 768
  ident: bib7
  article-title: Functional connectivity and graph theory in preclinical Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 106
  start-page: 7209
  year: 2009
  end-page: 7214
  ident: bib18
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 173
  start-page: 498
  year: 2018
  end-page: 508
  ident: bib47
  article-title: Evolution of spatial and temporal features of functional brain networks across the lifespan
  publication-title: Neuroimage
– volume: 27
  start-page: 5415
  year: 2017
  end-page: 5429
  ident: bib37
  article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cerebr. Cortex
– volume: 31
  start-page: 58
  year: 2011
  end-page: 67
  ident: bib50
  article-title: The influence of carbon dioxide on brain activity and metabolism in conscious humans
  publication-title: J. Cerebr. Blood Flow Metabol.
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib24
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 71
  start-page: 523
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib28
  article-title: Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2013.4091
– volume: 21
  start-page: 1426
  year: 2011
  ident: 10.1016/j.neuroimage.2018.11.028_bib33
  article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhq224
– volume: 4
  start-page: 8
  year: 2010
  ident: 10.1016/j.neuroimage.2018.11.028_bib13
  article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data
  publication-title: Front. Syst. Neurosci.
– volume: 146
  start-page: 715
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.028_bib31
  article-title: Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.063
– volume: 35
  start-page: 757
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib7
  article-title: Functional connectivity and graph theory in preclinical Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.10.081
– volume: 134
  start-page: 494
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.028_bib26
  article-title: The connectivity domain: analyzing resting state fMRI data using feature-based data-driven and model-based methods
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.006
– volume: 111
  start-page: E4997
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib9
  article-title: Decreased segregation of brain systems across the healthy adult lifespan
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1415122111
– volume: 31
  start-page: 1536
  year: 2006
  ident: 10.1016/j.neuroimage.2018.11.028_bib5
  article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.048
– volume: 26
  start-page: 63
  year: 2006
  ident: 10.1016/j.neuroimage.2018.11.028_bib1
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 31
  start-page: 253
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.028_bib27
  article-title: Detrimental effect of systemic vascular risk factors on brain hemodynamic function assessed with MRI
  publication-title: NeuroRadiol. J.
  doi: 10.1177/1971400917750375
– volume: 31
  start-page: 58
  year: 2011
  ident: 10.1016/j.neuroimage.2018.11.028_bib50
  article-title: The influence of carbon dioxide on brain activity and metabolism in conscious humans
  publication-title: J. Cerebr. Blood Flow Metabol.
  doi: 10.1038/jcbfm.2010.153
– volume: 1224
  start-page: 126
  year: 2011
  ident: 10.1016/j.neuroimage.2018.11.028_bib49
  article-title: Concepts and principles in the analysis of brain networks
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05947.x
– issue: 94
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib32
  article-title: MRI mapping of cerebrovascular reactivity via gas inhalation challenges
  publication-title: J. Vis. Exp.
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.neuroimage.2018.11.028_bib20
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504136102
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2018.11.028_bib43
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0905267106
– volume: 173
  start-page: 498
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.028_bib47
  article-title: Evolution of spatial and temporal features of functional brain networks across the lifespan
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.02.066
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.neuroimage.2018.11.028_bib3
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 132
  start-page: 301
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.028_bib22
  article-title: The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: the influence of basal carbon dioxide
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.051
– volume: 47
  start-page: 1381
  year: 2009
  ident: 10.1016/j.neuroimage.2018.11.028_bib11
  article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.048
– volume: 32
  start-page: 2154
  year: 2012
  ident: 10.1016/j.neuroimage.2018.11.028_bib39
  article-title: Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4494-11.2012
– volume: 5
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.028_bib12
  article-title: A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields
  publication-title: Elife
  doi: 10.7554/eLife.15252
– volume: 4
  start-page: 662
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib44
  article-title: Age-related reorganizational changes in modularity and functional connectivity of human brain networks
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0286
– volume: 21
  start-page: 981
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.028_bib48
  article-title: Segregated systems of human brain networks
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2017.09.006
– volume: 11
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.028_bib36
  article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00115
– volume: 52
  start-page: 1059
  year: 2010
  ident: 10.1016/j.neuroimage.2018.11.028_bib40
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 7
  start-page: 732
  year: 2006
  ident: 10.1016/j.neuroimage.2018.11.028_bib35
  article-title: Applications of fMRI in translational medicine and clinical practice
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1929
– volume: 102
  start-page: 345
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib4
  article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.067
– volume: 106
  start-page: 7209
  year: 2009
  ident: 10.1016/j.neuroimage.2018.11.028_bib18
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0811879106
– volume: 35
  start-page: 396
  year: 2007
  ident: 10.1016/j.neuroimage.2018.11.028_bib17
  article-title: A method for using blocked and event-related fMRI data to study “resting state” functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.051
– volume: 101
  start-page: 13091
  year: 2004
  ident: 10.1016/j.neuroimage.2018.11.028_bib38
  article-title: Aging reduces neural specialization in ventral visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0405148101
– volume: 6
  start-page: 663
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.028_bib42
  article-title: Reorganization of brain networks in aging: a review of functional connectivity studies
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2015.00663
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1016/j.neuroimage.2018.11.028_bib19
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2201
– volume: 111
  start-page: 147
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.028_bib52
  article-title: Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.018
– volume: 56
  start-page: 2068
  year: 2011
  ident: 10.1016/j.neuroimage.2018.11.028_bib41
  article-title: Weight-conserving characterization of complex functional brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.069
– volume: 7
  start-page: 76
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib8
  article-title: Topological organization of the human brain functional connectome across the lifespan
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2013.11.004
– volume: 138
  start-page: 147
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.028_bib23
  article-title: Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: validation in healthy adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.025
– volume: 27
  start-page: 5415
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.028_bib37
  article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhx230
– volume: 100
  start-page: 253
  year: 2003
  ident: 10.1016/j.neuroimage.2018.11.028_bib24
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0135058100
– volume: 29
  start-page: 1359
  year: 2006
  ident: 10.1016/j.neuroimage.2018.11.028_bib16
  article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.035
– volume: 108
  start-page: 7641
  year: 2011
  ident: 10.1016/j.neuroimage.2018.11.028_bib2
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1018985108
– volume: 44
  start-page: 857
  year: 2009
  ident: 10.1016/j.neuroimage.2018.11.028_bib10
  article-title: Influence of heart rate on the BOLD signal: the cardiac response function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.029
– volume: 33
  start-page: 715
  year: 2012
  ident: 10.1016/j.neuroimage.2018.11.028_bib46
  article-title: Depression of cortical activity in humans by mild hypercapnia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21242
– volume: 36
  start-page: 4053
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.028_bib21
  article-title: Comparison of continuously acquired resting state and extracted analogues from active tasks
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22897
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1016/j.neuroimage.2018.11.028_bib6
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 49
  start-page: 2163
  year: 2010
  ident: 10.1016/j.neuroimage.2018.11.028_bib53
  article-title: Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.080
– volume: 83
  start-page: 238
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.028_bib14
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 6
  start-page: e159
  year: 2008
  ident: 10.1016/j.neuroimage.2018.11.028_bib25
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2018.11.028_bib29
  article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study
  publication-title: PloS One
– volume: 106
  start-page: 1125
  year: 2011
  ident: 10.1016/j.neuroimage.2018.11.028_bib51
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– year: 2017
  ident: 10.1016/j.neuroimage.2018.11.028_bib30
  article-title: Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review
  publication-title: Neuroimage
– volume: 36
  start-page: 3912
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.028_bib34
  article-title: The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22886
– volume: 33
  start-page: 1914
  year: 2012
  ident: 10.1016/j.neuroimage.2018.11.028_bib15
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21333
– volume: 8
  start-page: 418
  year: 2004
  ident: 10.1016/j.neuroimage.2018.11.028_bib45
  article-title: Organization, development and function of complex brain networks
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2004.07.008
SSID ssj0009148
Score 2.3833714
Snippet Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 455
SubjectTerms Adult
Aged
Aged, 80 and over
Aging
Cerebellum - diagnostic imaging
Cerebellum - physiology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Cerebrovascular diseases
Cerebrovascular reactivity
CO2 inhalation
Connectome - methods
Data processing
Female
Functional connectivity
Functional magnetic resonance imaging
Humans
Hypercapnia
Hypercapnia - chemically induced
Hypercapnia - diagnostic imaging
Hypercapnia - physiopathology
Life span
Magnetic Resonance Imaging - methods
Male
Middle Aged
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neural networks
Neuroimaging
Neurovascular Coupling - physiology
Physiology
Resting-state functional MRI
Studies
Vascular diseases
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqrYS4ICivhVIZiWvYOHYcG06ltNoCWySgqLfIdmI1Vcmu9nHizzOzdtJu4bASxySePGzPw87M9xHyxoq8cCqvE2WcToTQIjG5qxJjFPdFapTRWDs8OZPjc_HpIr_YIUddLQymVUbbH2z62lrHM6PYm6NZ04y-Q2QA7gbWG0i2k6Id3s24lvmA7B6efh6f3WDvMhEq4nKeoEBM6AlpXmvYyOYXKC_meam3COmJ1Oz_9lJ_R6F3kylveaeTh-RBDCvpYXjzR2SnbvfIvUn8cf6Y_D4GVQ5VinTqqUViCIo-LWwFUof5Li4wSVAsOaGXsECdOzNrG0M_fP3ykU6-nVLMJ31Hf0LsHqiYKNzF0OvG12CYWopsu_MlPoAVKV2sLG7yLJ6Q85PjH0fjJPIuJC6XYpko1GKTaqXrglstVSasQJAakfJK5tYy7ivPdFVxLwpf8aou0sxL6U0hvLX8KRm007Z-TqhgxkprKglxqHCFskxbUWcOjnPDtBmSouvn0kVQcuTGuC677LOr8maEShwhWLOUMEJDwnrJWQDm2EJGd0NZdoWnYCpL8B5byL7vZTcm6JbS-93MKaORWJQZk8g-zzkbktf9ZVBv_Gdj2nq6wjZcSWihxJA8CxOt_9w12hvErNCJG1Owb4DQ4ZtX2uZyDSEOt1SwEnjxXx_1ktyHIx1y2PfJYDlf1a8gRFvag6iCfwD6ij4J
  priority: 102
  providerName: Elsevier
Title Estimation of brain functional connectivity from hypercapnia BOLD MRI data: Validation in a lifespan cohort of 170 subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918321062
https://dx.doi.org/10.1016/j.neuroimage.2018.11.028
https://www.ncbi.nlm.nih.gov/pubmed/30463025
https://www.proquest.com/docview/2167143331
https://www.proquest.com/docview/2138633184
https://pubmed.ncbi.nlm.nih.gov/PMC6338507
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN90jMpIvGbEteMPeEDb6NTBWqaKob5FtpNoRSPt-vGExN_OXZykDBDqUxTFly_fnc_23e9HyGsnEuV1kkfaehMJYURkE59F1mpeqNhqa7B2eDiSg0vxcZJM6gW3ZZ1W2fjEylFnM49r5G96TCJVN-fs_fwmQtYo3F2tKTR2yF4FXQb6rCZqA7rLRCiFS3ikoUGdyRPyuyq8yOl3sFpM8NKHiOWJnOz_Hp7-Dj__zKL8bVg6fUDu1_EkPQoK8JDcyctH5O6w3jF_TH70wYZDeSKdFdQhIwTFwSysAVKPiS4-UEhQrDWhVzAzXXg7L6eWHn8-_0CH4zOKiaRv6VcI2gMHE4W7WHo9LXLwSCVFmt3FCh_AVEyXa4erO8sn5PK0_-VkENWEC5FPpFhFGs3XxkabXHFnpO4JJxCdRsQ8k4lzjBdZwUyW8UKoIuNZruJeIWVhlSic40_Jbjkr8-eECmaddDaTEIAKr7Rjxom85-E8sczYDlHNf059jUaOpBjXaZN29i3d9FCKPQSTlRR6qENYKzkPiBxbyJimK9Om4hR8ZArDxhay71rZOioJ0caW0geN5qS1d1imG13ukFftZbBr3KyxZT5bYxuuJbTQokOeBUVrP7eCeYNgFX7iLRVsGyBm-O0r5fSqwg6HW2qYAuz__7VekHvwDSZkpx-Q3dVinb-E4GvlumTn8CfrVnbWJXtHJ-PzCzyefRqM4HjcH12MfwHUiTb3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8KA4wEj4E4dhIbhBBjnVrWFjRt096C7cRapy0t_RBC_E_8jdzVScoAob7sMYrPiX3n8519dz9CnhsRp1bGRSC1VYEQSgQ6tnmgteQuDbXUCnOHB8Okeyg-HsfHG-RnnQuDYZW1Tlwq6nxs8Yz8VcQShOrmnL2bfA0QNQpvV2sIDS8We8X3b-Cyzd72doC_L6Jot3PwoRtUqAKBjRMxDyTKqA6VVEXKjUpkJIzAEiwi5HkSG8O4yx1Tec6dSF3O8yINI5ckTqfCGcOh3ytkU2BGa4tsbneGn_dXZX6Z8Ml3MQ8kY6qKHfIRZcsKlaNz0BMYUiZfYvVQRIH_94b4t8H7Z9zmbxvh7k1yo7Jg6XsvcrfIRlHeJlcH1R39HfKjA1rDJ0TSsaMGMSgobp_-1JFaDK2xHrSCYnYLPQFfeGr1pBxpuv2pv0MH-z2Koauv6RG4CR71iUIvmp6NXAE6sKQI7Dud4wdYGtLZwuB50uwuObwUZtwjrXJcFg8IFUybxOg8AZNX2FQapowoIgvPsWZKt0laz3Nmq_rnCMNxltWBbqfZikMZcgjcoww41CasoZz4GiBr0KialVmd4wpaOYONag3aNw1tZQd5-2ZN6q1acrJKH82y1eppk2fNa9AkeD2ky2K8wDZcJtBCija57wWtGe6ysByYxzCJF0SwaYBVyi--KUcny2rl0KUEp-Ph_3_rKbnWPRj0s35vuPeIXIfxKB8bv0Va8-mieAym39w8qdYbJV8ue4n_AuCRb0M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHc6BhgJHsPq2IltEEJAV61sHQgx1LdgO7FWtKWlFyHEP-PXcU6cpAwQ6sseo9jO5Vx8bH_nfIQ8tiKRTiVFpIzTkRBaRCZxeWSM4l52jTIac4eHR-n-sXg7SkYb5GeTC4OwysYnVo46nzjcI9-NWYpU3ZyzXV_DIt73-i-nXyNkkMKT1oZOI6jIQfH9Gyzf5i8GPZD1kzju7318sx_VDAORS1KxiBTqq-lqpQvJrU5VLKzAciyiy_M0sZZxn3um85x7IX3O80J2Y5-m3kjhreUw7iVyWXKIqsCW5EiuCv4yEdLwEh4pxnSNIgrYsqpW5fgMPAaCy9RTrCOKfPD_nhr_Dn3_RHD-NiX2r5GrdSxLXwXlu042ivIG2RrWp_U3yY898B8hNZJOPLXIRkFxIg37j9QhyMYF-gqKeS70BFbFM2em5djQ1-8Oe3T4YUARxPqMfoIFQ-B_ojCKoadjX4A3LClS_M4W-AAmu3S-tLizNL9Fji9EFLfJZjkpi7uECmZsak2eQvArnFSWaSuK2MF1Ypg2HSKb_5y5uhI6EnKcZg3k7Uu2klCGEoKFUgYS6hDW9pyGaiBr9NGNKLMm2xX8cwZT1hp9n7d964goRDpr9t5pNCerPdM8W9lRhzxqb4NPwYMiUxaTJbbhKoUWSnTInaBo7edWJeYgUIafeE4F2wZYr_z8nXJ8UtUthyEVGMr2_1_rIdkCw84OB0cH98gV-BwdQPI7ZHMxWxb3IQZc2AeVsVHy-aKt-xeOeXIK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+brain+functional+connectivity+from+hypercapnia+BOLD+MRI+data%3A+Validation+in+a+lifespan+cohort+of+170+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hou%2C+Xirui&rft.au=Liu%2C+Peiying&rft.au=Gu%2C+Hong&rft.au=Chan%2C+Micaela&rft.date=2019-02-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=186&rft.spage=455&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.11.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon