Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility

Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the...

Full description

Saved in:
Bibliographic Details
Published inDental materials Vol. 33; no. 4; pp. e186 - e203
Main Authors De Caluwé, T., Vercruysse, C.W.J., Ladik, I., Convents, R., Declercq, H., Martens, L.C., Verbeeck, R.M.H.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43− -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC.
AbstractList Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43− -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC.
Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Materials and methods Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43- -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. Results The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Significance Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10 mol% Al3+ are most promising, when added in =20 wt% to a GIC.
Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO -and Ca uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al are most promising, when added in ≤20wt% to a GIC.
Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated.OBJECTIVESGlass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated.Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43- -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay.MATERIALS AND METHODSConventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43- -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay.The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs.RESULTSThe addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs.Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC.SIGNIFICANCEBioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al3+ are most promising, when added in ≤20wt% to a GIC.
Abstract Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Materials and methods Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO43− -and Ca2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. Results The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Significance Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10 mol% Al3+ are most promising, when added in ≤20 wt% to a GIC.
Author Vercruysse, C.W.J.
Martens, L.C.
Declercq, H.
De Caluwé, T.
Verbeeck, R.M.H.
Convents, R.
Ladik, I.
Author_xml – sequence: 1
  givenname: T.
  surname: De Caluwé
  fullname: De Caluwé, T.
  email: tamara.decaluwe@ugent.be
  organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium
– sequence: 2
  givenname: C.W.J.
  surname: Vercruysse
  fullname: Vercruysse, C.W.J.
  organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium
– sequence: 3
  givenname: I.
  surname: Ladik
  fullname: Ladik, I.
  organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium
– sequence: 4
  givenname: R.
  surname: Convents
  fullname: Convents, R.
  organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium
– sequence: 5
  givenname: H.
  surname: Declercq
  fullname: Declercq, H.
  organization: Tissue Engineering Group, Ghent University, De Pintelaan 185 6B3, 9000 Ghent, Belgium
– sequence: 6
  givenname: L.C.
  surname: Martens
  fullname: Martens, L.C.
  organization: Department of Paediatric Dentistry and Special Care Dentistry, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
– sequence: 7
  givenname: R.M.H.
  surname: Verbeeck
  fullname: Verbeeck, R.M.H.
  organization: Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 Bdg. B 4th Floor, 9000 Ghent, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28196604$$D View this record in MEDLINE/PubMed
BookMark eNqVktFrFDEQxoNU7LX6H4gs-OLLrpNsNpstIpRSq1DwQQXfQjaZ9XLubs4kV7j_3ix3VShI8SkD-X3fDPPNGTmZ_YyEvKRQUaDi7aayOCc9VgxoWwGtANonZEVl25UAXXtCVkChKxvB6Sk5i3EDAJx19Bk5ZZJ2QgBfkXRprUvOz4Ufit55bZK7w-LHqGMskj8W-d9PGAqDU-4ZL4rrYUCTiixLayy26310xpdmjZMzeiy2wW8xJIex0LNdfI2ftjq53o0u7Z-Tp4MeI744vufk24frr1cfy9vPN5-uLm9Lk4dOJce6t43kHEWvERphetOantdDK0wnJR06xiUzlrOBWciVrFFyYFq3XACtz8mbg2-e59cOY1KTiwbHUc_od1FRKaToZMNYRl8_QDd-F-Y8naJdzUDQpuaZenWkdv2EVm2Dm3TYq_t9ZoAfABN8jAGHPwgFtcSmNuoQm1piU0BVji3LLh7IjEt6iSUF7cbHxO8PYsyrvHMYVDQOZ4PWhRySst79r4EZ3bwE-RP3GP8uQkWmQH1Zzmq5Kipq4A18zwbv_m3weP_fuSjfFQ
CitedBy_id crossref_primary_10_1186_s12903_024_04978_0
crossref_primary_10_1590_1678_4324_2024230003
crossref_primary_10_1016_j_jds_2022_02_012
crossref_primary_10_2174_18742106_v17_230223_2022_60
crossref_primary_10_1016_j_dental_2020_04_027
crossref_primary_10_1155_2022_1641041
crossref_primary_10_1038_s41415_022_4239_1
crossref_primary_10_1016_j_dental_2021_01_004
crossref_primary_10_3390_jfb14060302
crossref_primary_10_1177_22808000231184059
crossref_primary_10_4012_dmj_2023_132
crossref_primary_10_1016_j_ijadhadh_2021_102933
crossref_primary_10_3390_ma12223694
crossref_primary_10_1007_s10856_021_06501_1
crossref_primary_10_4103_ccd_ccd_474_19
crossref_primary_10_3390_nano11123374
crossref_primary_10_1007_s10266_020_00551_7
crossref_primary_10_1016_j_heliyon_2024_e25239
crossref_primary_10_1155_2021_5516517
crossref_primary_10_2186_jpr_JPR_D_22_00314
crossref_primary_10_61186_sjku_28_3_78
crossref_primary_10_1590_1678_7757_2017_0384
crossref_primary_10_61164_rmnm_v4i1_2295
crossref_primary_10_1016_j_msec_2020_110956
crossref_primary_10_1016_j_msec_2018_12_129
crossref_primary_10_1080_09205063_2022_2127143
crossref_primary_10_3390_dj10110208
crossref_primary_10_3390_prosthesis5010024
crossref_primary_10_1007_s10856_021_06553_3
crossref_primary_10_1016_j_rinp_2018_12_035
crossref_primary_10_1186_s12903_024_04944_w
crossref_primary_10_1111_jace_20402
crossref_primary_10_17567_ataunidfd_473869
crossref_primary_10_1111_jerd_12413
crossref_primary_10_1016_j_bioactmat_2022_10_006
crossref_primary_10_1016_j_jdent_2024_105331
crossref_primary_10_4103_JCDE_JCDE_81_24
crossref_primary_10_2174_0118742106304660240515113035
crossref_primary_10_3390_dj7040110
crossref_primary_10_1016_j_ceramint_2024_12_243
crossref_primary_10_1186_s12903_024_04132_w
crossref_primary_10_12701_yujm_2020_00374
crossref_primary_10_1016_j_jmbbm_2018_10_029
crossref_primary_10_17567_ataunidfd_492657
crossref_primary_10_1016_j_ceramint_2024_07_443
crossref_primary_10_3390_molecules22071225
crossref_primary_10_4103_1735_3327_384366
crossref_primary_10_5812_ajdr_14433
crossref_primary_10_1016_j_jnoncrysol_2018_09_003
crossref_primary_10_3390_ma13092189
crossref_primary_10_4012_dmj_2019_317
crossref_primary_10_1016_j_ceramint_2024_12_129
crossref_primary_10_1016_j_jmbbm_2019_05_033
crossref_primary_10_17567_ataunidfd_395363
crossref_primary_10_4012_dmj_2018_001
crossref_primary_10_1088_2053_1591_aadb45
crossref_primary_10_1016_j_dental_2024_05_019
crossref_primary_10_1177_2320206820930490
Cites_doi 10.1016/S0142-9612(03)00124-8
10.3390/ma3010076
10.1016/S0142-9612(99)00216-1
10.3109/00016480902725213
10.1074/jbc.M006492200
10.1111/j.1834-7819.1977.tb04463.x
10.1177/00220345790580061001
10.1016/j.actbio.2010.11.037
10.4012/dmj.2011-029
10.1016/j.msec.2012.12.037
10.1016/S0142-9612(99)00058-7
10.1023/A:1004550907134
10.1016/j.dental.2004.07.016
10.1016/S0142-9612(99)00181-7
10.1016/j.jnoncrysol.2012.03.014
10.1098/rsta.2011.0257
10.1016/j.jnoncrysol.2006.12.001
10.1177/00220345960750120201
10.1016/j.actbio.2013.05.003
10.1016/j.actbio.2013.08.010
10.1016/j.dental.2007.06.028
10.17796/jcpd.36.3.gk80547w04504144
10.1016/S0142-9612(99)00215-X
10.3390/ma3073867
10.1016/j.biomaterials.2009.01.008
10.1023/A:1012445928805
10.1163/156856204323005352
10.1016/j.biomaterials.2006.01.017
10.1002/jctb.5020211101
10.1177/0885328209344441
10.1016/S0142-9612(99)00202-1
10.1016/j.dental.2014.06.003
10.1016/S0079-6700(01)00006-5
10.1007/BF00539955
10.1016/S0142-9612(98)00138-0
10.1039/C0JM02309D
10.1016/j.jinorgbio.2013.05.007
10.1016/j.dental.2004.03.006
10.1177/00220345980770120901
10.1016/j.biomaterials.2004.02.030
10.1016/j.actbio.2009.06.009
10.1021/jp803031z
10.1016/j.jnoncrysol.2011.07.025
10.1016/j.actbio.2007.07.011
10.1016/S0142-9612(03)00151-0
10.1016/0142-9612(93)90132-L
10.1016/j.actbio.2012.08.023
10.1016/S0142-9612(01)00208-3
10.1016/j.jdent.2005.08.005
10.1016/0022-3913(88)90176-X
10.1177/00220345000790020301
10.1007/s12034-013-0593-6
10.1017/S1431927615000057
ContentType Journal Article
Copyright 2017 The Academy of Dental Materials
The Academy of Dental Materials
Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Apr 2017
Copyright_xml – notice: 2017 The Academy of Dental Materials
– notice: The Academy of Dental Materials
– notice: Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Apr 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.dental.2017.01.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1879-0097
EndPage e203
ExternalDocumentID 28196604
10_1016_j_dental_2017_01_007
S010956411630450X
1_s2_0_S010956411630450X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAGKA
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRAH
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDX
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LH1
M24
M29
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SMS
SPC
SPCBC
SSH
SSM
SSZ
T5K
WUQ
YRY
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c564t-4e3bd5844e6bae056cbc7cb43f76c9881f92482cd42f2d082c83e8402aa746013
IEDL.DBID .~1
ISSN 0109-5641
1879-0097
IngestDate Fri Jul 11 00:08:16 EDT 2025
Sat Jul 26 02:16:33 EDT 2025
Thu Apr 03 07:06:30 EDT 2025
Tue Jul 01 04:09:11 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Fri Feb 23 02:29:06 EST 2024
Tue Feb 25 19:57:41 EST 2025
Tue Aug 26 17:21:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bioactive glass
Apatite
Biocompatibility
Bioactivity
Fluoride
Glass ionomer
Language English
License Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-4e3bd5844e6bae056cbc7cb43f76c9881f92482cd42f2d082c83e8402aa746013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28196604
PQID 1932061534
PQPubID 2045262
ParticipantIDs proquest_miscellaneous_1868698522
proquest_journals_1932061534
pubmed_primary_28196604
crossref_primary_10_1016_j_dental_2017_01_007
crossref_citationtrail_10_1016_j_dental_2017_01_007
elsevier_sciencedirect_doi_10_1016_j_dental_2017_01_007
elsevier_clinicalkeyesjournals_1_s2_0_S010956411630450X
elsevier_clinicalkey_doi_10_1016_j_dental_2017_01_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Amsterdam
PublicationTitle Dental materials
PublicationTitleAlternate Dent Mater
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hill, Stamboulis, Law (bib0235) 2006; 34
Matsuya, Stamboulis, Hill, Law (bib0025) 2007; 353
Griffin, Hill (bib0030) 2000; 21
Brauer, Anjum, Mneimne, Wilson, Doweidar, Hill (bib0205) 2012; 358
Prentice, Tyas, Burrow (bib0125) 2005; 21
Loof, Svahn, Jarmar, Engqvist, Pameijer (bib0140) 2008; 24
Gomes, Pires, Reis (bib0095) 2013; 33
Yap, Pek, Kumar, Cheang, Khor (bib0130) 2002; 23
Kokubo, Takadama (bib0155) 2006; 27
Feilzer, Degee, Davidson (bib0060) 1988; 59
Adams, Mansfield, Perlot, Shapiro (bib0325) 2001
Culbertson (bib0080) 2001; 26
Lusvardi, Malavasi, Cortada, Menabue, Menziani, Pedone (bib0245) 2008; 112
Ana, Matsuya, Ohta, Ishikawa (bib0180) 2003; 24
Chou, Huang, Dunn, Miller, Wu (bib0330) 2005
Hill, Wood, Thomas (bib0020) 1999; 34
Kent, Lewis, Wilson (bib0100) 1979; 58
Mclean, Wilson (bib0045) 1977; 22
Gerhardt, Boccaccini (bib0320) 2010; 3
Donly, Nelson (bib0070) 1997; 64
Wren, Clarkin, Laffir, Ohtsuki, Kim, Towler (bib0115) 2009; 20
Smales (bib0175) 2016
Hill, Brauer (bib0250) 2011; 357
Matsuya, Maeda, Ohta (bib0265) 1996; 75
Moshaverinia, Roohpour, Chee, Schricker (bib0010) 2011; 21
Zoergiebel, Ilie (bib0275) 2013; 9
Gunawidjaja, Mathew, Lo, Izquierdo-Barba, Garcia, Arcos (bib0290) 2012; 370
Choi, Lee, Kim (bib0185) 2008; 19
Bhattacharjee, Zhao, Hill, Culicchia, Kruck, Percy (bib0240) 2013; 126
Arita, Yamamoto, Shinonaga, Harada, Abe, Nakagawa (bib0075) 2011; 30
Griffin, Hill (bib0200) 2000; 21
Lusvardi, Malavasi, Menabue, Aina, Morterra (bib0190) 2009; 5
De Maeyer, Verbeeck, Vercruysse (bib0215) 1998; 77
Lowenstein (bib0230) 1954; 39
Nagaraja Upadaja, Kishore (bib0120) 2015
Fennell, Hill (bib0035) 2001; 36
Blades, Moore, Revell, Hill (bib0195) 1998; 9
Bohner, Lemaitre (bib0160) 2009; 30
Yli-Urpo, Lassila, Narhi, Vallittu (bib0135) 2005; 21
Nicholson, Czarnecka (bib0255) 2009; 24
Hench, Xynos, Polak (bib0145) 2004; 15
Celik, Felek, Islam, Demirci, Samim, Oztuna (bib0055) 2009; 129
Jones (bib0150) 2013; 9
Baghbani, Moztarzadeh, Hajibaki, Mozafari (bib0285) 2013; 36
Sasanaluckit, Doherty, Williams (bib0305) 1993
Subbarao, Neelakantan, Subbarao (bib0315) 2012
Moshaverinia, Ansari, Moshaverinia, Roohpour, Darr, Rehman (bib0085) 2008; 4
De Barra, Hill (bib0015) 2000; 21
Pires, Nunes, Abrahams, Hawkes (bib0225) 2008; 19
Hurrell-Gillingham, Reaney, Miller, Crawford, Hatton (bib0300) 2003; 24
Khoroushi, Keshani (bib0260) 2013
Gjorgievska, Van Tendeloo, Nicholson, Coleman, Slipper, Booth (bib0280) 2015; 21
De Caluwe, Vercruysse, Fraeyman, Verbeeck (bib0090) 2014; 30
Monmaturapoj, Soodsawang, Tanodekaew, Channasanoon (bib0110) 2010
Mneimne, Hill, Bushby, Brauer (bib0210) 2011; 7
Ducheyne, Qiu (bib0165) 1999; 20
Yoshida, Van Meerbeek, Nakayama, Snauwaert, Hellemans, Lambrechts (bib0065) 2000; 79
Lohbauer (bib0105) 2010; 3
Brook, Hatton (bib0310) 1998; 19
Griffin, Hill (bib0040) 1999; 20
Frencken, Leal, Navarro (bib0170) 2016
Hill (bib0295) 1996; 15
Wilson, Kent (bib0005) 1971; 21
Kern, Geier, Bjorklund, King, Homme, Haley (bib0050) 2014; 35
Declercq, Desmet, Berneel, Dubruel, Cornelissen (bib0220) 2013; 9
Czarnecka, Limanowska-Shaw, Hatton, Nicholson (bib0270) 2007; 18
Hurrell-Gillingham (10.1016/j.dental.2017.01.007_bib0300) 2003; 24
De Caluwe (10.1016/j.dental.2017.01.007_bib0090) 2014; 30
Khoroushi (10.1016/j.dental.2017.01.007_bib0260) 2013
Hench (10.1016/j.dental.2017.01.007_bib0145) 2004; 15
Gjorgievska (10.1016/j.dental.2017.01.007_bib0280) 2015; 21
Griffin (10.1016/j.dental.2017.01.007_bib0030) 2000; 21
Culbertson (10.1016/j.dental.2017.01.007_bib0080) 2001; 26
Jones (10.1016/j.dental.2017.01.007_bib0150) 2013; 9
Yli-Urpo (10.1016/j.dental.2017.01.007_bib0135) 2005; 21
De Barra (10.1016/j.dental.2017.01.007_bib0015) 2000; 21
Griffin (10.1016/j.dental.2017.01.007_bib0040) 1999; 20
Nicholson (10.1016/j.dental.2017.01.007_bib0255) 2009; 24
Gomes (10.1016/j.dental.2017.01.007_bib0095) 2013; 33
Subbarao (10.1016/j.dental.2017.01.007_bib0315) 2012
Yoshida (10.1016/j.dental.2017.01.007_bib0065) 2000; 79
Pires (10.1016/j.dental.2017.01.007_bib0225) 2008; 19
Hill (10.1016/j.dental.2017.01.007_bib0235) 2006; 34
Gerhardt (10.1016/j.dental.2017.01.007_bib0320) 2010; 3
Mclean (10.1016/j.dental.2017.01.007_bib0045) 1977; 22
Smales (10.1016/j.dental.2017.01.007_bib0175) 2016
Matsuya (10.1016/j.dental.2017.01.007_bib0265) 1996; 75
Choi (10.1016/j.dental.2017.01.007_bib0185) 2008; 19
Moshaverinia (10.1016/j.dental.2017.01.007_bib0010) 2011; 21
Baghbani (10.1016/j.dental.2017.01.007_bib0285) 2013; 36
Matsuya (10.1016/j.dental.2017.01.007_bib0025) 2007; 353
Loof (10.1016/j.dental.2017.01.007_bib0140) 2008; 24
Feilzer (10.1016/j.dental.2017.01.007_bib0060) 1988; 59
Lusvardi (10.1016/j.dental.2017.01.007_bib0245) 2008; 112
Czarnecka (10.1016/j.dental.2017.01.007_bib0270) 2007; 18
Celik (10.1016/j.dental.2017.01.007_bib0055) 2009; 129
Hill (10.1016/j.dental.2017.01.007_bib0250) 2011; 357
Bohner (10.1016/j.dental.2017.01.007_bib0160) 2009; 30
Mneimne (10.1016/j.dental.2017.01.007_bib0210) 2011; 7
Zoergiebel (10.1016/j.dental.2017.01.007_bib0275) 2013; 9
Wren (10.1016/j.dental.2017.01.007_bib0115) 2009; 20
Lowenstein (10.1016/j.dental.2017.01.007_bib0230) 1954; 39
Lusvardi (10.1016/j.dental.2017.01.007_bib0190) 2009; 5
Gunawidjaja (10.1016/j.dental.2017.01.007_bib0290) 2012; 370
Yap (10.1016/j.dental.2017.01.007_bib0130) 2002; 23
Hill (10.1016/j.dental.2017.01.007_bib0020) 1999; 34
Lohbauer (10.1016/j.dental.2017.01.007_bib0105) 2010; 3
Frencken (10.1016/j.dental.2017.01.007_bib0170) 2016
De Maeyer (10.1016/j.dental.2017.01.007_bib0215) 1998; 77
Brook (10.1016/j.dental.2017.01.007_bib0310) 1998; 19
Kokubo (10.1016/j.dental.2017.01.007_bib0155) 2006; 27
Chou (10.1016/j.dental.2017.01.007_bib0330) 2005
Monmaturapoj (10.1016/j.dental.2017.01.007_bib0110) 2010
Kern (10.1016/j.dental.2017.01.007_bib0050) 2014; 35
Hill (10.1016/j.dental.2017.01.007_bib0295) 1996; 15
Adams (10.1016/j.dental.2017.01.007_bib0325) 2001
Brauer (10.1016/j.dental.2017.01.007_bib0205) 2012; 358
Bhattacharjee (10.1016/j.dental.2017.01.007_bib0240) 2013; 126
Kent (10.1016/j.dental.2017.01.007_bib0100) 1979; 58
Sasanaluckit (10.1016/j.dental.2017.01.007_bib0305) 1993
Ducheyne (10.1016/j.dental.2017.01.007_bib0165) 1999; 20
Fennell (10.1016/j.dental.2017.01.007_bib0035) 2001; 36
Arita (10.1016/j.dental.2017.01.007_bib0075) 2011; 30
Ana (10.1016/j.dental.2017.01.007_bib0180) 2003; 24
Blades (10.1016/j.dental.2017.01.007_bib0195) 1998; 9
Moshaverinia (10.1016/j.dental.2017.01.007_bib0085) 2008; 4
Declercq (10.1016/j.dental.2017.01.007_bib0220) 2013; 9
Griffin (10.1016/j.dental.2017.01.007_bib0200) 2000; 21
Prentice (10.1016/j.dental.2017.01.007_bib0125) 2005; 21
Donly (10.1016/j.dental.2017.01.007_bib0070) 1997; 64
Wilson (10.1016/j.dental.2017.01.007_bib0005) 1971; 21
Nagaraja Upadaja (10.1016/j.dental.2017.01.007_bib0120) 2015
References_xml – volume: 18
  start-page: 649
  year: 2007
  end-page: 652
  ident: bib0270
  article-title: Ion release by endodontic grade glass-ionomer cement
  publication-title: J Mater Sci: Mater Med
– start-page: 411
  year: 2013
  end-page: 420
  ident: bib0260
  article-title: A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer
  publication-title: Dent Res J
– volume: 24
  start-page: 293
  year: 2009
  end-page: 308
  ident: bib0255
  article-title: Review paper role of aluminum in glass-ionomer dental cements and its biological effects
  publication-title: J Biomater Appl
– volume: 112
  start-page: 12730
  year: 2008
  end-page: 12739
  ident: bib0245
  article-title: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation
  publication-title: J Phys Chem B
– volume: 9
  start-page: 9529
  year: 2013
  end-page: 9537
  ident: bib0275
  article-title: An in vitro study on the maturation of conventional glass ionomer cements and their interface to dentin
  publication-title: Acta Biomater
– volume: 35
  start-page: 537
  year: 2014
  end-page: 552
  ident: bib0050
  article-title: Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide
  publication-title: Neuroendocrinol Lett
– volume: 59
  start-page: 297
  year: 1988
  end-page: 300
  ident: bib0060
  article-title: Curing contraction of composites and glass-ionomer cements
  publication-title: J Prosthet Dent
– volume: 30
  start-page: 1029
  year: 2014
  end-page: 1038
  ident: bib0090
  article-title: The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties
  publication-title: Dent Mater
– volume: 21
  start-page: 201
  year: 2005
  end-page: 209
  ident: bib0135
  article-title: Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass
  publication-title: Dent Mater
– volume: 23
  start-page: 955
  year: 2002
  end-page: 962
  ident: bib0130
  article-title: Experimental studies on a new bioactive material: HAIonomer cements
  publication-title: Biomaterials
– volume: 77
  start-page: 2005
  year: 1998
  end-page: 2011
  ident: bib0215
  article-title: Reactivity of fluoride-containing calcium aluminosilicate glasses used in dental glass-ionomer cements
  publication-title: J Dent Res
– volume: 30
  start-page: 672
  year: 2011
  end-page: 683
  ident: bib0075
  article-title: Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement
  publication-title: Dent Mater J
– start-page: 269
  year: 2012
  end-page: 274
  ident: bib0315
  article-title: In vitro biocompatibility tests of glass ionomer cements impregnated with collagen or bioactive glass to fibroblasts
  publication-title: J Clin Pediatr Dent
– volume: 9
  start-page: 4457
  year: 2013
  end-page: 4486
  ident: bib0150
  article-title: Review of bioactive glass: from hench to hybrids
  publication-title: Acta Biomater
– volume: 370
  start-page: 1376
  year: 2012
  end-page: 1399
  ident: bib0290
  article-title: Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
– volume: 5
  start-page: 3548
  year: 2009
  end-page: 3562
  ident: bib0190
  article-title: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions
  publication-title: Acta Biomater
– volume: 7
  start-page: 1827
  year: 2011
  end-page: 1834
  ident: bib0210
  article-title: High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses
  publication-title: Acta Biomater
– volume: 20
  start-page: 2287
  year: 1999
  end-page: 2303
  ident: bib0165
  article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function
  publication-title: Biomaterials
– volume: 9
  start-page: 701
  year: 1998
  end-page: 706
  ident: bib0195
  article-title: In vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit
  publication-title: J Mater Sci: Mater Med
– volume: 58
  start-page: 1607
  year: 1979
  end-page: 1619
  ident: bib0100
  article-title: Glass ionomer cement formulations. 1. Preparation of novel fluoroaluminosilicate glasses high in fluorine
  publication-title: J Dent Res
– volume: 15
  start-page: 1122
  year: 1996
  end-page: 1125
  ident: bib0295
  article-title: An alternative view of the degradation of bioglass
  publication-title: J Mater Sci Lett
– volume: 21
  start-page: 693
  year: 2000
  end-page: 698
  ident: bib0200
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part IV: influence of fluorine content
  publication-title: Biomaterials
– start-page: 158
  year: 2015
  end-page: 165
  ident: bib0120
  article-title: Glass ionomer cement—the different generations
  publication-title: Trends Biomater Artif Organs
– start-page: 1337
  year: 2016
  end-page: 1346
  ident: bib0170
  article-title: Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview
  publication-title: Clin Oral Investig
– volume: 21
  start-page: 399
  year: 2000
  end-page: 403
  ident: bib0030
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content
  publication-title: Biomaterials
– start-page: 906
  year: 1993
  end-page: 916
  ident: bib0305
  article-title: Biocompatibility of glass ionomer cements
  publication-title: Biomaterials
– volume: 27
  start-page: 2907
  year: 2006
  end-page: 2915
  ident: bib0155
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
– volume: 24
  start-page: 653
  year: 2008
  end-page: 659
  ident: bib0140
  article-title: A comparative study of the bioactivnity of three materials for dental applications
  publication-title: Dent Mater
– volume: 9
  start-page: 7699
  year: 2013
  end-page: 7708
  ident: bib0220
  article-title: Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-epsilon-caprolactone scaffolds in osteogenic tissue engineering
  publication-title: Acta Biomater
– volume: 19
  start-page: 565
  year: 1998
  end-page: 571
  ident: bib0310
  article-title: Glass-ionomers: bioactive implant materials
  publication-title: Biomaterials
– volume: 21
  start-page: 392
  year: 2015
  end-page: 406
  ident: bib0280
  article-title: The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements
  publication-title: Microsc Microanal
– volume: 22
  start-page: 120
  year: 1977
  end-page: 127
  ident: bib0045
  article-title: Clinical development of glass-ionomer cement. 2. Some clinical applications
  publication-title: Aust Dent J
– volume: 21
  start-page: 505
  year: 2005
  end-page: 510
  ident: bib0125
  article-title: The effect of particle size distribution on an experimental glass-ionomer cement
  publication-title: Dent Mater
– volume: 126
  start-page: 35
  year: 2013
  end-page: 37
  ident: bib0240
  article-title: Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD)
  publication-title: J Inorg Biochem
– volume: 20
  start-page: 1579
  year: 1999
  end-page: 1586
  ident: bib0040
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part I: influence of aluminium to silicon ratio
  publication-title: Biomaterials
– volume: 129
  start-page: 1368
  year: 2009
  end-page: 1373
  ident: bib0055
  article-title: The impact of fixated glass ionomer cement and springy cortical bone incudostapedial joint reconstruction on hearing results
  publication-title: Acta Oto-Laryngol
– volume: 36
  start-page: 1339
  year: 2013
  end-page: 1346
  ident: bib0285
  article-title: Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO
  publication-title: Bull Mater Sci
– volume: 3
  start-page: 76
  year: 2010
  end-page: 96
  ident: bib0105
  article-title: Dental glass ionomer cements as permanent filling materials? –Properties, limitations and future trends
  publication-title: Materials
– volume: 20
  start-page: 1991
  year: 2009
  end-page: 1999
  ident: bib0115
  article-title: The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements
  publication-title: J Mater Sci: Mater Med
– volume: 75
  start-page: 1920
  year: 1996
  end-page: 1927
  ident: bib0265
  article-title: IR and NMR analyses of hardening and maturation of glass-ionomer cement
  publication-title: J Dent Res
– volume: 15
  start-page: 543
  year: 2004
  end-page: 562
  ident: bib0145
  article-title: Bioactive glasses for in situ tissue regeneration
  publication-title: J Biomater Sci Polym Ed
– volume: 21
  start-page: 563
  year: 2000
  end-page: 569
  ident: bib0015
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content
  publication-title: Biomaterials
– start-page: 20316
  year: 2001
  end-page: 20322
  ident: bib0325
  article-title: Matrix regulation of skeletal cell apoptosis
  publication-title: J Biol Chem
– volume: 30
  start-page: 2175
  year: 2009
  end-page: 2179
  ident: bib0160
  article-title: Can bioactivity be tested in vitro with SBF solution?
  publication-title: Biomaterials
– volume: 19
  start-page: 1687
  year: 2008
  end-page: 1692
  ident: bib0225
  article-title: The role of aluminium and silicon in the setting chemistry of glass ionomer cements
  publication-title: J Mater Sci: Mater Med
– volume: 4
  start-page: 432
  year: 2008
  end-page: 440
  ident: bib0085
  article-title: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC)
  publication-title: Acta Biomater
– volume: 358
  start-page: 1438
  year: 2012
  end-page: 1442
  ident: bib0205
  article-title: Fluoride-containing bioactive glass-ceramics
  publication-title: J Non-Cryst Solids
– volume: 21
  start-page: 313
  year: 1971
  ident: bib0005
  article-title: Glass-ionomer cement, a new translucent dental filling material
  publication-title: J Appl Chem Biotechnol
– volume: 39
  start-page: 92
  year: 1954
  end-page: 94
  ident: bib0230
  article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates
  publication-title: Am Miner
– volume: 34
  start-page: 1767
  year: 1999
  end-page: 1774
  ident: bib0020
  article-title: Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine
  publication-title: J Mater Sci
– volume: 3
  start-page: 3867
  year: 2010
  end-page: 3910
  ident: bib0320
  article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering
  publication-title: Materials
– volume: 34
  start-page: 525
  year: 2006
  end-page: 532
  ident: bib0235
  article-title: Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy
  publication-title: J Dent
– volume: 79
  start-page: 709
  year: 2000
  end-page: 714
  ident: bib0065
  article-title: Evidence of chemical bonding at biomaterial-hard tissue interfaces
  publication-title: J Dent Res
– volume: 24
  start-page: 3061
  year: 2003
  end-page: 3067
  ident: bib0180
  article-title: Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement
  publication-title: Biomaterials
– volume: 353
  start-page: 237
  year: 2007
  end-page: 243
  ident: bib0025
  article-title: Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy
  publication-title: J Non-Cryst Solids
– volume: 21
  start-page: 1319
  year: 2011
  end-page: 1328
  ident: bib0010
  article-title: A review of powder modifications in conventional glass-ionomer dental cements
  publication-title: J Mater Chem
– volume: 36
  start-page: 5193
  year: 2001
  end-page: 5202
  ident: bib0035
  article-title: The influence of poly(acrylic acid) molar mass and concentration on the properties of polyalkenoate cements. Part I—compressive strength
  publication-title: J Mater Sci
– volume: 24
  start-page: 3153
  year: 2003
  end-page: 3160
  ident: bib0300
  article-title: Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements
  publication-title: Biomaterials
– volume: 19
  start-page: 3287
  year: 2008
  end-page: 3294
  ident: bib0185
  article-title: Bioactive sol–gel glass added ionomer cement for the regeneration of tooth structure
  publication-title: J Mater Sci: Mater Med
– start-page: 285
  year: 2005
  end-page: 295
  ident: bib0330
  article-title: The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression
  publication-title: Biomaterials
– volume: 26
  start-page: 577
  year: 2001
  end-page: 604
  ident: bib0080
  article-title: Glass-ionomer dental restoratives
  publication-title: Prog Polym Sci
– volume: 357
  start-page: 3884
  year: 2011
  end-page: 3887
  ident: bib0250
  article-title: Predicting the bioactivity of glasses using the network connectivity or split network models
  publication-title: J Non-Cryst Solids
– start-page: 294
  year: 2016
  end-page: 298
  ident: bib0175
  article-title: The atraumatic restorative treatment (ART) approach for primary teeth: review of literature
  publication-title: Pediatr Dent
– volume: 64
  start-page: 249
  year: 1997
  ident: bib0070
  article-title: Fluoride release of restorative materials exposed to a fluoridated dentifrice
  publication-title: J Dent Child
– start-page: 197
  year: 2010
  end-page: 199
  ident: bib0110
  article-title: Effect of glass preparation on mechanical properties of glass ionomer cements
  publication-title: J Met Mater Miner
– volume: 33
  start-page: 1361
  year: 2013
  end-page: 1370
  ident: bib0095
  article-title: Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability
  publication-title: Mater Sci Eng: C
– start-page: 294
  year: 2016
  ident: 10.1016/j.dental.2017.01.007_bib0175
  article-title: The atraumatic restorative treatment (ART) approach for primary teeth: review of literature
  publication-title: Pediatr Dent
– volume: 24
  start-page: 3153
  issue: 18
  year: 2003
  ident: 10.1016/j.dental.2017.01.007_bib0300
  article-title: Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00124-8
– volume: 3
  start-page: 76
  issue: 1
  year: 2010
  ident: 10.1016/j.dental.2017.01.007_bib0105
  article-title: Dental glass ionomer cements as permanent filling materials? –Properties, limitations and future trends
  publication-title: Materials
  doi: 10.3390/ma3010076
– start-page: 1337
  year: 2016
  ident: 10.1016/j.dental.2017.01.007_bib0170
  article-title: Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview
  publication-title: Clin Oral Investig
– volume: 21
  start-page: 693
  issue: 7
  year: 2000
  ident: 10.1016/j.dental.2017.01.007_bib0200
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part IV: influence of fluorine content
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00216-1
– volume: 19
  start-page: 1687
  issue: 4
  year: 2008
  ident: 10.1016/j.dental.2017.01.007_bib0225
  article-title: The role of aluminium and silicon in the setting chemistry of glass ionomer cements
  publication-title: J Mater Sci: Mater Med
– volume: 129
  start-page: 1368
  issue: 12
  year: 2009
  ident: 10.1016/j.dental.2017.01.007_bib0055
  article-title: The impact of fixated glass ionomer cement and springy cortical bone incudostapedial joint reconstruction on hearing results
  publication-title: Acta Oto-Laryngol
  doi: 10.3109/00016480902725213
– start-page: 20316
  year: 2001
  ident: 10.1016/j.dental.2017.01.007_bib0325
  article-title: Matrix regulation of skeletal cell apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M006492200
– volume: 22
  start-page: 120
  issue: 2
  year: 1977
  ident: 10.1016/j.dental.2017.01.007_bib0045
  article-title: Clinical development of glass-ionomer cement. 2. Some clinical applications
  publication-title: Aust Dent J
  doi: 10.1111/j.1834-7819.1977.tb04463.x
– volume: 58
  start-page: 1607
  issue: 6
  year: 1979
  ident: 10.1016/j.dental.2017.01.007_bib0100
  article-title: Glass ionomer cement formulations. 1. Preparation of novel fluoroaluminosilicate glasses high in fluorine
  publication-title: J Dent Res
  doi: 10.1177/00220345790580061001
– volume: 7
  start-page: 1827
  issue: 4
  year: 2011
  ident: 10.1016/j.dental.2017.01.007_bib0210
  article-title: High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.11.037
– volume: 30
  start-page: 672
  issue: 5
  year: 2011
  ident: 10.1016/j.dental.2017.01.007_bib0075
  article-title: Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement
  publication-title: Dent Mater J
  doi: 10.4012/dmj.2011-029
– start-page: 197
  year: 2010
  ident: 10.1016/j.dental.2017.01.007_bib0110
  article-title: Effect of glass preparation on mechanical properties of glass ionomer cements
  publication-title: J Met Mater Miner
– volume: 33
  start-page: 1361
  issue: 3
  year: 2013
  ident: 10.1016/j.dental.2017.01.007_bib0095
  article-title: Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability
  publication-title: Mater Sci Eng: C
  doi: 10.1016/j.msec.2012.12.037
– volume: 20
  start-page: 1579
  issue: 17
  year: 1999
  ident: 10.1016/j.dental.2017.01.007_bib0040
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part I: influence of aluminium to silicon ratio
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00058-7
– volume: 34
  start-page: 1767
  issue: 8
  year: 1999
  ident: 10.1016/j.dental.2017.01.007_bib0020
  article-title: Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine
  publication-title: J Mater Sci
  doi: 10.1023/A:1004550907134
– volume: 21
  start-page: 505
  issue: 6
  year: 2005
  ident: 10.1016/j.dental.2017.01.007_bib0125
  article-title: The effect of particle size distribution on an experimental glass-ionomer cement
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2004.07.016
– volume: 20
  start-page: 2287
  issue: 23–24
  year: 1999
  ident: 10.1016/j.dental.2017.01.007_bib0165
  article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00181-7
– volume: 358
  start-page: 1438
  issue: 12–13
  year: 2012
  ident: 10.1016/j.dental.2017.01.007_bib0205
  article-title: Fluoride-containing bioactive glass-ceramics
  publication-title: J Non-Cryst Solids
  doi: 10.1016/j.jnoncrysol.2012.03.014
– volume: 370
  start-page: 1376
  issue: 1963
  year: 2012
  ident: 10.1016/j.dental.2017.01.007_bib0290
  article-title: Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2011.0257
– volume: 353
  start-page: 237
  issue: 3
  year: 2007
  ident: 10.1016/j.dental.2017.01.007_bib0025
  article-title: Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy
  publication-title: J Non-Cryst Solids
  doi: 10.1016/j.jnoncrysol.2006.12.001
– volume: 75
  start-page: 1920
  issue: 12
  year: 1996
  ident: 10.1016/j.dental.2017.01.007_bib0265
  article-title: IR and NMR analyses of hardening and maturation of glass-ionomer cement
  publication-title: J Dent Res
  doi: 10.1177/00220345960750120201
– volume: 35
  start-page: 537
  issue: 7
  year: 2014
  ident: 10.1016/j.dental.2017.01.007_bib0050
  article-title: Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide
  publication-title: Neuroendocrinol Lett
– volume: 9
  start-page: 7699
  issue: 8
  year: 2013
  ident: 10.1016/j.dental.2017.01.007_bib0220
  article-title: Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-epsilon-caprolactone scaffolds in osteogenic tissue engineering
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2013.05.003
– volume: 9
  start-page: 9529
  issue: 12
  year: 2013
  ident: 10.1016/j.dental.2017.01.007_bib0275
  article-title: An in vitro study on the maturation of conventional glass ionomer cements and their interface to dentin
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2013.08.010
– volume: 24
  start-page: 653
  issue: 5
  year: 2008
  ident: 10.1016/j.dental.2017.01.007_bib0140
  article-title: A comparative study of the bioactivnity of three materials for dental applications
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2007.06.028
– start-page: 269
  year: 2012
  ident: 10.1016/j.dental.2017.01.007_bib0315
  article-title: In vitro biocompatibility tests of glass ionomer cements impregnated with collagen or bioactive glass to fibroblasts
  publication-title: J Clin Pediatr Dent
  doi: 10.17796/jcpd.36.3.gk80547w04504144
– volume: 21
  start-page: 563
  issue: 6
  year: 2000
  ident: 10.1016/j.dental.2017.01.007_bib0015
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00215-X
– volume: 3
  start-page: 3867
  issue: 7
  year: 2010
  ident: 10.1016/j.dental.2017.01.007_bib0320
  article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering
  publication-title: Materials
  doi: 10.3390/ma3073867
– volume: 30
  start-page: 2175
  issue: 12
  year: 2009
  ident: 10.1016/j.dental.2017.01.007_bib0160
  article-title: Can bioactivity be tested in vitro with SBF solution?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.01.008
– volume: 39
  start-page: 92
  year: 1954
  ident: 10.1016/j.dental.2017.01.007_bib0230
  article-title: The distribution of aluminum in the tetrahedra of silicates and aluminates
  publication-title: Am Miner
– volume: 36
  start-page: 5193
  issue: 21
  year: 2001
  ident: 10.1016/j.dental.2017.01.007_bib0035
  article-title: The influence of poly(acrylic acid) molar mass and concentration on the properties of polyalkenoate cements. Part I—compressive strength
  publication-title: J Mater Sci
  doi: 10.1023/A:1012445928805
– volume: 15
  start-page: 543
  issue: 4
  year: 2004
  ident: 10.1016/j.dental.2017.01.007_bib0145
  article-title: Bioactive glasses for in situ tissue regeneration
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856204323005352
– start-page: 158
  year: 2015
  ident: 10.1016/j.dental.2017.01.007_bib0120
  article-title: Glass ionomer cement—the different generations
  publication-title: Trends Biomater Artif Organs
– volume: 27
  start-page: 2907
  issue: 15
  year: 2006
  ident: 10.1016/j.dental.2017.01.007_bib0155
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
– volume: 21
  start-page: 313
  issue: 11
  year: 1971
  ident: 10.1016/j.dental.2017.01.007_bib0005
  article-title: Glass-ionomer cement, a new translucent dental filling material
  publication-title: J Appl Chem Biotechnol
  doi: 10.1002/jctb.5020211101
– volume: 20
  start-page: 1991
  issue: 10
  year: 2009
  ident: 10.1016/j.dental.2017.01.007_bib0115
  article-title: The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements
  publication-title: J Mater Sci: Mater Med
– volume: 24
  start-page: 293
  issue: 4
  year: 2009
  ident: 10.1016/j.dental.2017.01.007_bib0255
  article-title: Review paper role of aluminum in glass-ionomer dental cements and its biological effects
  publication-title: J Biomater Appl
  doi: 10.1177/0885328209344441
– volume: 21
  start-page: 399
  issue: 4
  year: 2000
  ident: 10.1016/j.dental.2017.01.007_bib0030
  article-title: Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00202-1
– volume: 30
  start-page: 1029
  issue: 9
  year: 2014
  ident: 10.1016/j.dental.2017.01.007_bib0090
  article-title: The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2014.06.003
– volume: 26
  start-page: 577
  issue: 4
  year: 2001
  ident: 10.1016/j.dental.2017.01.007_bib0080
  article-title: Glass-ionomer dental restoratives
  publication-title: Prog Polym Sci
  doi: 10.1016/S0079-6700(01)00006-5
– volume: 15
  start-page: 1122
  issue: 13
  year: 1996
  ident: 10.1016/j.dental.2017.01.007_bib0295
  article-title: An alternative view of the degradation of bioglass
  publication-title: J Mater Sci Lett
  doi: 10.1007/BF00539955
– volume: 19
  start-page: 565
  issue: 6
  year: 1998
  ident: 10.1016/j.dental.2017.01.007_bib0310
  article-title: Glass-ionomers: bioactive implant materials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00138-0
– volume: 18
  start-page: 649
  issue: 4
  year: 2007
  ident: 10.1016/j.dental.2017.01.007_bib0270
  article-title: Ion release by endodontic grade glass-ionomer cement
  publication-title: J Mater Sci: Mater Med
– volume: 21
  start-page: 1319
  issue: 5
  year: 2011
  ident: 10.1016/j.dental.2017.01.007_bib0010
  article-title: A review of powder modifications in conventional glass-ionomer dental cements
  publication-title: J Mater Chem
  doi: 10.1039/C0JM02309D
– volume: 126
  start-page: 35
  year: 2013
  ident: 10.1016/j.dental.2017.01.007_bib0240
  article-title: Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD)
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2013.05.007
– volume: 21
  start-page: 201
  issue: 3
  year: 2005
  ident: 10.1016/j.dental.2017.01.007_bib0135
  article-title: Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2004.03.006
– volume: 77
  start-page: 2005
  issue: 12
  year: 1998
  ident: 10.1016/j.dental.2017.01.007_bib0215
  article-title: Reactivity of fluoride-containing calcium aluminosilicate glasses used in dental glass-ionomer cements
  publication-title: J Dent Res
  doi: 10.1177/00220345980770120901
– start-page: 285
  year: 2005
  ident: 10.1016/j.dental.2017.01.007_bib0330
  article-title: The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.02.030
– volume: 5
  start-page: 3548
  issue: 9
  year: 2009
  ident: 10.1016/j.dental.2017.01.007_bib0190
  article-title: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.06.009
– volume: 112
  start-page: 12730
  issue: 40
  year: 2008
  ident: 10.1016/j.dental.2017.01.007_bib0245
  article-title: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation
  publication-title: J Phys Chem B
  doi: 10.1021/jp803031z
– volume: 357
  start-page: 3884
  issue: 24
  year: 2011
  ident: 10.1016/j.dental.2017.01.007_bib0250
  article-title: Predicting the bioactivity of glasses using the network connectivity or split network models
  publication-title: J Non-Cryst Solids
  doi: 10.1016/j.jnoncrysol.2011.07.025
– volume: 4
  start-page: 432
  issue: 2
  year: 2008
  ident: 10.1016/j.dental.2017.01.007_bib0085
  article-title: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC)
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2007.07.011
– volume: 19
  start-page: 3287
  issue: 10
  year: 2008
  ident: 10.1016/j.dental.2017.01.007_bib0185
  article-title: Bioactive sol–gel glass added ionomer cement for the regeneration of tooth structure
  publication-title: J Mater Sci: Mater Med
– start-page: 411
  year: 2013
  ident: 10.1016/j.dental.2017.01.007_bib0260
  article-title: A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer
  publication-title: Dent Res J
– volume: 9
  start-page: 701
  issue: 12
  year: 1998
  ident: 10.1016/j.dental.2017.01.007_bib0195
  article-title: In vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit
  publication-title: J Mater Sci: Mater Med
– volume: 24
  start-page: 3061
  issue: 18
  year: 2003
  ident: 10.1016/j.dental.2017.01.007_bib0180
  article-title: Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00151-0
– start-page: 906
  year: 1993
  ident: 10.1016/j.dental.2017.01.007_bib0305
  article-title: Biocompatibility of glass ionomer cements
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(93)90132-L
– volume: 9
  start-page: 4457
  issue: 1
  year: 2013
  ident: 10.1016/j.dental.2017.01.007_bib0150
  article-title: Review of bioactive glass: from hench to hybrids
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.08.023
– volume: 23
  start-page: 955
  issue: 3
  year: 2002
  ident: 10.1016/j.dental.2017.01.007_bib0130
  article-title: Experimental studies on a new bioactive material: HAIonomer cements
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00208-3
– volume: 34
  start-page: 525
  issue: 8
  year: 2006
  ident: 10.1016/j.dental.2017.01.007_bib0235
  article-title: Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy
  publication-title: J Dent
  doi: 10.1016/j.jdent.2005.08.005
– volume: 59
  start-page: 297
  issue: 3
  year: 1988
  ident: 10.1016/j.dental.2017.01.007_bib0060
  article-title: Curing contraction of composites and glass-ionomer cements
  publication-title: J Prosthet Dent
  doi: 10.1016/0022-3913(88)90176-X
– volume: 64
  start-page: 249
  issue: 4
  year: 1997
  ident: 10.1016/j.dental.2017.01.007_bib0070
  article-title: Fluoride release of restorative materials exposed to a fluoridated dentifrice
  publication-title: J Dent Child
– volume: 79
  start-page: 709
  issue: 2
  year: 2000
  ident: 10.1016/j.dental.2017.01.007_bib0065
  article-title: Evidence of chemical bonding at biomaterial-hard tissue interfaces
  publication-title: J Dent Res
  doi: 10.1177/00220345000790020301
– volume: 36
  start-page: 1339
  issue: 7
  year: 2013
  ident: 10.1016/j.dental.2017.01.007_bib0285
  article-title: Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2–CaO–P2O5–MgO–ZnO): in vitro study
  publication-title: Bull Mater Sci
  doi: 10.1007/s12034-013-0593-6
– volume: 21
  start-page: 392
  issue: 2
  year: 2015
  ident: 10.1016/j.dental.2017.01.007_bib0280
  article-title: The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements
  publication-title: Microsc Microanal
  doi: 10.1017/S1431927615000057
SSID ssj0004291
Score 2.4445665
Snippet Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and...
Abstract Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as...
Objectives Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e186
SubjectTerms Adhesive bonding
Advanced Basic Science
Aluminum
Apatite
Bioactive glass
Bioactivity
Biochemistry
Biocompatibility
Biological activity
Calcium
Calcium influx
Cell proliferation
Chemical bonds
Chemical properties
Composition effects
Compressive Strength
Demineralizing
Dental Materials
Dentistry
Electron microscopy
Fluoride
Fluorides
Fourier transforms
Glass
Glass ionomer
Glass Ionomer Cements
Infrared spectroscopy
Integration
Materials Testing
Mechanical properties
Particle physics
Particle Size
Physicochemical properties
Remineralization
Scanning electron microscopy
Spectroscopy, Fourier Transform Infrared
Teeth
Time compression
Toxicity
Title Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility
URI https://www.clinicalkey.com/#!/content/1-s2.0-S010956411630450X
https://www.clinicalkey.es/playcontent/1-s2.0-S010956411630450X
https://dx.doi.org/10.1016/j.dental.2017.01.007
https://www.ncbi.nlm.nih.gov/pubmed/28196604
https://www.proquest.com/docview/1932061534
https://www.proquest.com/docview/1868698522
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALankuLZWRuJpNYsdxelsVqm0reoFKe7PiR6RFKFntpgcu_e2dsZ0tiKKi3jYbTxJ5xuPP9jczhHws27J2tbWMm9IxYZ1iRqicOdVW0sDCOe53fL2U8ytxvigXO-RkjIVBWmXy_dGnB2-d_pmm3pyulsvpNzzUKaXIAVEALskWGMEuKrTyTzd3NA_wt7EmYVYzbD2GzwWOlwshh0jwqkLyTiwqe__09C_4Gaah0z3yPOFHOoufuE92fPeCPP2MnB8s2_aSDDPnAg2L9i01y74JDo0GlEyHPv0IsQx-TW3YHdwc05jFmIIYIEIa9zt6ZlM6AbrCPfs1Jl-lTefwuYG8PkRu7a9X5Or0y_eTOUulFZiFThiY8Nw4wB7CS9N4AEHW2MoawUFDtlYqb2FdpgrrRNEWDmCCVdzDWrBomkrAGo6_Jrtd3_m3hLZctlnmW-cdajlvROadQ-gAE53lxYTwsUe1TXnHsfzFTz0SzH7oqAeNetBZrkEPE8K2UquYd-OB9uWoLD3GlIIX1DAxPCBX3SfnN2kob3SuN4XO9F_m9rvkHxb7H-88HK1J370GgDTCSy4m5MP2Nox1PMBpOt9fQxsllawVQOYJeROtcNs5eCAqZSbePfqzDsgzvIq0pEOyO6yv_XtAXIM5CkPqiDyZnV3ML28BIkIraQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7mG8IH7TMcBIvFpNYidxeasGU8e2vrBJfbMS25E6oaRqswf--93ZTgdiaIi3KPYlls8-f7a_uwP4lDf51E6N4aLOLZfGKl5LlXKrmrKoceMczjsuFsX8Sn5b5ss9OB58YYhWGW1_sOneWsc3k9ibk_VqNflOlzp5IVNEFIhLkuUj2KfoVPkI9menZ_PFnXtkFhLnYX1OAoMHnad5We91SByv0sfvpLyy969Qf0OgfiU6eQpPIoRks9DKZ7Dn2udw8IVoP5S57QX0M2s9E4t1DatXXeVtGvNAmfVdfPDuDG7DjD8g3H5mIZAxQzEEhSwceXTcxIgCbE3H9huKv8qq1tJ3PX-9D_Tany_h6uTr5fGcx-wK3GAn9Fw6UVuEH9IVdeUQB5nalKaWApVkpkqlDW7NVGaszJrMIlIwSjjcDmZVVUrcxolXMGq71r0B1oiiSRLXWGdJ0WklE2ctoQdc64zIxiCGHtUmhh6nDBg_9MAxu9ZBD5r0oJNUox7GwHdS6xB644H6-aAsPbiVoiHUuDY8IFfeJ-e2cTZvdaq3mU70HyPuV8nfBu0__PNoGE367jeIpQlhCjmGj7tinO50h1O1rrvBOqpQxVQhah7D6zAKd51Dd6JFkcjD_27WBziYX16c6_PTxdlbeEwlgaV0BKN-c-PeIQDr6_dxgt0CSm0uGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addition+of+bioactive+glass+to+glass+ionomer+cements%3A+Effect+on+the+physico-chemical+properties+and+biocompatibility&rft.jtitle=Dental+materials&rft.au=De+Caluw%C3%A9%2C+T&rft.au=Vercruysse%2C+CWJ&rft.au=Ladik%2C+I&rft.au=Convents%2C+R&rft.date=2017-04-01&rft.pub=Elsevier+BV&rft.issn=0109-5641&rft.eissn=1879-0097&rft.volume=33&rft.issue=4&rft.spage=e186&rft_id=info:doi/10.1016%2Fj.dental.2017.01.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01095641%2FS0109564116X00176%2Fcov150h.gif