Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility
Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the...
Saved in:
Published in | Dental materials Vol. 33; no. 4; pp. e186 - e203 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated.
Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43− -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay.
The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs.
Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC. |
---|---|
AbstractList | Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated.
Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43− -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay.
The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs.
Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC. Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Materials and methods Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43- -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. Results The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Significance Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10 mol% Al3+ are most promising, when added in =20 wt% to a GIC. Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO -and Ca uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al are most promising, when added in ≤20wt% to a GIC. Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated.OBJECTIVESGlass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated.Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43- -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay.MATERIALS AND METHODSConventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43- -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay.The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs.RESULTSThe addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs.Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC.SIGNIFICANCEBioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC. Abstract Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Materials and methods Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43− -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. Results The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Significance Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10 mol% Al3+ are most promising, when added in ≤20 wt% to a GIC. |
Author | Vercruysse, C.W.J. Martens, L.C. Declercq, H. De Caluwé, T. Verbeeck, R.M.H. Convents, R. Ladik, I. |
Author_xml | – sequence: 1 givenname: T. surname: De Caluwé fullname: De Caluwé, T. email: tamara.decaluwe@ugent.be organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium – sequence: 2 givenname: C.W.J. surname: Vercruysse fullname: Vercruysse, C.W.J. organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium – sequence: 3 givenname: I. surname: Ladik fullname: Ladik, I. organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium – sequence: 4 givenname: R. surname: Convents fullname: Convents, R. organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium – sequence: 5 givenname: H. surname: Declercq fullname: Declercq, H. organization: Tissue Engineering Group, Ghent University, De Pintelaan 185 6B3, 9000 Ghent, Belgium – sequence: 6 givenname: L.C. surname: Martens fullname: Martens, L.C. organization: Department of Paediatric Dentistry and Special Care Dentistry, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium – sequence: 7 givenname: R.M.H. surname: Verbeeck fullname: Verbeeck, R.M.H. organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28196604$$D View this record in MEDLINE/PubMed |
BookMark | eNqVktFrFDEQxoNU7LX6H4gs-OLLrpNsNpstIpRSq1DwQQXfQjaZ9XLubs4kV7j_3ix3VShI8SkD-X3fDPPNGTmZ_YyEvKRQUaDi7aayOCc9VgxoWwGtANonZEVl25UAXXtCVkChKxvB6Sk5i3EDAJx19Bk5ZZJ2QgBfkXRprUvOz4Ufit55bZK7w-LHqGMskj8W-d9PGAqDU-4ZL4rrYUCTiixLayy26310xpdmjZMzeiy2wW8xJIex0LNdfI2ftjq53o0u7Z-Tp4MeI744vufk24frr1cfy9vPN5-uLm9Lk4dOJce6t43kHEWvERphetOantdDK0wnJR06xiUzlrOBWciVrFFyYFq3XACtz8mbg2-e59cOY1KTiwbHUc_od1FRKaToZMNYRl8_QDd-F-Y8naJdzUDQpuaZenWkdv2EVm2Dm3TYq_t9ZoAfABN8jAGHPwgFtcSmNuoQm1piU0BVji3LLh7IjEt6iSUF7cbHxO8PYsyrvHMYVDQOZ4PWhRySst79r4EZ3bwE-RP3GP8uQkWmQH1Zzmq5Kipq4A18zwbv_m3weP_fuSjfFQ |
CitedBy_id | crossref_primary_10_1186_s12903_024_04978_0 crossref_primary_10_1590_1678_4324_2024230003 crossref_primary_10_1016_j_jds_2022_02_012 crossref_primary_10_2174_18742106_v17_230223_2022_60 crossref_primary_10_1016_j_dental_2020_04_027 crossref_primary_10_1155_2022_1641041 crossref_primary_10_1038_s41415_022_4239_1 crossref_primary_10_1016_j_dental_2021_01_004 crossref_primary_10_3390_jfb14060302 crossref_primary_10_1177_22808000231184059 crossref_primary_10_4012_dmj_2023_132 crossref_primary_10_1016_j_ijadhadh_2021_102933 crossref_primary_10_3390_ma12223694 crossref_primary_10_1007_s10856_021_06501_1 crossref_primary_10_4103_ccd_ccd_474_19 crossref_primary_10_3390_nano11123374 crossref_primary_10_1007_s10266_020_00551_7 crossref_primary_10_1016_j_heliyon_2024_e25239 crossref_primary_10_1155_2021_5516517 crossref_primary_10_2186_jpr_JPR_D_22_00314 crossref_primary_10_61186_sjku_28_3_78 crossref_primary_10_1590_1678_7757_2017_0384 crossref_primary_10_61164_rmnm_v4i1_2295 crossref_primary_10_1016_j_msec_2020_110956 crossref_primary_10_1016_j_msec_2018_12_129 crossref_primary_10_1080_09205063_2022_2127143 crossref_primary_10_3390_dj10110208 crossref_primary_10_3390_prosthesis5010024 crossref_primary_10_1007_s10856_021_06553_3 crossref_primary_10_1016_j_rinp_2018_12_035 crossref_primary_10_1186_s12903_024_04944_w crossref_primary_10_1111_jace_20402 crossref_primary_10_17567_ataunidfd_473869 crossref_primary_10_1111_jerd_12413 crossref_primary_10_1016_j_bioactmat_2022_10_006 crossref_primary_10_1016_j_jdent_2024_105331 crossref_primary_10_4103_JCDE_JCDE_81_24 crossref_primary_10_2174_0118742106304660240515113035 crossref_primary_10_3390_dj7040110 crossref_primary_10_1016_j_ceramint_2024_12_243 crossref_primary_10_1186_s12903_024_04132_w crossref_primary_10_12701_yujm_2020_00374 crossref_primary_10_1016_j_jmbbm_2018_10_029 crossref_primary_10_17567_ataunidfd_492657 crossref_primary_10_1016_j_ceramint_2024_07_443 crossref_primary_10_3390_molecules22071225 crossref_primary_10_4103_1735_3327_384366 crossref_primary_10_5812_ajdr_14433 crossref_primary_10_1016_j_jnoncrysol_2018_09_003 crossref_primary_10_3390_ma13092189 crossref_primary_10_4012_dmj_2019_317 crossref_primary_10_1016_j_ceramint_2024_12_129 crossref_primary_10_1016_j_jmbbm_2019_05_033 crossref_primary_10_17567_ataunidfd_395363 crossref_primary_10_4012_dmj_2018_001 crossref_primary_10_1088_2053_1591_aadb45 crossref_primary_10_1016_j_dental_2024_05_019 crossref_primary_10_1177_2320206820930490 |
Cites_doi | 10.1016/S0142-9612(03)00124-8 10.3390/ma3010076 10.1016/S0142-9612(99)00216-1 10.3109/00016480902725213 10.1074/jbc.M006492200 10.1111/j.1834-7819.1977.tb04463.x 10.1177/00220345790580061001 10.1016/j.actbio.2010.11.037 10.4012/dmj.2011-029 10.1016/j.msec.2012.12.037 10.1016/S0142-9612(99)00058-7 10.1023/A:1004550907134 10.1016/j.dental.2004.07.016 10.1016/S0142-9612(99)00181-7 10.1016/j.jnoncrysol.2012.03.014 10.1098/rsta.2011.0257 10.1016/j.jnoncrysol.2006.12.001 10.1177/00220345960750120201 10.1016/j.actbio.2013.05.003 10.1016/j.actbio.2013.08.010 10.1016/j.dental.2007.06.028 10.17796/jcpd.36.3.gk80547w04504144 10.1016/S0142-9612(99)00215-X 10.3390/ma3073867 10.1016/j.biomaterials.2009.01.008 10.1023/A:1012445928805 10.1163/156856204323005352 10.1016/j.biomaterials.2006.01.017 10.1002/jctb.5020211101 10.1177/0885328209344441 10.1016/S0142-9612(99)00202-1 10.1016/j.dental.2014.06.003 10.1016/S0079-6700(01)00006-5 10.1007/BF00539955 10.1016/S0142-9612(98)00138-0 10.1039/C0JM02309D 10.1016/j.jinorgbio.2013.05.007 10.1016/j.dental.2004.03.006 10.1177/00220345980770120901 10.1016/j.biomaterials.2004.02.030 10.1016/j.actbio.2009.06.009 10.1021/jp803031z 10.1016/j.jnoncrysol.2011.07.025 10.1016/j.actbio.2007.07.011 10.1016/S0142-9612(03)00151-0 10.1016/0142-9612(93)90132-L 10.1016/j.actbio.2012.08.023 10.1016/S0142-9612(01)00208-3 10.1016/j.jdent.2005.08.005 10.1016/0022-3913(88)90176-X 10.1177/00220345000790020301 10.1007/s12034-013-0593-6 10.1017/S1431927615000057 |
ContentType | Journal Article |
Copyright | 2017 The Academy of Dental Materials The Academy of Dental Materials Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier BV Apr 2017 |
Copyright_xml | – notice: 2017 The Academy of Dental Materials – notice: The Academy of Dental Materials – notice: Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Apr 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.dental.2017.01.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 1879-0097 |
EndPage | e203 |
ExternalDocumentID | 28196604 10_1016_j_dental_2017_01_007 S010956411630450X 1_s2_0_S010956411630450X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAGKA AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ABXRA ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFJKZ AFPUW AFRAH AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDX HMK HMO HVGLF HZ~ IHE J1W KOM LH1 M24 M29 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SEL SES SEW SMS SPC SPCBC SSH SSM SSZ T5K WUQ YRY Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c564t-4e3bd5844e6bae056cbc7cb43f76c9881f92482cd42f2d082c83e8402aa746013 |
IEDL.DBID | .~1 |
ISSN | 0109-5641 1879-0097 |
IngestDate | Fri Jul 11 00:08:16 EDT 2025 Sat Jul 26 02:16:33 EDT 2025 Thu Apr 03 07:06:30 EDT 2025 Tue Jul 01 04:09:11 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Fri Feb 23 02:29:06 EST 2024 Tue Feb 25 19:57:41 EST 2025 Tue Aug 26 17:21:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Bioactive glass Apatite Biocompatibility Bioactivity Fluoride Glass ionomer |
Language | English |
License | Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-4e3bd5844e6bae056cbc7cb43f76c9881f92482cd42f2d082c83e8402aa746013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28196604 |
PQID | 1932061534 |
PQPubID | 2045262 |
ParticipantIDs | proquest_miscellaneous_1868698522 proquest_journals_1932061534 pubmed_primary_28196604 crossref_primary_10_1016_j_dental_2017_01_007 crossref_citationtrail_10_1016_j_dental_2017_01_007 elsevier_sciencedirect_doi_10_1016_j_dental_2017_01_007 elsevier_clinicalkeyesjournals_1_s2_0_S010956411630450X elsevier_clinicalkey_doi_10_1016_j_dental_2017_01_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Amsterdam |
PublicationTitle | Dental materials |
PublicationTitleAlternate | Dent Mater |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Hill, Stamboulis, Law (bib0235) 2006; 34 Matsuya, Stamboulis, Hill, Law (bib0025) 2007; 353 Griffin, Hill (bib0030) 2000; 21 Brauer, Anjum, Mneimne, Wilson, Doweidar, Hill (bib0205) 2012; 358 Prentice, Tyas, Burrow (bib0125) 2005; 21 Loof, Svahn, Jarmar, Engqvist, Pameijer (bib0140) 2008; 24 Gomes, Pires, Reis (bib0095) 2013; 33 Yap, Pek, Kumar, Cheang, Khor (bib0130) 2002; 23 Kokubo, Takadama (bib0155) 2006; 27 Feilzer, Degee, Davidson (bib0060) 1988; 59 Adams, Mansfield, Perlot, Shapiro (bib0325) 2001 Culbertson (bib0080) 2001; 26 Lusvardi, Malavasi, Cortada, Menabue, Menziani, Pedone (bib0245) 2008; 112 Ana, Matsuya, Ohta, Ishikawa (bib0180) 2003; 24 Chou, Huang, Dunn, Miller, Wu (bib0330) 2005 Hill, Wood, Thomas (bib0020) 1999; 34 Kent, Lewis, Wilson (bib0100) 1979; 58 Mclean, Wilson (bib0045) 1977; 22 Gerhardt, Boccaccini (bib0320) 2010; 3 Donly, Nelson (bib0070) 1997; 64 Wren, Clarkin, Laffir, Ohtsuki, Kim, Towler (bib0115) 2009; 20 Smales (bib0175) 2016 Hill, Brauer (bib0250) 2011; 357 Matsuya, Maeda, Ohta (bib0265) 1996; 75 Moshaverinia, Roohpour, Chee, Schricker (bib0010) 2011; 21 Zoergiebel, Ilie (bib0275) 2013; 9 Gunawidjaja, Mathew, Lo, Izquierdo-Barba, Garcia, Arcos (bib0290) 2012; 370 Choi, Lee, Kim (bib0185) 2008; 19 Bhattacharjee, Zhao, Hill, Culicchia, Kruck, Percy (bib0240) 2013; 126 Arita, Yamamoto, Shinonaga, Harada, Abe, Nakagawa (bib0075) 2011; 30 Griffin, Hill (bib0200) 2000; 21 Lusvardi, Malavasi, Menabue, Aina, Morterra (bib0190) 2009; 5 De Maeyer, Verbeeck, Vercruysse (bib0215) 1998; 77 Lowenstein (bib0230) 1954; 39 Nagaraja Upadaja, Kishore (bib0120) 2015 Fennell, Hill (bib0035) 2001; 36 Blades, Moore, Revell, Hill (bib0195) 1998; 9 Bohner, Lemaitre (bib0160) 2009; 30 Yli-Urpo, Lassila, Narhi, Vallittu (bib0135) 2005; 21 Nicholson, Czarnecka (bib0255) 2009; 24 Hench, Xynos, Polak (bib0145) 2004; 15 Celik, Felek, Islam, Demirci, Samim, Oztuna (bib0055) 2009; 129 Jones (bib0150) 2013; 9 Baghbani, Moztarzadeh, Hajibaki, Mozafari (bib0285) 2013; 36 Sasanaluckit, Doherty, Williams (bib0305) 1993 Subbarao, Neelakantan, Subbarao (bib0315) 2012 Moshaverinia, Ansari, Moshaverinia, Roohpour, Darr, Rehman (bib0085) 2008; 4 De Barra, Hill (bib0015) 2000; 21 Pires, Nunes, Abrahams, Hawkes (bib0225) 2008; 19 Hurrell-Gillingham, Reaney, Miller, Crawford, Hatton (bib0300) 2003; 24 Khoroushi, Keshani (bib0260) 2013 Gjorgievska, Van Tendeloo, Nicholson, Coleman, Slipper, Booth (bib0280) 2015; 21 De Caluwe, Vercruysse, Fraeyman, Verbeeck (bib0090) 2014; 30 Monmaturapoj, Soodsawang, Tanodekaew, Channasanoon (bib0110) 2010 Mneimne, Hill, Bushby, Brauer (bib0210) 2011; 7 Ducheyne, Qiu (bib0165) 1999; 20 Yoshida, Van Meerbeek, Nakayama, Snauwaert, Hellemans, Lambrechts (bib0065) 2000; 79 Lohbauer (bib0105) 2010; 3 Brook, Hatton (bib0310) 1998; 19 Griffin, Hill (bib0040) 1999; 20 Frencken, Leal, Navarro (bib0170) 2016 Hill (bib0295) 1996; 15 Wilson, Kent (bib0005) 1971; 21 Kern, Geier, Bjorklund, King, Homme, Haley (bib0050) 2014; 35 Declercq, Desmet, Berneel, Dubruel, Cornelissen (bib0220) 2013; 9 Czarnecka, Limanowska-Shaw, Hatton, Nicholson (bib0270) 2007; 18 Hurrell-Gillingham (10.1016/j.dental.2017.01.007_bib0300) 2003; 24 De Caluwe (10.1016/j.dental.2017.01.007_bib0090) 2014; 30 Khoroushi (10.1016/j.dental.2017.01.007_bib0260) 2013 Hench (10.1016/j.dental.2017.01.007_bib0145) 2004; 15 Gjorgievska (10.1016/j.dental.2017.01.007_bib0280) 2015; 21 Griffin (10.1016/j.dental.2017.01.007_bib0030) 2000; 21 Culbertson (10.1016/j.dental.2017.01.007_bib0080) 2001; 26 Jones (10.1016/j.dental.2017.01.007_bib0150) 2013; 9 Yli-Urpo (10.1016/j.dental.2017.01.007_bib0135) 2005; 21 De Barra (10.1016/j.dental.2017.01.007_bib0015) 2000; 21 Griffin (10.1016/j.dental.2017.01.007_bib0040) 1999; 20 Nicholson (10.1016/j.dental.2017.01.007_bib0255) 2009; 24 Gomes (10.1016/j.dental.2017.01.007_bib0095) 2013; 33 Subbarao (10.1016/j.dental.2017.01.007_bib0315) 2012 Yoshida (10.1016/j.dental.2017.01.007_bib0065) 2000; 79 Pires (10.1016/j.dental.2017.01.007_bib0225) 2008; 19 Hill (10.1016/j.dental.2017.01.007_bib0235) 2006; 34 Gerhardt (10.1016/j.dental.2017.01.007_bib0320) 2010; 3 Mclean (10.1016/j.dental.2017.01.007_bib0045) 1977; 22 Smales (10.1016/j.dental.2017.01.007_bib0175) 2016 Matsuya (10.1016/j.dental.2017.01.007_bib0265) 1996; 75 Choi (10.1016/j.dental.2017.01.007_bib0185) 2008; 19 Moshaverinia (10.1016/j.dental.2017.01.007_bib0010) 2011; 21 Baghbani (10.1016/j.dental.2017.01.007_bib0285) 2013; 36 Matsuya (10.1016/j.dental.2017.01.007_bib0025) 2007; 353 Loof (10.1016/j.dental.2017.01.007_bib0140) 2008; 24 Feilzer (10.1016/j.dental.2017.01.007_bib0060) 1988; 59 Lusvardi (10.1016/j.dental.2017.01.007_bib0245) 2008; 112 Czarnecka (10.1016/j.dental.2017.01.007_bib0270) 2007; 18 Celik (10.1016/j.dental.2017.01.007_bib0055) 2009; 129 Hill (10.1016/j.dental.2017.01.007_bib0250) 2011; 357 Bohner (10.1016/j.dental.2017.01.007_bib0160) 2009; 30 Mneimne (10.1016/j.dental.2017.01.007_bib0210) 2011; 7 Zoergiebel (10.1016/j.dental.2017.01.007_bib0275) 2013; 9 Wren (10.1016/j.dental.2017.01.007_bib0115) 2009; 20 Lowenstein (10.1016/j.dental.2017.01.007_bib0230) 1954; 39 Lusvardi (10.1016/j.dental.2017.01.007_bib0190) 2009; 5 Gunawidjaja (10.1016/j.dental.2017.01.007_bib0290) 2012; 370 Yap (10.1016/j.dental.2017.01.007_bib0130) 2002; 23 Hill (10.1016/j.dental.2017.01.007_bib0020) 1999; 34 Lohbauer (10.1016/j.dental.2017.01.007_bib0105) 2010; 3 Frencken (10.1016/j.dental.2017.01.007_bib0170) 2016 De Maeyer (10.1016/j.dental.2017.01.007_bib0215) 1998; 77 Brook (10.1016/j.dental.2017.01.007_bib0310) 1998; 19 Kokubo (10.1016/j.dental.2017.01.007_bib0155) 2006; 27 Chou (10.1016/j.dental.2017.01.007_bib0330) 2005 Monmaturapoj (10.1016/j.dental.2017.01.007_bib0110) 2010 Kern (10.1016/j.dental.2017.01.007_bib0050) 2014; 35 Hill (10.1016/j.dental.2017.01.007_bib0295) 1996; 15 Adams (10.1016/j.dental.2017.01.007_bib0325) 2001 Brauer (10.1016/j.dental.2017.01.007_bib0205) 2012; 358 Bhattacharjee (10.1016/j.dental.2017.01.007_bib0240) 2013; 126 Kent (10.1016/j.dental.2017.01.007_bib0100) 1979; 58 Sasanaluckit (10.1016/j.dental.2017.01.007_bib0305) 1993 Ducheyne (10.1016/j.dental.2017.01.007_bib0165) 1999; 20 Fennell (10.1016/j.dental.2017.01.007_bib0035) 2001; 36 Arita (10.1016/j.dental.2017.01.007_bib0075) 2011; 30 Ana (10.1016/j.dental.2017.01.007_bib0180) 2003; 24 Blades (10.1016/j.dental.2017.01.007_bib0195) 1998; 9 Moshaverinia (10.1016/j.dental.2017.01.007_bib0085) 2008; 4 Declercq (10.1016/j.dental.2017.01.007_bib0220) 2013; 9 Griffin (10.1016/j.dental.2017.01.007_bib0200) 2000; 21 Prentice (10.1016/j.dental.2017.01.007_bib0125) 2005; 21 Donly (10.1016/j.dental.2017.01.007_bib0070) 1997; 64 Wilson (10.1016/j.dental.2017.01.007_bib0005) 1971; 21 Nagaraja Upadaja (10.1016/j.dental.2017.01.007_bib0120) 2015 |
References_xml | – volume: 18 start-page: 649 year: 2007 end-page: 652 ident: bib0270 article-title: Ion release by endodontic grade glass-ionomer cement publication-title: J Mater Sci: Mater Med – start-page: 411 year: 2013 end-page: 420 ident: bib0260 article-title: A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer publication-title: Dent Res J – volume: 24 start-page: 293 year: 2009 end-page: 308 ident: bib0255 article-title: Review paper role of aluminum in glass-ionomer dental cements and its biological effects publication-title: J Biomater Appl – volume: 112 start-page: 12730 year: 2008 end-page: 12739 ident: bib0245 article-title: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation publication-title: J Phys Chem B – volume: 9 start-page: 9529 year: 2013 end-page: 9537 ident: bib0275 article-title: An in vitro study on the maturation of conventional glass ionomer cements and their interface to dentin publication-title: Acta Biomater – volume: 35 start-page: 537 year: 2014 end-page: 552 ident: bib0050 article-title: Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide publication-title: Neuroendocrinol Lett – volume: 59 start-page: 297 year: 1988 end-page: 300 ident: bib0060 article-title: Curing contraction of composites and glass-ionomer cements publication-title: J Prosthet Dent – volume: 30 start-page: 1029 year: 2014 end-page: 1038 ident: bib0090 article-title: The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties publication-title: Dent Mater – volume: 21 start-page: 201 year: 2005 end-page: 209 ident: bib0135 article-title: Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass publication-title: Dent Mater – volume: 23 start-page: 955 year: 2002 end-page: 962 ident: bib0130 article-title: Experimental studies on a new bioactive material: HAIonomer cements publication-title: Biomaterials – volume: 77 start-page: 2005 year: 1998 end-page: 2011 ident: bib0215 article-title: Reactivity of fluoride-containing calcium aluminosilicate glasses used in dental glass-ionomer cements publication-title: J Dent Res – volume: 30 start-page: 672 year: 2011 end-page: 683 ident: bib0075 article-title: Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement publication-title: Dent Mater J – start-page: 269 year: 2012 end-page: 274 ident: bib0315 article-title: In vitro biocompatibility tests of glass ionomer cements impregnated with collagen or bioactive glass to fibroblasts publication-title: J Clin Pediatr Dent – volume: 9 start-page: 4457 year: 2013 end-page: 4486 ident: bib0150 article-title: Review of bioactive glass: from hench to hybrids publication-title: Acta Biomater – volume: 370 start-page: 1376 year: 2012 end-page: 1399 ident: bib0290 article-title: Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance publication-title: Philos Trans R Soc A: Math Phys Eng Sci – volume: 5 start-page: 3548 year: 2009 end-page: 3562 ident: bib0190 article-title: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions publication-title: Acta Biomater – volume: 7 start-page: 1827 year: 2011 end-page: 1834 ident: bib0210 article-title: High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses publication-title: Acta Biomater – volume: 20 start-page: 2287 year: 1999 end-page: 2303 ident: bib0165 article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function publication-title: Biomaterials – volume: 9 start-page: 701 year: 1998 end-page: 706 ident: bib0195 article-title: In vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit publication-title: J Mater Sci: Mater Med – volume: 58 start-page: 1607 year: 1979 end-page: 1619 ident: bib0100 article-title: Glass ionomer cement formulations. 1. Preparation of novel fluoroaluminosilicate glasses high in fluorine publication-title: J Dent Res – volume: 15 start-page: 1122 year: 1996 end-page: 1125 ident: bib0295 article-title: An alternative view of the degradation of bioglass publication-title: J Mater Sci Lett – volume: 21 start-page: 693 year: 2000 end-page: 698 ident: bib0200 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part IV: influence of fluorine content publication-title: Biomaterials – start-page: 158 year: 2015 end-page: 165 ident: bib0120 article-title: Glass ionomer cement—the different generations publication-title: Trends Biomater Artif Organs – start-page: 1337 year: 2016 end-page: 1346 ident: bib0170 article-title: Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview publication-title: Clin Oral Investig – volume: 21 start-page: 399 year: 2000 end-page: 403 ident: bib0030 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content publication-title: Biomaterials – start-page: 906 year: 1993 end-page: 916 ident: bib0305 article-title: Biocompatibility of glass ionomer cements publication-title: Biomaterials – volume: 27 start-page: 2907 year: 2006 end-page: 2915 ident: bib0155 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials – volume: 24 start-page: 653 year: 2008 end-page: 659 ident: bib0140 article-title: A comparative study of the bioactivnity of three materials for dental applications publication-title: Dent Mater – volume: 9 start-page: 7699 year: 2013 end-page: 7708 ident: bib0220 article-title: Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-epsilon-caprolactone scaffolds in osteogenic tissue engineering publication-title: Acta Biomater – volume: 19 start-page: 565 year: 1998 end-page: 571 ident: bib0310 article-title: Glass-ionomers: bioactive implant materials publication-title: Biomaterials – volume: 21 start-page: 392 year: 2015 end-page: 406 ident: bib0280 article-title: The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements publication-title: Microsc Microanal – volume: 22 start-page: 120 year: 1977 end-page: 127 ident: bib0045 article-title: Clinical development of glass-ionomer cement. 2. Some clinical applications publication-title: Aust Dent J – volume: 21 start-page: 505 year: 2005 end-page: 510 ident: bib0125 article-title: The effect of particle size distribution on an experimental glass-ionomer cement publication-title: Dent Mater – volume: 126 start-page: 35 year: 2013 end-page: 37 ident: bib0240 article-title: Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD) publication-title: J Inorg Biochem – volume: 20 start-page: 1579 year: 1999 end-page: 1586 ident: bib0040 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part I: influence of aluminium to silicon ratio publication-title: Biomaterials – volume: 129 start-page: 1368 year: 2009 end-page: 1373 ident: bib0055 article-title: The impact of fixated glass ionomer cement and springy cortical bone incudostapedial joint reconstruction on hearing results publication-title: Acta Oto-Laryngol – volume: 36 start-page: 1339 year: 2013 end-page: 1346 ident: bib0285 article-title: Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO publication-title: Bull Mater Sci – volume: 3 start-page: 76 year: 2010 end-page: 96 ident: bib0105 article-title: Dental glass ionomer cements as permanent filling materials? –Properties, limitations and future trends publication-title: Materials – volume: 20 start-page: 1991 year: 2009 end-page: 1999 ident: bib0115 article-title: The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements publication-title: J Mater Sci: Mater Med – volume: 75 start-page: 1920 year: 1996 end-page: 1927 ident: bib0265 article-title: IR and NMR analyses of hardening and maturation of glass-ionomer cement publication-title: J Dent Res – volume: 15 start-page: 543 year: 2004 end-page: 562 ident: bib0145 article-title: Bioactive glasses for in situ tissue regeneration publication-title: J Biomater Sci Polym Ed – volume: 21 start-page: 563 year: 2000 end-page: 569 ident: bib0015 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content publication-title: Biomaterials – start-page: 20316 year: 2001 end-page: 20322 ident: bib0325 article-title: Matrix regulation of skeletal cell apoptosis publication-title: J Biol Chem – volume: 30 start-page: 2175 year: 2009 end-page: 2179 ident: bib0160 article-title: Can bioactivity be tested in vitro with SBF solution? publication-title: Biomaterials – volume: 19 start-page: 1687 year: 2008 end-page: 1692 ident: bib0225 article-title: The role of aluminium and silicon in the setting chemistry of glass ionomer cements publication-title: J Mater Sci: Mater Med – volume: 4 start-page: 432 year: 2008 end-page: 440 ident: bib0085 article-title: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC) publication-title: Acta Biomater – volume: 358 start-page: 1438 year: 2012 end-page: 1442 ident: bib0205 article-title: Fluoride-containing bioactive glass-ceramics publication-title: J Non-Cryst Solids – volume: 21 start-page: 313 year: 1971 ident: bib0005 article-title: Glass-ionomer cement, a new translucent dental filling material publication-title: J Appl Chem Biotechnol – volume: 39 start-page: 92 year: 1954 end-page: 94 ident: bib0230 article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates publication-title: Am Miner – volume: 34 start-page: 1767 year: 1999 end-page: 1774 ident: bib0020 article-title: Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine publication-title: J Mater Sci – volume: 3 start-page: 3867 year: 2010 end-page: 3910 ident: bib0320 article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering publication-title: Materials – volume: 34 start-page: 525 year: 2006 end-page: 532 ident: bib0235 article-title: Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy publication-title: J Dent – volume: 79 start-page: 709 year: 2000 end-page: 714 ident: bib0065 article-title: Evidence of chemical bonding at biomaterial-hard tissue interfaces publication-title: J Dent Res – volume: 24 start-page: 3061 year: 2003 end-page: 3067 ident: bib0180 article-title: Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement publication-title: Biomaterials – volume: 353 start-page: 237 year: 2007 end-page: 243 ident: bib0025 article-title: Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy publication-title: J Non-Cryst Solids – volume: 21 start-page: 1319 year: 2011 end-page: 1328 ident: bib0010 article-title: A review of powder modifications in conventional glass-ionomer dental cements publication-title: J Mater Chem – volume: 36 start-page: 5193 year: 2001 end-page: 5202 ident: bib0035 article-title: The influence of poly(acrylic acid) molar mass and concentration on the properties of polyalkenoate cements. Part I—compressive strength publication-title: J Mater Sci – volume: 24 start-page: 3153 year: 2003 end-page: 3160 ident: bib0300 article-title: Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements publication-title: Biomaterials – volume: 19 start-page: 3287 year: 2008 end-page: 3294 ident: bib0185 article-title: Bioactive sol–gel glass added ionomer cement for the regeneration of tooth structure publication-title: J Mater Sci: Mater Med – start-page: 285 year: 2005 end-page: 295 ident: bib0330 article-title: The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression publication-title: Biomaterials – volume: 26 start-page: 577 year: 2001 end-page: 604 ident: bib0080 article-title: Glass-ionomer dental restoratives publication-title: Prog Polym Sci – volume: 357 start-page: 3884 year: 2011 end-page: 3887 ident: bib0250 article-title: Predicting the bioactivity of glasses using the network connectivity or split network models publication-title: J Non-Cryst Solids – start-page: 294 year: 2016 end-page: 298 ident: bib0175 article-title: The atraumatic restorative treatment (ART) approach for primary teeth: review of literature publication-title: Pediatr Dent – volume: 64 start-page: 249 year: 1997 ident: bib0070 article-title: Fluoride release of restorative materials exposed to a fluoridated dentifrice publication-title: J Dent Child – start-page: 197 year: 2010 end-page: 199 ident: bib0110 article-title: Effect of glass preparation on mechanical properties of glass ionomer cements publication-title: J Met Mater Miner – volume: 33 start-page: 1361 year: 2013 end-page: 1370 ident: bib0095 article-title: Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability publication-title: Mater Sci Eng: C – start-page: 294 year: 2016 ident: 10.1016/j.dental.2017.01.007_bib0175 article-title: The atraumatic restorative treatment (ART) approach for primary teeth: review of literature publication-title: Pediatr Dent – volume: 24 start-page: 3153 issue: 18 year: 2003 ident: 10.1016/j.dental.2017.01.007_bib0300 article-title: Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00124-8 – volume: 3 start-page: 76 issue: 1 year: 2010 ident: 10.1016/j.dental.2017.01.007_bib0105 article-title: Dental glass ionomer cements as permanent filling materials? –Properties, limitations and future trends publication-title: Materials doi: 10.3390/ma3010076 – start-page: 1337 year: 2016 ident: 10.1016/j.dental.2017.01.007_bib0170 article-title: Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview publication-title: Clin Oral Investig – volume: 21 start-page: 693 issue: 7 year: 2000 ident: 10.1016/j.dental.2017.01.007_bib0200 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part IV: influence of fluorine content publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00216-1 – volume: 19 start-page: 1687 issue: 4 year: 2008 ident: 10.1016/j.dental.2017.01.007_bib0225 article-title: The role of aluminium and silicon in the setting chemistry of glass ionomer cements publication-title: J Mater Sci: Mater Med – volume: 129 start-page: 1368 issue: 12 year: 2009 ident: 10.1016/j.dental.2017.01.007_bib0055 article-title: The impact of fixated glass ionomer cement and springy cortical bone incudostapedial joint reconstruction on hearing results publication-title: Acta Oto-Laryngol doi: 10.3109/00016480902725213 – start-page: 20316 year: 2001 ident: 10.1016/j.dental.2017.01.007_bib0325 article-title: Matrix regulation of skeletal cell apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.M006492200 – volume: 22 start-page: 120 issue: 2 year: 1977 ident: 10.1016/j.dental.2017.01.007_bib0045 article-title: Clinical development of glass-ionomer cement. 2. Some clinical applications publication-title: Aust Dent J doi: 10.1111/j.1834-7819.1977.tb04463.x – volume: 58 start-page: 1607 issue: 6 year: 1979 ident: 10.1016/j.dental.2017.01.007_bib0100 article-title: Glass ionomer cement formulations. 1. Preparation of novel fluoroaluminosilicate glasses high in fluorine publication-title: J Dent Res doi: 10.1177/00220345790580061001 – volume: 7 start-page: 1827 issue: 4 year: 2011 ident: 10.1016/j.dental.2017.01.007_bib0210 article-title: High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.11.037 – volume: 30 start-page: 672 issue: 5 year: 2011 ident: 10.1016/j.dental.2017.01.007_bib0075 article-title: Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement publication-title: Dent Mater J doi: 10.4012/dmj.2011-029 – start-page: 197 year: 2010 ident: 10.1016/j.dental.2017.01.007_bib0110 article-title: Effect of glass preparation on mechanical properties of glass ionomer cements publication-title: J Met Mater Miner – volume: 33 start-page: 1361 issue: 3 year: 2013 ident: 10.1016/j.dental.2017.01.007_bib0095 article-title: Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability publication-title: Mater Sci Eng: C doi: 10.1016/j.msec.2012.12.037 – volume: 20 start-page: 1579 issue: 17 year: 1999 ident: 10.1016/j.dental.2017.01.007_bib0040 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part I: influence of aluminium to silicon ratio publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00058-7 – volume: 34 start-page: 1767 issue: 8 year: 1999 ident: 10.1016/j.dental.2017.01.007_bib0020 article-title: Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine publication-title: J Mater Sci doi: 10.1023/A:1004550907134 – volume: 21 start-page: 505 issue: 6 year: 2005 ident: 10.1016/j.dental.2017.01.007_bib0125 article-title: The effect of particle size distribution on an experimental glass-ionomer cement publication-title: Dent Mater doi: 10.1016/j.dental.2004.07.016 – volume: 20 start-page: 2287 issue: 23–24 year: 1999 ident: 10.1016/j.dental.2017.01.007_bib0165 article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00181-7 – volume: 358 start-page: 1438 issue: 12–13 year: 2012 ident: 10.1016/j.dental.2017.01.007_bib0205 article-title: Fluoride-containing bioactive glass-ceramics publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2012.03.014 – volume: 370 start-page: 1376 issue: 1963 year: 2012 ident: 10.1016/j.dental.2017.01.007_bib0290 article-title: Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance publication-title: Philos Trans R Soc A: Math Phys Eng Sci doi: 10.1098/rsta.2011.0257 – volume: 353 start-page: 237 issue: 3 year: 2007 ident: 10.1016/j.dental.2017.01.007_bib0025 article-title: Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2006.12.001 – volume: 75 start-page: 1920 issue: 12 year: 1996 ident: 10.1016/j.dental.2017.01.007_bib0265 article-title: IR and NMR analyses of hardening and maturation of glass-ionomer cement publication-title: J Dent Res doi: 10.1177/00220345960750120201 – volume: 35 start-page: 537 issue: 7 year: 2014 ident: 10.1016/j.dental.2017.01.007_bib0050 article-title: Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide publication-title: Neuroendocrinol Lett – volume: 9 start-page: 7699 issue: 8 year: 2013 ident: 10.1016/j.dental.2017.01.007_bib0220 article-title: Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-epsilon-caprolactone scaffolds in osteogenic tissue engineering publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.05.003 – volume: 9 start-page: 9529 issue: 12 year: 2013 ident: 10.1016/j.dental.2017.01.007_bib0275 article-title: An in vitro study on the maturation of conventional glass ionomer cements and their interface to dentin publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.08.010 – volume: 24 start-page: 653 issue: 5 year: 2008 ident: 10.1016/j.dental.2017.01.007_bib0140 article-title: A comparative study of the bioactivnity of three materials for dental applications publication-title: Dent Mater doi: 10.1016/j.dental.2007.06.028 – start-page: 269 year: 2012 ident: 10.1016/j.dental.2017.01.007_bib0315 article-title: In vitro biocompatibility tests of glass ionomer cements impregnated with collagen or bioactive glass to fibroblasts publication-title: J Clin Pediatr Dent doi: 10.17796/jcpd.36.3.gk80547w04504144 – volume: 21 start-page: 563 issue: 6 year: 2000 ident: 10.1016/j.dental.2017.01.007_bib0015 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00215-X – volume: 3 start-page: 3867 issue: 7 year: 2010 ident: 10.1016/j.dental.2017.01.007_bib0320 article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering publication-title: Materials doi: 10.3390/ma3073867 – volume: 30 start-page: 2175 issue: 12 year: 2009 ident: 10.1016/j.dental.2017.01.007_bib0160 article-title: Can bioactivity be tested in vitro with SBF solution? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.008 – volume: 39 start-page: 92 year: 1954 ident: 10.1016/j.dental.2017.01.007_bib0230 article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates publication-title: Am Miner – volume: 36 start-page: 5193 issue: 21 year: 2001 ident: 10.1016/j.dental.2017.01.007_bib0035 article-title: The influence of poly(acrylic acid) molar mass and concentration on the properties of polyalkenoate cements. Part I—compressive strength publication-title: J Mater Sci doi: 10.1023/A:1012445928805 – volume: 15 start-page: 543 issue: 4 year: 2004 ident: 10.1016/j.dental.2017.01.007_bib0145 article-title: Bioactive glasses for in situ tissue regeneration publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856204323005352 – start-page: 158 year: 2015 ident: 10.1016/j.dental.2017.01.007_bib0120 article-title: Glass ionomer cement—the different generations publication-title: Trends Biomater Artif Organs – volume: 27 start-page: 2907 issue: 15 year: 2006 ident: 10.1016/j.dental.2017.01.007_bib0155 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 21 start-page: 313 issue: 11 year: 1971 ident: 10.1016/j.dental.2017.01.007_bib0005 article-title: Glass-ionomer cement, a new translucent dental filling material publication-title: J Appl Chem Biotechnol doi: 10.1002/jctb.5020211101 – volume: 20 start-page: 1991 issue: 10 year: 2009 ident: 10.1016/j.dental.2017.01.007_bib0115 article-title: The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements publication-title: J Mater Sci: Mater Med – volume: 24 start-page: 293 issue: 4 year: 2009 ident: 10.1016/j.dental.2017.01.007_bib0255 article-title: Review paper role of aluminum in glass-ionomer dental cements and its biological effects publication-title: J Biomater Appl doi: 10.1177/0885328209344441 – volume: 21 start-page: 399 issue: 4 year: 2000 ident: 10.1016/j.dental.2017.01.007_bib0030 article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00202-1 – volume: 30 start-page: 1029 issue: 9 year: 2014 ident: 10.1016/j.dental.2017.01.007_bib0090 article-title: The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties publication-title: Dent Mater doi: 10.1016/j.dental.2014.06.003 – volume: 26 start-page: 577 issue: 4 year: 2001 ident: 10.1016/j.dental.2017.01.007_bib0080 article-title: Glass-ionomer dental restoratives publication-title: Prog Polym Sci doi: 10.1016/S0079-6700(01)00006-5 – volume: 15 start-page: 1122 issue: 13 year: 1996 ident: 10.1016/j.dental.2017.01.007_bib0295 article-title: An alternative view of the degradation of bioglass publication-title: J Mater Sci Lett doi: 10.1007/BF00539955 – volume: 19 start-page: 565 issue: 6 year: 1998 ident: 10.1016/j.dental.2017.01.007_bib0310 article-title: Glass-ionomers: bioactive implant materials publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00138-0 – volume: 18 start-page: 649 issue: 4 year: 2007 ident: 10.1016/j.dental.2017.01.007_bib0270 article-title: Ion release by endodontic grade glass-ionomer cement publication-title: J Mater Sci: Mater Med – volume: 21 start-page: 1319 issue: 5 year: 2011 ident: 10.1016/j.dental.2017.01.007_bib0010 article-title: A review of powder modifications in conventional glass-ionomer dental cements publication-title: J Mater Chem doi: 10.1039/C0JM02309D – volume: 126 start-page: 35 year: 2013 ident: 10.1016/j.dental.2017.01.007_bib0240 article-title: Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD) publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2013.05.007 – volume: 21 start-page: 201 issue: 3 year: 2005 ident: 10.1016/j.dental.2017.01.007_bib0135 article-title: Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass publication-title: Dent Mater doi: 10.1016/j.dental.2004.03.006 – volume: 77 start-page: 2005 issue: 12 year: 1998 ident: 10.1016/j.dental.2017.01.007_bib0215 article-title: Reactivity of fluoride-containing calcium aluminosilicate glasses used in dental glass-ionomer cements publication-title: J Dent Res doi: 10.1177/00220345980770120901 – start-page: 285 year: 2005 ident: 10.1016/j.dental.2017.01.007_bib0330 article-title: The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.02.030 – volume: 5 start-page: 3548 issue: 9 year: 2009 ident: 10.1016/j.dental.2017.01.007_bib0190 article-title: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions publication-title: Acta Biomater doi: 10.1016/j.actbio.2009.06.009 – volume: 112 start-page: 12730 issue: 40 year: 2008 ident: 10.1016/j.dental.2017.01.007_bib0245 article-title: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation publication-title: J Phys Chem B doi: 10.1021/jp803031z – volume: 357 start-page: 3884 issue: 24 year: 2011 ident: 10.1016/j.dental.2017.01.007_bib0250 article-title: Predicting the bioactivity of glasses using the network connectivity or split network models publication-title: J Non-Cryst Solids doi: 10.1016/j.jnoncrysol.2011.07.025 – volume: 4 start-page: 432 issue: 2 year: 2008 ident: 10.1016/j.dental.2017.01.007_bib0085 article-title: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC) publication-title: Acta Biomater doi: 10.1016/j.actbio.2007.07.011 – volume: 19 start-page: 3287 issue: 10 year: 2008 ident: 10.1016/j.dental.2017.01.007_bib0185 article-title: Bioactive sol–gel glass added ionomer cement for the regeneration of tooth structure publication-title: J Mater Sci: Mater Med – start-page: 411 year: 2013 ident: 10.1016/j.dental.2017.01.007_bib0260 article-title: A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer publication-title: Dent Res J – volume: 9 start-page: 701 issue: 12 year: 1998 ident: 10.1016/j.dental.2017.01.007_bib0195 article-title: In vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit publication-title: J Mater Sci: Mater Med – volume: 24 start-page: 3061 issue: 18 year: 2003 ident: 10.1016/j.dental.2017.01.007_bib0180 article-title: Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00151-0 – start-page: 906 year: 1993 ident: 10.1016/j.dental.2017.01.007_bib0305 article-title: Biocompatibility of glass ionomer cements publication-title: Biomaterials doi: 10.1016/0142-9612(93)90132-L – volume: 9 start-page: 4457 issue: 1 year: 2013 ident: 10.1016/j.dental.2017.01.007_bib0150 article-title: Review of bioactive glass: from hench to hybrids publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.08.023 – volume: 23 start-page: 955 issue: 3 year: 2002 ident: 10.1016/j.dental.2017.01.007_bib0130 article-title: Experimental studies on a new bioactive material: HAIonomer cements publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00208-3 – volume: 34 start-page: 525 issue: 8 year: 2006 ident: 10.1016/j.dental.2017.01.007_bib0235 article-title: Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy publication-title: J Dent doi: 10.1016/j.jdent.2005.08.005 – volume: 59 start-page: 297 issue: 3 year: 1988 ident: 10.1016/j.dental.2017.01.007_bib0060 article-title: Curing contraction of composites and glass-ionomer cements publication-title: J Prosthet Dent doi: 10.1016/0022-3913(88)90176-X – volume: 64 start-page: 249 issue: 4 year: 1997 ident: 10.1016/j.dental.2017.01.007_bib0070 article-title: Fluoride release of restorative materials exposed to a fluoridated dentifrice publication-title: J Dent Child – volume: 79 start-page: 709 issue: 2 year: 2000 ident: 10.1016/j.dental.2017.01.007_bib0065 article-title: Evidence of chemical bonding at biomaterial-hard tissue interfaces publication-title: J Dent Res doi: 10.1177/00220345000790020301 – volume: 36 start-page: 1339 issue: 7 year: 2013 ident: 10.1016/j.dental.2017.01.007_bib0285 article-title: Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2–CaO–P2O5–MgO–ZnO): in vitro study publication-title: Bull Mater Sci doi: 10.1007/s12034-013-0593-6 – volume: 21 start-page: 392 issue: 2 year: 2015 ident: 10.1016/j.dental.2017.01.007_bib0280 article-title: The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements publication-title: Microsc Microanal doi: 10.1017/S1431927615000057 |
SSID | ssj0004291 |
Score | 2.4445665 |
Snippet | Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and... Abstract Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as... Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e186 |
SubjectTerms | Adhesive bonding Advanced Basic Science Aluminum Apatite Bioactive glass Bioactivity Biochemistry Biocompatibility Biological activity Calcium Calcium influx Cell proliferation Chemical bonds Chemical properties Composition effects Compressive Strength Demineralizing Dental Materials Dentistry Electron microscopy Fluoride Fluorides Fourier transforms Glass Glass ionomer Glass Ionomer Cements Infrared spectroscopy Integration Materials Testing Mechanical properties Particle physics Particle Size Physicochemical properties Remineralization Scanning electron microscopy Spectroscopy, Fourier Transform Infrared Teeth Time compression Toxicity |
Title | Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S010956411630450X https://www.clinicalkey.es/playcontent/1-s2.0-S010956411630450X https://dx.doi.org/10.1016/j.dental.2017.01.007 https://www.ncbi.nlm.nih.gov/pubmed/28196604 https://www.proquest.com/docview/1932061534 https://www.proquest.com/docview/1868698522 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALankuLZWRuJpNYsdxelsVqm0reoFKe7PiR6RFKFntpgcu_e2dsZ0tiKKi3jYbTxJ5xuPP9jczhHws27J2tbWMm9IxYZ1iRqicOdVW0sDCOe53fL2U8ytxvigXO-RkjIVBWmXy_dGnB2-d_pmm3pyulsvpNzzUKaXIAVEALskWGMEuKrTyTzd3NA_wt7EmYVYzbD2GzwWOlwshh0jwqkLyTiwqe__09C_4Gaah0z3yPOFHOoufuE92fPeCPP2MnB8s2_aSDDPnAg2L9i01y74JDo0GlEyHPv0IsQx-TW3YHdwc05jFmIIYIEIa9zt6ZlM6AbrCPfs1Jl-lTefwuYG8PkRu7a9X5Or0y_eTOUulFZiFThiY8Nw4wB7CS9N4AEHW2MoawUFDtlYqb2FdpgrrRNEWDmCCVdzDWrBomkrAGo6_Jrtd3_m3hLZctlnmW-cdajlvROadQ-gAE53lxYTwsUe1TXnHsfzFTz0SzH7oqAeNetBZrkEPE8K2UquYd-OB9uWoLD3GlIIX1DAxPCBX3SfnN2kob3SuN4XO9F_m9rvkHxb7H-88HK1J370GgDTCSy4m5MP2Nox1PMBpOt9fQxsllawVQOYJeROtcNs5eCAqZSbePfqzDsgzvIq0pEOyO6yv_XtAXIM5CkPqiDyZnV3ML28BIkIraQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7mG8IH7TMcBIvFpNYidxeasGU8e2vrBJfbMS25E6oaRqswf--93ZTgdiaIi3KPYlls8-f7a_uwP4lDf51E6N4aLOLZfGKl5LlXKrmrKoceMczjsuFsX8Sn5b5ss9OB58YYhWGW1_sOneWsc3k9ibk_VqNflOlzp5IVNEFIhLkuUj2KfoVPkI9menZ_PFnXtkFhLnYX1OAoMHnad5We91SByv0sfvpLyy969Qf0OgfiU6eQpPIoRks9DKZ7Dn2udw8IVoP5S57QX0M2s9E4t1DatXXeVtGvNAmfVdfPDuDG7DjD8g3H5mIZAxQzEEhSwceXTcxIgCbE3H9huKv8qq1tJ3PX-9D_Tany_h6uTr5fGcx-wK3GAn9Fw6UVuEH9IVdeUQB5nalKaWApVkpkqlDW7NVGaszJrMIlIwSjjcDmZVVUrcxolXMGq71r0B1oiiSRLXWGdJ0WklE2ctoQdc64zIxiCGHtUmhh6nDBg_9MAxu9ZBD5r0oJNUox7GwHdS6xB644H6-aAsPbiVoiHUuDY8IFfeJ-e2cTZvdaq3mU70HyPuV8nfBu0__PNoGE367jeIpQlhCjmGj7tinO50h1O1rrvBOqpQxVQhah7D6zAKd51Dd6JFkcjD_27WBziYX16c6_PTxdlbeEwlgaV0BKN-c-PeIQDr6_dxgt0CSm0uGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addition+of+bioactive+glass+to+glass+ionomer+cements%3A+Effect+on+the+physico-chemical+properties+and+biocompatibility&rft.jtitle=Dental+materials&rft.au=De+Caluw%C3%A9%2C+T&rft.au=Vercruysse%2C+CWJ&rft.au=Ladik%2C+I&rft.au=Convents%2C+R&rft.date=2017-04-01&rft.pub=Elsevier+BV&rft.issn=0109-5641&rft.eissn=1879-0097&rft.volume=33&rft.issue=4&rft.spage=e186&rft_id=info:doi/10.1016%2Fj.dental.2017.01.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01095641%2FS0109564116X00176%2Fcov150h.gif |