Transferring and generalizing deep-learning-based neural encoding models across subjects
Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical resp...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 176; pp. 152 - 163 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features. |
---|---|
AbstractList | Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features. Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features.Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features. |
Author | Chen, Wei Liu, Zhongming Shi, Junxing Wen, Haiguang |
AuthorAffiliation | 2 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA 4 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA 1 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA 3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA |
AuthorAffiliation_xml | – name: 4 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA – name: 2 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – name: 3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA – name: 1 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA |
Author_xml | – sequence: 1 givenname: Haiguang surname: Wen fullname: Wen, Haiguang organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Junxing surname: Shi fullname: Shi, Junxing organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 3 givenname: Wei surname: Chen fullname: Chen, Wei organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA – sequence: 4 givenname: Zhongming surname: Liu fullname: Liu, Zhongming email: zmliu@purdue.edu organization: Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29705690$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB_wF1AkNmyS2rGd2BsEVECRKrEpEjvLsW8GB4892Eml8utxaEthVrPy697vHN9zio5CDIBQRXBDMOnOpybAkqLb6g00LSaiwazBnD5BJwRLXkvet0frntNaECKP0WnOE8ZYEiaeoeNW9ph3Ep-gb9dJhzxCSi5sKh1stYEASXv3a72wALvag06hnOpBZ7DVKq19BcFEu9ZsowWfK21SzLnKyzCBmfNz9HTUPsOL-_UMff344frisr768unzxbur2vCOzTUdx44KKruBas5Fz7gdekIG03ZMawlcj4KTkVktTMusHHFneS-45rQdMW3pGXpzx90twxasgTAXd2qXynDSrYraqf9fgvuuNvFGcdl3RbEAXt8DUvy5QJ7V1mUD3usAccmqLSq9ZITSUvpqr3SKSwrle6WKsZZKzFbgy38d_bXyMPRHy38mlmBUxs16dnE16LwiWK0pq0k9pqzWlBVmqkRaAGIP8KBxQOv7u9YSGdw4SCobV6IE61KJTdnoDoG83YMY74Iz2v-A28MQvwEbcOAL |
CitedBy_id | crossref_primary_10_1002_hbm_24891 crossref_primary_10_1007_s10462_021_10130_z crossref_primary_10_1016_j_neuroimage_2022_119121 crossref_primary_10_1109_ACCESS_2019_2949643 crossref_primary_10_1364_BOE_489179 crossref_primary_10_3390_brainsci10090602 crossref_primary_10_1016_j_jneumeth_2019_108319 crossref_primary_10_1016_j_neuroimage_2020_116865 crossref_primary_10_3389_fnins_2018_00437 crossref_primary_10_1016_j_dcn_2024_101470 crossref_primary_10_1016_j_cobme_2021_100298 crossref_primary_10_1109_ACCESS_2022_3221436 crossref_primary_10_1038_s42003_022_04347_z crossref_primary_10_1016_j_patrec_2019_08_007 crossref_primary_10_1093_cercor_bhae257 |
Cites_doi | 10.1109/TSMCB.2006.870645 10.1038/nature18933 10.1016/j.neuron.2011.08.026 10.3389/fninf.2014.00072 10.1016/j.neuroimage.2014.07.051 10.1016/j.cub.2014.08.026 10.4018/978-1-4666-3942-3.ch002 10.1038/nn.3818 10.1016/j.neuroimage.2017.09.032 10.1038/nn.4244 10.1007/s12021-008-9009-y 10.1016/j.neuron.2009.09.006 10.1016/j.neuroimage.2015.04.046 10.1073/pnas.0804110105 10.1002/hbm.24006 10.1016/j.cub.2011.08.031 10.1126/science.1089506 10.1016/j.neuroimage.2016.10.001 10.1016/j.patcog.2003.11.010 10.1016/j.neuroimage.2010.07.073 10.1007/s11682-013-9238-z 10.3389/fncom.2016.00066 10.1016/j.neuroimage.2013.04.127 10.1146/annurev-vision-082114-035447 10.1073/pnas.1403112111 10.1016/j.neuroimage.2013.05.041 10.1093/nsr/nwt032 10.1016/S1474-6670(17)30849-2 10.1371/journal.pone.0161797 10.1137/S1064827597329266 10.1038/nature14539 10.1007/BF02289451 10.1038/nn.4450 10.1523/JNEUROSCI.5023-14.2015 10.1016/j.neuroimage.2015.12.036 10.1038/nature06713 10.1038/s41598-018-22160-9 10.1016/S0079-6123(06)65031-0 10.1016/j.neuroimage.2013.05.009 10.1038/ng.3062 10.1016/j.neuron.2012.10.014 10.1093/cercor/bhw068 10.1371/journal.pcbi.1003915 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Aug 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Aug 1, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2018.04.053 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 163 |
ExternalDocumentID | PMC5976558 29705690 10_1016_j_neuroimage_2018_04_053 S105381191830363X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH104402 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c564t-3ff638396b3a558745db711bc264aa9e5af851f4da8c24d9f06d5785a532f0323 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:28:16 EDT 2025 Thu Jul 10 22:04:25 EDT 2025 Wed Aug 13 09:46:04 EDT 2025 Mon Jul 21 05:58:21 EDT 2025 Tue Jul 01 03:01:57 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:48:17 EST 2024 Tue Aug 26 20:08:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Natural vision Deep learning Incremental learning Bayesian inference Neural encoding |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-3ff638396b3a558745db711bc264aa9e5af851f4da8c24d9f06d5785a532f0323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5976558 |
PMID | 29705690 |
PQID | 2044239048 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5976558 proquest_miscellaneous_2032794133 proquest_journals_2044239048 pubmed_primary_29705690 crossref_citationtrail_10_1016_j_neuroimage_2018_04_053 crossref_primary_10_1016_j_neuroimage_2018_04_053 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_04_053 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_04_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Seeliger, Fritsche, Güçlü, Schoenmakers, Schoffelen, Bosch, van Gerven (bib44) 2017 Shi, Wen, Zhang, Han, Liu (bib45) 2018 Berger (bib2) 2013 Khaligh-Razavi, Kriegeskorte (bib28) 2014; 10 Han, Wen, Shi, Lu, Zhang, Liu (bib20) 2017 Dias, Antunes, Vieira, Mota (bib9) 2004; 37 Trappenberg (bib52) 2009 Huth, Nishimoto, Vu, Gallant (bib26) 2012; 76 Eickenberg, Gramfort, Varoquaux, Thirion (bib10) 2017; 152 Yamins, DiCarlo (bib58) 2016; 19 Simonyan, Zisserman (bib46) 2014 Schönemann (bib43) 1966; 31 Lu, Hung, Wen, Marussich, Liu (bib34) 2016; 11 Conroy, Singer, Guntupalli, Ramadge, Haxby (bib6) 2013; 81 Cox, Dean (bib7) 2014; 24 Horikawa, Kamitani (bib25) 2017; vol. 8 Yacoub, Harel, Uğurbil (bib57) 2008; 105 Chen, Leong, Honey, Yong, Norman, Hasson (bib3) 2017; 20 Fontenla-Romero, Guijarro-Berdiñas, Martinez-Rego, Pérez-Sánchez, Peteiro-Barral (bib12) 2013; 27 Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bib37) 2011; 21 Fan, Han, Liu (bib11) 2014; 1 Hasson, Nir, Levy, Fuhrmann, Malach (bib21) 2004; 303 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bib22) 2011; 72 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib14) 2013; 80 Kriegeskorte (bib30) 2015; 1 Zeiler, Fergus (bib60) 2014 Li (bib33) 2004; 37 Chen, Han, Hu, Jiang, Guo, Liu (bib4) 2014; 8 Adolf, Weston, Baecke, Luchtmann, Bernarding, Kropf (bib1) 2014; 8 Deng, Dong, Socher, Li, Li, Fei-Fei (bib8) 2009 Naselaris, Prenger, Kay, Oliver, Gallant (bib36) 2009; 63 Cichy, Khosla, Pantazis, Torralba, Oliva (bib5) 2016 Geisser (bib13) 1993 Kietzmann, McClure, Kriegeskorte (bib29) 2017 Güçlü, van Gerven (bib17) 2015; 35 Naselaris, Kay, Nishimoto, Gallant (bib35) 2011; 56 Smith, Hyvärinen, Varoquaux, Miller, Beckmann (bib47) 2014; 101 Teeters, Harris, Millman, Olshausen, Sommer (bib50) 2008; 6 Zhao, Yuen, Kwok (bib62) 2006; 36 He, Zhang, Ren, Sun (bib23) 2016 Paltoo, Rodriguez, Feolo, Gillanders, Ramos, Rutter, Sherry, Wang, Bailey, Baker (bib38) 2014; 46 Goense, Bohraus, Logothetis (bib16) 2016; 10 Hodge, Horton, Brown, Herrick, Olsen, Hileman, McKay, Archie, Cler, Harms (bib24) 2016; 124 Güçlü, van Gerven (bib18) 2015; 145 Wen, Shi, Zhang, Lu, Liu (bib55) 2017 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib53) 2013; 80 St-Yves, Naselaris (bib48) 2017 Guntupalli, Hanke, Halchenko, Connolly, Ramadge, Haxby (bib19) 2016; 26 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib59) 2014; 111 LeCun, Bengio, Hinton (bib32) 2015; 521 Raz, Svanera, Singer, Gilam, Cohen, Lin, Admon, Gonen, Thaler, Granot, Goebel (bib41) 2017; 163 Poldrack, Gorgolewski (bib40) 2014; 17 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib49) 2015 Krizhevsky, Sutskever, Hinton (bib31) 2012 Zha, Simon (bib61) 1999; 21 Wen, Shi, Chen, Liu (bib56) 2018; 8 Paninski, Pillow, Lewi (bib39) 2007; 165 van Gerven (bib54) 2017 Sahani, Linden (bib42) 2003 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib15) 2016; 536 Kay, Naselaris, Prenger, Gallant (bib27) 2008; 452 Kriegeskorte (10.1016/j.neuroimage.2018.04.053_bib30) 2015; 1 Naselaris (10.1016/j.neuroimage.2018.04.053_bib36) 2009; 63 Yamins (10.1016/j.neuroimage.2018.04.053_bib58) 2016; 19 Deng (10.1016/j.neuroimage.2018.04.053_bib8) 2009 Huth (10.1016/j.neuroimage.2018.04.053_bib26) 2012; 76 Berger (10.1016/j.neuroimage.2018.04.053_bib2) 2013 Glasser (10.1016/j.neuroimage.2018.04.053_bib14) 2013; 80 Haxby (10.1016/j.neuroimage.2018.04.053_bib22) 2011; 72 St-Yves (10.1016/j.neuroimage.2018.04.053_bib48) 2017 Glasser (10.1016/j.neuroimage.2018.04.053_bib15) 2016; 536 Paninski (10.1016/j.neuroimage.2018.04.053_bib39) 2007; 165 Krizhevsky (10.1016/j.neuroimage.2018.04.053_bib31) 2012 Yamins (10.1016/j.neuroimage.2018.04.053_bib59) 2014; 111 Paltoo (10.1016/j.neuroimage.2018.04.053_bib38) 2014; 46 Geisser (10.1016/j.neuroimage.2018.04.053_bib13) 1993 Dias (10.1016/j.neuroimage.2018.04.053_bib9) 2004; 37 He (10.1016/j.neuroimage.2018.04.053_bib23) 2016 Poldrack (10.1016/j.neuroimage.2018.04.053_bib40) 2014; 17 Fan (10.1016/j.neuroimage.2018.04.053_bib11) 2014; 1 Kietzmann (10.1016/j.neuroimage.2018.04.053_bib29) 2017 Shi (10.1016/j.neuroimage.2018.04.053_bib45) 2018 Wen (10.1016/j.neuroimage.2018.04.053_bib55) 2017 Raz (10.1016/j.neuroimage.2018.04.053_bib41) 2017; 163 Simonyan (10.1016/j.neuroimage.2018.04.053_bib46) 2014 Yacoub (10.1016/j.neuroimage.2018.04.053_bib57) 2008; 105 Teeters (10.1016/j.neuroimage.2018.04.053_bib50) 2008; 6 Hodge (10.1016/j.neuroimage.2018.04.053_bib24) 2016; 124 Szegedy (10.1016/j.neuroimage.2018.04.053_bib49) 2015 Eickenberg (10.1016/j.neuroimage.2018.04.053_bib10) 2017; 152 van Gerven (10.1016/j.neuroimage.2018.04.053_bib54) 2017 Goense (10.1016/j.neuroimage.2018.04.053_bib16) 2016; 10 Conroy (10.1016/j.neuroimage.2018.04.053_bib6) 2013; 81 Khaligh-Razavi (10.1016/j.neuroimage.2018.04.053_bib28) 2014; 10 Chen (10.1016/j.neuroimage.2018.04.053_bib4) 2014; 8 Zha (10.1016/j.neuroimage.2018.04.053_bib61) 1999; 21 Kay (10.1016/j.neuroimage.2018.04.053_bib27) 2008; 452 Schönemann (10.1016/j.neuroimage.2018.04.053_bib43) 1966; 31 Seeliger (10.1016/j.neuroimage.2018.04.053_bib44) 2017 Zhao (10.1016/j.neuroimage.2018.04.053_bib62) 2006; 36 Smith (10.1016/j.neuroimage.2018.04.053_bib47) 2014; 101 Li (10.1016/j.neuroimage.2018.04.053_bib33) 2004; 37 Wen (10.1016/j.neuroimage.2018.04.053_bib56) 2018; 8 Han (10.1016/j.neuroimage.2018.04.053_bib20) 2017 Hasson (10.1016/j.neuroimage.2018.04.053_bib21) 2004; 303 Adolf (10.1016/j.neuroimage.2018.04.053_bib1) 2014; 8 Güçlü (10.1016/j.neuroimage.2018.04.053_bib17) 2015; 35 Horikawa (10.1016/j.neuroimage.2018.04.053_bib25) 2017; vol. 8 Naselaris (10.1016/j.neuroimage.2018.04.053_bib35) 2011; 56 Sahani (10.1016/j.neuroimage.2018.04.053_bib42) 2003 Chen (10.1016/j.neuroimage.2018.04.053_bib3) 2017; 20 Zeiler (10.1016/j.neuroimage.2018.04.053_bib60) 2014 Cichy (10.1016/j.neuroimage.2018.04.053_bib5) 2016 Trappenberg (10.1016/j.neuroimage.2018.04.053_bib52) 2009 Guntupalli (10.1016/j.neuroimage.2018.04.053_bib19) 2016; 26 Nishimoto (10.1016/j.neuroimage.2018.04.053_bib37) 2011; 21 Van Essen (10.1016/j.neuroimage.2018.04.053_bib53) 2013; 80 Cox (10.1016/j.neuroimage.2018.04.053_bib7) 2014; 24 Güçlü (10.1016/j.neuroimage.2018.04.053_bib18) 2015; 145 Lu (10.1016/j.neuroimage.2018.04.053_bib34) 2016; 11 Fontenla-Romero (10.1016/j.neuroimage.2018.04.053_bib12) 2013; 27 LeCun (10.1016/j.neuroimage.2018.04.053_bib32) 2015; 521 |
References_xml | – volume: 8 start-page: 3752 year: 2018 ident: bib56 article-title: Deep residual network predicts cortical representation and organization of visual features for Rapid Categorization publication-title: Sci. Rep. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib32 article-title: Deep learning publication-title: Nature – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib14 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – year: 2017 ident: bib20 article-title: Variational Autoencoder: An Unsupervised Model for Modeling and Decoding fMRI Activity in Visual Cortex – year: 2017 ident: bib29 article-title: Deep Neural Networks in Computational Neuroscience – volume: 37 start-page: 49 year: 2004 end-page: 54 ident: bib9 article-title: Implementing the levenberg-marquardt algorithm on-line: a sliding window approach with early stopping publication-title: IFAC Proc. – start-page: 248 year: 2009 end-page: 255 ident: bib8 article-title: Imagenet: a large-scale hierarchical image database publication-title: Computer Vision and Pattern Recognition. CVPR 2009. IEEE Conference on – volume: 24 start-page: R921 year: 2014 end-page: R929 ident: bib7 article-title: Neural networks and neuroscience-inspired computer vision publication-title: Curr. Biol. – volume: 124 start-page: 1102 year: 2016 end-page: 1107 ident: bib24 article-title: ConnectomeDB—sharing human brain connectivity data publication-title: Neuroimage – volume: vol. 8 start-page: 15037 year: 2017 ident: bib25 article-title: Generic Decoding of Seen and Imagined Objects Using Hierarchical Visual Features – volume: 20 start-page: 115 year: 2017 end-page: 125 ident: bib3 article-title: Shared memories reveal shared structure in neural activity across individuals publication-title: Nat. Neurosci. – volume: 165 start-page: 493 year: 2007 end-page: 507 ident: bib39 article-title: Statistical models for neural encoding, decoding, and optimal stimulus design publication-title: Prog. Brain Res. – start-page: 1097 year: 2012 end-page: 1105 ident: bib31 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 145 start-page: 329 year: 2015 end-page: 336 ident: bib18 article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects publication-title: NeuroImage – volume: 26 start-page: 2919 year: 2016 end-page: 2934 ident: bib19 article-title: A model of representational spaces in human cortex publication-title: Cereb. cortex – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: bib22 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – start-page: 1 year: 2015 end-page: 9 ident: bib49 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 770 year: 2016 end-page: 778 ident: bib23 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 126318 year: 2017 ident: bib48 article-title: The Feature-weighted Receptive Field: an Interpretable Encoding Model for Complex Feature Spaces – volume: 63 start-page: 902 year: 2009 end-page: 915 ident: bib36 article-title: Bayesian reconstruction of natural images from human brain activity publication-title: Neuron – volume: 17 start-page: 1510 year: 2014 end-page: 1517 ident: bib40 article-title: Making big data open: data sharing in neuroimaging publication-title: Nat. Neurosci. – volume: 27 year: 2013 ident: bib12 article-title: Online machine learning publication-title: Effic. Scalability Methods Comput. Intellect – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: bib15 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – volume: 6 start-page: 47 year: 2008 end-page: 55 ident: bib50 article-title: Data sharing for computational neuroscience publication-title: Neuroinformatics – year: 2017 ident: bib55 article-title: Neural encoding and decoding with deep learning for dynamic natural vision publication-title: Cereb. Cortex – volume: 81 start-page: 400 year: 2013 end-page: 411 ident: bib6 article-title: Inter-subject alignment of human cortical anatomy using functional connectivity publication-title: NeuroImage – year: 2016 ident: bib5 article-title: Comparison of Deep Neural Networks to Spatio-temporal Cortical Dynamics of Human Visual Object Recognition Reveals Hierarchical Correspondence – volume: 46 start-page: 934 year: 2014 ident: bib38 article-title: Data use under the NIH GWAS data sharing policy and future directions publication-title: Nat. Genet. – year: 1993 ident: bib13 article-title: Predictive Inference – year: 2018 ident: bib45 article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision publication-title: Hum. Brain Mapp. – volume: 1 start-page: 417 year: 2015 end-page: 446 ident: bib30 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Annu. Rev. Vis. Sci. – year: 2014 ident: bib46 article-title: Very Deep Convolutional Networks for Large-scale Image Recognition – year: 2013 ident: bib2 article-title: Statistical Decision Theory and Bayesian Analysis – volume: 76 start-page: 1210 year: 2012 end-page: 1224 ident: bib26 article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain publication-title: Neuron – volume: 37 start-page: 1509 year: 2004 end-page: 1518 ident: bib33 article-title: On incremental and robust subspace learning publication-title: Pattern Recognit. – volume: 105 start-page: 10607 year: 2008 end-page: 10612 ident: bib57 article-title: High-field fMRI unveils orientation columns in humans publication-title: Proc. Natl. Acad. Sci. – start-page: 818 year: 2014 end-page: 833 ident: bib60 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – start-page: 317 year: 2003 end-page: 324 ident: bib42 article-title: Evidence optimization techniques for estimating stimulus-response functions publication-title: Advances in Neural Information Processing Systems – year: 2009 ident: bib52 article-title: Fundamentals of Computational Neuroscience – volume: 11 year: 2016 ident: bib34 article-title: Influences of high-level features, Gaze, and Scene Transitions on the reliability of BOLD responses to natural movie stimuli publication-title: PloS one – volume: 8 start-page: 72 year: 2014 ident: bib1 article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method publication-title: Front. neuroinformatics – volume: 21 start-page: 1641 year: 2011 end-page: 1646 ident: bib37 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib59 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. – volume: 10 year: 2014 ident: bib28 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib53 article-title: The Wu-Minn human connectome project: an overview publication-title: Neuroimage – volume: 1 start-page: 293 year: 2014 end-page: 314 ident: bib11 article-title: Challenges of big data analysis publication-title: Natl. Sci. Rev. – volume: 35 start-page: 10005 year: 2015 end-page: 10014 ident: bib17 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. – volume: 163 start-page: 244 year: 2017 end-page: 263 ident: bib41 article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression publication-title: Neuroimage – volume: 56 start-page: 400 year: 2011 end-page: 410 ident: bib35 article-title: Encoding and decoding in fMRI publication-title: Neuroimage – volume: 36 start-page: 873 year: 2006 end-page: 886 ident: bib62 article-title: A novel incremental principal component analysis and its application for face recognition publication-title: IEEE Trans. Syst. Man, Cybern. Part B Cybern. – volume: 21 start-page: 782 year: 1999 end-page: 791 ident: bib61 article-title: On updating problems in latent semantic indexing publication-title: SIAM J. Sci. Comput. – year: 2017 ident: bib44 article-title: Convolutional Neural Network-based Encoding and Decoding of Visual Object Recognition in Space and Time. NeuroImage – volume: 10 year: 2016 ident: bib16 article-title: fMRI at high spatial resolution: implications for BOLD-models publication-title: Front. Comput. Neurosci. – volume: 101 start-page: 738 year: 2014 end-page: 749 ident: bib47 article-title: Group-PCA for very large fMRI datasets publication-title: Neuroimage – volume: 19 start-page: 356 year: 2016 end-page: 365 ident: bib58 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. – volume: 152 start-page: 184 year: 2017 end-page: 194 ident: bib10 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: NeuroImage – volume: 303 start-page: 1634 year: 2004 end-page: 1640 ident: bib21 article-title: Intersubject synchronization of cortical activity during natural vision publication-title: science – volume: 31 start-page: 1 year: 1966 end-page: 10 ident: bib43 article-title: A generalized solution of the orthogonal Procrustes problem publication-title: Psychometrika – year: 2017 ident: bib54 article-title: Computational Foundations of Natural Intelligence – volume: 8 start-page: 7 year: 2014 end-page: 23 ident: bib4 article-title: Survey of encoding and decoding of visual stimulus via FMRI: an image analysis perspective publication-title: Brain imaging Behav. – volume: 452 start-page: 352 year: 2008 end-page: 355 ident: bib27 article-title: Identifying natural images from human brain activity publication-title: Nature – volume: 36 start-page: 873 year: 2006 ident: 10.1016/j.neuroimage.2018.04.053_bib62 article-title: A novel incremental principal component analysis and its application for face recognition publication-title: IEEE Trans. Syst. Man, Cybern. Part B Cybern. doi: 10.1109/TSMCB.2006.870645 – year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib20 – volume: 536 start-page: 171 issue: 7615 year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib15 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 72 start-page: 404 year: 2011 ident: 10.1016/j.neuroimage.2018.04.053_bib22 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – year: 1993 ident: 10.1016/j.neuroimage.2018.04.053_bib13 – year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib29 – volume: 8 start-page: 72 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib1 article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method publication-title: Front. neuroinformatics doi: 10.3389/fninf.2014.00072 – volume: 101 start-page: 738 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib47 article-title: Group-PCA for very large fMRI datasets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.051 – year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib54 – volume: 24 start-page: R921 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib7 article-title: Neural networks and neuroscience-inspired computer vision publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.08.026 – volume: 27 year: 2013 ident: 10.1016/j.neuroimage.2018.04.053_bib12 article-title: Online machine learning publication-title: Effic. Scalability Methods Comput. Intellect doi: 10.4018/978-1-4666-3942-3.ch002 – volume: 17 start-page: 1510 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib40 article-title: Making big data open: data sharing in neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.3818 – year: 2013 ident: 10.1016/j.neuroimage.2018.04.053_bib2 – volume: 163 start-page: 244 year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib41 article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.032 – year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib44 – start-page: 770 year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib23 article-title: Deep residual learning for image recognition – start-page: 126318 year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib48 – volume: 19 start-page: 356 year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib58 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4244 – volume: 6 start-page: 47 year: 2008 ident: 10.1016/j.neuroimage.2018.04.053_bib50 article-title: Data sharing for computational neuroscience publication-title: Neuroinformatics doi: 10.1007/s12021-008-9009-y – start-page: 1097 year: 2012 ident: 10.1016/j.neuroimage.2018.04.053_bib31 article-title: Imagenet classification with deep convolutional neural networks – start-page: 248 year: 2009 ident: 10.1016/j.neuroimage.2018.04.053_bib8 article-title: Imagenet: a large-scale hierarchical image database – volume: 63 start-page: 902 year: 2009 ident: 10.1016/j.neuroimage.2018.04.053_bib36 article-title: Bayesian reconstruction of natural images from human brain activity publication-title: Neuron doi: 10.1016/j.neuron.2009.09.006 – volume: 124 start-page: 1102 year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib24 article-title: ConnectomeDB—sharing human brain connectivity data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.046 – volume: 105 start-page: 10607 year: 2008 ident: 10.1016/j.neuroimage.2018.04.053_bib57 article-title: High-field fMRI unveils orientation columns in humans publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0804110105 – year: 2018 ident: 10.1016/j.neuroimage.2018.04.053_bib45 article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24006 – year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib5 – volume: 21 start-page: 1641 year: 2011 ident: 10.1016/j.neuroimage.2018.04.053_bib37 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.08.031 – volume: 303 start-page: 1634 year: 2004 ident: 10.1016/j.neuroimage.2018.04.053_bib21 article-title: Intersubject synchronization of cortical activity during natural vision publication-title: science doi: 10.1126/science.1089506 – volume: 152 start-page: 184 year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib10 article-title: Seeing it all: convolutional network layers map the function of the human visual system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.001 – volume: 37 start-page: 1509 issue: 7 year: 2004 ident: 10.1016/j.neuroimage.2018.04.053_bib33 article-title: On incremental and robust subspace learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2003.11.010 – volume: 56 start-page: 400 year: 2011 ident: 10.1016/j.neuroimage.2018.04.053_bib35 article-title: Encoding and decoding in fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.073 – start-page: 317 year: 2003 ident: 10.1016/j.neuroimage.2018.04.053_bib42 article-title: Evidence optimization techniques for estimating stimulus-response functions – volume: 8 start-page: 7 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib4 article-title: Survey of encoding and decoding of visual stimulus via FMRI: an image analysis perspective publication-title: Brain imaging Behav. doi: 10.1007/s11682-013-9238-z – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib16 article-title: fMRI at high spatial resolution: implications for BOLD-models publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2016.00066 – year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib46 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2018.04.053_bib14 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.neuroimage.2018.04.053_bib30 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Annu. Rev. Vis. Sci. doi: 10.1146/annurev-vision-082114-035447 – year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib55 article-title: Neural encoding and decoding with deep learning for dynamic natural vision publication-title: Cereb. Cortex – start-page: 818 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib60 article-title: Visualizing and understanding convolutional networks – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib59 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1403112111 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2018.04.053_bib53 article-title: The Wu-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 1 start-page: 293 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib11 article-title: Challenges of big data analysis publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwt032 – volume: 37 start-page: 49 year: 2004 ident: 10.1016/j.neuroimage.2018.04.053_bib9 article-title: Implementing the levenberg-marquardt algorithm on-line: a sliding window approach with early stopping publication-title: IFAC Proc. doi: 10.1016/S1474-6670(17)30849-2 – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib34 article-title: Influences of high-level features, Gaze, and Scene Transitions on the reliability of BOLD responses to natural movie stimuli publication-title: PloS one doi: 10.1371/journal.pone.0161797 – volume: 21 start-page: 782 year: 1999 ident: 10.1016/j.neuroimage.2018.04.053_bib61 article-title: On updating problems in latent semantic indexing publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827597329266 – start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2018.04.053_bib49 article-title: Going deeper with convolutions – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuroimage.2018.04.053_bib32 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 31 start-page: 1 year: 1966 ident: 10.1016/j.neuroimage.2018.04.053_bib43 article-title: A generalized solution of the orthogonal Procrustes problem publication-title: Psychometrika doi: 10.1007/BF02289451 – volume: 20 start-page: 115 year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib3 article-title: Shared memories reveal shared structure in neural activity across individuals publication-title: Nat. Neurosci. doi: 10.1038/nn.4450 – volume: 35 start-page: 10005 year: 2015 ident: 10.1016/j.neuroimage.2018.04.053_bib17 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5023-14.2015 – year: 2009 ident: 10.1016/j.neuroimage.2018.04.053_bib52 – volume: 145 start-page: 329 year: 2015 ident: 10.1016/j.neuroimage.2018.04.053_bib18 article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.12.036 – volume: 452 start-page: 352 year: 2008 ident: 10.1016/j.neuroimage.2018.04.053_bib27 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – volume: 8 start-page: 3752 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2018.04.053_bib56 article-title: Deep residual network predicts cortical representation and organization of visual features for Rapid Categorization publication-title: Sci. Rep. doi: 10.1038/s41598-018-22160-9 – volume: vol. 8 start-page: 15037 year: 2017 ident: 10.1016/j.neuroimage.2018.04.053_bib25 – volume: 165 start-page: 493 year: 2007 ident: 10.1016/j.neuroimage.2018.04.053_bib39 article-title: Statistical models for neural encoding, decoding, and optimal stimulus design publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)65031-0 – volume: 81 start-page: 400 year: 2013 ident: 10.1016/j.neuroimage.2018.04.053_bib6 article-title: Inter-subject alignment of human cortical anatomy using functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.009 – volume: 46 start-page: 934 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib38 article-title: Data use under the NIH GWAS data sharing policy and future directions publication-title: Nat. Genet. doi: 10.1038/ng.3062 – volume: 76 start-page: 1210 year: 2012 ident: 10.1016/j.neuroimage.2018.04.053_bib26 article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.10.014 – volume: 26 start-page: 2919 year: 2016 ident: 10.1016/j.neuroimage.2018.04.053_bib19 article-title: A model of representational spaces in human cortex publication-title: Cereb. cortex doi: 10.1093/cercor/bhw068 – volume: 10 year: 2014 ident: 10.1016/j.neuroimage.2018.04.053_bib28 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 |
SSID | ssj0009148 |
Score | 2.4121122 |
Snippet | Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 152 |
SubjectTerms | Accuracy Adult Bayes Theorem Bayesian analysis Bayesian inference Brain Brain - physiology Brain mapping Brain Mapping - methods Cortex Datasets Deep Learning Distance learning Female Functional magnetic resonance imaging Humans Incremental learning Information processing Magnetic Resonance Imaging Mathematical models Natural vision Neural coding Neural encoding Neural networks Neural Pathways - physiology Neuroimaging Pattern Recognition, Visual - physiology Population studies Reproducibility of Results Visual stimuli Young Adult |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpAqWX0jy7bVIcyFUgWw9b9FBKaQiF5JTA3oQsWdstjXdT71766zsjy96koWUvPtgaI49nNJ-k0TeEXLBQqTooSytZllTkcLHaCppXeOYnd5bF3fPrG3V1J75N5TQtuHUprXIYE-NA7RcO18hhki6Qqw4M7tPygWLVKNxdTSU0XpA9pC5Dqy6n5YZ0Nxf9UTjJaQUNUiZPn98V-SLn9-C1mOBVRcJTyf8Vnp7Dz7-zKB-Fpcs35HXCk9nn3gD2yU7THpCX12nH_JBMYzAKyL_YzjLb-mzWE03Pf-MN3zRLmipHzCiGNJ9hl-GVyHCJgS2LxXK6zMYeZ926xqWb7ojcXX69_XJFUzUF6qQSK8pDAF_jWtXcSoks974u87x2AIms1Y20AdBXEN5WrhBeB6Y8MuFYyYvAeMGPyW67aJu3JNNM6aJ0VjrORO1t3TBtHbKHMa8AI05IOSjRuEQ1jhUvfpohp-yH2ajfoPoNEwbUPyH5KLns6Ta2kNHDfzLDcVIYAA3EhC1kP46yCXL0UGJL6dPBLExy_c5sDHVCzsfH4LS4E2PbZrHGNryAgTDn8IqT3orGzy10CaBUM1DiE_saGyAh-NMn7fx7JAaHyaGCX_vu_916T17hN_RZjKdkd_Vr3ZwBslrVH6L7_AFDoSUU priority: 102 providerName: ProQuest |
Title | Transferring and generalizing deep-learning-based neural encoding models across subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191830363X https://dx.doi.org/10.1016/j.neuroimage.2018.04.053 https://www.ncbi.nlm.nih.gov/pubmed/29705690 https://www.proquest.com/docview/2044239048 https://www.proquest.com/docview/2032794133 https://pubmed.ncbi.nlm.nih.gov/PMC5976558 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdJLSfrcNA0u9KqubL0sekqXhO0jS0gb8M3IlrVxaZwlu3vpob89M7bsdFsKC73Y2NIIeTwvWzOfCHnLfKoKryxNpdZUxHCwxgoap1jzE5eWtavnZzM1vRSfMpntkElfC4NplcH2dza9tdbhzjhwc7yo6_FXiAzA3cD3RopmmGdYwS40Svm7X_dpHiYWXTmc5BR7h2yeLserxYysr0FzMckrbUFPJf-Xi_o7BP0zk_I313S6Rx6HmDI67qa9T3aq5gl5eBZWzZ-SrHVIHjEYm3lkGxfNO7Dp-ifecFW1oGH3iDlFt-YinDIMiSiX6NyidsOcZWTbGUfLdYG_b5bPyOXpybfJlIYdFWgplVhR7j3oGzeq4FZKRLp3hY7jooSwyFpTSeshAvPC2bRMhDOeKYdoOFbyxDOe8Odkt7lpqpckMkyZRJdWlpyJwtmiYsaWiCDGnII4cUR0z8S8DHDjuOvFj7zPK_ue37M_R_bnTOTA_hGJB8pFB7mxBY3p31Pel5SCEczBL2xB-36g3RC9LakPe7HIg_ovoV0gsCJYxxF5MzSD4uJqjG2qmzX24QkYw5jDEC86KRoeNzEaAlPDgIkb8jV0QFDwzZamvmrBweEDUcGrPfivh3pFHuFVl-h4SHZXt-vqNQRfq-Ko1S446kwfkQfHk4sv53j--Hk6g_OHk9n5xR3IdjZK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIgGXim8WCgQJjpbs2E5iIYQQUG1pt6dW2ptx7HhZRLML2RWCH8VvZCZOshQE2ksvOSSZyBmPZ57t8RtCnrFQZGXILC1UnlPJ4WK1lZQXeOaHO8va3fPJSTY-k--narpDfvZnYTCtsveJraP2C4dr5DBJl8hVBwb3avmFYtUo3F3tS2hEsziqvn-DKVvz8vAt9O_zND14d_pmTLuqAtSpTK6oCAFsTuisFFYpZHv3Zc556QAaWKsrZQOgkCC9LVwqvQ4s88gIY5VIAxNIdAAu_woEXoaTvXyab0h-uYxH75SgBee6yxyK-WQtP-X8HLwEJpQVLcGqEv8Kh3_D3T-zNn8Lgwc3yF6HX5PX0eBukp2qvkWuTrod-ttk2ga_gHyP9SyxtU9mkdh6_gNv-Kpa0q5SxYxiCPUJNhk-iYyaGEiTtjhPk9i2xUmzLnGpqLlDzi5Fz3fJbr2oq_sk0SzTae6scoLJ0tuyYto6ZCtjPgNMOiJ5r0TjOmpzrLDx2fQ5bJ_MRv0G1W-YNKD-EeGD5DLSe2who_t-Mv3xVXC4BmLQFrIvBtkO4kTosqX0fm8WpnM1jdkMjBF5OjwGJ4E7P7auFmt8R6TgeLmAT9yLVjT8bqpzAMGagRIv2NfwAhKQX3xSzz-2ROQwGc2gax_8v1lPyLXx6eTYHB-eHD0k1_F_YgblPtldfV1XjwDVrcrH7VBKyIfLHru_AC0MYQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTpp4QfymbECQ4NGSHdtJLIQQsFUbY9WEmNQ348RxV8TSQloh-NP467hLnJSBQH3ZSx6SXOScz3ef7fN3hDxlPktyn1iaqTSlksPFaispz_DMDy8sa3bPT8bJ4Zl8O1GTLfKzOwuDaZWdT2wctZsXuEYOk3SJXHVIM-tDWsTp_ujl4gvFClK409qV02hN5Lj8_g2mb_WLo33o62dxPDr48OaQhgoDtFCJXFLhPdif0EkurFLI_O7ylPO8AJhgrS6V9YBIvHQ2K2LptGeJQ3YYq0TsmUDSA3D_2ynOigZk-_XB-PT9mvKXy_YgnhI041yHPKI2u6xhq5xdgM_A9LKsoVtV4l_B8W_w-2cO529BcXSDXA9oNnrVmt9NslVWt8jOSdivv00mTSj0yP5YTSNbuWja0lzPfuANV5YLGupWTCkGVBdhk-GTyK-JYTVqSvXUkW1aHNWrHBeO6jvk7Eo0fZcMqnlV3ieRZomO08KqQjCZO5uXTNsCucuYSwChDknaKdEUgegc6218Nl1G2yezVr9B9RsmDah_SHgvuWjJPjaQ0V0_me4wK7hfAxFpA9nnvWwAPC2Q2VB6rzMLExxPbdbDZEie9I_BZeA-kK3K-QrfETG4YS7gE_daK-p_N9YpQGLNQImX7Kt_AenILz-pZucNLTlMTRPo2gf_b9ZjsgPj1rw7Gh_vkmv4O2065R4ZLL-uyocA8Zb5ozCWIvLxqofvL4itZqo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferring+and+generalizing+deep-learning-based+neural+encoding+models+across+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wen%2C+Haiguang&rft.au=Shi%2C+Junxing&rft.au=Chen%2C+Wei&rft.au=Liu%2C+Zhongming&rft.date=2018-08-01&rft.eissn=1095-9572&rft.volume=176&rft.spage=152&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.04.053&rft_id=info%3Apmid%2F29705690&rft.externalDocID=29705690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |