Key considerations, target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis

Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, ann...

Full description

Saved in:
Bibliographic Details
Published inMalaria journal Vol. 22; no. 1; pp. 346 - 16
Main Authors Mshani, Issa H., Siria, Doreen J., Mwanga, Emmanuel P., Sow, Bazoumana BD, Sanou, Roger, Opiyo, Mercy, Sikulu-Lord, Maggy T., Ferguson, Heather M., Diabate, Abdoulaye, Wynne, Klaas, González-Jiménez, Mario, Baldini, Francesco, Babayan, Simon A., Okumu, Fredros
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.11.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements—and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
AbstractList Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements--and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
Abstract Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements—and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements--and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings. Keywords: Malaria surveillance, Infrared spectroscopy, Artificial intelligence, Machine learning, Deep learning, Target product profiles
ArticleNumber 346
Audience Academic
Author Ferguson, Heather M.
Baldini, Francesco
Sikulu-Lord, Maggy T.
Sow, Bazoumana BD
Opiyo, Mercy
Okumu, Fredros
Diabate, Abdoulaye
Sanou, Roger
Babayan, Simon A.
Mwanga, Emmanuel P.
González-Jiménez, Mario
Siria, Doreen J.
Mshani, Issa H.
Wynne, Klaas
Author_xml – sequence: 1
  givenname: Issa H.
  surname: Mshani
  fullname: Mshani, Issa H.
– sequence: 2
  givenname: Doreen J.
  surname: Siria
  fullname: Siria, Doreen J.
– sequence: 3
  givenname: Emmanuel P.
  surname: Mwanga
  fullname: Mwanga, Emmanuel P.
– sequence: 4
  givenname: Bazoumana BD
  surname: Sow
  fullname: Sow, Bazoumana BD
– sequence: 5
  givenname: Roger
  surname: Sanou
  fullname: Sanou, Roger
– sequence: 6
  givenname: Mercy
  surname: Opiyo
  fullname: Opiyo, Mercy
– sequence: 7
  givenname: Maggy T.
  surname: Sikulu-Lord
  fullname: Sikulu-Lord, Maggy T.
– sequence: 8
  givenname: Heather M.
  surname: Ferguson
  fullname: Ferguson, Heather M.
– sequence: 9
  givenname: Abdoulaye
  surname: Diabate
  fullname: Diabate, Abdoulaye
– sequence: 10
  givenname: Klaas
  surname: Wynne
  fullname: Wynne, Klaas
– sequence: 11
  givenname: Mario
  surname: González-Jiménez
  fullname: González-Jiménez, Mario
– sequence: 12
  givenname: Francesco
  surname: Baldini
  fullname: Baldini, Francesco
– sequence: 13
  givenname: Simon A.
  surname: Babayan
  fullname: Babayan, Simon A.
– sequence: 14
  givenname: Fredros
  surname: Okumu
  fullname: Okumu, Fredros
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37950315$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAiyQJTYsSPElsZ0VqiouFZXYwNo6cY4zrjJxsDOV5qH6jjgzpXQqhLKwZX__f3xO_tPiaAwjFsVrRs8Z0_JDYrwRsqRclLRSmpbiWXHCKlWXXKv66NH-uDhN6YZSprTiL4pjoZqaClafFHffcEtsGJPvMMLs8-49mSH2OJMphm5jd6vzA-YLGDsSMSFEuyI9TIn4kcwrJDBNg7c7PQkun7oIETuSJrRzDMmGabtTQ5y989bDkKEZh8H3OFokLkSyhgGiB5I28Rb9MMBysYg6D_0Ykk8vi-cOhoSv7tez4ufnTz8uv5bX379cXV5cl7aW1VwqYK1mtFMSOtq4irvaWiektm3D2ppim-cFgvKmZVrZrqWdtRoagbZtZdOIs-Jq79sFuDFT9GuIWxPAm91BiL1ZGrEDGuEk5wygZYgVOKbBtbm-dIrJXKbOXh_3XtOmXWNncZwjDAemhzejX5k-3BpGpdBa8Ozw7t4hhl8bTLNZ-2RxGRCGTTJc64ZXFdVVRt8-QW_CJo55VplqKFVa1s1fqofcQf5ZIRe2i6m5UIrnQQkpM3X-Dyp_Ha59jgwuoTgUvHnc6UOLf9KWAb4HbI5EiugeEEbNEmmzj7TJkTa7SBuRRfqJyPp5l7T8HD_8T_obwsL-og
CitedBy_id crossref_primary_10_3390_spectroscj3010008
crossref_primary_10_1016_j_puhe_2024_11_013
crossref_primary_10_1186_s12936_024_05191_8
crossref_primary_10_3390_bios15020123
crossref_primary_10_1016_j_saa_2024_125337
crossref_primary_10_1186_s12936_024_05011_z
crossref_primary_10_1186_s12936_024_04915_0
Cites_doi 10.1186/s12936-016-1260-3
10.1177/0003702820915729
10.1186/s12936-018-2479-y
10.1093/cid/cis228
10.1136/jcp.47.8.740
10.1177/00037028211027140
10.1186/s12936-019-2982-9
10.1002/9780470988510.ch2
10.4102/phcfm.v12i1.2212
10.1021/ac802291a
10.1371/journal.pgph.0000262
10.1111/j.1365-2915.1990.tb00281.x
10.1021/acs.analchem.6b04827
10.1186/s12936-018-2408-0
10.1016/j.ijpara.2004.03.008
10.1186/s12936-019-2719-9
10.1371/journal.pone.0209451
10.1186/s12936-016-1454-8
10.1186/s12936-019-3041-2
10.1093/infdis/jiz335
10.1093/pnasnexus/pgac272
10.1128/CMR.15.1.66-78.2002
10.4269/ajtmh.2002.66.804
10.1186/s12936-017-1870-4
10.12688/wellcomeopenres.15201.1
10.1093/cid/ciw649
10.1186/s13071-022-05396-3
10.1016/0166-6851(93)90050-8
10.3347/kjp.2009.47.2.93
10.1038/s41598-021-00714-8
10.2471/BLT.07.042259
10.1186/1475-2875-9-136
10.1371/journal.pmed.1002452
10.1021/acs.analchem.1c02948
10.1371/journal.pone.0020805
10.1111/j.1755-0998.2008.02469.x
10.1371/journal.pone.0121763
10.1016/S1471-4922(02)02348-6
10.1038/s41564-021-00962-4
10.1016/S0035-9203(53)80005-2
10.4269/ajtmh.1984.33.227
10.1039/C4AN00989D
10.4269/ajtmh.2011.11-0438
10.4269/ajtmh.2007.77.119
10.1016/S0140-6736(18)30427-6
10.1038/ncomms2241
10.4269/ajtmh.2003.69.200
10.1186/1475-2875-7-177
10.1186/s12936-021-03796-x
10.1128/JCM.42.3.1214-1219.2004
10.1371/journal.ppat.1002588
10.1080/10408363.2020.1828811
10.4269/ajtmh.2012.10-0665
10.1016/j.pt.2019.10.011
10.1186/s12936-020-03494-0
10.1039/C5FD00181A
10.1186/s12936-015-1056-x
10.1038/s41598-017-15031-2
10.4269/ajtmh.2012.11-0619
10.1038/174792a0
10.1186/s12936-017-2018-2
10.1073/pnas.87.8.2931
10.1186/s12936-020-03493-1
10.1093/cid/civ122
10.3390/molecules25122948
10.1371/journal.pntd.0009218
10.1093/jmedent/25.1.9
10.1038/s41467-022-28980-8
10.1038/s41598-021-89715-1
10.1515/dx-2019-0060
10.1371/journal.pmed.1002455
10.1186/s12936-015-0611-9
10.1186/s12889-021-10290-1
10.1186/s12936-019-2822-y
10.1186/s13071-022-05181-2
10.1021/acs.analchem.0c05103
10.1186/s12936-018-2189-5
10.1371/journal.pone.0043094
10.1086/644781
10.1371/journal.pone.0008091
10.1186/s13071-017-2501-1
10.1016/0035-9203(93)90124-9
10.1371/journal.pone.0010165
10.1126/sciadv.aat0496
10.1186/s13071-018-2960-z
10.1186/s12936-020-3144-9
10.1371/journal.pone.0159160
10.1186/1756-3305-3-49
10.1039/C6AN02075E
10.1038/s42003-020-01601-0
10.1093/jmedent/27.3.377
10.1155/2019/1417967
10.1021/ac500199x
10.1021/acs.analchem.6b04578
10.1186/s12936-019-2945-1
10.1093/infdis/jix321
10.1186/s12936-019-3028-z
10.1007/978-981-10-3147-2
10.1371/journal.pone.0234557
10.1186/1475-2875-3-13
10.1186/s13071-018-3127-7
10.1080/00034989859401
10.1186/s12859-022-05128-5
10.4269/ajtmh.1993.49.520
10.4269/ajtmh.1987.36.459
10.1016/j.meegid.2015.04.018
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SS
7U9
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
F1W
FYUFA
GHDGH
H94
H95
H97
K9.
L.G
M0S
M1P
M7N
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12936-023-04780-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1475-2875
EndPage 16
ExternalDocumentID oai_doaj_org_article_3f6221aab1ee4af18afb7a16f716b045
PMC10638832
A772368366
37950315
10_1186_s12936_023_04780_3
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/P025501/1
– fundername: ;
  grantid: No. 832703, to KW
– fundername: ;
  grantid: Grant No. OPP 1217647 to Ifakara Health Institute
– fundername: ;
  grantid: to Ifakara Health Institute
– fundername: ;
  grantid: Grant No ICA/R1/191238 to SAB University of Glasgow and Ifakara Health Institute
GroupedDBID ---
0R~
29M
2WC
53G
5VS
7X7
88E
8C1
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECGQY
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
LGEZI
LOTEE
M1P
M48
M~E
NADUK
NXXTH
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7SS
7U9
7XB
8FK
AZQEC
C1K
DWQXO
F1W
H94
H95
H97
K9.
L.G
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c564t-7a1b810d76ad09f42f5ccf368cb91b50eb047a3029b187cdb0dcc8a93ecbb6993
IEDL.DBID M48
ISSN 1475-2875
IngestDate Wed Aug 27 01:23:49 EDT 2025
Thu Aug 21 18:36:32 EDT 2025
Fri Jul 11 05:34:55 EDT 2025
Fri Jul 25 22:53:15 EDT 2025
Tue Jun 17 22:19:50 EDT 2025
Tue Jun 10 21:15:52 EDT 2025
Mon Jul 21 05:52:34 EDT 2025
Tue Jul 01 00:42:07 EDT 2025
Thu Apr 24 22:58:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Infrared spectroscopy
Artificial intelligence
Malaria surveillance
Target product profiles
Machine learning
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-7a1b810d76ad09f42f5ccf368cb91b50eb047a3029b187cdb0dcc8a93ecbb6993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2890078659?pq-origsite=%requestingapplication%
PMID 37950315
PQID 2890078659
PQPubID 42600
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_3f6221aab1ee4af18afb7a16f716b045
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10638832
proquest_miscellaneous_2889244084
proquest_journals_2890078659
gale_infotracmisc_A772368366
gale_infotracacademiconefile_A772368366
pubmed_primary_37950315
crossref_primary_10_1186_s12936_023_04780_3
crossref_citationtrail_10_1186_s12936_023_04780_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-10
PublicationDateYYYYMMDD 2023-11-10
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Malaria journal
PublicationTitleAlternate Malar J
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References OA Koita (4780_CR56) 2012; 86
EP Mwanga (4780_CR100) 2023; 24
FE Dowell (4780_CR130) 2011; 85
T Bousema (4780_CR8) 2010; 9
E Erlank (4780_CR84) 2018; 17
U Morris (4780_CR66) 2015; 33
TS Detinova (4780_CR77) 1962; 47
WN Beklemishev (4780_CR79) 1959; 21
T Hänscheid (4780_CR60) 2002; 18
L Sroute (4780_CR106) 2020; 74
WHO (4780_CR127) 2018
4780_CR129
WHO (4780_CR2) 2015
MF Maia (4780_CR30) 2019; 18
M González Jiménez (4780_CR22) 2019; 4
GT Webster (4780_CR29) 2009; 81
AS Bell (4780_CR74) 2004; 34
C Bass (4780_CR83) 2008; 7
G Snounou (4780_CR62) 1996; 50
DL Smith (4780_CR13) 2012; 8
F Jourdain (4780_CR89) 2018; 11
WHO (4780_CR46) 1999
ML Wilson (4780_CR132) 2012; 54
EP Mwanga (4780_CR27) 2019; 18
H Lamptey (4780_CR9) 2018; 17
C Garrett-Jones (4780_CR15) 1964; 31
WHO (4780_CR97) 2018
MP Milali (4780_CR24) 2019; 14
E Baum (4780_CR67) 2015; 14
M Sikulu (4780_CR99) 2010; 3
M Coetzee (4780_CR85) 2020; 19
D Sumari (4780_CR64) 2017; 16
WHO (4780_CR1) 2018
S Roy (4780_CR116) 2017; 89
WHO (4780_CR7) 2022
V Chaumeau (4780_CR18) 2016; 11
J Grabska (4780_CR102) 2020; 25
P Bualombai (4780_CR49) 2013; 27
N Tangpukdee (4780_CR37) 2009; 47
EP Mwanga (4780_CR26) 2019; 18
JC Beier (4780_CR81) 1987; 36
BR Wood (4780_CR122) 2014; 139
DJ Siria (4780_CR105) 2020; 15
WHO (4780_CR36) 2014
C Wongsrichanalai (4780_CR40) 2007; 77
PJ Rosenthal (4780_CR48) 2012; 86
R Farlow (4780_CR95) 2020; 19
DJ Siria (4780_CR23) 2022; 13
MT Makler (4780_CR69) 1998; 92
A Tassanakajon (4780_CR82) 1993; 87
TR Burkot (4780_CR91) 1984; 33
JC Beier (4780_CR92) 1988; 25
JB Silver (4780_CR19) 2007
DT Kangoye (4780_CR124) 2016; 15
L Kamau (4780_CR73) 2017; 66
BB Tarimo (4780_CR104) 2022; 15
F Okumu (4780_CR98) 2022; 2
S Shillcutt (4780_CR47) 2008; 86
R Thomson (4780_CR54) 2019; 220
LC Okell (4780_CR126) 2012; 3
MAC Dowling (4780_CR72) 1966; 34
PM Esperança (4780_CR110) 2018; 11
WHO (4780_CR59) 2017
BJ Johnson (4780_CR94) 2020; 36
G Cottrell (4780_CR65) 2015; 60
D Perez-Guaita (4780_CR121) 2016; 187
LM Milne (4780_CR39) 1994; 47
NM Pham (4780_CR43) 2018; 17
G Snounou (4780_CR114) 1993; 58
TT Timbrook (4780_CR71) 2016; 64
RJ Kent (4780_CR93) 2009; 9
JA Adegoke (4780_CR118) 2021; 93
E Lo (4780_CR41) 2015; 10
LMB Santos (4780_CR109) 2021; 4
DE Goldberg (4780_CR115) 1990; 87
malERA Refresh Consultative Panel on Tools for Malaria Elimination (4780_CR5) 2017; 14
F Perandin (4780_CR63) 2004; 42
M Tetteh (4780_CR128) 2021; 20
DF Da (4780_CR111) 2021; 11
P Mogeni (4780_CR42) 2017; 216
G Davidson (4780_CR76) 1954; 174
EYK Ng (4780_CR103) 2017
G Davidson (4780_CR96) 1953; 47
JC Beier (4780_CR17) 1990; 27
JN Fernandes (4780_CR34) 2018; 4
4780_CR6
P Heraud (4780_CR28) 2019; 18
BJ Krajacich (4780_CR112) 2017; 10
RA Wirtz (4780_CR90) 1987; 65
SE Bellan (4780_CR12) 2010; 5
D Gamboa (4780_CR51) 2010; 5
D Christensen (4780_CR108) 2021; 75
N Protopopoff (4780_CR14) 2018; 391
KB Beshir (4780_CR58) 2017; 7
J Maltha (4780_CR55) 2012; 7
VP Polovodova (4780_CR78) 1949; 18
UNITAID (4780_CR4) 2015
JA Scott (4780_CR88) 1993; 49
DL Smith (4780_CR11) 2004; 3
O Ogunfowokan (4780_CR70) 2020; 12
D Bell (4780_CR131) 2016; 15
LC Okell (4780_CR61) 2009; 200
JI Nankabirwa (4780_CR10) 2015; 14
MP Milali (4780_CR25) 2020; 15
LL Koekemoer (4780_CR86) 2002; 66
S Mihreteab (4780_CR52) 2021; 11
JB Parr (4780_CR57) 2017; 216
G Lippi (4780_CR117) 2021; 8
JN Mgaya (4780_CR113) 2022; 15
C Garrett-Jones (4780_CR16) 1968
MN Moyeh (4780_CR125) 2019; 2019
S Karl (4780_CR68) 2011; 6
SM Feleke (4780_CR53) 2021; 6
A Khoshmanesh (4780_CR107) 2017; 89
J Cunningham (4780_CR45) 2019; 18
Service MW (4780_CR75) 1993
TL Russell (4780_CR21) 2020; 19
A Cohuet (4780_CR87) 2018; 69
B Goh (4780_CR33) 2021; 15
TR Burkot (4780_CR20) 2019; 18
4780_CR35
TQ Hoc (4780_CR80) 1990; 4
GA Garcia (4780_CR101) 2022; 1
A Khoshmanesh (4780_CR32) 2014; 86
WHO (4780_CR3) 2012
M Martin (4780_CR119) 2017; 142
A Moody (4780_CR38) 2002; 15
A Fried (4780_CR31) 2006; 1
B Abuaku (4780_CR50) 2021; 21
JA Adegoke (4780_CR123) 2021; 93
F Odhiambo (4780_CR44) 2017; 16
S De Bruyne (4780_CR120) 2021; 58
References_xml – volume: 15
  start-page: 213
  year: 2016
  ident: 4780_CR124
  publication-title: Malar J
  doi: 10.1186/s12936-016-1260-3
– ident: 4780_CR35
– volume: 74
  start-page: 900
  year: 2020
  ident: 4780_CR106
  publication-title: Appl Spectrosc
  doi: 10.1177/0003702820915729
– volume: 17
  start-page: 331
  year: 2018
  ident: 4780_CR9
  publication-title: Malar J
  doi: 10.1186/s12936-018-2479-y
– volume: 54
  start-page: 1637
  year: 2012
  ident: 4780_CR132
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cis228
– volume: 47
  start-page: 740
  year: 1994
  ident: 4780_CR39
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.47.8.740
– volume: 75
  start-page: 1003
  year: 2021
  ident: 4780_CR108
  publication-title: Appl Spectrosc
  doi: 10.1177/00037028211027140
– volume: 65
  start-page: 39
  year: 1987
  ident: 4780_CR90
  publication-title: Bull World Health Organ
– volume: 18
  start-page: 341
  year: 2019
  ident: 4780_CR27
  publication-title: Malar J
  doi: 10.1186/s12936-019-2982-9
– volume: 1
  start-page: 72
  year: 2006
  ident: 4780_CR31
  publication-title: Anal Tech Atmos Meas
  doi: 10.1002/9780470988510.ch2
– volume: 27
  start-page: 135
  year: 2013
  ident: 4780_CR49
  publication-title: J Health Res
– ident: 4780_CR129
– volume: 12
  start-page: e1
  year: 2020
  ident: 4780_CR70
  publication-title: Afr J Prim Health Care Fam Med
  doi: 10.4102/phcfm.v12i1.2212
– volume-title: Global technical strategy for malaria 2016–2030
  year: 2015
  ident: 4780_CR2
– volume: 81
  start-page: 2516
  year: 2009
  ident: 4780_CR29
  publication-title: Anal Chem
  doi: 10.1021/ac802291a
– volume: 2
  start-page: e0000262
  year: 2022
  ident: 4780_CR98
  publication-title: PLoS Glob Public Health
  doi: 10.1371/journal.pgph.0000262
– volume: 4
  start-page: 227
  year: 1990
  ident: 4780_CR80
  publication-title: Med Vet Entomol
  doi: 10.1111/j.1365-2915.1990.tb00281.x
– volume: 89
  start-page: 5285
  year: 2017
  ident: 4780_CR107
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b04827
– volume: 17
  start-page: 260
  year: 2018
  ident: 4780_CR43
  publication-title: Malar J
  doi: 10.1186/s12936-018-2408-0
– volume: 34
  start-page: 795
  year: 2004
  ident: 4780_CR74
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2004.03.008
– volume: 18
  start-page: 85
  year: 2019
  ident: 4780_CR30
  publication-title: Malar J
  doi: 10.1186/s12936-019-2719-9
– volume: 14
  start-page: e0209451
  year: 2019
  ident: 4780_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0209451
– volume: 15
  start-page: 406
  year: 2016
  ident: 4780_CR131
  publication-title: Malar J
  doi: 10.1186/s12936-016-1454-8
– volume: 18
  start-page: 399
  year: 2019
  ident: 4780_CR20
  publication-title: Malar J
  doi: 10.1186/s12936-019-3041-2
– start-page: 752
  volume-title: Mosquito ecology: field sampling methods
  year: 1993
  ident: 4780_CR75
– volume: 47
  start-page: 13
  year: 1962
  ident: 4780_CR77
  publication-title: Monogr Ser World Health Organ
– volume: 220
  start-page: 1444
  year: 2019
  ident: 4780_CR54
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiz335
– volume: 31
  start-page: 71
  year: 1964
  ident: 4780_CR15
  publication-title: Bull World Health Organ
– volume: 50
  start-page: 263
  year: 1996
  ident: 4780_CR62
  publication-title: Methods Mol Biol
– volume: 1
  start-page: 272
  year: 2022
  ident: 4780_CR101
  publication-title: PNAS Nexus
  doi: 10.1093/pnasnexus/pgac272
– volume: 15
  start-page: 66
  year: 2002
  ident: 4780_CR38
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.15.1.66-78.2002
– volume: 66
  start-page: 804
  year: 2002
  ident: 4780_CR86
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2002.66.804
– volume: 16
  start-page: 222
  year: 2017
  ident: 4780_CR64
  publication-title: Malar J
  doi: 10.1186/s12936-017-1870-4
– volume: 4
  start-page: 76
  year: 2019
  ident: 4780_CR22
  publication-title: Wellcome Open Res
  doi: 10.12688/wellcomeopenres.15201.1
– volume: 64
  start-page: 15
  year: 2016
  ident: 4780_CR71
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciw649
– volume-title: Malaria diagnostics landscape update
  year: 2015
  ident: 4780_CR4
– volume: 15
  start-page: 281
  year: 2022
  ident: 4780_CR113
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-022-05396-3
– volume-title: Epidemiological entomology and its application to malaria
  year: 1968
  ident: 4780_CR16
– volume: 58
  start-page: 283
  year: 1993
  ident: 4780_CR114
  publication-title: Mol Biochem Parasitol
  doi: 10.1016/0166-6851(93)90050-8
– volume: 47
  start-page: 93
  year: 2009
  ident: 4780_CR37
  publication-title: Korean J Parasitol
  doi: 10.3347/kjp.2009.47.2.93
– volume: 11
  start-page: 21082
  year: 2021
  ident: 4780_CR52
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-00714-8
– volume: 86
  start-page: 101
  year: 2008
  ident: 4780_CR47
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.07.042259
– volume: 9
  start-page: 136
  year: 2010
  ident: 4780_CR8
  publication-title: Malar J
  doi: 10.1186/1475-2875-9-136
– ident: 4780_CR6
  doi: 10.1371/journal.pmed.1002452
– volume: 93
  start-page: 13302
  year: 2021
  ident: 4780_CR123
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.1c02948
– volume: 216
  start-page: 36
  year: 2017
  ident: 4780_CR57
  publication-title: J Infect Dis
– volume: 6
  start-page: e20805
  year: 2011
  ident: 4780_CR68
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020805
– volume: 9
  start-page: 4
  year: 2009
  ident: 4780_CR93
  publication-title: Mol Ecol Resour
  doi: 10.1111/j.1755-0998.2008.02469.x
– volume-title: High burden to high impact: a targeted malaria response
  year: 2018
  ident: 4780_CR127
– volume: 10
  start-page: e0121763
  year: 2015
  ident: 4780_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0121763
– volume: 18
  start-page: 395
  year: 2002
  ident: 4780_CR60
  publication-title: Trends Parasitol
  doi: 10.1016/S1471-4922(02)02348-6
– volume: 6
  start-page: 1289
  year: 2021
  ident: 4780_CR53
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-021-00962-4
– volume: 47
  start-page: 522
  year: 1953
  ident: 4780_CR96
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/S0035-9203(53)80005-2
– volume: 33
  start-page: 227
  year: 1984
  ident: 4780_CR91
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1984.33.227
– volume: 139
  start-page: 4769
  year: 2014
  ident: 4780_CR122
  publication-title: Analyst
  doi: 10.1039/C4AN00989D
– volume: 85
  start-page: 1093
  year: 2011
  ident: 4780_CR130
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2011.11-0438
– volume: 77
  start-page: 119
  issue: Suppl 6
  year: 2007
  ident: 4780_CR40
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2007.77.119
– volume: 391
  start-page: 1577
  year: 2018
  ident: 4780_CR14
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30427-6
– volume: 3
  start-page: 1237
  year: 2012
  ident: 4780_CR126
  publication-title: Nat Commun
  doi: 10.1038/ncomms2241
– volume-title: Test, treat, track: scaling up diagnostic testing, treatment and surveillance for malaria
  year: 2012
  ident: 4780_CR3
– volume: 69
  start-page: 200
  year: 2018
  ident: 4780_CR87
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2003.69.200
– volume: 7
  start-page: 177
  year: 2008
  ident: 4780_CR83
  publication-title: Malar J
  doi: 10.1186/1475-2875-7-177
– volume: 20
  start-page: 255
  year: 2021
  ident: 4780_CR128
  publication-title: Malar J
  doi: 10.1186/s12936-021-03796-x
– volume: 18
  start-page: 352
  year: 1949
  ident: 4780_CR78
  publication-title: Med Parazitol
– volume: 42
  start-page: 1214
  year: 2004
  ident: 4780_CR63
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.42.3.1214-1219.2004
– volume: 8
  start-page: e1002588
  year: 2012
  ident: 4780_CR13
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002588
– volume: 58
  start-page: 131
  year: 2021
  ident: 4780_CR120
  publication-title: Crit Rev Clin Lab Sci
  doi: 10.1080/10408363.2020.1828811
– volume: 86
  start-page: 194
  year: 2012
  ident: 4780_CR56
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2012.10-0665
– volume: 36
  start-page: 39
  year: 2020
  ident: 4780_CR94
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2019.10.011
– volume: 19
  start-page: 432
  year: 2020
  ident: 4780_CR95
  publication-title: Malar J
  doi: 10.1186/s12936-020-03494-0
– volume: 187
  start-page: 341
  year: 2016
  ident: 4780_CR121
  publication-title: Faraday Discuss
  doi: 10.1039/C5FD00181A
– volume: 14
  start-page: 528
  year: 2015
  ident: 4780_CR10
  publication-title: Malar J
  doi: 10.1186/s12936-015-1056-x
– volume: 7
  start-page: 14718
  year: 2017
  ident: 4780_CR58
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15031-2
– volume: 86
  start-page: 192
  year: 2012
  ident: 4780_CR48
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2012.11-0619
– volume: 174
  start-page: 792
  year: 1954
  ident: 4780_CR76
  publication-title: Nature
  doi: 10.1038/174792a0
– volume: 16
  start-page: 371
  year: 2017
  ident: 4780_CR44
  publication-title: Malar J
  doi: 10.1186/s12936-017-2018-2
– volume: 87
  start-page: 2931
  year: 1990
  ident: 4780_CR115
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.87.8.2931
– volume: 19
  start-page: 422
  year: 2020
  ident: 4780_CR21
  publication-title: Malar J
  doi: 10.1186/s12936-020-03493-1
– volume: 60
  start-page: 1481
  year: 2015
  ident: 4780_CR65
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/civ122
– volume: 25
  start-page: 2948
  year: 2020
  ident: 4780_CR102
  publication-title: Molecules
  doi: 10.3390/molecules25122948
– volume: 15
  start-page: e0009218
  year: 2021
  ident: 4780_CR33
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0009218
– volume: 25
  start-page: 9
  year: 1988
  ident: 4780_CR92
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/25.1.9
– volume: 13
  start-page: 1501
  year: 2022
  ident: 4780_CR23
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28980-8
– volume: 11
  start-page: 10289
  year: 2021
  ident: 4780_CR111
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-89715-1
– volume: 8
  start-page: 133
  year: 2021
  ident: 4780_CR117
  publication-title: Diagnosis
  doi: 10.1515/dx-2019-0060
– volume: 14
  start-page: e1002455
  year: 2017
  ident: 4780_CR5
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002455
– volume: 14
  start-page: 95
  year: 2015
  ident: 4780_CR67
  publication-title: Malar J
  doi: 10.1186/s12936-015-0611-9
– volume-title: Malaria surveillance, monitoring and evaluation: a reference manual
  year: 2018
  ident: 4780_CR1
– volume: 21
  start-page: 239
  year: 2021
  ident: 4780_CR50
  publication-title: BMC Public Health
  doi: 10.1186/s12889-021-10290-1
– volume: 18
  start-page: 187
  year: 2019
  ident: 4780_CR26
  publication-title: Malar J
  doi: 10.1186/s12936-019-2822-y
– volume-title: False-negative RDT results and implications of new reports of P. falciparum histidine-rich protein 2/3 gene deletions
  year: 2017
  ident: 4780_CR59
– volume: 15
  start-page: 56
  year: 2022
  ident: 4780_CR104
  publication-title: Tanzania Parasit Vectors
  doi: 10.1186/s13071-022-05181-2
– volume: 93
  start-page: 5451
  year: 2021
  ident: 4780_CR118
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c05103
– volume: 17
  start-page: 43
  year: 2018
  ident: 4780_CR84
  publication-title: Malar J
  doi: 10.1186/s12936-018-2189-5
– volume: 7
  start-page: e43094
  year: 2012
  ident: 4780_CR55
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0043094
– volume-title: Mosquito ecology: field sampling methods
  year: 2007
  ident: 4780_CR19
– volume: 200
  start-page: 1509
  year: 2009
  ident: 4780_CR61
  publication-title: J Infect Dis
  doi: 10.1086/644781
– volume-title: Policy brief on malaria diagnostics in low-transmission settings
  year: 2014
  ident: 4780_CR36
– volume: 5
  start-page: e8091
  year: 2010
  ident: 4780_CR51
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008091
– volume: 10
  start-page: 1
  year: 2017
  ident: 4780_CR112
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-017-2501-1
– volume-title: Guidelines for malaria
  year: 2022
  ident: 4780_CR7
– volume: 87
  start-page: 273
  year: 1993
  ident: 4780_CR82
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/0035-9203(93)90124-9
– volume: 5
  start-page: e10165
  year: 2010
  ident: 4780_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010165
– volume: 4
  start-page: 0496
  year: 2018
  ident: 4780_CR34
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aat0496
– volume-title: New perspectives: malaria diagnosis: report of a joint WHO/USAID informal consultation
  year: 1999
  ident: 4780_CR46
– volume: 34
  start-page: 249
  year: 1966
  ident: 4780_CR72
  publication-title: Bull World Health Organ
– volume: 11
  start-page: 377
  year: 2018
  ident: 4780_CR110
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-018-2960-z
– volume: 19
  start-page: 70
  year: 2020
  ident: 4780_CR85
  publication-title: Malar J
  doi: 10.1186/s12936-020-3144-9
– volume: 11
  start-page: e0159160
  year: 2016
  ident: 4780_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0159160
– volume: 3
  start-page: 49
  year: 2010
  ident: 4780_CR99
  publication-title: Parasit Vectors
  doi: 10.1186/1756-3305-3-49
– volume: 142
  start-page: 1192
  year: 2017
  ident: 4780_CR119
  publication-title: Analyst
  doi: 10.1039/C6AN02075E
– volume: 4
  start-page: 67
  year: 2021
  ident: 4780_CR109
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-01601-0
– volume: 27
  start-page: 377
  year: 1990
  ident: 4780_CR17
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/27.3.377
– volume: 2019
  start-page: 1417967
  year: 2019
  ident: 4780_CR125
  publication-title: J Parasitol Res
  doi: 10.1155/2019/1417967
– volume: 86
  start-page: 4379
  year: 2014
  ident: 4780_CR32
  publication-title: Anal Chem
  doi: 10.1021/ac500199x
– volume: 66
  start-page: 804
  year: 2017
  ident: 4780_CR73
  publication-title: Am J Trop Med Hyg
– volume: 89
  start-page: 5238
  year: 2017
  ident: 4780_CR116
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b04578
– volume: 18
  start-page: 348
  year: 2019
  ident: 4780_CR28
  publication-title: Malar J
  doi: 10.1186/s12936-019-2945-1
– volume: 216
  start-page: 1091
  year: 2017
  ident: 4780_CR42
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jix321
– volume: 18
  start-page: 387
  year: 2019
  ident: 4780_CR45
  publication-title: Malar J
  doi: 10.1186/s12936-019-3028-z
– volume-title: Application of infrared to biomedical sciences
  year: 2017
  ident: 4780_CR103
  doi: 10.1007/978-981-10-3147-2
– volume: 15
  start-page: e0234557
  year: 2020
  ident: 4780_CR25
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0234557
– volume: 21
  start-page: 223
  year: 1959
  ident: 4780_CR79
  publication-title: Bull World Health Organ
– volume: 3
  start-page: 13
  year: 2004
  ident: 4780_CR11
  publication-title: Malar J
  doi: 10.1186/1475-2875-3-13
– volume: 11
  start-page: 553
  year: 2018
  ident: 4780_CR89
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-018-3127-7
– volume: 15
  start-page: 613
  year: 2020
  ident: 4780_CR105
  publication-title: bioRxiv
– volume: 92
  start-page: 419
  year: 1998
  ident: 4780_CR69
  publication-title: Ann Trop Med Parasitol
  doi: 10.1080/00034989859401
– volume: 24
  start-page: 11
  year: 2023
  ident: 4780_CR100
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-05128-5
– volume-title: Global report on insecticide resistance in malaria vectors: 2010–2016
  year: 2018
  ident: 4780_CR97
– volume: 49
  start-page: 520
  year: 1993
  ident: 4780_CR88
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1993.49.520
– volume: 36
  start-page: 459
  year: 1987
  ident: 4780_CR81
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1987.36.459
– volume: 33
  start-page: 110
  year: 2015
  ident: 4780_CR66
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2015.04.018
SSID ssj0017872
Score 2.4383633
SecondaryResourceType review_article
Snippet Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies...
Abstract Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 346
SubjectTerms Analytical methods
Animals
Aquatic insects
Artificial Intelligence
Asymptomatic
Culicidae
Deep learning
Diagnostic tests
Epidemiology
Evidence Gaps
Health aspects
Human diseases
Humans
Infection
Infections
Infrared spectroscopy
Insecticides
Laboratories
Learning algorithms
Low income groups
Machine learning
Malaria
Malaria - epidemiology
Malaria surveillance
Microscopy
Mosquito Vectors
Mosquitoes
Mutation
Parameters
Parasites
Parasitic diseases
Plasmodium falciparum
Public health
Radiation
Review
Spectrophotometry, Infrared - methods
Spectrum analysis
Surveillance
Surveys
Target product profiles
Vector-borne diseases
Vectors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yJ0HE33ZdZQTBg5ZtmjZNj6u4LIqeXNhbSNLELWjf4_U9Yf8o_0dnmrxHi6AXr00Gksxk5ksz-YaxVyLYOlhucww9Nq-8D7kNrshr25pOOsQEnh4nf_4iLy6rj1f11azUF-WERXrguHCnIsiy5MZY7n1lAlcm2MZwGRDoW8Qj5H0x5u0PU-n-AM2w3D-RUfJ0pKhGybYiJzYa9DyLMDSx9f_pk2dBaZkwOYtA5_fY3QQd4SwO-T675YcH7E787wbxOdFD9uuTvwGXqnDGv3FvIaZ7wzqyu0Kq040NZugg0f1cwzezHqEfACEhzO61YRXwa9hQpjpMDzOJAHO1vpmkaQEjCQX0M3ZPQCwMPwwem3sD427z01N1I2ogoS7m9_XjI3Z5_uHr-4s8lWTIXS2rbY4rbxUvukaarmhDVYbauSCkcrblFhWLKmmMKMrWctW4zhadc8q0wjtrJWKhx-xoWA3-KYPGuMI4hQhUIiYrGtuVxE3X8BpFlfQZ43sNaZf4yqlsxnc9nVuU1FGrGrWqJ61qkbE3B5l1ZOv4a-93pPhDT2Lanj6g_elkf_pf9pex12Q2mvwBDs-Z9KwBJ0mq1Gd4fMH1EVJm7GTRE_exWzbvDU8nPzJqugZGECfrNmMvD80kSblxg1_tqI_CQ3RVqCpjT6KdHqYkmramOh4ZUwsLXsx52TL01xPLOCcwi_7--H-s0jN2u6TdN-VPnrCj7WbnnyOa29oX08b9Da87S8k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66vggi3u26SgTBBy3b9JKmT7KKy6LokwvnLSRpslvQtp6eI-yP2v_oTJJTTxH2tclAk5nMJZn5hpA3hdOV00ynYHp0WlrrUu1Mlla6US034BNYLE7-9p2fnZdfVtUqXrhNMa1ypxO9om4Hg3fkx_ggBuaMV82H8XeKXaPwdTW20LhN7iB0GaZ01as54GIgjPmuUEbw4wltG6bcFili0oD-WRgjj9n_v2beM03LtMk9O3T6gNyPDiQ9CRx_SG7Z_hG5F27faCgqekyuv9oramIvznAn956GpG86BoxXGrt1w4DqWxpBfy7phRon2vUUHEO697pNBwdf3Rrz1akvz0QYzGG88tQofwGKgnZ7GJ8UPGL6S0Hw3Ck6bdd_LPY4wgEkakOWXzc9Ieenn398OktjY4bUVLzcpLViWrCsrblqs8aVuauMcQUXRjdMA3s17K8qsrzRTNSm1VlrjFBNYY3WHDyip-SgH3r7nNBamUwZAX4oB88sq3WbI0JdzSogFdwmhO04JE1ELcfmGT-lj14El4GrErgqPVdlkZB3M80YMDtunP0RGT_PRLxt_2FYX8h4fGXheJ4zpTSztlSOCeU07AJ3EG7CYquEvEWxkagV4PeMisUNsEhkpTyBIAb2p-A8IUeLmXCazXJ4J3gyapNJ_pP9hLyeh5ESM-R6O2xxjoBQusxEmZBnQU7nJRV1U2E3j4SIhQQv1rwc6btLjzXO0KUFrX9483-9IHdzPFc-P_KIHGzWW_sSvLWNfuWP5F_pV0K0
  priority: 102
  providerName: ProQuest
Title Key considerations, target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/37950315
https://www.proquest.com/docview/2890078659
https://www.proquest.com/docview/2889244084
https://pubmed.ncbi.nlm.nih.gov/PMC10638832
https://doaj.org/article/3f6221aab1ee4af18afb7a16f716b045
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBf9eBmMse-57YIGgz1s3ix_yPLDGGlpKRktY1sgb0KSpTbQOVk-xvJH7X_cneRkMSt9scEnGUt357uTTr8j5HXmdOE00zGYHh3n1rpYO5PEha5UzQ34BBYPJ19c8vNhPhgVox2yLnfUTuD81tAO60kNZzfvf_9cfQKF_-gVXvAPc7RZmEqbxYg1A_-VXbIPlqlERb3I_-0qgHD63c-8LGKIFIr1IZpb39ExVB7P__-_9pbZ6qZUbtmos4fkQetc0n6QhkdkxzaPyf2wMkfDgaMn5M9nu6KmrdMZ1uve0ZAQTqcB_5W2lbyBoJqatoBA1_RKTed03FBwGunWzjedOHjqZpjLTv3RTYTInExXvjfKZoCpoOMt_E8K3jL9oWD2x4rOl7NfFusfIQE71SEDcDx_SoZnp99PzuO2aENsCp4v4lIxLVhSl1zVSeXy1BXGuIwLoyumgfUa5ldlSVppJkpT66Q2Rqgqs0ZrDt7SM7LXTBr7gtBSmUQZAT4qB68tKXWdInpdyQroKriNCFtzSJoW0RwLa9xIH9kILgNXJXBVeq7KLCJvN32mAc_jztbHyPhNS8Ti9g8msyvZqrbMHE9TppRm1ubKMaGchlngDkJRGGwRkTcoNhJlGD7PqPbgAwwSWSn7EODA_GScR-So0xI03XTJa8GTa0WRuFEMbh4vqoi82pCxJ2bPNXayxDYCwuw8EXlEngc53QwpK6sCK31ERHQkuDPmLqUZX3sccobuLliEg7s_-5DcS1GvfO7kEdlbzJb2JXhyC90ju-WohKs4YT2y3-8Pvg3gfnx6-eVrz6-O9LwC_wWAZE05
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAJId6kFDASiANEjfNwnANC5VFt6ePUSnsztmO3kSDZbnZB_VHwG5mJk2UjpN569UOyPeN52DPfEPIqcTpzmukQVI8OU2tdqJ2JwkwXquQGbAKLyclHx3xymn6dZtMN8mfIhcGwykEmdoK6bAy-ke_ghxioM54VH2YXIVaNwt_VoYSGZ4sDe_kLXLb2_f5noO_rON77cvJpEvZVBUKT8XQR5oppwaIy56qMCpfGLjPGJVwYXTANa9NRmqskigvNRG5KHZXGCFUk1mjNCwRfApF_AxRvhDcqn64cPAbMHw-JOYLvtKhLMcQ3CREDB-TdSPl1NQL-1wRrqnAcprmm9_bukju9wUp3PYfdIxu2vk9u-9c-6pOYHpDfcCbU9LU__RvgO-qDzOnMY8rSvjo4dKi6pD3I0Dk9U7OWVjUFQ5Su_abTxkGrm2N8PO3SQRF2s5lddrOR3z30Ba3WMEUpWOD0hwJnvVK0Xc5_WqyphB04qfRRhVX7kJxeC8kekc26qe0TQnNlImUE2L0cLMEo12WMiHg5y2Cq4DYgbKCQND1KOhbr-C47b0lw6akqgaqyo6pMAvJ2NWfmMUKuHP0RCb8aifjeXUMzP5O9uJCJ43HMlNLM2lQ5JpTTcArcgXsLm80C8gbZRqIUguUZ1SdTwCaRlHIXnCY4n4TzgGyPRoL0MOPugfFkL71a-e-uBeTlqhtnYkRebZsljhHguqeRSAPy2PPpaktJXmRYPSQgYsTBoz2Pe-rqvMM2Z2hCg5bZunpdL8jNycnRoTzcPz54Sm7FeMe62MxtsrmYL-0zsBQX-nl3PSn5dt3y4C8e1YDH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+considerations%2C+target+product+profiles%2C+and+research+gaps+in+the+application+of+infrared+spectroscopy+and+artificial+intelligence+for+malaria+surveillance+and+diagnosis&rft.jtitle=Malaria+journal&rft.au=Mshani%2C+Issa+H&rft.au=Siria%2C+Doreen+J&rft.au=Mwanga%2C+Emmanuel+P&rft.au=Sow%2C+Bazoumana+BD&rft.date=2023-11-10&rft.pub=BioMed+Central+Ltd&rft.issn=1475-2875&rft.eissn=1475-2875&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12936-023-04780-3&rft.externalDocID=A772368366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2875&client=summon