Transferring and generalizing deep-learning-based neural encoding models across subjects

Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical resp...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 176; pp. 152 - 163
Main Authors Wen, Haiguang, Shi, Junxing, Chen, Wei, Liu, Zhongming
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features.
AbstractList Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features.
Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features.Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features.
Author Chen, Wei
Liu, Zhongming
Shi, Junxing
Wen, Haiguang
AuthorAffiliation 2 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
4 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
1 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
AuthorAffiliation_xml – name: 4 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
– name: 2 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– name: 3 Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
– name: 1 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
Author_xml – sequence: 1
  givenname: Haiguang
  surname: Wen
  fullname: Wen, Haiguang
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Junxing
  surname: Shi
  fullname: Shi, Junxing
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
– sequence: 4
  givenname: Zhongming
  surname: Liu
  fullname: Liu, Zhongming
  email: zmliu@purdue.edu
  organization: Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29705690$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wF1AkNmyS2rGd2BsEVECRKrEpEjvLsW8GB4892Eml8utxaEthVrPy697vHN9zio5CDIBQRXBDMOnOpybAkqLb6g00LSaiwazBnD5BJwRLXkvet0frntNaECKP0WnOE8ZYEiaeoeNW9ph3Ep-gb9dJhzxCSi5sKh1stYEASXv3a72wALvag06hnOpBZ7DVKq19BcFEu9ZsowWfK21SzLnKyzCBmfNz9HTUPsOL-_UMff344frisr768unzxbur2vCOzTUdx44KKruBas5Fz7gdekIG03ZMawlcj4KTkVktTMusHHFneS-45rQdMW3pGXpzx90twxasgTAXd2qXynDSrYraqf9fgvuuNvFGcdl3RbEAXt8DUvy5QJ7V1mUD3usAccmqLSq9ZITSUvpqr3SKSwrle6WKsZZKzFbgy38d_bXyMPRHy38mlmBUxs16dnE16LwiWK0pq0k9pqzWlBVmqkRaAGIP8KBxQOv7u9YSGdw4SCobV6IE61KJTdnoDoG83YMY74Iz2v-A28MQvwEbcOAL
CitedBy_id crossref_primary_10_1002_hbm_24891
crossref_primary_10_1007_s10462_021_10130_z
crossref_primary_10_1016_j_neuroimage_2022_119121
crossref_primary_10_1109_ACCESS_2019_2949643
crossref_primary_10_1364_BOE_489179
crossref_primary_10_3390_brainsci10090602
crossref_primary_10_1016_j_jneumeth_2019_108319
crossref_primary_10_1016_j_neuroimage_2020_116865
crossref_primary_10_3389_fnins_2018_00437
crossref_primary_10_1016_j_dcn_2024_101470
crossref_primary_10_1016_j_cobme_2021_100298
crossref_primary_10_1109_ACCESS_2022_3221436
crossref_primary_10_1038_s42003_022_04347_z
crossref_primary_10_1016_j_patrec_2019_08_007
crossref_primary_10_1093_cercor_bhae257
Cites_doi 10.1109/TSMCB.2006.870645
10.1038/nature18933
10.1016/j.neuron.2011.08.026
10.3389/fninf.2014.00072
10.1016/j.neuroimage.2014.07.051
10.1016/j.cub.2014.08.026
10.4018/978-1-4666-3942-3.ch002
10.1038/nn.3818
10.1016/j.neuroimage.2017.09.032
10.1038/nn.4244
10.1007/s12021-008-9009-y
10.1016/j.neuron.2009.09.006
10.1016/j.neuroimage.2015.04.046
10.1073/pnas.0804110105
10.1002/hbm.24006
10.1016/j.cub.2011.08.031
10.1126/science.1089506
10.1016/j.neuroimage.2016.10.001
10.1016/j.patcog.2003.11.010
10.1016/j.neuroimage.2010.07.073
10.1007/s11682-013-9238-z
10.3389/fncom.2016.00066
10.1016/j.neuroimage.2013.04.127
10.1146/annurev-vision-082114-035447
10.1073/pnas.1403112111
10.1016/j.neuroimage.2013.05.041
10.1093/nsr/nwt032
10.1016/S1474-6670(17)30849-2
10.1371/journal.pone.0161797
10.1137/S1064827597329266
10.1038/nature14539
10.1007/BF02289451
10.1038/nn.4450
10.1523/JNEUROSCI.5023-14.2015
10.1016/j.neuroimage.2015.12.036
10.1038/nature06713
10.1038/s41598-018-22160-9
10.1016/S0079-6123(06)65031-0
10.1016/j.neuroimage.2013.05.009
10.1038/ng.3062
10.1016/j.neuron.2012.10.014
10.1093/cercor/bhw068
10.1371/journal.pcbi.1003915
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Aug 1, 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Aug 1, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2018.04.053
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest One Psychology


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 163
ExternalDocumentID PMC5976558
29705690
10_1016_j_neuroimage_2018_04_053
S105381191830363X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH104402
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c564t-3ff638396b3a558745db711bc264aa9e5af851f4da8c24d9f06d5785a532f0323
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:28:16 EDT 2025
Thu Jul 10 22:04:25 EDT 2025
Wed Aug 13 09:46:04 EDT 2025
Mon Jul 21 05:58:21 EDT 2025
Tue Jul 01 03:01:57 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:48:17 EST 2024
Tue Aug 26 20:08:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Natural vision
Deep learning
Incremental learning
Bayesian inference
Neural encoding
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-3ff638396b3a558745db711bc264aa9e5af851f4da8c24d9f06d5785a532f0323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5976558
PMID 29705690
PQID 2044239048
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5976558
proquest_miscellaneous_2032794133
proquest_journals_2044239048
pubmed_primary_29705690
crossref_citationtrail_10_1016_j_neuroimage_2018_04_053
crossref_primary_10_1016_j_neuroimage_2018_04_053
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_04_053
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_04_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Seeliger, Fritsche, Güçlü, Schoenmakers, Schoffelen, Bosch, van Gerven (bib44) 2017
Shi, Wen, Zhang, Han, Liu (bib45) 2018
Berger (bib2) 2013
Khaligh-Razavi, Kriegeskorte (bib28) 2014; 10
Han, Wen, Shi, Lu, Zhang, Liu (bib20) 2017
Dias, Antunes, Vieira, Mota (bib9) 2004; 37
Trappenberg (bib52) 2009
Huth, Nishimoto, Vu, Gallant (bib26) 2012; 76
Eickenberg, Gramfort, Varoquaux, Thirion (bib10) 2017; 152
Yamins, DiCarlo (bib58) 2016; 19
Simonyan, Zisserman (bib46) 2014
Schönemann (bib43) 1966; 31
Lu, Hung, Wen, Marussich, Liu (bib34) 2016; 11
Conroy, Singer, Guntupalli, Ramadge, Haxby (bib6) 2013; 81
Cox, Dean (bib7) 2014; 24
Horikawa, Kamitani (bib25) 2017; vol. 8
Yacoub, Harel, Uğurbil (bib57) 2008; 105
Chen, Leong, Honey, Yong, Norman, Hasson (bib3) 2017; 20
Fontenla-Romero, Guijarro-Berdiñas, Martinez-Rego, Pérez-Sánchez, Peteiro-Barral (bib12) 2013; 27
Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bib37) 2011; 21
Fan, Han, Liu (bib11) 2014; 1
Hasson, Nir, Levy, Fuhrmann, Malach (bib21) 2004; 303
Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bib22) 2011; 72
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib14) 2013; 80
Kriegeskorte (bib30) 2015; 1
Zeiler, Fergus (bib60) 2014
Li (bib33) 2004; 37
Chen, Han, Hu, Jiang, Guo, Liu (bib4) 2014; 8
Adolf, Weston, Baecke, Luchtmann, Bernarding, Kropf (bib1) 2014; 8
Deng, Dong, Socher, Li, Li, Fei-Fei (bib8) 2009
Naselaris, Prenger, Kay, Oliver, Gallant (bib36) 2009; 63
Cichy, Khosla, Pantazis, Torralba, Oliva (bib5) 2016
Geisser (bib13) 1993
Kietzmann, McClure, Kriegeskorte (bib29) 2017
Güçlü, van Gerven (bib17) 2015; 35
Naselaris, Kay, Nishimoto, Gallant (bib35) 2011; 56
Smith, Hyvärinen, Varoquaux, Miller, Beckmann (bib47) 2014; 101
Teeters, Harris, Millman, Olshausen, Sommer (bib50) 2008; 6
Zhao, Yuen, Kwok (bib62) 2006; 36
He, Zhang, Ren, Sun (bib23) 2016
Paltoo, Rodriguez, Feolo, Gillanders, Ramos, Rutter, Sherry, Wang, Bailey, Baker (bib38) 2014; 46
Goense, Bohraus, Logothetis (bib16) 2016; 10
Hodge, Horton, Brown, Herrick, Olsen, Hileman, McKay, Archie, Cler, Harms (bib24) 2016; 124
Güçlü, van Gerven (bib18) 2015; 145
Wen, Shi, Zhang, Lu, Liu (bib55) 2017
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib53) 2013; 80
St-Yves, Naselaris (bib48) 2017
Guntupalli, Hanke, Halchenko, Connolly, Ramadge, Haxby (bib19) 2016; 26
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib59) 2014; 111
LeCun, Bengio, Hinton (bib32) 2015; 521
Raz, Svanera, Singer, Gilam, Cohen, Lin, Admon, Gonen, Thaler, Granot, Goebel (bib41) 2017; 163
Poldrack, Gorgolewski (bib40) 2014; 17
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib49) 2015
Krizhevsky, Sutskever, Hinton (bib31) 2012
Zha, Simon (bib61) 1999; 21
Wen, Shi, Chen, Liu (bib56) 2018; 8
Paninski, Pillow, Lewi (bib39) 2007; 165
van Gerven (bib54) 2017
Sahani, Linden (bib42) 2003
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib15) 2016; 536
Kay, Naselaris, Prenger, Gallant (bib27) 2008; 452
Kriegeskorte (10.1016/j.neuroimage.2018.04.053_bib30) 2015; 1
Naselaris (10.1016/j.neuroimage.2018.04.053_bib36) 2009; 63
Yamins (10.1016/j.neuroimage.2018.04.053_bib58) 2016; 19
Deng (10.1016/j.neuroimage.2018.04.053_bib8) 2009
Huth (10.1016/j.neuroimage.2018.04.053_bib26) 2012; 76
Berger (10.1016/j.neuroimage.2018.04.053_bib2) 2013
Glasser (10.1016/j.neuroimage.2018.04.053_bib14) 2013; 80
Haxby (10.1016/j.neuroimage.2018.04.053_bib22) 2011; 72
St-Yves (10.1016/j.neuroimage.2018.04.053_bib48) 2017
Glasser (10.1016/j.neuroimage.2018.04.053_bib15) 2016; 536
Paninski (10.1016/j.neuroimage.2018.04.053_bib39) 2007; 165
Krizhevsky (10.1016/j.neuroimage.2018.04.053_bib31) 2012
Yamins (10.1016/j.neuroimage.2018.04.053_bib59) 2014; 111
Paltoo (10.1016/j.neuroimage.2018.04.053_bib38) 2014; 46
Geisser (10.1016/j.neuroimage.2018.04.053_bib13) 1993
Dias (10.1016/j.neuroimage.2018.04.053_bib9) 2004; 37
He (10.1016/j.neuroimage.2018.04.053_bib23) 2016
Poldrack (10.1016/j.neuroimage.2018.04.053_bib40) 2014; 17
Fan (10.1016/j.neuroimage.2018.04.053_bib11) 2014; 1
Kietzmann (10.1016/j.neuroimage.2018.04.053_bib29) 2017
Shi (10.1016/j.neuroimage.2018.04.053_bib45) 2018
Wen (10.1016/j.neuroimage.2018.04.053_bib55) 2017
Raz (10.1016/j.neuroimage.2018.04.053_bib41) 2017; 163
Simonyan (10.1016/j.neuroimage.2018.04.053_bib46) 2014
Yacoub (10.1016/j.neuroimage.2018.04.053_bib57) 2008; 105
Teeters (10.1016/j.neuroimage.2018.04.053_bib50) 2008; 6
Hodge (10.1016/j.neuroimage.2018.04.053_bib24) 2016; 124
Szegedy (10.1016/j.neuroimage.2018.04.053_bib49) 2015
Eickenberg (10.1016/j.neuroimage.2018.04.053_bib10) 2017; 152
van Gerven (10.1016/j.neuroimage.2018.04.053_bib54) 2017
Goense (10.1016/j.neuroimage.2018.04.053_bib16) 2016; 10
Conroy (10.1016/j.neuroimage.2018.04.053_bib6) 2013; 81
Khaligh-Razavi (10.1016/j.neuroimage.2018.04.053_bib28) 2014; 10
Chen (10.1016/j.neuroimage.2018.04.053_bib4) 2014; 8
Zha (10.1016/j.neuroimage.2018.04.053_bib61) 1999; 21
Kay (10.1016/j.neuroimage.2018.04.053_bib27) 2008; 452
Schönemann (10.1016/j.neuroimage.2018.04.053_bib43) 1966; 31
Seeliger (10.1016/j.neuroimage.2018.04.053_bib44) 2017
Zhao (10.1016/j.neuroimage.2018.04.053_bib62) 2006; 36
Smith (10.1016/j.neuroimage.2018.04.053_bib47) 2014; 101
Li (10.1016/j.neuroimage.2018.04.053_bib33) 2004; 37
Wen (10.1016/j.neuroimage.2018.04.053_bib56) 2018; 8
Han (10.1016/j.neuroimage.2018.04.053_bib20) 2017
Hasson (10.1016/j.neuroimage.2018.04.053_bib21) 2004; 303
Adolf (10.1016/j.neuroimage.2018.04.053_bib1) 2014; 8
Güçlü (10.1016/j.neuroimage.2018.04.053_bib17) 2015; 35
Horikawa (10.1016/j.neuroimage.2018.04.053_bib25) 2017; vol. 8
Naselaris (10.1016/j.neuroimage.2018.04.053_bib35) 2011; 56
Sahani (10.1016/j.neuroimage.2018.04.053_bib42) 2003
Chen (10.1016/j.neuroimage.2018.04.053_bib3) 2017; 20
Zeiler (10.1016/j.neuroimage.2018.04.053_bib60) 2014
Cichy (10.1016/j.neuroimage.2018.04.053_bib5) 2016
Trappenberg (10.1016/j.neuroimage.2018.04.053_bib52) 2009
Guntupalli (10.1016/j.neuroimage.2018.04.053_bib19) 2016; 26
Nishimoto (10.1016/j.neuroimage.2018.04.053_bib37) 2011; 21
Van Essen (10.1016/j.neuroimage.2018.04.053_bib53) 2013; 80
Cox (10.1016/j.neuroimage.2018.04.053_bib7) 2014; 24
Güçlü (10.1016/j.neuroimage.2018.04.053_bib18) 2015; 145
Lu (10.1016/j.neuroimage.2018.04.053_bib34) 2016; 11
Fontenla-Romero (10.1016/j.neuroimage.2018.04.053_bib12) 2013; 27
LeCun (10.1016/j.neuroimage.2018.04.053_bib32) 2015; 521
References_xml – volume: 8
  start-page: 3752
  year: 2018
  ident: bib56
  article-title: Deep residual network predicts cortical representation and organization of visual features for Rapid Categorization
  publication-title: Sci. Rep.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib32
  article-title: Deep learning
  publication-title: Nature
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib14
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– year: 2017
  ident: bib20
  article-title: Variational Autoencoder: An Unsupervised Model for Modeling and Decoding fMRI Activity in Visual Cortex
– year: 2017
  ident: bib29
  article-title: Deep Neural Networks in Computational Neuroscience
– volume: 37
  start-page: 49
  year: 2004
  end-page: 54
  ident: bib9
  article-title: Implementing the levenberg-marquardt algorithm on-line: a sliding window approach with early stopping
  publication-title: IFAC Proc.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib8
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: Computer Vision and Pattern Recognition. CVPR 2009. IEEE Conference on
– volume: 24
  start-page: R921
  year: 2014
  end-page: R929
  ident: bib7
  article-title: Neural networks and neuroscience-inspired computer vision
  publication-title: Curr. Biol.
– volume: 124
  start-page: 1102
  year: 2016
  end-page: 1107
  ident: bib24
  article-title: ConnectomeDB—sharing human brain connectivity data
  publication-title: Neuroimage
– volume: vol. 8
  start-page: 15037
  year: 2017
  ident: bib25
  article-title: Generic Decoding of Seen and Imagined Objects Using Hierarchical Visual Features
– volume: 20
  start-page: 115
  year: 2017
  end-page: 125
  ident: bib3
  article-title: Shared memories reveal shared structure in neural activity across individuals
  publication-title: Nat. Neurosci.
– volume: 165
  start-page: 493
  year: 2007
  end-page: 507
  ident: bib39
  article-title: Statistical models for neural encoding, decoding, and optimal stimulus design
  publication-title: Prog. Brain Res.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib31
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 145
  start-page: 329
  year: 2015
  end-page: 336
  ident: bib18
  article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
  publication-title: NeuroImage
– volume: 26
  start-page: 2919
  year: 2016
  end-page: 2934
  ident: bib19
  article-title: A model of representational spaces in human cortex
  publication-title: Cereb. cortex
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  ident: bib22
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib49
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib23
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 126318
  year: 2017
  ident: bib48
  article-title: The Feature-weighted Receptive Field: an Interpretable Encoding Model for Complex Feature Spaces
– volume: 63
  start-page: 902
  year: 2009
  end-page: 915
  ident: bib36
  article-title: Bayesian reconstruction of natural images from human brain activity
  publication-title: Neuron
– volume: 17
  start-page: 1510
  year: 2014
  end-page: 1517
  ident: bib40
  article-title: Making big data open: data sharing in neuroimaging
  publication-title: Nat. Neurosci.
– volume: 27
  year: 2013
  ident: bib12
  article-title: Online machine learning
  publication-title: Effic. Scalability Methods Comput. Intellect
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib15
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 6
  start-page: 47
  year: 2008
  end-page: 55
  ident: bib50
  article-title: Data sharing for computational neuroscience
  publication-title: Neuroinformatics
– year: 2017
  ident: bib55
  article-title: Neural encoding and decoding with deep learning for dynamic natural vision
  publication-title: Cereb. Cortex
– volume: 81
  start-page: 400
  year: 2013
  end-page: 411
  ident: bib6
  article-title: Inter-subject alignment of human cortical anatomy using functional connectivity
  publication-title: NeuroImage
– year: 2016
  ident: bib5
  article-title: Comparison of Deep Neural Networks to Spatio-temporal Cortical Dynamics of Human Visual Object Recognition Reveals Hierarchical Correspondence
– volume: 46
  start-page: 934
  year: 2014
  ident: bib38
  article-title: Data use under the NIH GWAS data sharing policy and future directions
  publication-title: Nat. Genet.
– year: 1993
  ident: bib13
  article-title: Predictive Inference
– year: 2018
  ident: bib45
  article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision
  publication-title: Hum. Brain Mapp.
– volume: 1
  start-page: 417
  year: 2015
  end-page: 446
  ident: bib30
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Annu. Rev. Vis. Sci.
– year: 2014
  ident: bib46
  article-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– year: 2013
  ident: bib2
  article-title: Statistical Decision Theory and Bayesian Analysis
– volume: 76
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: bib26
  article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain
  publication-title: Neuron
– volume: 37
  start-page: 1509
  year: 2004
  end-page: 1518
  ident: bib33
  article-title: On incremental and robust subspace learning
  publication-title: Pattern Recognit.
– volume: 105
  start-page: 10607
  year: 2008
  end-page: 10612
  ident: bib57
  article-title: High-field fMRI unveils orientation columns in humans
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib60
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– start-page: 317
  year: 2003
  end-page: 324
  ident: bib42
  article-title: Evidence optimization techniques for estimating stimulus-response functions
  publication-title: Advances in Neural Information Processing Systems
– year: 2009
  ident: bib52
  article-title: Fundamentals of Computational Neuroscience
– volume: 11
  year: 2016
  ident: bib34
  article-title: Influences of high-level features, Gaze, and Scene Transitions on the reliability of BOLD responses to natural movie stimuli
  publication-title: PloS one
– volume: 8
  start-page: 72
  year: 2014
  ident: bib1
  article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method
  publication-title: Front. neuroinformatics
– volume: 21
  start-page: 1641
  year: 2011
  end-page: 1646
  ident: bib37
  article-title: Reconstructing visual experiences from brain activity evoked by natural movies
  publication-title: Curr. Biol.
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib59
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci.
– volume: 10
  year: 2014
  ident: bib28
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib53
  article-title: The Wu-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 1
  start-page: 293
  year: 2014
  end-page: 314
  ident: bib11
  article-title: Challenges of big data analysis
  publication-title: Natl. Sci. Rev.
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  ident: bib17
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
– volume: 163
  start-page: 244
  year: 2017
  end-page: 263
  ident: bib41
  article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression
  publication-title: Neuroimage
– volume: 56
  start-page: 400
  year: 2011
  end-page: 410
  ident: bib35
  article-title: Encoding and decoding in fMRI
  publication-title: Neuroimage
– volume: 36
  start-page: 873
  year: 2006
  end-page: 886
  ident: bib62
  article-title: A novel incremental principal component analysis and its application for face recognition
  publication-title: IEEE Trans. Syst. Man, Cybern. Part B Cybern.
– volume: 21
  start-page: 782
  year: 1999
  end-page: 791
  ident: bib61
  article-title: On updating problems in latent semantic indexing
  publication-title: SIAM J. Sci. Comput.
– year: 2017
  ident: bib44
  article-title: Convolutional Neural Network-based Encoding and Decoding of Visual Object Recognition in Space and Time. NeuroImage
– volume: 10
  year: 2016
  ident: bib16
  article-title: fMRI at high spatial resolution: implications for BOLD-models
  publication-title: Front. Comput. Neurosci.
– volume: 101
  start-page: 738
  year: 2014
  end-page: 749
  ident: bib47
  article-title: Group-PCA for very large fMRI datasets
  publication-title: Neuroimage
– volume: 19
  start-page: 356
  year: 2016
  end-page: 365
  ident: bib58
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
– volume: 152
  start-page: 184
  year: 2017
  end-page: 194
  ident: bib10
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: NeuroImage
– volume: 303
  start-page: 1634
  year: 2004
  end-page: 1640
  ident: bib21
  article-title: Intersubject synchronization of cortical activity during natural vision
  publication-title: science
– volume: 31
  start-page: 1
  year: 1966
  end-page: 10
  ident: bib43
  article-title: A generalized solution of the orthogonal Procrustes problem
  publication-title: Psychometrika
– year: 2017
  ident: bib54
  article-title: Computational Foundations of Natural Intelligence
– volume: 8
  start-page: 7
  year: 2014
  end-page: 23
  ident: bib4
  article-title: Survey of encoding and decoding of visual stimulus via FMRI: an image analysis perspective
  publication-title: Brain imaging Behav.
– volume: 452
  start-page: 352
  year: 2008
  end-page: 355
  ident: bib27
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– volume: 36
  start-page: 873
  year: 2006
  ident: 10.1016/j.neuroimage.2018.04.053_bib62
  article-title: A novel incremental principal component analysis and its application for face recognition
  publication-title: IEEE Trans. Syst. Man, Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2006.870645
– year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib20
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib15
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 72
  start-page: 404
  year: 2011
  ident: 10.1016/j.neuroimage.2018.04.053_bib22
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– year: 1993
  ident: 10.1016/j.neuroimage.2018.04.053_bib13
– year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib29
– volume: 8
  start-page: 72
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib1
  article-title: Increasing the reliability of data analysis of functional magnetic resonance imaging by applying a new blockwise permutation method
  publication-title: Front. neuroinformatics
  doi: 10.3389/fninf.2014.00072
– volume: 101
  start-page: 738
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib47
  article-title: Group-PCA for very large fMRI datasets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.051
– year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib54
– volume: 24
  start-page: R921
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib7
  article-title: Neural networks and neuroscience-inspired computer vision
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.08.026
– volume: 27
  year: 2013
  ident: 10.1016/j.neuroimage.2018.04.053_bib12
  article-title: Online machine learning
  publication-title: Effic. Scalability Methods Comput. Intellect
  doi: 10.4018/978-1-4666-3942-3.ch002
– volume: 17
  start-page: 1510
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib40
  article-title: Making big data open: data sharing in neuroimaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3818
– year: 2013
  ident: 10.1016/j.neuroimage.2018.04.053_bib2
– volume: 163
  start-page: 244
  year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib41
  article-title: Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.032
– year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib44
– start-page: 770
  year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib23
  article-title: Deep residual learning for image recognition
– start-page: 126318
  year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib48
– volume: 19
  start-page: 356
  year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib58
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4244
– volume: 6
  start-page: 47
  year: 2008
  ident: 10.1016/j.neuroimage.2018.04.053_bib50
  article-title: Data sharing for computational neuroscience
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9009-y
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neuroimage.2018.04.053_bib31
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 248
  year: 2009
  ident: 10.1016/j.neuroimage.2018.04.053_bib8
  article-title: Imagenet: a large-scale hierarchical image database
– volume: 63
  start-page: 902
  year: 2009
  ident: 10.1016/j.neuroimage.2018.04.053_bib36
  article-title: Bayesian reconstruction of natural images from human brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.006
– volume: 124
  start-page: 1102
  year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib24
  article-title: ConnectomeDB—sharing human brain connectivity data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.046
– volume: 105
  start-page: 10607
  year: 2008
  ident: 10.1016/j.neuroimage.2018.04.053_bib57
  article-title: High-field fMRI unveils orientation columns in humans
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0804110105
– year: 2018
  ident: 10.1016/j.neuroimage.2018.04.053_bib45
  article-title: Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24006
– year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib5
– volume: 21
  start-page: 1641
  year: 2011
  ident: 10.1016/j.neuroimage.2018.04.053_bib37
  article-title: Reconstructing visual experiences from brain activity evoked by natural movies
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.08.031
– volume: 303
  start-page: 1634
  year: 2004
  ident: 10.1016/j.neuroimage.2018.04.053_bib21
  article-title: Intersubject synchronization of cortical activity during natural vision
  publication-title: science
  doi: 10.1126/science.1089506
– volume: 152
  start-page: 184
  year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib10
  article-title: Seeing it all: convolutional network layers map the function of the human visual system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.001
– volume: 37
  start-page: 1509
  issue: 7
  year: 2004
  ident: 10.1016/j.neuroimage.2018.04.053_bib33
  article-title: On incremental and robust subspace learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.11.010
– volume: 56
  start-page: 400
  year: 2011
  ident: 10.1016/j.neuroimage.2018.04.053_bib35
  article-title: Encoding and decoding in fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.073
– start-page: 317
  year: 2003
  ident: 10.1016/j.neuroimage.2018.04.053_bib42
  article-title: Evidence optimization techniques for estimating stimulus-response functions
– volume: 8
  start-page: 7
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib4
  article-title: Survey of encoding and decoding of visual stimulus via FMRI: an image analysis perspective
  publication-title: Brain imaging Behav.
  doi: 10.1007/s11682-013-9238-z
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib16
  article-title: fMRI at high spatial resolution: implications for BOLD-models
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2016.00066
– year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib46
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2018.04.053_bib14
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 1
  start-page: 417
  year: 2015
  ident: 10.1016/j.neuroimage.2018.04.053_bib30
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Annu. Rev. Vis. Sci.
  doi: 10.1146/annurev-vision-082114-035447
– year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib55
  article-title: Neural encoding and decoding with deep learning for dynamic natural vision
  publication-title: Cereb. Cortex
– start-page: 818
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib60
  article-title: Visualizing and understanding convolutional networks
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib59
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1403112111
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2018.04.053_bib53
  article-title: The Wu-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 1
  start-page: 293
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib11
  article-title: Challenges of big data analysis
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwt032
– volume: 37
  start-page: 49
  year: 2004
  ident: 10.1016/j.neuroimage.2018.04.053_bib9
  article-title: Implementing the levenberg-marquardt algorithm on-line: a sliding window approach with early stopping
  publication-title: IFAC Proc.
  doi: 10.1016/S1474-6670(17)30849-2
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib34
  article-title: Influences of high-level features, Gaze, and Scene Transitions on the reliability of BOLD responses to natural movie stimuli
  publication-title: PloS one
  doi: 10.1371/journal.pone.0161797
– volume: 21
  start-page: 782
  year: 1999
  ident: 10.1016/j.neuroimage.2018.04.053_bib61
  article-title: On updating problems in latent semantic indexing
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827597329266
– start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2018.04.053_bib49
  article-title: Going deeper with convolutions
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuroimage.2018.04.053_bib32
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 31
  start-page: 1
  year: 1966
  ident: 10.1016/j.neuroimage.2018.04.053_bib43
  article-title: A generalized solution of the orthogonal Procrustes problem
  publication-title: Psychometrika
  doi: 10.1007/BF02289451
– volume: 20
  start-page: 115
  year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib3
  article-title: Shared memories reveal shared structure in neural activity across individuals
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4450
– volume: 35
  start-page: 10005
  year: 2015
  ident: 10.1016/j.neuroimage.2018.04.053_bib17
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5023-14.2015
– year: 2009
  ident: 10.1016/j.neuroimage.2018.04.053_bib52
– volume: 145
  start-page: 329
  year: 2015
  ident: 10.1016/j.neuroimage.2018.04.053_bib18
  article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.12.036
– volume: 452
  start-page: 352
  year: 2008
  ident: 10.1016/j.neuroimage.2018.04.053_bib27
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– volume: 8
  start-page: 3752
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2018.04.053_bib56
  article-title: Deep residual network predicts cortical representation and organization of visual features for Rapid Categorization
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22160-9
– volume: vol. 8
  start-page: 15037
  year: 2017
  ident: 10.1016/j.neuroimage.2018.04.053_bib25
– volume: 165
  start-page: 493
  year: 2007
  ident: 10.1016/j.neuroimage.2018.04.053_bib39
  article-title: Statistical models for neural encoding, decoding, and optimal stimulus design
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)65031-0
– volume: 81
  start-page: 400
  year: 2013
  ident: 10.1016/j.neuroimage.2018.04.053_bib6
  article-title: Inter-subject alignment of human cortical anatomy using functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.009
– volume: 46
  start-page: 934
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib38
  article-title: Data use under the NIH GWAS data sharing policy and future directions
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3062
– volume: 76
  start-page: 1210
  year: 2012
  ident: 10.1016/j.neuroimage.2018.04.053_bib26
  article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.014
– volume: 26
  start-page: 2919
  year: 2016
  ident: 10.1016/j.neuroimage.2018.04.053_bib19
  article-title: A model of representational spaces in human cortex
  publication-title: Cereb. cortex
  doi: 10.1093/cercor/bhw068
– volume: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2018.04.053_bib28
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
SSID ssj0009148
Score 2.4121122
Snippet Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 152
SubjectTerms Accuracy
Adult
Bayes Theorem
Bayesian analysis
Bayesian inference
Brain
Brain - physiology
Brain mapping
Brain Mapping - methods
Cortex
Datasets
Deep Learning
Distance learning
Female
Functional magnetic resonance imaging
Humans
Incremental learning
Information processing
Magnetic Resonance Imaging
Mathematical models
Natural vision
Neural coding
Neural encoding
Neural networks
Neural Pathways - physiology
Neuroimaging
Pattern Recognition, Visual - physiology
Population studies
Reproducibility of Results
Visual stimuli
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpAqWX0jy7bVIcyFUgWw9b9FBKaQiF5JTA3oQsWdstjXdT71766zsjy96koWUvPtgaI49nNJ-k0TeEXLBQqTooSytZllTkcLHaCppXeOYnd5bF3fPrG3V1J75N5TQtuHUprXIYE-NA7RcO18hhki6Qqw4M7tPygWLVKNxdTSU0XpA9pC5Dqy6n5YZ0Nxf9UTjJaQUNUiZPn98V-SLn9-C1mOBVRcJTyf8Vnp7Dz7-zKB-Fpcs35HXCk9nn3gD2yU7THpCX12nH_JBMYzAKyL_YzjLb-mzWE03Pf-MN3zRLmipHzCiGNJ9hl-GVyHCJgS2LxXK6zMYeZ926xqWb7ojcXX69_XJFUzUF6qQSK8pDAF_jWtXcSoks974u87x2AIms1Y20AdBXEN5WrhBeB6Y8MuFYyYvAeMGPyW67aJu3JNNM6aJ0VjrORO1t3TBtHbKHMa8AI05IOSjRuEQ1jhUvfpohp-yH2ajfoPoNEwbUPyH5KLns6Ta2kNHDfzLDcVIYAA3EhC1kP46yCXL0UGJL6dPBLExy_c5sDHVCzsfH4LS4E2PbZrHGNryAgTDn8IqT3orGzy10CaBUM1DiE_saGyAh-NMn7fx7JAaHyaGCX_vu_916T17hN_RZjKdkd_Vr3ZwBslrVH6L7_AFDoSUU
  priority: 102
  providerName: ProQuest
Title Transferring and generalizing deep-learning-based neural encoding models across subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191830363X
https://dx.doi.org/10.1016/j.neuroimage.2018.04.053
https://www.ncbi.nlm.nih.gov/pubmed/29705690
https://www.proquest.com/docview/2044239048
https://www.proquest.com/docview/2032794133
https://pubmed.ncbi.nlm.nih.gov/PMC5976558
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdJLSfrcNA0u9KqubL0sekqXhO0jS0gb8M3IlrVxaZwlu3vpob89M7bsdFsKC73Y2NIIeTwvWzOfCHnLfKoKryxNpdZUxHCwxgoap1jzE5eWtavnZzM1vRSfMpntkElfC4NplcH2dza9tdbhzjhwc7yo6_FXiAzA3cD3RopmmGdYwS40Svm7X_dpHiYWXTmc5BR7h2yeLserxYysr0FzMckrbUFPJf-Xi_o7BP0zk_I313S6Rx6HmDI67qa9T3aq5gl5eBZWzZ-SrHVIHjEYm3lkGxfNO7Dp-ifecFW1oGH3iDlFt-YinDIMiSiX6NyidsOcZWTbGUfLdYG_b5bPyOXpybfJlIYdFWgplVhR7j3oGzeq4FZKRLp3hY7jooSwyFpTSeshAvPC2bRMhDOeKYdoOFbyxDOe8Odkt7lpqpckMkyZRJdWlpyJwtmiYsaWiCDGnII4cUR0z8S8DHDjuOvFj7zPK_ue37M_R_bnTOTA_hGJB8pFB7mxBY3p31Pel5SCEczBL2xB-36g3RC9LakPe7HIg_ovoV0gsCJYxxF5MzSD4uJqjG2qmzX24QkYw5jDEC86KRoeNzEaAlPDgIkb8jV0QFDwzZamvmrBweEDUcGrPfivh3pFHuFVl-h4SHZXt-vqNQRfq-Ko1S446kwfkQfHk4sv53j--Hk6g_OHk9n5xR3IdjZK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIgGXim8WCgQJjpbs2E5iIYQQUG1pt6dW2ptx7HhZRLML2RWCH8VvZCZOshQE2ksvOSSZyBmPZ57t8RtCnrFQZGXILC1UnlPJ4WK1lZQXeOaHO8va3fPJSTY-k--narpDfvZnYTCtsveJraP2C4dr5DBJl8hVBwb3avmFYtUo3F3tS2hEsziqvn-DKVvz8vAt9O_zND14d_pmTLuqAtSpTK6oCAFsTuisFFYpZHv3Zc556QAaWKsrZQOgkCC9LVwqvQ4s88gIY5VIAxNIdAAu_woEXoaTvXyab0h-uYxH75SgBee6yxyK-WQtP-X8HLwEJpQVLcGqEv8Kh3_D3T-zNn8Lgwc3yF6HX5PX0eBukp2qvkWuTrod-ttk2ga_gHyP9SyxtU9mkdh6_gNv-Kpa0q5SxYxiCPUJNhk-iYyaGEiTtjhPk9i2xUmzLnGpqLlDzi5Fz3fJbr2oq_sk0SzTae6scoLJ0tuyYto6ZCtjPgNMOiJ5r0TjOmpzrLDx2fQ5bJ_MRv0G1W-YNKD-EeGD5DLSe2who_t-Mv3xVXC4BmLQFrIvBtkO4kTosqX0fm8WpnM1jdkMjBF5OjwGJ4E7P7auFmt8R6TgeLmAT9yLVjT8bqpzAMGagRIv2NfwAhKQX3xSzz-2ROQwGc2gax_8v1lPyLXx6eTYHB-eHD0k1_F_YgblPtldfV1XjwDVrcrH7VBKyIfLHru_AC0MYQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTpp4QfymbECQ4NGSHdtJLIQQsFUbY9WEmNQ348RxV8TSQloh-NP467hLnJSBQH3ZSx6SXOScz3ef7fN3hDxlPktyn1iaqTSlksPFaispz_DMDy8sa3bPT8bJ4Zl8O1GTLfKzOwuDaZWdT2wctZsXuEYOk3SJXHVIM-tDWsTp_ujl4gvFClK409qV02hN5Lj8_g2mb_WLo33o62dxPDr48OaQhgoDtFCJXFLhPdif0EkurFLI_O7ylPO8AJhgrS6V9YBIvHQ2K2LptGeJQ3YYq0TsmUDSA3D_2ynOigZk-_XB-PT9mvKXy_YgnhI041yHPKI2u6xhq5xdgM_A9LKsoVtV4l_B8W_w-2cO529BcXSDXA9oNnrVmt9NslVWt8jOSdivv00mTSj0yP5YTSNbuWja0lzPfuANV5YLGupWTCkGVBdhk-GTyK-JYTVqSvXUkW1aHNWrHBeO6jvk7Eo0fZcMqnlV3ieRZomO08KqQjCZO5uXTNsCucuYSwChDknaKdEUgegc6218Nl1G2yezVr9B9RsmDah_SHgvuWjJPjaQ0V0_me4wK7hfAxFpA9nnvWwAPC2Q2VB6rzMLExxPbdbDZEie9I_BZeA-kK3K-QrfETG4YS7gE_daK-p_N9YpQGLNQImX7Kt_AenILz-pZucNLTlMTRPo2gf_b9ZjsgPj1rw7Gh_vkmv4O2065R4ZLL-uyocA8Zb5ozCWIvLxqofvL4itZqo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferring+and+generalizing+deep-learning-based+neural+encoding+models+across+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wen%2C+Haiguang&rft.au=Shi%2C+Junxing&rft.au=Chen%2C+Wei&rft.au=Liu%2C+Zhongming&rft.date=2018-08-01&rft.eissn=1095-9572&rft.volume=176&rft.spage=152&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.04.053&rft_id=info%3Apmid%2F29705690&rft.externalDocID=29705690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon