Estimation of brain functional connectivity from hypercapnia BOLD MRI data: Validation in a lifespan cohort of 170 subjects
Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 186; pp. 455 - 463 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2018.11.028 |
Cover
Abstract | Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase.
•Hypercapnia BOLD data can be used to compute functional connectivity metrics.•ICA, region based, and graph-theory based results were all feasible.•Hypercapnia FC metrics were compatible with those obtained with resting-state data.•Hypercapnia FC metrics showed age-dependence similar to those in resting-state data. |
---|---|
AbstractList | Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20–88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54±0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N=39) revealed a similar correlation of 0.57±0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase. Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase. •Hypercapnia BOLD data can be used to compute functional connectivity metrics.•ICA, region based, and graph-theory based results were all feasible.•Hypercapnia FC metrics were compatible with those obtained with resting-state data.•Hypercapnia FC metrics showed age-dependence similar to those in resting-state data. Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase. Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase.Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand, BOLD is also widely used in physiological imaging such as cerebrovascular reactivity (CVR) mapping using hypercapnia (HC) as a modulator. We therefore hypothesize that hypercapnia BOLD data can be used to extract FC metrics after factoring out the effects of the physiological modulation, which will allow simultaneous assessment of neural and vascular function and may be particularly important in populations such as aging and cerebrovascular diseases. The present work aims to systematically examine the feasibility of hypercapnia BOLD-based FC mapping using three commonly applied analysis methods, specifically dual-regression Independent Component Analysis (ICA), region-based FC matrix analysis, and graph-theory based network analysis, in a large cohort of 170 healthy subjects ranging from 20 to 88 years old. To validate the hypercapnia BOLD results, we also compared these FC metrics with those obtained from conventional resting-state data. ICA analysis of the hypercapnia BOLD data revealed FC maps that strongly resembled those reported in the literature. FC matrix using region-based analysis showed a correlation of 0.97 on the group-level and 0.54 ± 0.10 on the individual-level, when comparing between hypercapnia and resting-state results. Although the correspondence on the individual-level was moderate, this was primarily attributed to variations intrinsic to FC mapping, because a corresponding resting-vs-resting comparison in a sub-cohort (N = 39) revealed a similar correlation of 0.57 ± 0.09. Graph-theory computations were also feasible in hypercapnia BOLD data and indices of global efficiency, clustering coefficient, modularity, and segregation were successfully derived. Hypercapnia FC results revealed age-dependent differences in which within-network connections generally exhibited an age-dependent decrease while between-network connections showed an age-dependent increase. |
Author | Liu, Peiying Yang, Yihong Wig, Gagan Gu, Hong Hou, Xirui Chan, Micaela Lu, Hanzhang Li, Yang Park, Denise Peng, Shin-Lei |
AuthorAffiliation | e. Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas d. Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland f. Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas b. The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland g. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas h. Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan c. F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland a. Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland |
AuthorAffiliation_xml | – name: e. Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas – name: d. Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland – name: f. Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas – name: a. Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland – name: g. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas – name: c. F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland – name: h. Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan – name: b. The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland |
Author_xml | – sequence: 1 givenname: Xirui surname: Hou fullname: Hou, Xirui organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA – sequence: 2 givenname: Peiying surname: Liu fullname: Liu, Peiying organization: The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA – sequence: 3 givenname: Hong surname: Gu fullname: Gu, Hong organization: Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA – sequence: 4 givenname: Micaela surname: Chan fullname: Chan, Micaela organization: Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang organization: The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA – sequence: 6 givenname: Shin-Lei surname: Peng fullname: Peng, Shin-Lei organization: The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA – sequence: 7 givenname: Gagan surname: Wig fullname: Wig, Gagan organization: Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA – sequence: 8 givenname: Yihong surname: Yang fullname: Yang, Yihong organization: Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA – sequence: 9 givenname: Denise surname: Park fullname: Park, Denise organization: Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA – sequence: 10 givenname: Hanzhang surname: Lu fullname: Lu, Hanzhang email: hanzhang.lu@jhu.edu organization: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30463025$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhiNURC_wCsgSGzYJduzEDgsELS1UGlQJAVvL8aXjwWMHOxlpxMvXYVoKs5qVb__5zu9zzmlx5IPXRQEQrBBE7ZtV5fUUg12LW13VELEKoQrW7ElxgmDXlF1D66N53-CSIdQdF6cprSCEHSLsWXGMIWkxrJuT4vdlGjNmtMGDYEAfhfXATF7ON8IBGbzX-bCx4xaYGNZguR10lGLwVoDzm8VH8OXrNVBiFG_BD-Gs2rEyRQBnjU6D8JmyDHGcEyAKQZr6VWam58VTI1zSL-7Xs-L71eW3i8_l4ubT9cWHRSmblowlayijAnas0xT3Xctq0hPCOkwgVm3T9wgbZVCnFDaEGoWVprA2bWsEJabv8Vnxbscdpn6tldR-jMLxIeaPxy0PwvL_X7xd8tuw4S3GrIE0A17fA2L4Nek08rVNUjsnvA5T4jXCLGsRI1n6ak-6ClPMlZxVLUUEZ11WvfzX0V8rD315tCxjSClqw6Ud_1Q2G7SOI8jnQeAr_jgIfB4EjhDPg5ABbA_wkOOA0PNdqM492VgdeZJWe6mVjbltXAV7COT9HkQ6660U7qfeHoa4A2UB6yk |
CitedBy_id | crossref_primary_10_1073_pnas_2314596120 crossref_primary_10_1016_j_nbas_2023_100105 crossref_primary_10_1093_cercor_bhab187 crossref_primary_10_1016_j_bbi_2020_01_006 crossref_primary_10_1016_j_neuroimage_2022_119823 crossref_primary_10_1080_10807039_2022_2146574 crossref_primary_10_1111_psyp_14159 crossref_primary_10_1073_pnas_2411245122 crossref_primary_10_1016_j_pnpbp_2025_111252 crossref_primary_10_1109_JSTQE_2020_3019283 crossref_primary_10_1002_brb3_1516 crossref_primary_10_1016_j_neuroimage_2021_118754 crossref_primary_10_1007_s00429_021_02361_1 crossref_primary_10_1002_hbm_70169 crossref_primary_10_3389_fnagi_2019_00132 crossref_primary_10_3389_fnagi_2022_951076 crossref_primary_10_1016_j_neuroimage_2019_116365 |
Cites_doi | 10.1001/jamapsychiatry.2013.4091 10.1093/cercor/bhq224 10.1016/j.neuroimage.2016.09.063 10.1016/j.neurobiolaging.2013.10.081 10.1016/j.neuroimage.2016.04.006 10.1073/pnas.1415122111 10.1016/j.neuroimage.2006.02.048 10.1523/JNEUROSCI.3874-05.2006 10.1177/1971400917750375 10.1038/jcbfm.2010.153 10.1111/j.1749-6632.2010.05947.x 10.1073/pnas.0504136102 10.1073/pnas.0905267106 10.1016/j.neuroimage.2018.02.066 10.1098/rstb.2005.1634 10.1016/j.neuroimage.2016.02.051 10.1016/j.neuroimage.2009.04.048 10.1523/JNEUROSCI.4494-11.2012 10.7554/eLife.15252 10.1089/brain.2014.0286 10.1016/j.tics.2017.09.006 10.3389/fnins.2017.00115 10.1016/j.neuroimage.2009.10.003 10.1038/nrn1929 10.1016/j.neuroimage.2014.07.067 10.1073/pnas.0811879106 10.1016/j.neuroimage.2006.11.051 10.1073/pnas.0405148101 10.3389/fpsyg.2015.00663 10.1038/nrn2201 10.1016/j.neuroimage.2015.02.018 10.1016/j.neuroimage.2011.03.069 10.1016/j.dcn.2013.11.004 10.1016/j.neuroimage.2016.05.025 10.1093/cercor/bhx230 10.1073/pnas.0135058100 10.1016/j.neuroimage.2005.08.035 10.1073/pnas.1018985108 10.1016/j.neuroimage.2008.09.029 10.1002/hbm.21242 10.1002/hbm.22897 10.1002/mrm.1910340409 10.1016/j.neuroimage.2009.10.080 10.1016/j.neuron.2014.05.014 10.1371/journal.pbio.0060159 10.1152/jn.00338.2011 10.1002/hbm.22886 10.1002/hbm.21333 10.1016/j.tics.2004.07.008 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 1, 2019 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 1, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2018.11.028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 463 |
ExternalDocumentID | PMC6338507 30463025 10_1016_j_neuroimage_2018_11_028 S1053811918321062 |
Genre | Validation Study Research Support, N.I.H., Intramural Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Texas |
GeographicLocations_xml | – name: Texas – name: United States--US |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG006265 – fundername: NIA NIH HHS grantid: R01 AG042753 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NINDS NIH HHS grantid: R01 NS106702 – fundername: NIMH NIH HHS grantid: R01 MH084021 – fundername: NIA NIH HHS grantid: R37 AG006265 – fundername: NIA NIH HHS grantid: R00 AG036848 – fundername: NINDS NIH HHS grantid: R01 NS106711 – fundername: NINDS NIH HHS grantid: R21 NS095342 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c564t-85787a0989e73b96824b44893403d65bb13fdf19dd3f47fd3de702f66fa74fbb3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:17:25 EDT 2025 Fri Sep 05 12:10:49 EDT 2025 Wed Aug 13 02:42:21 EDT 2025 Wed Feb 19 02:30:35 EST 2025 Tue Jul 01 03:02:05 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:36:56 EST 2024 Tue Aug 26 20:02:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity ROIs MPRAGE ICA MNI Hypercapnia Cerebrovascular reactivity EtCO2 FDR CO2 inhalation Aging ICs Resting-state functional MRI BOLD FC CVR CO inhalation |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-85787a0989e73b96824b44893403d65bb13fdf19dd3f47fd3de702f66fa74fbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6338507 |
PMID | 30463025 |
PQID | 2167143331 |
PQPubID | 2031077 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6338507 proquest_miscellaneous_2138633184 proquest_journals_2167143331 pubmed_primary_30463025 crossref_citationtrail_10_1016_j_neuroimage_2018_11_028 crossref_primary_10_1016_j_neuroimage_2018_11_028 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_11_028 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_11_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Lerman, Gu, Loughead, Ruparel, Yang, Stein (bib28) 2014; 71 Rubinov, Sporns (bib40) 2010; 52 King, Sheng, Liu, Maroules, Rubin, Peshock, McColl, Lu (bib27) 2018; 31 Song, Birn, Boly, Meier, Nair, Meyerand, Prabhakaran (bib44) 2014; 4 Chan, Park, Savalia, Petersen, Wig (bib9) 2014; 111 Vij, Nomi, Dajani, Uddin (bib47) 2018; 173 Zuo, Kelly, Adelstein, Klein, Castellanos, Milham (bib53) 2010; 49 Cocchi, Sale, L.G, Bell, Nguyen, Zalesky, Breakspear, Mattingley (bib12) 2016; 5 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib43) 2009; 106 Greicius, Krasnow, Reiss, Menon (bib24) 2003; 100 Lu, Liu, Yezhuvath, Cheng, Marshall, Ge (bib32) 2014 Yeo, Tandi, Chee (bib52) 2015; 111 Betzel, Byrge, He, Goni, Zuo, Sporns (bib4) 2014; 102 Bassett, Wymbs, Porter, Mucha, Carlson, Grafton (bib2) 2011; 108 Cao, Wang, Dai, Cao, Jiang, Fan, Song, Xia, Shu, Dong, Milham, Castellanos, Zuo, He (bib8) 2014; 7 Liang, Wang, Yan, Shu, Xu, Gong, He (bib29) 2012; 7 Sala-Llonch, Bartres-Faz, Junque (bib42) 2015; 6 Filippini, MacIntosh, Hough, Goodwin, Frisoni, Smith, Matthews, Beckmann, Mackay (bib18) 2009; 106 Liu, Welch, Li, Gu, King, Yang, Pinho, Lu (bib31) 2017; 146 Wig (bib48) 2017; 21 De Luca, Beckmann, De Stefano, Matthews, Smith (bib16) 2006; 29 Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib37) 2017; 27 Rubinov, Sporns (bib41) 2011; 56 Cole, Bassett, Power, Braver, Petersen (bib14) 2014; 83 Park, Polk, Park, Minear, Savage, Smith (bib38) 2004; 101 Golestani, Wei, Chen (bib23) 2016; 138 Park, Carp, Kennedy, Rodrigue, Bischof, Huang, Rieck, Polk, Park (bib39) 2012; 32 Thesen, Leontiev, Song, Dehghani, Hagler, Huang, Buxton, Halgren (bib46) 2012; 33 Xu, Uh, Brier, Hart, Yezhuvath, Gu, Yang, Lu (bib50) 2011; 31 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (bib51) 2011; 106 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib20) 2005; 102 Marshall, Uh, Lurie, Lu, Milham, Ge (bib34) 2015; 36 Fair, Schlaggar, Cohen, Miezin, Dosenbach, Wenger, Fox, Snyder, Raichle, Petersen (bib17) 2007; 35 Birn, Diamond, Smith, Bandettini (bib5) 2006; 31 Sporns, Chialvo, Kaiser, Hilgetag (bib45) 2004; 8 Craddock, James, Holtzheimer, Hu, Mayberg (bib15) 2012; 33 Fox, Raichle (bib19) 2007; 8 Achard, Salvador, Whitcher, Suckling, Bullmore (bib1) 2006; 26 Ganger, Hahn, Kublbock, Kranz, Spies, Vanicek, Seiger, Sladky, Windischberger, Kasper, Lanzenberger (bib21) 2015; 36 Biswal, Yetkin, Haughton, Hyde (bib6) 1995; 34 Cole, Smith, Beckmann (bib13) 2010; 4 Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib25) 2008; 6 Lu, Xu, Rodrigue, Kennedy, Cheng, Flicker, Hebrank, Uh, Park (bib33) 2011; 21 Chang, Glover (bib11) 2009; 47 Chang, Cunningham, Glover (bib10) 2009; 44 Nickerson, Smith, Ongur, Beckmann (bib36) 2017; 11 Iraji, Calhoun, Wiseman, Davoodi-Bojd, Avanaki, Haacke, Kou (bib26) 2016; 134 Beckmann, DeLuca, Devlin, Smith (bib3) 2005; 360 Golestani, Kwinta, Strother, Khatamian, Chen (bib22) 2016; 132 Wig, Schlaggar, Petersen (bib49) 2011; 1224 Matthews, Honey, Bullmore (bib35) 2006; 7 Brier, Thomas, Fagan, Hassenstab, Holtzman, Benzinger, Morris, Ances (bib7) 2014; 35 Liu, J, Lu (bib30) 2017 Thesen (10.1016/j.neuroimage.2018.11.028_bib46) 2012; 33 Golestani (10.1016/j.neuroimage.2018.11.028_bib23) 2016; 138 Liang (10.1016/j.neuroimage.2018.11.028_bib29) 2012; 7 Cole (10.1016/j.neuroimage.2018.11.028_bib14) 2014; 83 Song (10.1016/j.neuroimage.2018.11.028_bib44) 2014; 4 Filippini (10.1016/j.neuroimage.2018.11.028_bib18) 2009; 106 Sporns (10.1016/j.neuroimage.2018.11.028_bib45) 2004; 8 Yeo (10.1016/j.neuroimage.2018.11.028_bib51) 2011; 106 Rubinov (10.1016/j.neuroimage.2018.11.028_bib40) 2010; 52 Smith (10.1016/j.neuroimage.2018.11.028_bib43) 2009; 106 Marshall (10.1016/j.neuroimage.2018.11.028_bib34) 2015; 36 Fox (10.1016/j.neuroimage.2018.11.028_bib20) 2005; 102 Yeo (10.1016/j.neuroimage.2018.11.028_bib52) 2015; 111 Chan (10.1016/j.neuroimage.2018.11.028_bib9) 2014; 111 Cole (10.1016/j.neuroimage.2018.11.028_bib13) 2010; 4 Wig (10.1016/j.neuroimage.2018.11.028_bib48) 2017; 21 King (10.1016/j.neuroimage.2018.11.028_bib27) 2018; 31 Brier (10.1016/j.neuroimage.2018.11.028_bib7) 2014; 35 Lu (10.1016/j.neuroimage.2018.11.028_bib33) 2011; 21 Park (10.1016/j.neuroimage.2018.11.028_bib38) 2004; 101 Sala-Llonch (10.1016/j.neuroimage.2018.11.028_bib42) 2015; 6 Zuo (10.1016/j.neuroimage.2018.11.028_bib53) 2010; 49 Chang (10.1016/j.neuroimage.2018.11.028_bib10) 2009; 44 Achard (10.1016/j.neuroimage.2018.11.028_bib1) 2006; 26 Fair (10.1016/j.neuroimage.2018.11.028_bib17) 2007; 35 Xu (10.1016/j.neuroimage.2018.11.028_bib50) 2011; 31 Liu (10.1016/j.neuroimage.2018.11.028_bib30) 2017 Cocchi (10.1016/j.neuroimage.2018.11.028_bib12) 2016; 5 Greicius (10.1016/j.neuroimage.2018.11.028_bib24) 2003; 100 Lu (10.1016/j.neuroimage.2018.11.028_bib32) 2014 Matthews (10.1016/j.neuroimage.2018.11.028_bib35) 2006; 7 Beckmann (10.1016/j.neuroimage.2018.11.028_bib3) 2005; 360 Cao (10.1016/j.neuroimage.2018.11.028_bib8) 2014; 7 Betzel (10.1016/j.neuroimage.2018.11.028_bib4) 2014; 102 Craddock (10.1016/j.neuroimage.2018.11.028_bib15) 2012; 33 De Luca (10.1016/j.neuroimage.2018.11.028_bib16) 2006; 29 Iraji (10.1016/j.neuroimage.2018.11.028_bib26) 2016; 134 Vij (10.1016/j.neuroimage.2018.11.028_bib47) 2018; 173 Noble (10.1016/j.neuroimage.2018.11.028_bib37) 2017; 27 Golestani (10.1016/j.neuroimage.2018.11.028_bib22) 2016; 132 Rubinov (10.1016/j.neuroimage.2018.11.028_bib41) 2011; 56 Biswal (10.1016/j.neuroimage.2018.11.028_bib6) 1995; 34 Birn (10.1016/j.neuroimage.2018.11.028_bib5) 2006; 31 Hagmann (10.1016/j.neuroimage.2018.11.028_bib25) 2008; 6 Lerman (10.1016/j.neuroimage.2018.11.028_bib28) 2014; 71 Park (10.1016/j.neuroimage.2018.11.028_bib39) 2012; 32 Liu (10.1016/j.neuroimage.2018.11.028_bib31) 2017; 146 Nickerson (10.1016/j.neuroimage.2018.11.028_bib36) 2017; 11 Chang (10.1016/j.neuroimage.2018.11.028_bib11) 2009; 47 Wig (10.1016/j.neuroimage.2018.11.028_bib49) 2011; 1224 Bassett (10.1016/j.neuroimage.2018.11.028_bib2) 2011; 108 Ganger (10.1016/j.neuroimage.2018.11.028_bib21) 2015; 36 Fox (10.1016/j.neuroimage.2018.11.028_bib19) 2007; 8 |
References_xml | – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: bib19 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. – volume: 36 start-page: 3912 year: 2015 end-page: 3921 ident: bib34 article-title: The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI publication-title: Hum. Brain Mapp. – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib51 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 33 start-page: 715 year: 2012 end-page: 726 ident: bib46 article-title: Depression of cortical activity in humans by mild hypercapnia publication-title: Hum. Brain Mapp. – volume: 21 start-page: 981 year: 2017 end-page: 996 ident: bib48 article-title: Segregated systems of human brain networks publication-title: Trends Cognit. Sci. – volume: 146 start-page: 715 year: 2017 end-page: 723 ident: bib31 article-title: Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI publication-title: Neuroimage – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib6 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. – volume: 101 start-page: 13091 year: 2004 end-page: 13095 ident: bib38 article-title: Aging reduces neural specialization in ventral visual cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1224 start-page: 126 year: 2011 end-page: 146 ident: bib49 article-title: Concepts and principles in the analysis of brain networks publication-title: Ann. N. Y. Acad. Sci. – volume: 32 start-page: 2154 year: 2012 end-page: 2158 ident: bib39 article-title: Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample publication-title: J. Neurosci. – volume: 6 start-page: 663 year: 2015 ident: bib42 article-title: Reorganization of brain networks in aging: a review of functional connectivity studies publication-title: Front. Psychol. – volume: 7 start-page: 732 year: 2006 end-page: 744 ident: bib35 article-title: Applications of fMRI in translational medicine and clinical practice publication-title: Nat. Rev. Neurosci. – volume: 11 year: 2017 ident: bib36 article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses publication-title: Front. Neurosci. – volume: 47 start-page: 1381 year: 2009 end-page: 1393 ident: bib11 article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI publication-title: Neuroimage – volume: 5 year: 2016 ident: bib12 article-title: A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields publication-title: Elife – volume: 7 start-page: 76 year: 2014 end-page: 93 ident: bib8 article-title: Topological organization of the human brain functional connectome across the lifespan publication-title: Dev. Cogn. Neurosci. – volume: 111 start-page: E4997 year: 2014 end-page: E5006 ident: bib9 article-title: Decreased segregation of brain systems across the healthy adult lifespan publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 44 start-page: 857 year: 2009 end-page: 869 ident: bib10 article-title: Influence of heart rate on the BOLD signal: the cardiac response function publication-title: Neuroimage – volume: 8 start-page: 418 year: 2004 end-page: 425 ident: bib45 article-title: Organization, development and function of complex brain networks publication-title: Trends Cognit. Sci. – volume: 56 start-page: 2068 year: 2011 end-page: 2079 ident: bib41 article-title: Weight-conserving characterization of complex functional brain networks publication-title: Neuroimage – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib40 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 26 start-page: 63 year: 2006 end-page: 72 ident: bib1 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci. – volume: 21 start-page: 1426 year: 2011 end-page: 1434 ident: bib33 article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan publication-title: Cerebr. Cortex – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib43 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 111 start-page: 147 year: 2015 end-page: 158 ident: bib52 article-title: Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation publication-title: Neuroimage – volume: 102 start-page: 345 year: 2014 end-page: 357 ident: bib4 article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan publication-title: Neuroimage – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib20 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 108 start-page: 7641 year: 2011 end-page: 7646 ident: bib2 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 1359 year: 2006 end-page: 1367 ident: bib16 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: Neuroimage – volume: 7 year: 2012 ident: bib29 article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study publication-title: PloS One – volume: 71 start-page: 523 year: 2014 end-page: 530 ident: bib28 article-title: Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function publication-title: JAMA Psychiatry – volume: 134 start-page: 494 year: 2016 end-page: 507 ident: bib26 article-title: The connectivity domain: analyzing resting state fMRI data using feature-based data-driven and model-based methods publication-title: Neuroimage – volume: 4 start-page: 662 year: 2014 end-page: 676 ident: bib44 article-title: Age-related reorganizational changes in modularity and functional connectivity of human brain networks publication-title: Brain Connect. – volume: 35 start-page: 396 year: 2007 end-page: 405 ident: bib17 article-title: A method for using blocked and event-related fMRI data to study “resting state” functional connectivity publication-title: Neuroimage – year: 2014 ident: bib32 article-title: MRI mapping of cerebrovascular reactivity via gas inhalation challenges publication-title: J. Vis. Exp. – volume: 4 start-page: 8 year: 2010 ident: bib13 article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data publication-title: Front. Syst. Neurosci. – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib3 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 31 start-page: 1536 year: 2006 end-page: 1548 ident: bib5 article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI publication-title: Neuroimage – volume: 83 start-page: 238 year: 2014 end-page: 251 ident: bib14 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron – volume: 132 start-page: 301 year: 2016 end-page: 313 ident: bib22 article-title: The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: the influence of basal carbon dioxide publication-title: Neuroimage – volume: 36 start-page: 4053 year: 2015 end-page: 4063 ident: bib21 article-title: Comparison of continuously acquired resting state and extracted analogues from active tasks publication-title: Hum. Brain Mapp. – volume: 6 start-page: e159 year: 2008 ident: bib25 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 138 start-page: 147 year: 2016 end-page: 163 ident: bib23 article-title: Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: validation in healthy adults publication-title: Neuroimage – volume: 31 start-page: 253 year: 2018 end-page: 261 ident: bib27 article-title: Detrimental effect of systemic vascular risk factors on brain hemodynamic function assessed with MRI publication-title: NeuroRadiol. J. – volume: 33 start-page: 1914 year: 2012 end-page: 1928 ident: bib15 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. – year: 2017 ident: bib30 article-title: Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review publication-title: Neuroimage – volume: 49 start-page: 2163 year: 2010 end-page: 2177 ident: bib53 article-title: Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach publication-title: Neuroimage – volume: 35 start-page: 757 year: 2014 end-page: 768 ident: bib7 article-title: Functional connectivity and graph theory in preclinical Alzheimer's disease publication-title: Neurobiol. Aging – volume: 106 start-page: 7209 year: 2009 end-page: 7214 ident: bib18 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 173 start-page: 498 year: 2018 end-page: 508 ident: bib47 article-title: Evolution of spatial and temporal features of functional brain networks across the lifespan publication-title: Neuroimage – volume: 27 start-page: 5415 year: 2017 end-page: 5429 ident: bib37 article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebr. Cortex – volume: 31 start-page: 58 year: 2011 end-page: 67 ident: bib50 article-title: The influence of carbon dioxide on brain activity and metabolism in conscious humans publication-title: J. Cerebr. Blood Flow Metabol. – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bib24 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 71 start-page: 523 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib28 article-title: Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2013.4091 – volume: 21 start-page: 1426 year: 2011 ident: 10.1016/j.neuroimage.2018.11.028_bib33 article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhq224 – volume: 4 start-page: 8 year: 2010 ident: 10.1016/j.neuroimage.2018.11.028_bib13 article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data publication-title: Front. Syst. Neurosci. – volume: 146 start-page: 715 year: 2017 ident: 10.1016/j.neuroimage.2018.11.028_bib31 article-title: Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.063 – volume: 35 start-page: 757 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib7 article-title: Functional connectivity and graph theory in preclinical Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.10.081 – volume: 134 start-page: 494 year: 2016 ident: 10.1016/j.neuroimage.2018.11.028_bib26 article-title: The connectivity domain: analyzing resting state fMRI data using feature-based data-driven and model-based methods publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.006 – volume: 111 start-page: E4997 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib9 article-title: Decreased segregation of brain systems across the healthy adult lifespan publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1415122111 – volume: 31 start-page: 1536 year: 2006 ident: 10.1016/j.neuroimage.2018.11.028_bib5 article-title: Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.048 – volume: 26 start-page: 63 year: 2006 ident: 10.1016/j.neuroimage.2018.11.028_bib1 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 31 start-page: 253 year: 2018 ident: 10.1016/j.neuroimage.2018.11.028_bib27 article-title: Detrimental effect of systemic vascular risk factors on brain hemodynamic function assessed with MRI publication-title: NeuroRadiol. J. doi: 10.1177/1971400917750375 – volume: 31 start-page: 58 year: 2011 ident: 10.1016/j.neuroimage.2018.11.028_bib50 article-title: The influence of carbon dioxide on brain activity and metabolism in conscious humans publication-title: J. Cerebr. Blood Flow Metabol. doi: 10.1038/jcbfm.2010.153 – volume: 1224 start-page: 126 year: 2011 ident: 10.1016/j.neuroimage.2018.11.028_bib49 article-title: Concepts and principles in the analysis of brain networks publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05947.x – issue: 94 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib32 article-title: MRI mapping of cerebrovascular reactivity via gas inhalation challenges publication-title: J. Vis. Exp. – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.neuroimage.2018.11.028_bib20 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504136102 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.neuroimage.2018.11.028_bib43 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0905267106 – volume: 173 start-page: 498 year: 2018 ident: 10.1016/j.neuroimage.2018.11.028_bib47 article-title: Evolution of spatial and temporal features of functional brain networks across the lifespan publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.02.066 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.neuroimage.2018.11.028_bib3 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 132 start-page: 301 year: 2016 ident: 10.1016/j.neuroimage.2018.11.028_bib22 article-title: The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: the influence of basal carbon dioxide publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.051 – volume: 47 start-page: 1381 year: 2009 ident: 10.1016/j.neuroimage.2018.11.028_bib11 article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.048 – volume: 32 start-page: 2154 year: 2012 ident: 10.1016/j.neuroimage.2018.11.028_bib39 article-title: Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4494-11.2012 – volume: 5 year: 2016 ident: 10.1016/j.neuroimage.2018.11.028_bib12 article-title: A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields publication-title: Elife doi: 10.7554/eLife.15252 – volume: 4 start-page: 662 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib44 article-title: Age-related reorganizational changes in modularity and functional connectivity of human brain networks publication-title: Brain Connect. doi: 10.1089/brain.2014.0286 – volume: 21 start-page: 981 year: 2017 ident: 10.1016/j.neuroimage.2018.11.028_bib48 article-title: Segregated systems of human brain networks publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2017.09.006 – volume: 11 year: 2017 ident: 10.1016/j.neuroimage.2018.11.028_bib36 article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00115 – volume: 52 start-page: 1059 year: 2010 ident: 10.1016/j.neuroimage.2018.11.028_bib40 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 7 start-page: 732 year: 2006 ident: 10.1016/j.neuroimage.2018.11.028_bib35 article-title: Applications of fMRI in translational medicine and clinical practice publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1929 – volume: 102 start-page: 345 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib4 article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.067 – volume: 106 start-page: 7209 year: 2009 ident: 10.1016/j.neuroimage.2018.11.028_bib18 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0811879106 – volume: 35 start-page: 396 year: 2007 ident: 10.1016/j.neuroimage.2018.11.028_bib17 article-title: A method for using blocked and event-related fMRI data to study “resting state” functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.051 – volume: 101 start-page: 13091 year: 2004 ident: 10.1016/j.neuroimage.2018.11.028_bib38 article-title: Aging reduces neural specialization in ventral visual cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0405148101 – volume: 6 start-page: 663 year: 2015 ident: 10.1016/j.neuroimage.2018.11.028_bib42 article-title: Reorganization of brain networks in aging: a review of functional connectivity studies publication-title: Front. Psychol. doi: 10.3389/fpsyg.2015.00663 – volume: 8 start-page: 700 year: 2007 ident: 10.1016/j.neuroimage.2018.11.028_bib19 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 111 start-page: 147 year: 2015 ident: 10.1016/j.neuroimage.2018.11.028_bib52 article-title: Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.018 – volume: 56 start-page: 2068 year: 2011 ident: 10.1016/j.neuroimage.2018.11.028_bib41 article-title: Weight-conserving characterization of complex functional brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.069 – volume: 7 start-page: 76 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib8 article-title: Topological organization of the human brain functional connectome across the lifespan publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2013.11.004 – volume: 138 start-page: 147 year: 2016 ident: 10.1016/j.neuroimage.2018.11.028_bib23 article-title: Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: validation in healthy adults publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.025 – volume: 27 start-page: 5415 year: 2017 ident: 10.1016/j.neuroimage.2018.11.028_bib37 article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhx230 – volume: 100 start-page: 253 year: 2003 ident: 10.1016/j.neuroimage.2018.11.028_bib24 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0135058100 – volume: 29 start-page: 1359 year: 2006 ident: 10.1016/j.neuroimage.2018.11.028_bib16 article-title: fMRI resting state networks define distinct modes of long-distance interactions in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 108 start-page: 7641 year: 2011 ident: 10.1016/j.neuroimage.2018.11.028_bib2 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1018985108 – volume: 44 start-page: 857 year: 2009 ident: 10.1016/j.neuroimage.2018.11.028_bib10 article-title: Influence of heart rate on the BOLD signal: the cardiac response function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.029 – volume: 33 start-page: 715 year: 2012 ident: 10.1016/j.neuroimage.2018.11.028_bib46 article-title: Depression of cortical activity in humans by mild hypercapnia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21242 – volume: 36 start-page: 4053 year: 2015 ident: 10.1016/j.neuroimage.2018.11.028_bib21 article-title: Comparison of continuously acquired resting state and extracted analogues from active tasks publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22897 – volume: 34 start-page: 537 year: 1995 ident: 10.1016/j.neuroimage.2018.11.028_bib6 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 49 start-page: 2163 year: 2010 ident: 10.1016/j.neuroimage.2018.11.028_bib53 article-title: Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.080 – volume: 83 start-page: 238 year: 2014 ident: 10.1016/j.neuroimage.2018.11.028_bib14 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 6 start-page: e159 year: 2008 ident: 10.1016/j.neuroimage.2018.11.028_bib25 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2018.11.028_bib29 article-title: Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study publication-title: PloS One – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2018.11.028_bib51 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – year: 2017 ident: 10.1016/j.neuroimage.2018.11.028_bib30 article-title: Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review publication-title: Neuroimage – volume: 36 start-page: 3912 year: 2015 ident: 10.1016/j.neuroimage.2018.11.028_bib34 article-title: The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22886 – volume: 33 start-page: 1914 year: 2012 ident: 10.1016/j.neuroimage.2018.11.028_bib15 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21333 – volume: 8 start-page: 418 year: 2004 ident: 10.1016/j.neuroimage.2018.11.028_bib45 article-title: Organization, development and function of complex brain networks publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2004.07.008 |
SSID | ssj0009148 |
Score | 2.3833714 |
Snippet | Functional connectivity MRI, based on Blood-Oxygenation-Level-Dependent (BOLD) signals, is typically performed while the subject is at rest. On the other hand,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 455 |
SubjectTerms | Adult Aged Aged, 80 and over Aging Cerebellum - diagnostic imaging Cerebellum - physiology Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Cerebrovascular diseases Cerebrovascular reactivity CO2 inhalation Connectome - methods Data processing Female Functional connectivity Functional magnetic resonance imaging Humans Hypercapnia Hypercapnia - chemically induced Hypercapnia - diagnostic imaging Hypercapnia - physiopathology Life span Magnetic Resonance Imaging - methods Male Middle Aged Nerve Net - diagnostic imaging Nerve Net - physiology Neural networks Neuroimaging Neurovascular Coupling - physiology Physiology Resting-state functional MRI Studies Vascular diseases Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqrYS4ICivhVIZiWvYOHYcG06ltNoCWySgqLfIdmI1Vcmu9nHizzOzdtJu4bASxySePGzPw87M9xHyxoq8cCqvE2WcToTQIjG5qxJjFPdFapTRWDs8OZPjc_HpIr_YIUddLQymVUbbH2z62lrHM6PYm6NZ04y-Q2QA7gbWG0i2k6Id3s24lvmA7B6efh6f3WDvMhEq4nKeoEBM6AlpXmvYyOYXKC_meam3COmJ1Oz_9lJ_R6F3kylveaeTh-RBDCvpYXjzR2SnbvfIvUn8cf6Y_D4GVQ5VinTqqUViCIo-LWwFUof5Li4wSVAsOaGXsECdOzNrG0M_fP3ykU6-nVLMJ31Hf0LsHqiYKNzF0OvG12CYWopsu_MlPoAVKV2sLG7yLJ6Q85PjH0fjJPIuJC6XYpko1GKTaqXrglstVSasQJAakfJK5tYy7ivPdFVxLwpf8aou0sxL6U0hvLX8KRm007Z-TqhgxkprKglxqHCFskxbUWcOjnPDtBmSouvn0kVQcuTGuC677LOr8maEShwhWLOUMEJDwnrJWQDm2EJGd0NZdoWnYCpL8B5byL7vZTcm6JbS-93MKaORWJQZk8g-zzkbktf9ZVBv_Gdj2nq6wjZcSWihxJA8CxOt_9w12hvErNCJG1Owb4DQ4ZtX2uZyDSEOt1SwEnjxXx_1ktyHIx1y2PfJYDlf1a8gRFvag6iCfwD6ij4J priority: 102 providerName: Elsevier |
Title | Estimation of brain functional connectivity from hypercapnia BOLD MRI data: Validation in a lifespan cohort of 170 subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918321062 https://dx.doi.org/10.1016/j.neuroimage.2018.11.028 https://www.ncbi.nlm.nih.gov/pubmed/30463025 https://www.proquest.com/docview/2167143331 https://www.proquest.com/docview/2138633184 https://pubmed.ncbi.nlm.nih.gov/PMC6338507 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN90jMpIvGbEteMPeEDb6NTBWqaKob5FtpNoRSPt-vGExN_OXZykDBDqUxTFly_fnc_23e9HyGsnEuV1kkfaehMJYURkE59F1mpeqNhqa7B2eDiSg0vxcZJM6gW3ZZ1W2fjEylFnM49r5G96TCJVN-fs_fwmQtYo3F2tKTR2yF4FXQb6rCZqA7rLRCiFS3ikoUGdyRPyuyq8yOl3sFpM8NKHiOWJnOz_Hp7-Dj__zKL8bVg6fUDu1_EkPQoK8JDcyctH5O6w3jF_TH70wYZDeSKdFdQhIwTFwSysAVKPiS4-UEhQrDWhVzAzXXg7L6eWHn8-_0CH4zOKiaRv6VcI2gMHE4W7WHo9LXLwSCVFmt3FCh_AVEyXa4erO8sn5PK0_-VkENWEC5FPpFhFGs3XxkabXHFnpO4JJxCdRsQ8k4lzjBdZwUyW8UKoIuNZruJeIWVhlSic40_Jbjkr8-eECmaddDaTEIAKr7Rjxom85-E8sczYDlHNf059jUaOpBjXaZN29i3d9FCKPQSTlRR6qENYKzkPiBxbyJimK9Om4hR8ZArDxhay71rZOioJ0caW0geN5qS1d1imG13ukFftZbBr3KyxZT5bYxuuJbTQokOeBUVrP7eCeYNgFX7iLRVsGyBm-O0r5fSqwg6HW2qYAuz__7VekHvwDSZkpx-Q3dVinb-E4GvlumTn8CfrVnbWJXtHJ-PzCzyefRqM4HjcH12MfwHUiTb3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8KA4wEj4E4dhIbhBBjnVrWFjRt096C7cRapy0t_RBC_E_8jdzVScoAob7sMYrPiX3n8519dz9CnhsRp1bGRSC1VYEQSgQ6tnmgteQuDbXUCnOHB8Okeyg-HsfHG-RnnQuDYZW1Tlwq6nxs8Yz8VcQShOrmnL2bfA0QNQpvV2sIDS8We8X3b-Cyzd72doC_L6Jot3PwoRtUqAKBjRMxDyTKqA6VVEXKjUpkJIzAEiwi5HkSG8O4yx1Tec6dSF3O8yINI5ckTqfCGcOh3ytkU2BGa4tsbneGn_dXZX6Z8Ml3MQ8kY6qKHfIRZcsKlaNz0BMYUiZfYvVQRIH_94b4t8H7Z9zmbxvh7k1yo7Jg6XsvcrfIRlHeJlcH1R39HfKjA1rDJ0TSsaMGMSgobp_-1JFaDK2xHrSCYnYLPQFfeGr1pBxpuv2pv0MH-z2Koauv6RG4CR71iUIvmp6NXAE6sKQI7Dud4wdYGtLZwuB50uwuObwUZtwjrXJcFg8IFUybxOg8AZNX2FQapowoIgvPsWZKt0laz3Nmq_rnCMNxltWBbqfZikMZcgjcoww41CasoZz4GiBr0KialVmd4wpaOYONag3aNw1tZQd5-2ZN6q1acrJKH82y1eppk2fNa9AkeD2ky2K8wDZcJtBCija57wWtGe6ysByYxzCJF0SwaYBVyi--KUcny2rl0KUEp-Ph_3_rKbnWPRj0s35vuPeIXIfxKB8bv0Va8-mieAym39w8qdYbJV8ue4n_AuCRb0M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHc6BhgJHsPq2IltEEJAV61sHQgx1LdgO7FWtKWlFyHEP-PXcU6cpAwQ6sseo9jO5Vx8bH_nfIQ8tiKRTiVFpIzTkRBaRCZxeWSM4l52jTIac4eHR-n-sXg7SkYb5GeTC4OwysYnVo46nzjcI9-NWYpU3ZyzXV_DIt73-i-nXyNkkMKT1oZOI6jIQfH9Gyzf5i8GPZD1kzju7318sx_VDAORS1KxiBTqq-lqpQvJrU5VLKzAciyiy_M0sZZxn3um85x7IX3O80J2Y5-m3kjhreUw7iVyWXKIqsCW5EiuCv4yEdLwEh4pxnSNIgrYsqpW5fgMPAaCy9RTrCOKfPD_nhr_Dn3_RHD-NiX2r5GrdSxLXwXlu042ivIG2RrWp_U3yY898B8hNZJOPLXIRkFxIg37j9QhyMYF-gqKeS70BFbFM2em5djQ1-8Oe3T4YUARxPqMfoIFQ-B_ojCKoadjX4A3LClS_M4W-AAmu3S-tLizNL9Fji9EFLfJZjkpi7uECmZsak2eQvArnFSWaSuK2MF1Ypg2HSKb_5y5uhI6EnKcZg3k7Uu2klCGEoKFUgYS6hDW9pyGaiBr9NGNKLMm2xX8cwZT1hp9n7d964goRDpr9t5pNCerPdM8W9lRhzxqb4NPwYMiUxaTJbbhKoUWSnTInaBo7edWJeYgUIafeE4F2wZYr_z8nXJ8UtUthyEVGMr2_1_rIdkCw84OB0cH98gV-BwdQPI7ZHMxWxb3IQZc2AeVsVHy-aKt-xeOeXIK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+brain+functional+connectivity+from+hypercapnia+BOLD+MRI+data%3A+Validation+in+a+lifespan+cohort+of+170+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Hou%2C+Xirui&rft.au=Liu%2C+Peiying&rft.au=Gu%2C+Hong&rft.au=Chan%2C+Micaela&rft.date=2019-02-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=186&rft.spage=455&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.11.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |