Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint

To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form o...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 2; p. 156
Main Authors Jiang, Jiandong, Chen, Peisong, Peng, Jiyu, Qiao, Xin, Zhu, Fengle, Zhong, Jiang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10−4 m, 0.010 rad, 0.014 rad, and 1.57 × 10−3 m, respectively. The experimental results demonstrated that the exoskeleton’s movement trajectory was close to the human’s, reducing the human–mechanism interaction force and improving patient comfort during rehabilitation training.
AbstractList To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10−4 m, 0.010 rad, 0.014 rad, and 1.57 × 10−3 m, respectively. The experimental results demonstrated that the exoskeleton’s movement trajectory was close to the human’s, reducing the human–mechanism interaction force and improving patient comfort during rehabilitation training.
To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10 −4 m, 0.010 rad, 0.014 rad, and 1.57 × 10 −3 m, respectively. The experimental results demonstrated that the exoskeleton’s movement trajectory was close to the human’s, reducing the human–mechanism interaction force and improving patient comfort during rehabilitation training.
To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10[sup.−4] m, 0.010 rad, 0.014 rad, and 1.57 × 10[sup.−3] m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training.
To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10-4 m, 0.010 rad, 0.014 rad, and 1.57 × 10-3 m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training.To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10-4 m, 0.010 rad, 0.014 rad, and 1.57 × 10-3 m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training.
To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10 m, 0.010 rad, 0.014 rad, and 1.57 × 10 m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training.
Audience Academic
Author Zhu, Fengle
Zhong, Jiang
Peng, Jiyu
Chen, Peisong
Jiang, Jiandong
Qiao, Xin
AuthorAffiliation 2 Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China
1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
AuthorAffiliation_xml – name: 1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
– name: 2 Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China
Author_xml – sequence: 1
  givenname: Jiandong
  surname: Jiang
  fullname: Jiang, Jiandong
– sequence: 2
  givenname: Peisong
  surname: Chen
  fullname: Chen, Peisong
– sequence: 3
  givenname: Jiyu
  orcidid: 0000-0002-2842-170X
  surname: Peng
  fullname: Peng, Jiyu
– sequence: 4
  givenname: Xin
  surname: Qiao
  fullname: Qiao, Xin
– sequence: 5
  givenname: Fengle
  surname: Zhu
  fullname: Zhu, Fengle
– sequence: 6
  givenname: Jiang
  orcidid: 0000-0001-9614-6730
  surname: Zhong
  fullname: Zhong, Jiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37092408$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhUeoiD7oH2CBRmLDJsUev1eoKi0UgiohWCLLY18nDjN2mHFo4dfjkBSagpAXtu4997PO1Tms9mKKUFVPMDohRKEXbUh96CEHO0rUIMz4g-qgIZhMBBdk7857vzoexwVCCCvOKEWPqn0ikGookgfV51cwhlmsTXT11TKHPvwwOaRYJ19P0zUM9TT0bf0B5qYNXcib5vlNGr9AB7m8r0Oe16Z-v-pyMDfBdPW7CFC_TSHmx9VDb7oRjrf3UfXp4vzj2ZvJ9Or15dnpdGIZp3nCmaMWI0sR5cAdsg6wM40TFgjzzLYME9EI4oWhDXdctZ4Z4FZKjrn0nhxVlxuuS2ahl0PozfBdJxP0r0IaZtoMZVUdaKcEUGO4aaWi0EKLPVayMaBYKzzHhfVyw1qu2h6chZgH0-1AdzsxzPUsfdMY4YZwqQrh-ZYwpK8rGLPuw2ih60yEtBp1IxFjmEpGivTZPekirYZYdlVUjRKCciz-qGamOAjRp_KxXUP1qWBUCarkWnXyD1U5DvpgS3p8KPWdgad3nf62eJuOIpAbgR3SOA7gtd0moJBDVxzrdRb131kso8290Vv6f4Z-ArfW5U8
CitedBy_id crossref_primary_10_1007_s40435_025_01623_8
crossref_primary_10_1177_16878132241273520
crossref_primary_10_1360_SST_2024_0238
crossref_primary_10_3390_machines11070709
crossref_primary_10_1016_j_mechmachtheory_2024_105648
crossref_primary_10_3390_s25072020
crossref_primary_10_1109_JSEN_2024_3394903
crossref_primary_10_3390_biomimetics9020098
crossref_primary_10_1108_IR_09_2023_0198
crossref_primary_10_3390_app15010404
crossref_primary_10_3390_s24196160
Cites_doi 10.1186/1471-2377-13-141
10.1093/geroni/igy008
10.3390/s19132988
10.3390/app11125328
10.1177/2396987318808719
10.1063/1.4964136
10.1016/j.robot.2014.09.025
10.3390/biomimetics6020028
10.1109/ROBIO49542.2019.8961400
10.3390/electronics11030388
10.3390/s20010211
10.1631/FITEE.1800561
10.3390/mi13060900
10.1242/jeb.140376
10.3390/electronics9122176
10.1017/wtc.2020.10
10.1016/j.wneu.2017.10.080
10.1080/0305215X.2018.1508574
10.1007/s10957-020-01778-8
10.1186/s13104-018-3311-z
10.3390/machines9120367
10.3389/fnbot.2021.689363
10.1177/1045389X221117496
10.1177/17474930211065917
10.1109/THMS.2022.3216761
10.1016/j.knee.2019.02.017
10.1017/S0263574719001085
10.1063/5.0053899
10.1109/TNSRE.2017.2659654
10.4172/2471-8416.100041
10.1310/sci17-00014
10.1109/ICEEE.2016.7751263
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomimetics8020156
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_d97e4aa6ab894ebeb1f1982ae95b7f61
PMC10123689
A754974987
37092408
10_3390_biomimetics8020156
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Zhejiang Agricultural Major Technology Collaborative Promotion Plan
  grantid: 2022XTTGCY03-05
– fundername: Science Technology Department of Zhejiang Province
  grantid: 2023C02010
– fundername: the Zhejiang Provincial Natural Science Foundation of China
  grantid: LD22E050009
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LD22E050009
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c564t-65d4c10c4046e6d0cde1da2d7ce35f5cb5137273f7a426d69bf5ae6c886168ff3
IEDL.DBID DOA
ISSN 2313-7673
IngestDate Wed Aug 27 01:31:41 EDT 2025
Thu Aug 21 18:38:17 EDT 2025
Fri Jul 11 16:47:27 EDT 2025
Sun Jul 13 05:25:58 EDT 2025
Tue Jun 17 21:34:25 EDT 2025
Tue Jun 10 20:28:03 EDT 2025
Mon Jul 21 06:02:14 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Tue Jul 01 04:26:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords knee movement
multi-objective optimization
lower limb exoskeleton
gait analysis
design
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-65d4c10c4046e6d0cde1da2d7ce35f5cb5137273f7a426d69bf5ae6c886168ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9614-6730
0000-0002-2842-170X
OpenAccessLink https://doaj.org/article/d97e4aa6ab894ebeb1f1982ae95b7f61
PMID 37092408
PQID 2829774617
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_d97e4aa6ab894ebeb1f1982ae95b7f61
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123689
proquest_miscellaneous_2805514853
proquest_journals_2829774617
gale_infotracmisc_A754974987
gale_infotracacademiconefile_A754974987
pubmed_primary_37092408
crossref_citationtrail_10_3390_biomimetics8020156
crossref_primary_10_3390_biomimetics8020156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230414
PublicationDateYYYYMMDD 2023-04-14
PublicationDate_xml – month: 4
  year: 2023
  text: 20230414
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nolan (ref_10) 2021; 15
Zelik (ref_24) 2016; 219
Norrving (ref_2) 2018; 3
ref_32
ref_31
Brockmeyer (ref_23) 2019; 26
Khemili (ref_29) 2019; 51
Jansen (ref_7) 2018; 110
Tefertiller (ref_11) 2018; 24
Asbeck (ref_13) 2015; 73
ref_18
Lyu (ref_20) 2016; 87
ref_17
Filho (ref_21) 2023; 34
Feigin (ref_1) 2022; 17
Haug (ref_19) 2017; 3
Vouga (ref_15) 2017; 25
ref_25
Wijegunawardana (ref_6) 2022; 53
ref_22
Mitzner (ref_3) 2018; 2
Reggio (ref_30) 2020; 187
Chang (ref_14) 2020; 1
ref_27
Zeiaee (ref_28) 2019; 37
He (ref_12) 2019; 20
ref_26
ref_9
ref_8
Gao (ref_16) 2021; 11
ref_5
ref_4
References_xml – ident: ref_8
  doi: 10.1186/1471-2377-13-141
– volume: 2
  start-page: igy008
  year: 2018
  ident: ref_3
  article-title: Closing the capacity-ability gap: Using technology to support aging with disability
  publication-title: Innov. Aging
  doi: 10.1093/geroni/igy008
– ident: ref_31
  doi: 10.3390/s19132988
– ident: ref_18
  doi: 10.3390/app11125328
– volume: 3
  start-page: 309
  year: 2018
  ident: ref_2
  article-title: Action plan for stroke in Europe 2018–2030
  publication-title: Eur. Stroke J.
  doi: 10.1177/2396987318808719
– volume: 87
  start-page: 104301
  year: 2016
  ident: ref_20
  article-title: Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4964136
– volume: 73
  start-page: 102
  year: 2015
  ident: ref_13
  article-title: Soft exosuit for hip assistance
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.09.025
– ident: ref_25
  doi: 10.3390/biomimetics6020028
– ident: ref_27
  doi: 10.1109/ROBIO49542.2019.8961400
– ident: ref_5
  doi: 10.3390/electronics11030388
– ident: ref_17
  doi: 10.3390/s20010211
– volume: 20
  start-page: 318
  year: 2019
  ident: ref_12
  article-title: Development of a novel autonomous lower extremity exoskeleton robot for walking assistance
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1800561
– ident: ref_4
  doi: 10.3390/mi13060900
– volume: 219
  start-page: 3676
  year: 2016
  ident: ref_24
  article-title: A unified perspective on ankle push-off in human walking
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.140376
– ident: ref_32
  doi: 10.3390/electronics9122176
– volume: 1
  start-page: e10
  year: 2020
  ident: ref_14
  article-title: Design and preliminary evaluation of a flexible exoskeleton to assist with lifting
  publication-title: Wearable Technol.
  doi: 10.1017/wtc.2020.10
– volume: 110
  start-page: e73
  year: 2018
  ident: ref_7
  article-title: Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept; the results in 21 patients
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2017.10.080
– volume: 51
  start-page: 978
  year: 2019
  ident: ref_29
  article-title: Multi-objective optimization of a flexible slider-crank mechanism synthesis, based on dynamic responses
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2018.1508574
– volume: 187
  start-page: 822
  year: 2020
  ident: ref_30
  article-title: Stochastic Multi-objective Optimisation of Exoskeleton Structures
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01778-8
– ident: ref_9
  doi: 10.1186/s13104-018-3311-z
– ident: ref_26
  doi: 10.3390/machines9120367
– volume: 15
  start-page: 689363
  year: 2021
  ident: ref_10
  article-title: Utilization of robotic exoskeleton for overground walking in acute and chronic stroke
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2021.689363
– volume: 34
  start-page: 653
  year: 2023
  ident: ref_21
  article-title: Design and testing a highly backdrivable and kinematic compatible magneto-rheological knee exoskeleton
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X221117496
– volume: 17
  start-page: 18
  year: 2022
  ident: ref_1
  article-title: World Stroke Organization (WSO): Global stroke fact sheet 2022
  publication-title: Int. J. Stroke
  doi: 10.1177/17474930211065917
– volume: 53
  start-page: 98
  year: 2022
  ident: ref_6
  article-title: Lower Extremity Posture Assistive Wearable Devices: A Review
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2022.3216761
– volume: 26
  start-page: 636
  year: 2019
  ident: ref_23
  article-title: The anatomy of the anterolateral structures of the knee—A histologic and macroscopic approach
  publication-title: Knee
  doi: 10.1016/j.knee.2019.02.017
– volume: 37
  start-page: 2073
  year: 2019
  ident: ref_28
  article-title: Kinematic design optimization of an eight degree-of-freedom upper-limb exoskeleton
  publication-title: Robotica
  doi: 10.1017/S0263574719001085
– volume: 11
  start-page: 065124
  year: 2021
  ident: ref_16
  article-title: Design and optimization of exoskeleton structure of lower limb knee joint based on cross four-bar linkage
  publication-title: AIP Adv.
  doi: 10.1063/5.0053899
– volume: 25
  start-page: 131
  year: 2017
  ident: ref_15
  article-title: EXiO—A brain-controlled lower limb exoskeleton for rhesus macaques
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2659654
– volume: 3
  start-page: 41
  year: 2017
  ident: ref_19
  article-title: Dynamic MRI assessment of normal knee kinematics
  publication-title: J. Clin. Exp. Orthop.
  doi: 10.4172/2471-8416.100041
– volume: 24
  start-page: 78
  year: 2018
  ident: ref_11
  article-title: Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury
  publication-title: Top. Spinal Cord Inj. Rehabil.
  doi: 10.1310/sci17-00014
– ident: ref_22
  doi: 10.1109/ICEEE.2016.7751263
SSID ssj0001965440
Score 2.304283
Snippet To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 156
SubjectTerms Adaptability
Ankle
Anthropomorphism
Design
Design and construction
Exoskeleton
Gait
gait analysis
Hip joint
Kinematics
Knee
knee movement
lower limb exoskeleton
multi-objective optimization
Optimization
Physiology
Prostheses
Rehabilitation
Robotics
Robots
Stroke
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxNBFB40ffFF1HpZrTKC6IMs3dmd65OkmlJqrVIs9EWW2blo0OzWJoX67z1nM0mzFPqamYWZnNt3zpwLIW9CqaKvosmLprA5aEkQqViKPMYIGpmzoPo45JdjeXDKD8_EWQq4zVNa5Uon9oradw5j5Lv44gdQBQzuh_O_OU6NwtfVNELjLtkCFaz1iGztTY6_nVxHWYwUnBfLapkK_PtdrGqfzrBAcK4BKjGcXL1hkfrG_TfV84Z9GuZObhij_QfkfkKRdLwk-0NyJ7SPyPa4BQ969o--pX1eZx8w3yY_PvVJGtS2nn4FBTFLlZe0i_QIZ6TRo-msoSeDlt10ctXNf4NJAmhIMVZLLe1rde0VMCz93IZAD7tpu3hMTvcn3z8e5GmoQu6E5ItcCs8dKxwHxzhIXzgfmLelVy5UIgrXCFYhponKgvH20jRR2CCd1pJJHWP1hIzarg3PCC25LKqgGwnQl3OljOfcessq1ggRlMsIW_2xtUvHx8EXf2rwPJAY9U1iZOT9-pvzZb-NW3fvIb3WO7FXdv9Dd_GzTqJXe6MCt1baRhsOPNuwyIwubTCiUVGyjLxDatco0XA8Z1NhAlwSe2PVYwU-tOJGq4zsDHaCJLrh8opf6qQJ5vU132bk9XoZv8TstjZ0l7inQOAKyCkjT5fstb5SpQqDbegyogeMN7jzcKWd_ur7hLO-P582z28_1wtyrwTkhk9kjO-Q0eLiMrwEpLVoXiVx-g9UMi0l
  priority: 102
  providerName: ProQuest
Title Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint
URI https://www.ncbi.nlm.nih.gov/pubmed/37092408
https://www.proquest.com/docview/2829774617
https://www.proquest.com/docview/2805514853
https://pubmed.ncbi.nlm.nih.gov/PMC10123689
https://doaj.org/article/d97e4aa6ab894ebeb1f1982ae95b7f61
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kffFFtPUjWssKog8Smk32I3m8a-8otVYpFvoiYT_pqZeId4X633dmkx4JBX3x6SC74fZjduY3m5nfEPLW5yq4IlRpZjKdgpaEIxVykYYQQCNz5lW8h_x0Jo8v-MmluByU-sKYsI4euFu4A1cpz7WW2pQVh380LICfnGtfCaNC5_iAzRs4U9870hfBedZlyRTg1x9gNvtiiYmBqxIgEsOK1QNLFAn776vlgV0ax0wOjND8MXnUo0c66Ub9hDzwzQ7ZnTTgOS__0Hc0xnPGi_Jd8u0oBmdQ3Tj6GRTDss-4pG2gp1gbjZ4uloaej6i66eymXf0AUwSQkOIdLdU05ujqGxBU-rHxnp60i2b9lFzMZ18Pj9O-mEJqheTrVArHLcssB4fYS5dZ55nTuVPWFyIIawQrEMsEpcFoO1mZILSXtiwlk2UIxTOy1bSNf0FozmVW-NJIgLycK1U5zrXTrGBGCK9sQtjdwta2Hz4WvPhZg8eBm1Hf34yEfNi886vj2fhr7ynu16YncmTHByA5dS859b8kJyHvcbdrPMkwPKv7hASYJHJi1RMFvrPiVakSsjfqCSfQjpvv5KXuNcCqxi_UAK0BICbkzaYZ38Sotsa319gnQ8AKiCkhzzvx2kypUFmF9HMJKUeCN5rzuKVZXEV-cBZ5-crq5f9YpVfkYQ64Dj-gMb5Htta_r_1rwGFrs0-2J9Oj6Rx-p7OzL-f78QjeAp_UOIk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrdA7wgYFwCA4zE5QFFixNf4geEOtZpW7uCpk3ayxQcx4YKmoy1E9tP8Y2ck6Zdo0l722tsR7bP_fhcCHnrYuWLxOswyiMTApcEkvKxCL33wJE5c6r2Q-4P5c4R3zsWxyvk3zwXBsMq5zyxZtRFZdFHvoEvfqCqgMD9fPonxK5R-Lo6b6ExQ4u-u_wLJtvk0-4WwPddHG_3Dr_shE1XgdAKyaehFAW3LLIcLEMni8gWjhUmLpR1ifDC5oIlKNS9MiC9CqlzL4yTNk0lk6n3Cfz3DlnliYziDlnd7A2_HVx5dbQUnEez7Jwk0dEGZtGPxpiQOElBNWPYKXtJAtaNAq6LgyV52I7VXBJ-2w_I_UZrpd0Zmj0kK658RNa6JVjs40v6ntZxpLWDfo2cbNVBIdSUBf0KDGncZHrSytMB9mSjg9E4pwetEuG0d1FNfoEIBFWUom-YGlrnBpsLIBDaL52je9WonD4mR7dy3U9Ip6xK94zQmMsocWkuQdXmXCldcG4KwxKWC-GUDQibX2xmm-1jo43fGVg6CIzsOjAC8nGx5nRW3-PG2ZsIr8VMrM1df6jOfmQNqWeFVo4bI02eag40kjPPdBobp0WuvGQB-YDQzpCDwPasaRIh4JBYiyvrKrDZFdepCsh6ayZQvm0Pz_ElazjPJLuik4C8WQzjSoymK111jnMiVJRBUwvI0xl6LY6UqEhj2buApC3Ea525PVKOftZ1yVldDzDVz2_e12tyd-dwf5ANdof9F-ReDFojPs8xvk4607Nz9xK0vGn-qiEtSr7fNjX_B1Csapw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqbhHhBwLgEBhiJywOKFieOHT8g1NFW21rKNDFpLyg4vkAFTcbaie3X-DrOSdOu0aS97TW2I9vnfnwuhLx2sfQ28SqMikiHwCWBpHycht574MicOVn7IT-PxO4R3z9Oj9fIv0UuDIZVLnhizahtZdBHvo0vfqCqgMDd9k1YxEG3__HkT4gdpPClddFOY44iA3fxF8y36Ye9LsD6TRz3e18_7YZNh4HQpILPQpFablhkOFiJTtjIWMesjq00Lkl9aoqUJSjgvdQgyaxQhU-1EybLBBOZ9wn89xbZkGgVrZONnd7o4PDSw6NEynk0z9RJEhVtY0b9eILJidMM1DSGXbNXpGHdNOCqaFiRje24zRVB2L9H7jYaLO3MUe4-WXPlA7LZKcF6n1zQt7SOKa2d9ZvkW7cOEKG6tPQLMKdJk_VJK0-H2J-NDseTgh62yoXT3nk1_QXiENRSin5iqmmdJ6zPgVjooHSO7lfjcvaQHN3IdT8i62VVuieExlxEicsKAWo351Iqy7m2miWsSFMnTUDY4mJz02wfm278zsHqQWDkV4ERkPfLNSfzWh_Xzt5BeC1nYp3u-kN1-iNvyD63SjqutdBFpjjQS8E8U1msnUoL6QULyDuEdo7cBLZndJMUAYfEulx5R4L9LrnKZEC2WjOBC5j28AJf8oYLTfNLmgnIq-UwrsTIutJVZzgnQqUZtLaAPJ6j1_JIiYwUlsALSNZCvNaZ2yPl-Gddo5zVtQEz9fT6fb0kt4GK8-HeaPCM3IlBgcSXOsa3yPrs9Mw9B4VvVrxoKIuS7zdNzP8B-tVu0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Optimization+of+Lower+Limb+Rehabilitation+Exoskeleton+with+a+Multiaxial+Knee+Joint&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Jiandong+Jiang&rft.au=Peisong+Chen&rft.au=Jiyu+Peng&rft.au=Xin+Qiao&rft.date=2023-04-14&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=8&rft.issue=2&rft.spage=156&rft_id=info:doi/10.3390%2Fbiomimetics8020156&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d97e4aa6ab894ebeb1f1982ae95b7f61
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon