Exosomes in liver fibrosis: The role of modulating hepatic stellate cells and immune cells, and prospects for clinical applications
Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional int...
Saved in:
Published in | Frontiers in Immunology Vol. 14; p. 1133297 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media SA
20.03.2023
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional interactions between HSCs, immune cells, and cytokines are also critical for the progression of liver fibrosis. Despite the advances in treatments for liver fibrosis, they do not meet the current medical needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are capable of intercellular transport of molecules such as lipids, proteins and nucleic acids. As an essential mediator of intercellular communication, exosomes are involved in the physiological and pathological processes of many diseases. In liver fibrosis, exosomes are involved in the pathogenesis mainly by regulating the activation of HSCs and the interaction between HSCs and immune cells. Serum-derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have promising therapeutic potential in liver fibrosis. Exosomes derived from mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects. Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis and hold promise in becoming drug carriers for liver fibrosis treatment. |
---|---|
AbstractList | Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional interactions between HSCs, immune cells, and cytokines are also critical for the progression of liver fibrosis. Despite the advances in treatments for liver fibrosis, they do not meet the current medical needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are capable of intercellular transport of molecules such as lipids, proteins and nucleic acids. As an essential mediator of intercellular communication, exosomes are involved in the physiological and pathological processes of many diseases. In liver fibrosis, exosomes are involved in the pathogenesis mainly by regulating the activation of HSCs and the interaction between HSCs and immune cells. Serum-derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have promising therapeutic potential in liver fibrosis. Exosomes derived from mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects. Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis and hold promise in becoming drug carriers for liver fibrosis treatment. Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional interactions between HSCs, immune cells, and cytokines are also critical for the progression of liver fibrosis. Despite the advances in treatments for liver fibrosis, they do not meet the current medical needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are capable of intercellular transport of molecules such as lipids, proteins and nucleic acids. As an essential mediator of intercellular communication, exosomes are involved in the physiological and pathological processes of many diseases. In liver fibrosis, exosomes are involved in the pathogenesis mainly by regulating the activation of HSCs and the interaction between HSCs and immune cells. Serum-derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have promising therapeutic potential in liver fibrosis. Exosomes derived from mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects. Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis and hold promise in becoming drug carriers for liver fibrosis treatment.Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play a major role in liver fibrosis, and pathological stimuli lead to their transdifferentiation into myofibroblasts. Complex multidirectional interactions between HSCs, immune cells, and cytokines are also critical for the progression of liver fibrosis. Despite the advances in treatments for liver fibrosis, they do not meet the current medical needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are capable of intercellular transport of molecules such as lipids, proteins and nucleic acids. As an essential mediator of intercellular communication, exosomes are involved in the physiological and pathological processes of many diseases. In liver fibrosis, exosomes are involved in the pathogenesis mainly by regulating the activation of HSCs and the interaction between HSCs and immune cells. Serum-derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have promising therapeutic potential in liver fibrosis. Exosomes derived from mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects. Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis and hold promise in becoming drug carriers for liver fibrosis treatment. |
Author | Yuhong Zheng Chuantao Zhang Yufei Liu Peiyang Gao Ke Liu Yang Yang Jianying Wu |
AuthorAffiliation | 2 Department of Digestive Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu , China 3 Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu , China 1 Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu , China |
AuthorAffiliation_xml | – name: 1 Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu , China – name: 3 Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu , China – name: 2 Department of Digestive Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu , China |
Author_xml | – sequence: 1 givenname: Yufei surname: Liu fullname: Liu, Yufei – sequence: 2 givenname: Yuhong surname: Zheng fullname: Zheng, Yuhong – sequence: 3 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 4 givenname: Ke surname: Liu fullname: Liu, Ke – sequence: 5 givenname: Jianying surname: Wu fullname: Wu, Jianying – sequence: 6 givenname: Peiyang surname: Gao fullname: Gao, Peiyang – sequence: 7 givenname: Chuantao surname: Zhang fullname: Zhang, Chuantao |
BackLink | https://cir.nii.ac.jp/crid/1871428067797408000$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/37020547$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uj1vFDEQXaEgEkL-AAVyQUHBBa_t9QdNhKIAkSLRhNryeu07R157sfciqPnjzN5dUEKBC89oPPPezPi9bI5STq5pXrf4nFKpPvgwjttzggk9b1tKiRLPmpOWc7aihLCjR_5xc1brHYbDFKW0e9EcU4EJ7pg4aX5f_cw1j66ikFAM964gH_qSa6gf0e3GoZKjQ9mjMQ_baOaQ1mjjJnAsqrOLEHLIgq3IpAEtTaVD4P0uMgHW5Oxckc8F2RhSsCYiM00RnDnkVF81z72J1Z0d7Gnz_fPV7eXX1c23L9eXn25WtuNsXtGe2F72lHiMuTAtM86oQdGWtEIK7iRXuPdYeccZZ1awwTqY2PAOGyblQE-b6z3ukM2dnkoYTfmlswl6F8hlrU2BwaLTDPecSOZdbzzjUhgLeL3EisOumeoA62KPNW370QFTmouJT0CfvqSw0et8r9uleUExILw7IJT8Y-vqrMdQl8WZ5PK2aiKUaBnviILUN4_J_rI8fCMkyH2ChW3X4ry2Yd4tF7hDBFK9iEbvRKMX0eiDaKCU_FP6gP7forf7ohQCUC13K6FbIpfhlGBYgtzoH2cS0eA |
CitedBy_id | crossref_primary_10_37349_edd_2025_100563 crossref_primary_10_1177_09603271241265105 crossref_primary_10_3390_ph17121724 crossref_primary_10_1186_s12944_024_02396_3 crossref_primary_10_1186_s13287_023_03518_x crossref_primary_10_3390_ijms25010485 crossref_primary_10_1038_s41598_024_75609_5 crossref_primary_10_1186_s40364_024_00669_8 crossref_primary_10_1007_s00210_024_03702_7 crossref_primary_10_3390_ijms24119671 crossref_primary_10_1007_s13577_024_01158_8 crossref_primary_10_1111_jcmm_18507 crossref_primary_10_3389_fphar_2023_1092151 crossref_primary_10_1016_j_prerep_2024_100016 crossref_primary_10_3390_v16111785 crossref_primary_10_3389_fimmu_2023_1339669 crossref_primary_10_1186_s43162_024_00283_y crossref_primary_10_3389_fcell_2024_1444198 |
Cites_doi | 10.1016/j.addr.2020.06.026 10.1039/d1bm01663f 10.1186/s12951-021-01138-2 10.1080/10717544.2022.2030428 10.1128/JVI.02225-16 10.3390/mi12121563 10.1096/fj.201802675R 10.21037/atm-20-7787 10.1080/10717544.2020.1850917 10.3389/fimmu.2022.833878 10.3748/wjg.v27.i14.1419 10.1002/hep.28644 10.4161/onci.20897 10.3389/fimmu.2022.860807 10.1038/s41419-022-04764-2 10.31083/j.fbl2703104 10.1016/j.yexcr.2021.112663 10.3389/fphar.2021.677810 10.1096/fj.202002777RR 10.1002/hep4.1721 10.1007/s12072-017-9808-z 10.5152/tjg.2018.17330 10.1152/physrev.00013.2007 10.1002/hep.30698 10.1111/jcmm.16935 10.3748/wjg.v21.i41.11567 10.3389/fcell.2021.730176 10.3389/fgene.2021.673286 10.1016/j.omtn.2021.10.022 10.1111/jcmm.13170 10.2174/1381612821666151027153410 10.1155/2018/6079642 10.1038/nrgastro.2017.38 10.1021/acsnano.2c08774 10.1136/gutjnl-2020-323014 10.1016/j.jhep.2012.11.011 10.1002/hep.31658 10.1038/nm0598-594 10.1007/s13577-020-00371-5 10.1089/scd.2012.0395 10.1186/s12964-021-00730-1 10.1186/s12943-019-0991-5 10.1371/journal.pone.0255672 10.1186/s12951-022-01636-x 10.7150/thno.21945 10.1007/s10565-021-09684-z 10.3390/molecules27217289 10.1016/j.isci.2022.104597 10.1186/s13287-022-03049-x 10.1016/j.toxlet.2019.09.008 10.1186/s13287-021-02641-x 10.1002/jcp.1041470105 10.1155/2020/6574010 10.7150/thno.69885 10.1007/s10565-022-09714-4 10.3389/fcell.2021.619565 10.1016/j.gpb.2015.02.001 10.3350/cmh.2020.0194 10.7150/thno.38198 10.1080/20013078.2019.1703244 10.1038/s41467-021-24384-2 10.1080/20013078.2020.1816710 10.1194/jlr.R084343 10.1083/jcb.97.2.329 10.1126/sciadv.abp9435 10.1083/jcb.101.3.942 10.1126/science.aau6977 10.1186/s13287-022-03010-y 10.1038/ncb1596 10.1186/s13287-019-1204-2 10.1038/s41565-020-00836-6 10.1016/j.cca.2022.11.012 10.3389/fcell.2021.716209 10.3390/ijms21134737 10.1016/j.ajpath.2016.07.011 10.1111/jcmm.13208 10.3389/fcimb.2022.857570 10.1186/s10020-020-00207-w 10.1155/2020/8183713 10.1016/j.jhep.2018.09.014 10.1016/j.yexcr.2022.113297 10.1016/j.ijbiomac.2022.05.041 10.3390/cells9040875 10.1096/fj.201902307RRR 10.1002/hep.26768 10.1074/jbc.M116.729202 10.1084/jem.183.3.1161 10.1152/ajpgi.00054.2021 10.1016/S0021-9258(18)48095-7 10.1186/s13287-021-02629-7 10.33549/physiolres.934755 10.3390/ijms20071723 10.2147/IJN.S264498 10.3389/fphar.2022.962525 10.7150/thno.52570 10.1016/j.jhepr.2020.100067 10.1016/0092-8674(83)90040-5 10.1007/s11033-021-07008-2 10.2147/IJN.S291956 10.1139/o92-028 10.3390/cells11101715 10.1016/j.jbc.2021.101266 10.1002/hep.30662 10.3389/fphar.2022.882243 10.1055/s-0040-1708876 10.3390/pharmaceutics10040218 10.1016/j.omtn.2019.01.006 10.1016/j.cbi.2022.109899 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Liu, Zheng, Yang, Liu, Wu, Gao and Zhang. Copyright © 2023 Liu, Zheng, Yang, Liu, Wu, Gao and Zhang 2023 Liu, Zheng, Yang, Liu, Wu, Gao and Zhang |
Copyright_xml | – notice: Copyright © 2023 Liu, Zheng, Yang, Liu, Wu, Gao and Zhang. – notice: Copyright © 2023 Liu, Zheng, Yang, Liu, Wu, Gao and Zhang 2023 Liu, Zheng, Yang, Liu, Wu, Gao and Zhang |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2023.1133297 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_40b6284febaf4687acc74b8096133495 PMC10067730 37020547 10_3389_fimmu_2023_1133297 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM RYH AAYXX CITATION CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c564t-3b2cb8b32f0067a14aea9d931217876e8690bf09fe6464c74dce493a650a488d3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:21:56 EDT 2025 Thu Aug 21 18:38:56 EDT 2025 Fri Jul 11 03:58:34 EDT 2025 Thu Apr 03 06:57:39 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Tue Jul 01 02:13:54 EDT 2025 Fri Jun 27 00:50:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | immune cell clinical application liver fibrosis hepatic stellate cell exosome |
Language | English |
License | Copyright © 2023 Liu, Zheng, Yang, Liu, Wu, Gao and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-3b2cb8b32f0067a14aea9d931217876e8690bf09fe6464c74dce493a650a488d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Kinji Asahina, Shiga University of Medical Science, Japan This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology These authors have contributed equally to this work and share first authorship Reviewed by: Yingxin Zhao, University of Texas Medical Branch at Galveston, United States; Chia-Wei Li, Academia Sinica, Taiwan |
ORCID | 0000-0002-6208-5092 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2023.1133297 |
PMID | 37020547 |
PQID | 2797146529 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_40b6284febaf4687acc74b8096133495 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10067730 proquest_miscellaneous_2797146529 pubmed_primary_37020547 crossref_citationtrail_10_3389_fimmu_2023_1133297 crossref_primary_10_3389_fimmu_2023_1133297 nii_cinii_1871428067797408000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-20 |
PublicationDateYYYYMMDD | 2023-03-20 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in Immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2023 |
Publisher | Frontiers Media SA Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
References | Marrero (B57) 2022; 419 Tan (B77) 2022; 13 Safran (B35) 2022; 11 Sun (B98) 2021; 12 He (B12) 2018; 8 Pan (B15) 1985; 101 Kwon (B27) 2016; 291 Wang (B48) 2022; 13 Xie (B46) 2022; 71 Wan (B61) 2022; 25 Osawa (B69) 2021; 5 Wu (B80) 2022; 13 Luo (B32) 2021; 70 Peng (B58) 2021; 25 Khan (B71) 2021; 9 Ji (B106) 2022; 10 Picciolini (B109) 2021; 12 Tenchov (B92) 2022; 16 Dong (B44) 2022; 358 Shiha (B84) 2020; 2020 Qu (B101) 2017; 21 Tsai (B93) 2021; 297 Wan (B96) 2022; 8 He (B104) 2022; 12 Chen (B49) 2021; 9 Li (B99) 2013; 58 Jiang (B76) 2018; 2018 Tang (B102) 2021; 35 Li (B75) 2013; 22 Antimisiaris (B91) 2018; 10 Seo (B60) 2016; 64 Lin (B86) 2022; 20 Aydın (B1) 2018; 29 Pan (B70) 2022; 322 Luo (B97) 2021; 28 Roehlen (B2) 2020; 9 Johnstone (B16) 1987; 262 Skotland (B25) 2019; 60 Rajput (B107) 2022; 27 Liang (B29) 2021; 11 Luo (B36) 2021; 27 Watanabe (B82) 2021; 27 Patel (B8) 2020; 2 Mashouri (B24) 2019; 18 Soltani (B108) 2015; 21 Valadi (B21) 2007; 9 Benbow (B56) 2021; 405 Luan (B52) 2022; 211 Liu (B47) 2019; 70 Liu (B38) 2023; 538 Li (B89) 2022; 13 Zitvogel (B20) 1998; 4 Chen (B50) 2020; 34 Devhare (B40) 2017; 91 Wan (B59) 2019; 33 Kim (B41) 2019; 14 Mathieu (B28) 2021; 12 Harding (B14) 1983; 97 Lou (B100) 2017; 21 Lurie (B9) 2015; 21 Ma (B67) 2022; 29 Zhang (B23) 2020; 15 Fang (B53) 2020; 2020 Dai (B43) 2019; 316 Wang (B78) 2021; 19 Johnstone (B18) 1992; 70 Tsuchida (B34) 2017; 14 Wu (B83) 2022; 13 Tan (B5) 2021; 9 Zhang (B26) 2015; 13 Niu (B66) 2021; 9 Catalano (B88) 2020; 9 Chen (B54) 2016; 186 Zhang (B39) 2022 D'Amico (B4) 2018; 12 Feng (B45) 2022; 27 Matsuda (B31) 2020; 40 Wang (B79) 2020; 33 Tang (B103) 2022; 13 Xiao (B68) 2019; 70 Rong (B73) 2019; 10 Hou (B87) 2021; 74 Munich (B30) 2012; 1 Zhou (B51) 2022; 49 Raposo (B19) 1996; 183 Zahmatkesh (B42) 2022; 12 Wang (B64) 2021; 31 Tian (B72) 2022; 13 Asrani (B3) 2019; 70 Wan (B85) 2020; 10 Johnstone (B17) 1991; 147 Baglieri (B6) 2019; 20 Wang (B63) 2020; 26 Chen (B55) 2014; 59 Ma (B74) 2022 Gurung (B22) 2021; 19 Witzigmann (B94) 2020; 159 Duan (B95) 2021; 12 Ye (B90) 2021; 12 Gurunathan (B10) 2021; 16 Kalluri (B11) 2020; 367 Pan (B13) 1983; 33 Huang (B81) 2021; 12 Chang (B65) 2021; 16 Hu (B62) 2021; 16 Li (B105) 2020; 9 Friedman (B33) 2008; 88 Zehra (B7) 2020; 21 Luo (B37) 2021; 26 |
References_xml | – volume: 159 year: 2020 ident: B94 article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver publication-title: Adv Drug Delivery Rev doi: 10.1016/j.addr.2020.06.026 – volume: 10 year: 2022 ident: B106 article-title: Clodronate-nintedanib-loaded exosome-liposome hybridization enhances the liver fibrosis therapy by inhibiting kupffer cell activity publication-title: Biomater Sci doi: 10.1039/d1bm01663f – volume: 19 start-page: 437 year: 2021 ident: B78 article-title: 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway publication-title: J Nanobiotechnol doi: 10.1186/s12951-021-01138-2 – volume: 29 year: 2022 ident: B67 article-title: Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis publication-title: Drug Delivery doi: 10.1080/10717544.2022.2030428 – volume: 91 year: 2017 ident: B40 article-title: Exosome-mediated intercellular communication between hepatitis c virus-infected hepatocytes and hepatic stellate cells publication-title: J Virol doi: 10.1128/JVI.02225-16 – volume: 12 year: 2021 ident: B109 article-title: Advances in the field of micro- and nanotechnologies applied to extracellular vesicle research: Take-home message from ISEV2021 publication-title: Micromachines (Basel) doi: 10.3390/mi12121563 – volume: 33 year: 2019 ident: B59 article-title: Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: A role for exosomes in metabolic switch of liver nonparenchymal cells publication-title: FASEB J doi: 10.1096/fj.201802675R – volume: 9 start-page: 137 year: 2021 ident: B66 article-title: Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression publication-title: Ann Transl Med doi: 10.21037/atm-20-7787 – volume: 28 year: 2021 ident: B97 article-title: Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery publication-title: Drug Delivery doi: 10.1080/10717544.2020.1850917 – volume: 13 year: 2022 ident: B83 article-title: Mesenchymal stem cell-derived extracellular vesicles in liver immunity and therapy publication-title: Front Immunol doi: 10.3389/fimmu.2022.833878 – volume: 27 year: 2021 ident: B36 article-title: Lipotoxic hepatocyte-derived exosomal miR-1297 promotes hepatic stellate cell activation through the PTEN signaling pathway in metabolic-associated fatty liver disease publication-title: World J Gastroenterol doi: 10.3748/wjg.v27.i14.1419 – volume: 64 year: 2016 ident: B60 article-title: Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis publication-title: HEPATOLOGY doi: 10.1002/hep.28644 – volume: 1 year: 2012 ident: B30 article-title: Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands publication-title: ONCOIMMUNOLOGY doi: 10.4161/onci.20897 – volume: 13 year: 2022 ident: B48 article-title: A novel miRNA from egg-derived exosomes of schistosoma japonicum promotes liver fibrosis in murine schistosomiasis publication-title: Front Immunol doi: 10.3389/fimmu.2022.860807 – volume: 13 start-page: 319 year: 2022 ident: B77 article-title: HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis publication-title: Cell Death Dis doi: 10.1038/s41419-022-04764-2 – volume: 27 year: 2022 ident: B45 article-title: Fluid shear stress-induced exosomes from liver cancer cells promote activation of cancer-associated fibroblasts via IGF2-PI3K axis publication-title: Front Biosci (Landmark Ed) doi: 10.31083/j.fbl2703104 – volume: 405 year: 2021 ident: B56 article-title: Hepatic stellate cell-derived exosomes modulate macrophage inflammatory response publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2021.112663 – volume: 12 year: 2021 ident: B90 article-title: Salidroside inhibits CCl(4)-induced liver fibrosis in mice by reducing activation and migration of HSC induced by liver sinusoidal endothelial cell-derived exosomal SphK1 publication-title: Front Pharmacol doi: 10.3389/fphar.2021.677810 – volume: 35 start-page: e21557 year: 2021 ident: B102 article-title: Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis publication-title: FASEB J doi: 10.1096/fj.202002777RR – volume: 5 year: 2021 ident: B69 article-title: Cluster of differentiation 44 promotes liver fibrosis and serves as a biomarker in congestive hepatopathy publication-title: Hepatol Commun doi: 10.1002/hep4.1721 – volume: 12 start-page: 34 year: 2018 ident: B4 article-title: New concepts on the clinical course and stratification of compensated and decompensated cirrhosis publication-title: Hepatol Int doi: 10.1007/s12072-017-9808-z – volume: 29 start-page: 14 year: 2018 ident: B1 article-title: Liver fibrosis publication-title: TURK J Gastroenterol doi: 10.5152/tjg.2018.17330 – volume: 88 year: 2008 ident: B33 article-title: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver publication-title: Physiol Rev doi: 10.1152/physrev.00013.2007 – volume: 70 year: 2019 ident: B68 article-title: Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia publication-title: HEPATOLOGY doi: 10.1002/hep.30698 – volume: 25 year: 2021 ident: B58 article-title: DHFR silence alleviated the development of liver fibrosis by affecting the crosstalk between hepatic stellate cells and macrophages publication-title: J Cell Mol Med doi: 10.1111/jcmm.16935 – volume: 21 year: 2015 ident: B9 article-title: Non-invasive diagnosis of liver fibrosis and cirrhosis publication-title: World J Gastroenterol doi: 10.3748/wjg.v21.i41.11567 – volume: 9 year: 2021 ident: B5 article-title: Liver fibrosis: Therapeutic targets and advances in drug therapy publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.730176 – volume: 12 year: 2021 ident: B95 article-title: Nanoparticle delivery of CRISPR/Cas9 for genome editing publication-title: Front Genet doi: 10.3389/fgene.2021.673286 – volume: 26 year: 2021 ident: B37 article-title: Hepatocyte-derived exosomal miR-27a activateshepatic stellate cells through the inhibitionof PINK1-mediated mitophagy in MAFLD publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2021.10.022 – volume: 21 year: 2017 ident: B101 article-title: Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation publication-title: J Cell Mol Med doi: 10.1111/jcmm.13170 – volume: 21 year: 2015 ident: B108 article-title: Synthetic and biological vesicular nano-carriers designed for gene delivery publication-title: Curr Pharm Des doi: 10.2174/1381612821666151027153410 – volume: 2018 year: 2018 ident: B76 article-title: Human umbilical cord MSC-derived exosomes suppress the development of CCl(4)-induced liver injury through antioxidant effect publication-title: Stem Cells Int doi: 10.1155/2018/6079642 – volume: 14 start-page: 397 year: 2017 ident: B34 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2017.38 – volume: 16 year: 2022 ident: B92 article-title: Exosomes─Nature's lipid nanoparticles, a rising star in drug delivery and diagnostics publication-title: ACS NANO doi: 10.1021/acsnano.2c08774 – volume: 71 year: 2022 ident: B46 article-title: Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment publication-title: GUT doi: 10.1136/gutjnl-2020-323014 – volume: 58 year: 2013 ident: B99 article-title: miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression publication-title: J Hepatol doi: 10.1016/j.jhep.2012.11.011 – volume: 74 year: 2021 ident: B87 article-title: Myeloid-Cell-Specific IL-6 signaling promotes MicroRNA-223-Enriched exosome production to attenuate NAFLD-associated fibrosis publication-title: HEPATOLOGY doi: 10.1002/hep.31658 – volume: 4 start-page: 594 year: 1998 ident: B20 article-title: Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes publication-title: Nat Med doi: 10.1038/nm0598-594 – volume: 33 year: 2020 ident: B79 article-title: Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis publication-title: Hum Cell doi: 10.1007/s13577-020-00371-5 – volume: 22 year: 2013 ident: B75 article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis publication-title: Stem Cells Dev doi: 10.1089/scd.2012.0395 – volume: 19 start-page: 47 year: 2021 ident: B22 article-title: The exosome journey: From biogenesis to uptake and intracellular signalling publication-title: Cell Commun Signal doi: 10.1186/s12964-021-00730-1 – volume: 18 start-page: 75 year: 2019 ident: B24 article-title: Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance publication-title: Mol Cancer doi: 10.1186/s12943-019-0991-5 – volume: 16 year: 2021 ident: B65 article-title: Clinical impact of serum exosomal microRNA in liver fibrosis publication-title: PloS One doi: 10.1371/journal.pone.0255672 – volume: 20 start-page: 432 year: 2022 ident: B86 article-title: Huc-MSC-derived exosomes modified with the targeting peptide of aHSCs for liver fibrosis therapy publication-title: J Nanobiotechnol doi: 10.1186/s12951-022-01636-x – volume: 8 year: 2018 ident: B12 article-title: Exosome theranostics: Biology and translational medicine publication-title: THERANOSTICS doi: 10.7150/thno.21945 – year: 2022 ident: B39 article-title: Exosomes derived from hepatitis b virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis publication-title: Cell Biol Toxicol doi: 10.1007/s10565-021-09684-z – volume: 27 year: 2022 ident: B107 article-title: Exosomes as new generation vehicles for drug delivery: Biomedical applications and future perspectives publication-title: MOLECULES doi: 10.3390/molecules27217289 – volume: 25 year: 2022 ident: B61 article-title: M2 macrophage-derived exosomal microRNA-411-5p impedes the activation of hepatic stellate cells by targeting CAMSAP1 in NASH model publication-title: iScience doi: 10.1016/j.isci.2022.104597 – volume: 13 start-page: 494 year: 2022 ident: B80 article-title: ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis publication-title: Stem Cell Res Ther doi: 10.1186/s13287-022-03049-x – volume: 316 start-page: 73 year: 2019 ident: B43 article-title: Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2019.09.008 – volume: 12 start-page: 568 year: 2021 ident: B81 article-title: Umbilical cord blood plasma-derived exosomes as a novel therapy to reverse liver fibrosis publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02641-x – volume: 147 start-page: 27 year: 1991 ident: B17 article-title: Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins publication-title: J Cell Physiol doi: 10.1002/jcp.1041470105 – volume: 2020 year: 2020 ident: B84 article-title: Antifibrotic effect of combination of nilotinib and stem cell-conditioned media on CCl(4)-induced liver fibrosis publication-title: Stem Cells Int doi: 10.1155/2020/6574010 – volume: 12 year: 2022 ident: B104 article-title: Exosome-mediated delivery of RBP-J decoy oligodeoxynucleotides ameliorates hepatic fibrosis in mice publication-title: THERANOSTICS doi: 10.7150/thno.69885 – year: 2022 ident: B74 article-title: hMSCs-derived exosome circCDK13 inhibits liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B publication-title: Cell Biol Toxicol doi: 10.1007/s10565-022-09714-4 – volume: 9 year: 2021 ident: B71 article-title: Native and bioengineered exosomes for ischemic stroke therapy publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.619565 – volume: 13 start-page: 17 year: 2015 ident: B26 article-title: Exosome and exosomal microRNA: trafficking, sorting, and function publication-title: Genomics Proteomics Bioinf doi: 10.1016/j.gpb.2015.02.001 – volume: 27 start-page: 70 year: 2021 ident: B82 article-title: The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future publication-title: Clin Mol Hepatol doi: 10.3350/cmh.2020.0194 – volume: 10 year: 2020 ident: B85 article-title: Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium publication-title: THERANOSTICS doi: 10.7150/thno.38198 – volume: 9 year: 2020 ident: B88 article-title: Inhibiting extracellular vesicles formation and release: A review of EV inhibitors publication-title: J Extracell Vesicles doi: 10.1080/20013078.2019.1703244 – volume: 12 start-page: 4389 year: 2021 ident: B28 article-title: Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9 publication-title: Nat Commun doi: 10.1038/s41467-021-24384-2 – volume: 9 year: 2020 ident: B105 article-title: Fusion protein engineered exosomes for targeted degradation of specific RNAs in lysosomes: A proof-of-concept study publication-title: J Extracell Vesicles doi: 10.1080/20013078.2020.1816710 – volume: 60 start-page: 9 year: 2019 ident: B25 article-title: Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology publication-title: J Lipid Res doi: 10.1194/jlr.R084343 – volume: 97 year: 1983 ident: B14 article-title: Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes publication-title: J Cell Biol doi: 10.1083/jcb.97.2.329 – volume: 8 year: 2022 ident: B96 article-title: Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases publication-title: Sci Adv doi: 10.1126/sciadv.abp9435 – volume: 101 year: 1985 ident: B15 article-title: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes publication-title: J Cell Biol doi: 10.1083/jcb.101.3.942 – volume: 367 year: 2020 ident: B11 article-title: The biology, function, and biomedical applications of exosomes publication-title: SCIENCE doi: 10.1126/science.aau6977 – volume: 13 year: 2022 ident: B72 article-title: Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages publication-title: Stem Cell Res Ther doi: 10.1186/s13287-022-03010-y – volume: 9 year: 2007 ident: B21 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat Cell Biol doi: 10.1038/ncb1596 – volume: 10 start-page: 98 year: 2019 ident: B73 article-title: Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the wnt/β-catenin pathway publication-title: Stem Cell Res Ther doi: 10.1186/s13287-019-1204-2 – volume: 31 year: 2021 ident: B64 article-title: Using next-generation sequencing to identify novel exosomal miRNAs as biomarkers for significant hepatic fibrosis publication-title: Discovery Med – volume: 16 year: 2021 ident: B62 article-title: Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis publication-title: Nat NANOTECHNOL doi: 10.1038/s41565-020-00836-6 – volume: 538 start-page: 5 year: 2023 ident: B38 article-title: Exosomes in HBV infection publication-title: Clin Chim Acta doi: 10.1016/j.cca.2022.11.012 – volume: 9 year: 2021 ident: B49 article-title: Exosomal miR-500 derived from lipopolysaccharide-treated macrophage accelerates liver fibrosis by suppressing MFN2 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.716209 – volume: 21 year: 2020 ident: B7 article-title: Elucidating potential profibrotic mechanisms of emerging biomarkers for early prognosis of hepatic fibrosis publication-title: Int J Mol Sci doi: 10.3390/ijms21134737 – volume: 186 year: 2016 ident: B54 article-title: Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal MicroRNA-199a-5p publication-title: Am J Pathol doi: 10.1016/j.ajpath.2016.07.011 – volume: 21 year: 2017 ident: B100 article-title: MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis publication-title: J Cell Mol Med doi: 10.1111/jcmm.13208 – volume: 12 year: 2022 ident: B42 article-title: Effects of exosomes derived from helicobacter pylori outer membrane vesicle-infected hepatocytes on hepatic stellate cell activation and liver fibrosis induction publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2022.857570 – volume: 26 start-page: 81 year: 2020 ident: B63 article-title: Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy publication-title: Mol Med doi: 10.1186/s10020-020-00207-w – volume: 2020 year: 2020 ident: B53 article-title: ASK1 enhances angiotensin II-induced liver fibrosis in vitro by mediating endoplasmic reticulum stress-dependent exosomes publication-title: Mediators Inflammation doi: 10.1155/2020/8183713 – volume: 70 year: 2019 ident: B3 article-title: Burden of liver diseases in the world publication-title: J Hepatol doi: 10.1016/j.jhep.2018.09.014 – volume: 419 year: 2022 ident: B57 article-title: Ectodysplasin-a mRNA in exosomes released from activated hepatic stellate cells stimulates macrophage response publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2022.113297 – volume: 211 year: 2022 ident: B52 article-title: ASIC1a promotes hepatic stellate cell activation through the exosomal miR-301a-3p/BTG1 pathway publication-title: Int J Biol MACROMOL doi: 10.1016/j.ijbiomac.2022.05.041 – volume: 9 year: 2020 ident: B2 article-title: Liver fibrosis: Mechanistic concepts and therapeutic perspectives publication-title: CELLS-BASEL doi: 10.3390/cells9040875 – volume: 34 year: 2020 ident: B50 article-title: Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells publication-title: FASEB J doi: 10.1096/fj.201902307RRR – volume: 59 year: 2014 ident: B55 article-title: Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells publication-title: HEPATOLOGY doi: 10.1002/hep.26768 – volume: 291 year: 2016 ident: B27 article-title: Adaptor protein CD2AP and l-type lectin LMAN2 regulate exosome cargo protein trafficking through the golgi complex publication-title: J Biol Chem doi: 10.1074/jbc.M116.729202 – volume: 183 year: 1996 ident: B19 article-title: B lymphocytes secrete antigen-presenting vesicles publication-title: J Exp Med doi: 10.1084/jem.183.3.1161 – volume: 322 year: 2022 ident: B70 article-title: The therapeutic potential of exosomes derived from different cell sources in liver diseases publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00054.2021 – volume: 262 year: 1987 ident: B16 article-title: Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)48095-7 – volume: 12 start-page: 561 year: 2021 ident: B98 article-title: Mesenchymal stem cells-derived exosomes for drug delivery publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02629-7 – volume: 70 year: 2021 ident: B32 article-title: Hepatic stellate cell: A double-edged sword in the liver publication-title: Physiol Res doi: 10.33549/physiolres.934755 – volume: 20 year: 2019 ident: B6 article-title: The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma publication-title: Int J Mol Sci doi: 10.3390/ijms20071723 – volume: 15 year: 2020 ident: B23 article-title: Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications publication-title: Int J Nanomed doi: 10.2147/IJN.S264498 – volume: 13 year: 2022 ident: B89 article-title: Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis publication-title: Front Pharmacol doi: 10.3389/fphar.2022.962525 – volume: 11 year: 2021 ident: B29 article-title: Engineering exosomes for targeted drug delivery publication-title: THERANOSTICS doi: 10.7150/thno.52570 – volume: 2 year: 2020 ident: B8 article-title: Limitations of non-invasive tests for assessment of liver fibrosis publication-title: JHEP Rep doi: 10.1016/j.jhepr.2020.100067 – volume: 33 year: 1983 ident: B13 article-title: Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor publication-title: CELL doi: 10.1016/0092-8674(83)90040-5 – volume: 49 year: 2022 ident: B51 article-title: Serum-derived miR-574-5p-containing exosomes contribute to liver fibrosis by activating hepatic stellate cells publication-title: Mol Biol Rep doi: 10.1007/s11033-021-07008-2 – volume: 16 year: 2021 ident: B10 article-title: A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes publication-title: Int J Nanomed doi: 10.2147/IJN.S291956 – volume: 70 year: 1992 ident: B18 article-title: The Jeanne manery-Fisher memorial lecture 1991. maturation of reticulocytes: Formation of exosomes as a mechanism for shedding membrane proteins publication-title: Biochem Cell Biol doi: 10.1139/o92-028 – volume: 11 year: 2022 ident: B35 article-title: Extracellular vesicular transmission of miR-423-5p from HepG2 cells inhibits the differentiation of hepatic stellate cells publication-title: CELLS-BASEL doi: 10.3390/cells11101715 – volume: 297 year: 2021 ident: B93 article-title: Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity publication-title: J Biol Chem doi: 10.1016/j.jbc.2021.101266 – volume: 70 year: 2019 ident: B47 article-title: Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis publication-title: HEPATOLOGY doi: 10.1002/hep.30662 – volume: 13 year: 2022 ident: B103 article-title: Effective delivery of osteopontin small interference RNA using exosomes suppresses liver fibrosis via TGF-β1 signaling publication-title: Front Pharmacol doi: 10.3389/fphar.2022.882243 – volume: 40 year: 2020 ident: B31 article-title: Hepatic stellate cell-macrophage crosstalk in liver fibrosis and carcinogenesis publication-title: Semin LIVER Dis doi: 10.1055/s-0040-1708876 – volume: 10 year: 2018 ident: B91 article-title: Exosomes and exosome-inspired vesicles for targeted drug delivery publication-title: PHARMACEUTICS doi: 10.3390/pharmaceutics10040218 – volume: 14 year: 2019 ident: B41 article-title: Exosomal transmission of MicroRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.01.006 – volume: 358 year: 2022 ident: B44 article-title: Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2022.109899 |
SSID | ssj0000493335 |
Score | 2.4626231 |
SecondaryResourceType | review_article |
Snippet | Liver fibrosis is a global health problem caused by chronic liver injury resulting from various factors. Hepatic stellate cells (HSCs) have been found to play... |
SourceID | doaj pubmedcentral proquest pubmed crossref nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1133297 |
SubjectTerms | Cell Communication clinical application exosome Exosomes Exosomes - metabolism hepatic stellate cell Hepatic Stellate Cells Hepatic Stellate Cells - metabolism Hepatocytes Hepatocytes - metabolism Humans immune cell Immunologic diseases. Allergy Immunology Liver Cirrhosis Liver Cirrhosis - pathology liver fibrosis RC581-607 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIHgR159VV0bwpnXbJk0bbyq7LIKeXNhbSNLErexLxb4H69l_3Jm079EnohcvPaR5MJ2ZZL55mczH2As6ynN13eLuF3wuTFHjmgsh75QSwldWtYmm8-MneXYuPlzUFwuqL6oJm9oDT4o7FoWVuIUGb00Qsm2Mc42wLTGVcI7onnZfjHmLZOrrhHs55_V0SwazMHUc-tVq85rIwonGhFfU5WkRiVLDfowvse__hDV_L5lcxKDTO-z2DB7h7ST0Ibvh4112c6KT_HGP_Ty5HsZh5UfoI1xRwQUEzIaHsR_fAPoDUCkhDAFWQ5dYu-IXuPRUUu1gpNskiDuB_skfwcQO6FPiPPAqjaDA6WbmCAh1YXupEpaH4PfZ-enJ5_dn-UyykLtainXObeVsa3kVKHCZUhhvVKd4ibkK7pSeGKtsKFTwUkiBukcVoHINIjuDi7_jD9hBHKJ_xKCSoag7bsumdKIICH1UUEZK70vVOcszVm4Vrt3cgZyIMK40ZiJkJJ2MpMlIejZSxl7ufvNt6r_x19nvyI67mdQ7Ow2gR-nZo_S_PCpjR-gFKCE9S0woBZ0-Nw1mXgSvi4w93_qHxrVIVjDRD5tRVzgHIw_6f8YeTv6yE4U3CMxrgSK2e560J-v-m9hfpn7fJVkGd-LH_-PrnrBbpDEqo6uKp-xg_X3jjxBXre2ztIR-ARcYHkE priority: 102 providerName: Directory of Open Access Journals |
Title | Exosomes in liver fibrosis: The role of modulating hepatic stellate cells and immune cells, and prospects for clinical applications |
URI | https://cir.nii.ac.jp/crid/1871428067797408000 https://www.ncbi.nlm.nih.gov/pubmed/37020547 https://www.proquest.com/docview/2797146529 https://pubmed.ncbi.nlm.nih.gov/PMC10067730 https://doaj.org/article/40b6284febaf4687acc74b8096133495 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKERIXxDcptDISN0hJYseJkRAC1FIhlRMr7S2yHbsN2nXoeldqz_xxZpzsqosKJy45OI409sx43sT2PEJe4VaeKcsaVj9nU66yEnzOubSVknNbaFlHms7Tb-Jkwr9Oy-kOWdMdjRMYbkztkE9qspgdXl5cfQCHf48ZJ8Tbt66bz1eHyAOODCWskNUtchsiU4WMBqcj3P8xoGHGWDncnfnLp1vxKZbxh6jju-4mBPrnQcprken4Prk3Qkr6cbCBB2TH-ofkzkAyefWI_Dq67EM_t4F2ns7wGAZ1kCP3oQvvKFgJxQOGtHd03reRy8uf0XOLB60NDXjHBNAoxf_7gSrfUhyKHxvexBYQON7XDBQAMF1ftaTXt8Yfk8nx0ffPJ-lIvZCaUvBlynRhdK1Z4TCcqZwrq2QrWQ4ZDKyfFnmstMuks4ILbioOUwCTqwDvKVgSWvaE7Pre22eEFsJlZct0XuWGZw4AkXRSCWFtLlujWULy9YQ3ZqxLjvQYswbyE1RSE5XUoJKaUUkJeb355udQleOfvT-hHjc9saJ2bOgXZ83ooA3PtIBQ7axWjou6UgZGpWtkxGEMssiE7IMVgIT4zCHN5LgnXVWQjyHozhLycm0fDXgoakF5269CU0AfiEfgFQl5OtjLRhRWAVwvOYhYb1nSlqzbb3x3HquA56gZWJ_3_sfonpO7OGN4uK7IXpDd5WJl9wFtLfVB_EsBzy_T_CC602893ikK |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosomes+in+liver+fibrosis%3A+The+role+of+modulating+hepatic+stellate+cells+and+immune+cells%2C+and+prospects+for+clinical+applications&rft.jtitle=Frontiers+in+immunology&rft.au=Yufei+Liu&rft.au=Yuhong+Zheng&rft.au=Yang+Yang&rft.au=Ke+Liu&rft.date=2023-03-20&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=14&rft_id=info:doi/10.3389%2Ffimmu.2023.1133297&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_40b6284febaf4687acc74b8096133495 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |