Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint
To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form o...
Saved in:
Published in | Biomimetics (Basel, Switzerland) Vol. 8; no. 2; p. 156 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10−4 m, 0.010 rad, 0.014 rad, and 1.57 × 10−3 m, respectively. The experimental results demonstrated that the exoskeleton’s movement trajectory was close to the human’s, reducing the human–mechanism interaction force and improving patient comfort during rehabilitation training. |
---|---|
AbstractList | To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10−4 m, 0.010 rad, 0.014 rad, and 1.57 × 10−3 m, respectively. The experimental results demonstrated that the exoskeleton’s movement trajectory was close to the human’s, reducing the human–mechanism interaction force and improving patient comfort during rehabilitation training. To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10 −4 m, 0.010 rad, 0.014 rad, and 1.57 × 10 −3 m, respectively. The experimental results demonstrated that the exoskeleton’s movement trajectory was close to the human’s, reducing the human–mechanism interaction force and improving patient comfort during rehabilitation training. To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10[sup.−4] m, 0.010 rad, 0.014 rad, and 1.57 × 10[sup.−3] m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training. To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10-4 m, 0.010 rad, 0.014 rad, and 1.57 × 10-3 m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training.To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10-4 m, 0.010 rad, 0.014 rad, and 1.57 × 10-3 m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training. To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable instantaneous center of rotation (ICR). This design considers the variability in knee ICR among individuals, resulting from the irregular form of the human knee joint, and leverages a double-degrees-of-freedom (2DOF) five-bar mechanism to adapt to these differences. The walking gait of the human lower limb and the corresponding knee ICR were measured and calculated using an optical 3D motion capture system. The optimal dimension parameters of the five-bar mechanism were then obtained through the optimization of human movement position inputs and rod length constraints to minimize the error in knee ICR, gait angle, and ankle trajectory between the human and the exoskeleton. Finally, we established an exoskeleton prototype to conduct relevant experimental tests. The experiment results showed that the average errors of knee ICR trajectory, hip angle, knee angle, and ankle trajectory were 5.52 × 10 m, 0.010 rad, 0.014 rad, and 1.57 × 10 m, respectively. The experimental results demonstrated that the exoskeleton's movement trajectory was close to the human's, reducing the human-mechanism interaction force and improving patient comfort during rehabilitation training. |
Audience | Academic |
Author | Zhu, Fengle Zhong, Jiang Peng, Jiyu Chen, Peisong Jiang, Jiandong Qiao, Xin |
AuthorAffiliation | 2 Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China 1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
AuthorAffiliation_xml | – name: 1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China – name: 2 Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China |
Author_xml | – sequence: 1 givenname: Jiandong surname: Jiang fullname: Jiang, Jiandong – sequence: 2 givenname: Peisong surname: Chen fullname: Chen, Peisong – sequence: 3 givenname: Jiyu orcidid: 0000-0002-2842-170X surname: Peng fullname: Peng, Jiyu – sequence: 4 givenname: Xin surname: Qiao fullname: Qiao, Xin – sequence: 5 givenname: Fengle surname: Zhu fullname: Zhu, Fengle – sequence: 6 givenname: Jiang orcidid: 0000-0001-9614-6730 surname: Zhong fullname: Zhong, Jiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37092408$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEUhUeoiD7oH2CBRmLDJsUev1eoKi0UgiohWCLLY18nDjN2mHFo4dfjkBSagpAXtu4997PO1Tms9mKKUFVPMDohRKEXbUh96CEHO0rUIMz4g-qgIZhMBBdk7857vzoexwVCCCvOKEWPqn0ikGookgfV51cwhlmsTXT11TKHPvwwOaRYJ19P0zUM9TT0bf0B5qYNXcib5vlNGr9AB7m8r0Oe16Z-v-pyMDfBdPW7CFC_TSHmx9VDb7oRjrf3UfXp4vzj2ZvJ9Or15dnpdGIZp3nCmaMWI0sR5cAdsg6wM40TFgjzzLYME9EI4oWhDXdctZ4Z4FZKjrn0nhxVlxuuS2ahl0PozfBdJxP0r0IaZtoMZVUdaKcEUGO4aaWi0EKLPVayMaBYKzzHhfVyw1qu2h6chZgH0-1AdzsxzPUsfdMY4YZwqQrh-ZYwpK8rGLPuw2ih60yEtBp1IxFjmEpGivTZPekirYZYdlVUjRKCciz-qGamOAjRp_KxXUP1qWBUCarkWnXyD1U5DvpgS3p8KPWdgad3nf62eJuOIpAbgR3SOA7gtd0moJBDVxzrdRb131kso8290Vv6f4Z-ArfW5U8 |
CitedBy_id | crossref_primary_10_1007_s40435_025_01623_8 crossref_primary_10_1177_16878132241273520 crossref_primary_10_1360_SST_2024_0238 crossref_primary_10_3390_machines11070709 crossref_primary_10_1016_j_mechmachtheory_2024_105648 crossref_primary_10_3390_s25072020 crossref_primary_10_1109_JSEN_2024_3394903 crossref_primary_10_3390_biomimetics9020098 crossref_primary_10_1108_IR_09_2023_0198 crossref_primary_10_3390_app15010404 crossref_primary_10_3390_s24196160 |
Cites_doi | 10.1186/1471-2377-13-141 10.1093/geroni/igy008 10.3390/s19132988 10.3390/app11125328 10.1177/2396987318808719 10.1063/1.4964136 10.1016/j.robot.2014.09.025 10.3390/biomimetics6020028 10.1109/ROBIO49542.2019.8961400 10.3390/electronics11030388 10.3390/s20010211 10.1631/FITEE.1800561 10.3390/mi13060900 10.1242/jeb.140376 10.3390/electronics9122176 10.1017/wtc.2020.10 10.1016/j.wneu.2017.10.080 10.1080/0305215X.2018.1508574 10.1007/s10957-020-01778-8 10.1186/s13104-018-3311-z 10.3390/machines9120367 10.3389/fnbot.2021.689363 10.1177/1045389X221117496 10.1177/17474930211065917 10.1109/THMS.2022.3216761 10.1016/j.knee.2019.02.017 10.1017/S0263574719001085 10.1063/5.0053899 10.1109/TNSRE.2017.2659654 10.4172/2471-8416.100041 10.1310/sci17-00014 10.1109/ICEEE.2016.7751263 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/biomimetics8020156 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2313-7673 |
ExternalDocumentID | oai_doaj_org_article_d97e4aa6ab894ebeb1f1982ae95b7f61 PMC10123689 A754974987 37092408 10_3390_biomimetics8020156 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Zhejiang Agricultural Major Technology Collaborative Promotion Plan grantid: 2022XTTGCY03-05 – fundername: Science Technology Department of Zhejiang Province grantid: 2023C02010 – fundername: the Zhejiang Provincial Natural Science Foundation of China grantid: LD22E050009 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LD22E050009 |
GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c564t-65d4c10c4046e6d0cde1da2d7ce35f5cb5137273f7a426d69bf5ae6c886168ff3 |
IEDL.DBID | DOA |
ISSN | 2313-7673 |
IngestDate | Wed Aug 27 01:31:41 EDT 2025 Thu Aug 21 18:38:17 EDT 2025 Fri Jul 11 16:47:27 EDT 2025 Sun Jul 13 05:25:58 EDT 2025 Tue Jun 17 21:34:25 EDT 2025 Tue Jun 10 20:28:03 EDT 2025 Mon Jul 21 06:02:14 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Tue Jul 01 04:26:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | knee movement multi-objective optimization lower limb exoskeleton gait analysis design |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-65d4c10c4046e6d0cde1da2d7ce35f5cb5137273f7a426d69bf5ae6c886168ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9614-6730 0000-0002-2842-170X |
OpenAccessLink | https://doaj.org/article/d97e4aa6ab894ebeb1f1982ae95b7f61 |
PMID | 37092408 |
PQID | 2829774617 |
PQPubID | 2055439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d97e4aa6ab894ebeb1f1982ae95b7f61 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123689 proquest_miscellaneous_2805514853 proquest_journals_2829774617 gale_infotracmisc_A754974987 gale_infotracacademiconefile_A754974987 pubmed_primary_37092408 crossref_citationtrail_10_3390_biomimetics8020156 crossref_primary_10_3390_biomimetics8020156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230414 |
PublicationDateYYYYMMDD | 2023-04-14 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230414 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomimetics (Basel, Switzerland) |
PublicationTitleAlternate | Biomimetics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Nolan (ref_10) 2021; 15 Zelik (ref_24) 2016; 219 Norrving (ref_2) 2018; 3 ref_32 ref_31 Brockmeyer (ref_23) 2019; 26 Khemili (ref_29) 2019; 51 Jansen (ref_7) 2018; 110 Tefertiller (ref_11) 2018; 24 Asbeck (ref_13) 2015; 73 ref_18 Lyu (ref_20) 2016; 87 ref_17 Filho (ref_21) 2023; 34 Feigin (ref_1) 2022; 17 Haug (ref_19) 2017; 3 Vouga (ref_15) 2017; 25 ref_25 Wijegunawardana (ref_6) 2022; 53 ref_22 Mitzner (ref_3) 2018; 2 Reggio (ref_30) 2020; 187 Chang (ref_14) 2020; 1 ref_27 Zeiaee (ref_28) 2019; 37 He (ref_12) 2019; 20 ref_26 ref_9 ref_8 Gao (ref_16) 2021; 11 ref_5 ref_4 |
References_xml | – ident: ref_8 doi: 10.1186/1471-2377-13-141 – volume: 2 start-page: igy008 year: 2018 ident: ref_3 article-title: Closing the capacity-ability gap: Using technology to support aging with disability publication-title: Innov. Aging doi: 10.1093/geroni/igy008 – ident: ref_31 doi: 10.3390/s19132988 – ident: ref_18 doi: 10.3390/app11125328 – volume: 3 start-page: 309 year: 2018 ident: ref_2 article-title: Action plan for stroke in Europe 2018–2030 publication-title: Eur. Stroke J. doi: 10.1177/2396987318808719 – volume: 87 start-page: 104301 year: 2016 ident: ref_20 article-title: Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4964136 – volume: 73 start-page: 102 year: 2015 ident: ref_13 article-title: Soft exosuit for hip assistance publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.09.025 – ident: ref_25 doi: 10.3390/biomimetics6020028 – ident: ref_27 doi: 10.1109/ROBIO49542.2019.8961400 – ident: ref_5 doi: 10.3390/electronics11030388 – ident: ref_17 doi: 10.3390/s20010211 – volume: 20 start-page: 318 year: 2019 ident: ref_12 article-title: Development of a novel autonomous lower extremity exoskeleton robot for walking assistance publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1800561 – ident: ref_4 doi: 10.3390/mi13060900 – volume: 219 start-page: 3676 year: 2016 ident: ref_24 article-title: A unified perspective on ankle push-off in human walking publication-title: J. Exp. Biol. doi: 10.1242/jeb.140376 – ident: ref_32 doi: 10.3390/electronics9122176 – volume: 1 start-page: e10 year: 2020 ident: ref_14 article-title: Design and preliminary evaluation of a flexible exoskeleton to assist with lifting publication-title: Wearable Technol. doi: 10.1017/wtc.2020.10 – volume: 110 start-page: e73 year: 2018 ident: ref_7 article-title: Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept; the results in 21 patients publication-title: World Neurosurg. doi: 10.1016/j.wneu.2017.10.080 – volume: 51 start-page: 978 year: 2019 ident: ref_29 article-title: Multi-objective optimization of a flexible slider-crank mechanism synthesis, based on dynamic responses publication-title: Eng. Optim. doi: 10.1080/0305215X.2018.1508574 – volume: 187 start-page: 822 year: 2020 ident: ref_30 article-title: Stochastic Multi-objective Optimisation of Exoskeleton Structures publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-020-01778-8 – ident: ref_9 doi: 10.1186/s13104-018-3311-z – ident: ref_26 doi: 10.3390/machines9120367 – volume: 15 start-page: 689363 year: 2021 ident: ref_10 article-title: Utilization of robotic exoskeleton for overground walking in acute and chronic stroke publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2021.689363 – volume: 34 start-page: 653 year: 2023 ident: ref_21 article-title: Design and testing a highly backdrivable and kinematic compatible magneto-rheological knee exoskeleton publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X221117496 – volume: 17 start-page: 18 year: 2022 ident: ref_1 article-title: World Stroke Organization (WSO): Global stroke fact sheet 2022 publication-title: Int. J. Stroke doi: 10.1177/17474930211065917 – volume: 53 start-page: 98 year: 2022 ident: ref_6 article-title: Lower Extremity Posture Assistive Wearable Devices: A Review publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2022.3216761 – volume: 26 start-page: 636 year: 2019 ident: ref_23 article-title: The anatomy of the anterolateral structures of the knee—A histologic and macroscopic approach publication-title: Knee doi: 10.1016/j.knee.2019.02.017 – volume: 37 start-page: 2073 year: 2019 ident: ref_28 article-title: Kinematic design optimization of an eight degree-of-freedom upper-limb exoskeleton publication-title: Robotica doi: 10.1017/S0263574719001085 – volume: 11 start-page: 065124 year: 2021 ident: ref_16 article-title: Design and optimization of exoskeleton structure of lower limb knee joint based on cross four-bar linkage publication-title: AIP Adv. doi: 10.1063/5.0053899 – volume: 25 start-page: 131 year: 2017 ident: ref_15 article-title: EXiO—A brain-controlled lower limb exoskeleton for rhesus macaques publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2659654 – volume: 3 start-page: 41 year: 2017 ident: ref_19 article-title: Dynamic MRI assessment of normal knee kinematics publication-title: J. Clin. Exp. Orthop. doi: 10.4172/2471-8416.100041 – volume: 24 start-page: 78 year: 2018 ident: ref_11 article-title: Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury publication-title: Top. Spinal Cord Inj. Rehabil. doi: 10.1310/sci17-00014 – ident: ref_22 doi: 10.1109/ICEEE.2016.7751263 |
SSID | ssj0001965440 |
Score | 2.304283 |
Snippet | To facilitate rehabilitation training for patients, we proposed the implementation of an anthropomorphic exoskeleton structure that incorporates a variable... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 156 |
SubjectTerms | Adaptability Ankle Anthropomorphism Design Design and construction Exoskeleton Gait gait analysis Hip joint Kinematics Knee knee movement lower limb exoskeleton multi-objective optimization Optimization Physiology Prostheses Rehabilitation Robotics Robots Stroke |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxNBFB40ffFF1HpZrTKC6IMs3dmd65OkmlJqrVIs9EWW2blo0OzWJoX67z1nM0mzFPqamYWZnNt3zpwLIW9CqaKvosmLprA5aEkQqViKPMYIGpmzoPo45JdjeXDKD8_EWQq4zVNa5Uon9oradw5j5Lv44gdQBQzuh_O_OU6NwtfVNELjLtkCFaz1iGztTY6_nVxHWYwUnBfLapkK_PtdrGqfzrBAcK4BKjGcXL1hkfrG_TfV84Z9GuZObhij_QfkfkKRdLwk-0NyJ7SPyPa4BQ969o--pX1eZx8w3yY_PvVJGtS2nn4FBTFLlZe0i_QIZ6TRo-msoSeDlt10ctXNf4NJAmhIMVZLLe1rde0VMCz93IZAD7tpu3hMTvcn3z8e5GmoQu6E5ItcCs8dKxwHxzhIXzgfmLelVy5UIgrXCFYhponKgvH20jRR2CCd1pJJHWP1hIzarg3PCC25LKqgGwnQl3OljOfcessq1ggRlMsIW_2xtUvHx8EXf2rwPJAY9U1iZOT9-pvzZb-NW3fvIb3WO7FXdv9Dd_GzTqJXe6MCt1baRhsOPNuwyIwubTCiUVGyjLxDatco0XA8Z1NhAlwSe2PVYwU-tOJGq4zsDHaCJLrh8opf6qQJ5vU132bk9XoZv8TstjZ0l7inQOAKyCkjT5fstb5SpQqDbegyogeMN7jzcKWd_ur7hLO-P582z28_1wtyrwTkhk9kjO-Q0eLiMrwEpLVoXiVx-g9UMi0l priority: 102 providerName: ProQuest |
Title | Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37092408 https://www.proquest.com/docview/2829774617 https://www.proquest.com/docview/2805514853 https://pubmed.ncbi.nlm.nih.gov/PMC10123689 https://doaj.org/article/d97e4aa6ab894ebeb1f1982ae95b7f61 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kffFFtPUjWssKog8Smk32I3m8a-8otVYpFvoiYT_pqZeId4X633dmkx4JBX3x6SC74fZjduY3m5nfEPLW5yq4IlRpZjKdgpaEIxVykYYQQCNz5lW8h_x0Jo8v-MmluByU-sKYsI4euFu4A1cpz7WW2pQVh380LICfnGtfCaNC5_iAzRs4U9870hfBedZlyRTg1x9gNvtiiYmBqxIgEsOK1QNLFAn776vlgV0ax0wOjND8MXnUo0c66Ub9hDzwzQ7ZnTTgOS__0Hc0xnPGi_Jd8u0oBmdQ3Tj6GRTDss-4pG2gp1gbjZ4uloaej6i66eymXf0AUwSQkOIdLdU05ujqGxBU-rHxnp60i2b9lFzMZ18Pj9O-mEJqheTrVArHLcssB4fYS5dZ55nTuVPWFyIIawQrEMsEpcFoO1mZILSXtiwlk2UIxTOy1bSNf0FozmVW-NJIgLycK1U5zrXTrGBGCK9sQtjdwta2Hz4WvPhZg8eBm1Hf34yEfNi886vj2fhr7ynu16YncmTHByA5dS859b8kJyHvcbdrPMkwPKv7hASYJHJi1RMFvrPiVakSsjfqCSfQjpvv5KXuNcCqxi_UAK0BICbkzaYZ38Sotsa319gnQ8AKiCkhzzvx2kypUFmF9HMJKUeCN5rzuKVZXEV-cBZ5-crq5f9YpVfkYQ64Dj-gMb5Htta_r_1rwGFrs0-2J9Oj6Rx-p7OzL-f78QjeAp_UOIk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrdA7wgYFwCA4zE5QFFixNf4geEOtZpW7uCpk3ayxQcx4YKmoy1E9tP8Y2ck6Zdo0l722tsR7bP_fhcCHnrYuWLxOswyiMTApcEkvKxCL33wJE5c6r2Q-4P5c4R3zsWxyvk3zwXBsMq5zyxZtRFZdFHvoEvfqCqgMD9fPonxK5R-Lo6b6ExQ4u-u_wLJtvk0-4WwPddHG_3Dr_shE1XgdAKyaehFAW3LLIcLEMni8gWjhUmLpR1ifDC5oIlKNS9MiC9CqlzL4yTNk0lk6n3Cfz3DlnliYziDlnd7A2_HVx5dbQUnEez7Jwk0dEGZtGPxpiQOElBNWPYKXtJAtaNAq6LgyV52I7VXBJ-2w_I_UZrpd0Zmj0kK658RNa6JVjs40v6ntZxpLWDfo2cbNVBIdSUBf0KDGncZHrSytMB9mSjg9E4pwetEuG0d1FNfoEIBFWUom-YGlrnBpsLIBDaL52je9WonD4mR7dy3U9Ip6xK94zQmMsocWkuQdXmXCldcG4KwxKWC-GUDQibX2xmm-1jo43fGVg6CIzsOjAC8nGx5nRW3-PG2ZsIr8VMrM1df6jOfmQNqWeFVo4bI02eag40kjPPdBobp0WuvGQB-YDQzpCDwPasaRIh4JBYiyvrKrDZFdepCsh6ayZQvm0Pz_ElazjPJLuik4C8WQzjSoymK111jnMiVJRBUwvI0xl6LY6UqEhj2buApC3Ea525PVKOftZ1yVldDzDVz2_e12tyd-dwf5ANdof9F-ReDFojPs8xvk4607Nz9xK0vGn-qiEtSr7fNjX_B1Csapw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqbhHhBwLgEBhiJywOKFieOHT8g1NFW21rKNDFpLyg4vkAFTcbaie3X-DrOSdOu0aS97TW2I9vnfnwuhLx2sfQ28SqMikiHwCWBpHycht574MicOVn7IT-PxO4R3z9Oj9fIv0UuDIZVLnhizahtZdBHvo0vfqCqgMDd9k1YxEG3__HkT4gdpPClddFOY44iA3fxF8y36Ye9LsD6TRz3e18_7YZNh4HQpILPQpFablhkOFiJTtjIWMesjq00Lkl9aoqUJSjgvdQgyaxQhU-1EybLBBOZ9wn89xbZkGgVrZONnd7o4PDSw6NEynk0z9RJEhVtY0b9eILJidMM1DSGXbNXpGHdNOCqaFiRje24zRVB2L9H7jYaLO3MUe4-WXPlA7LZKcF6n1zQt7SOKa2d9ZvkW7cOEKG6tPQLMKdJk_VJK0-H2J-NDseTgh62yoXT3nk1_QXiENRSin5iqmmdJ6zPgVjooHSO7lfjcvaQHN3IdT8i62VVuieExlxEicsKAWo351Iqy7m2miWsSFMnTUDY4mJz02wfm278zsHqQWDkV4ERkPfLNSfzWh_Xzt5BeC1nYp3u-kN1-iNvyD63SjqutdBFpjjQS8E8U1msnUoL6QULyDuEdo7cBLZndJMUAYfEulx5R4L9LrnKZEC2WjOBC5j28AJf8oYLTfNLmgnIq-UwrsTIutJVZzgnQqUZtLaAPJ6j1_JIiYwUlsALSNZCvNaZ2yPl-Gddo5zVtQEz9fT6fb0kt4GK8-HeaPCM3IlBgcSXOsa3yPrs9Mw9B4VvVrxoKIuS7zdNzP8B-tVu0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Optimization+of+Lower+Limb+Rehabilitation+Exoskeleton+with+a+Multiaxial+Knee+Joint&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Jiandong+Jiang&rft.au=Peisong+Chen&rft.au=Jiyu+Peng&rft.au=Xin+Qiao&rft.date=2023-04-14&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=8&rft.issue=2&rft.spage=156&rft_id=info:doi/10.3390%2Fbiomimetics8020156&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d97e4aa6ab894ebeb1f1982ae95b7f61 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |