Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning

Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage c...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 166; p. 107501
Main Authors Huang, Xinyu, Schmelter, Franziska, Irshad, Muhammad Tausif, Piet, Artur, Nisar, Muhammad Adeel, Sina, Christian, Grzegorzek, Marcin
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2023
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31–92.34%, MF1 of 88.21–90.08%, and Cohen’s Kappa coefficient k of 0.87–0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine. •B-SMOTE addresses class imbalance issue to reinforce N1 stage sleep pattern learning.•Supervised contrastive learning for similarity understanding in random feature pairs.•Contrastive learning for adaptable cross-domain matching in inter- and intra-datasets.•Lightweight ResNet & truncated cross-entropy to increase application feasibility.•Validation on four well-known public datasets to prove the model’s generalizability.
AbstractList Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31-92.34%, MF1 of 88.21-90.08%, and Cohen's Kappa coefficient k of 0.87-0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31-92.34%, MF1 of 88.21-90.08%, and Cohen's Kappa coefficient k of 0.87-0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.
AbstractSleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31–92.34%, MF1 of 88.21–90.08%, and Cohen’s Kappa coefficient k of 0.87–0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.
Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31–92.34%, MF1 of 88.21–90.08%, and Cohen’s Kappa coefficient k of 0.87–0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine. •B-SMOTE addresses class imbalance issue to reinforce N1 stage sleep pattern learning.•Supervised contrastive learning for similarity understanding in random feature pairs.•Contrastive learning for adaptable cross-domain matching in inter- and intra-datasets.•Lightweight ResNet & truncated cross-entropy to increase application feasibility.•Validation on four well-known public datasets to prove the model’s generalizability.
Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31-92.34%, MF1 of 88.21-90.08%, and Cohen's Kappa coefficient k of 0.87-0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.
ArticleNumber 107501
Author Piet, Artur
Irshad, Muhammad Tausif
Nisar, Muhammad Adeel
Schmelter, Franziska
Sina, Christian
Grzegorzek, Marcin
Huang, Xinyu
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0003-3210-3891
  surname: Huang
  fullname: Huang, Xinyu
  email: x.huang@uni-luebeck.de
  organization: Institute of Medical Informatics, University of Lübeck, Germany
– sequence: 2
  givenname: Franziska
  orcidid: 0009-0009-0649-675X
  surname: Schmelter
  fullname: Schmelter, Franziska
  email: Franziska.Schmelter@uksh.de
  organization: Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
– sequence: 3
  givenname: Muhammad Tausif
  orcidid: 0000-0003-4581-4107
  surname: Irshad
  fullname: Irshad, Muhammad Tausif
  email: m.irshad@uni-luebeck.de
  organization: Institute of Medical Informatics, University of Lübeck, Germany
– sequence: 4
  givenname: Artur
  orcidid: 0000-0003-2137-8363
  surname: Piet
  fullname: Piet, Artur
  email: ar.piet@uni-luebeck.de
  organization: Institute of Medical Informatics, University of Lübeck, Germany
– sequence: 5
  givenname: Muhammad Adeel
  orcidid: 0000-0003-3288-750X
  surname: Nisar
  fullname: Nisar, Muhammad Adeel
  email: adeel.nisar@pucit.edu.pk
  organization: Department of IT, University of the Punjab, Lahore, Pakistan
– sequence: 6
  givenname: Christian
  orcidid: 0000-0001-7640-1220
  surname: Sina
  fullname: Sina, Christian
  email: Christian.Sina@uksh.de
  organization: Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
– sequence: 7
  givenname: Marcin
  orcidid: 0000-0003-4877-8287
  surname: Grzegorzek
  fullname: Grzegorzek, Marcin
  email: marcin.grzegorzek@uni-luebeck.de
  organization: Institute of Medical Informatics, University of Lübeck, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37742416$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURKeFV0CW2LDJ4J_ESVhUlIo_aaQugLXl2DetB8cOtjPS8D68J46mBWkkpFlZ1_e7x_Y5vijOnHdQFIjgNcGEv9mulR-n3vgR9JpiyvJ2U2PypFiRtulKXLPqrFhhTHBZtbQ-Ly5i3GKMK8zws-KcNU1FK8JXxe_bKZnR_DLuDkULMKGY5N1SeYfG2eam19KivAKKEAzEt2gDOwgHqvdBQ7DG5e7epXtIRqHROB9M2iOfuSjHyS5oAnXvzM8ZkHQaxXmCsDMRNFLe7bydk_Eun5SrFGRMZgfIggwuzz4vng7SRnjxsF4W3z9--Hbzudzcfvpyc70pVc2rVLJGdsCGXvJ-oBhTaHXVa6o7Vtd1X2Gu6pZzNXSEUsX4IDXRPdGqbxXLXgG7LF4fdKfg80VjEqOJCqyVDvwcBW15yxtCmyqjr47QrZ9DfsBCtYx2LWZtpl4-UHOfsxJTMKMMe_EYQAauDoAKPsYAg1AmycWKbIKxgmCxJC624l_iYklcHBLPAu2RwOMZJ4y-P4xCtnRnIIioDDgF2gRQSWhvThG5OhJROW2jpP0Be4h_TSEiUoHF1-VPLl-SZsc7zhcH3v1f4LQ7_AEHEPv_
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108244
crossref_primary_10_1016_j_jbi_2024_104689
crossref_primary_10_1016_j_bspc_2024_107370
crossref_primary_10_1016_j_imed_2024_05_002
crossref_primary_10_1007_s10462_024_10926_9
crossref_primary_10_1007_s00262_024_03816_0
crossref_primary_10_1016_j_compbiomed_2024_109539
crossref_primary_10_3389_fpubh_2024_1489848
Cites_doi 10.1016/j.jneumeth.2020.108971
10.1088/1361-6579/ac6049
10.1109/JRPROC.1949.232969
10.1109/ACCESS.2020.3031549
10.3390/ijerph17114152
10.1109/10.867928
10.1177/0013164488484007
10.3389/fnins.2022.973761
10.1186/s12859-019-3075-z
10.1016/j.compbiomed.2019.01.013
10.3389/fpsyg.2020.545581
10.3390/s22228826
10.3389/fped.2021.782623
10.1016/j.artmed.2020.101981
10.1109/TNSRE.2021.3098968
10.3390/ijerph16040599
10.3390/s22249914
10.1161/01.CIR.101.23.e215
10.1007/s10439-015-1444-y
10.1111/j.0824-7935.2004.t01-1-00228.x
10.5665/sleep.5232
10.1371/journal.pone.0269500
10.1016/j.cmpb.2016.12.004
10.3390/s22207711
10.1016/j.bspc.2014.01.010
10.1016/j.knosys.2019.105367
10.1016/j.smrv.2020.101377
10.1109/TBME.2018.2872652
10.1111/j.1365-2869.2008.00700.x
10.1109/SPW.2019.00014
10.1007/s12170-013-0330-0
10.3389/fnhum.2021.727139
10.3390/s20123463
10.1016/j.sleep.2023.04.002
10.1093/sleep/19.1.26
10.3390/info12120513
10.1016/j.eswa.2018.12.023
10.1109/IJCBS.2009.22
10.1016/j.eswa.2020.113390
10.1016/j.jocs.2021.101544
10.1109/TBME.2020.3020381
10.1186/s40104-017-0164-6
10.1016/j.sleep.2021.03.022
10.1109/TBME.2022.3147187
10.1109/TNSRE.2021.3076234
10.1109/TCBB.2010.96
10.1053/smrv.2001.0164
10.1109/UBMK.2019.8907003
10.1016/j.compbiomed.2018.08.022
10.1016/j.knosys.2021.107078
10.1109/TNSRE.2017.2721116
10.3390/s22166190
10.1016/j.knosys.2017.05.005
10.21105/joss.00861
10.1016/j.jneumeth.2015.03.013
10.1007/s10044-019-00844-w
10.1016/j.neubiorev.2016.08.008
10.1038/s41746-021-00440-5
10.3389/fendo.2021.773646
10.1378/chest.14-0970
10.1561/2200000083
10.3390/s20154271
10.3390/ijerph19106322
10.1109/ICACCP.2019.8882943
10.1109/TNSRE.2019.2896659
10.1093/sleep/zsaa161
10.5664/jcsm.9476
10.2147/NSS.S124657
10.7205/MILMED-D-14-00158
10.1109/TIM.2018.2799059
10.1523/JNEUROSCI.2298-18.2019
10.1016/j.cmpb.2015.10.013
ContentType Journal Article
Copyright 2023 The Author(s)
The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
2023. The Author(s)
Copyright_xml – notice: 2023 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
– notice: 2023. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107501
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107501
ExternalDocumentID 37742416
10_1016_j_compbiomed_2023_107501
S0010482523009666
1_s2_0_S0010482523009666
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AFCTW
AGRNS
ALIPV
RIG
3V.
6I.
AACTN
AAFTH
AFKWA
AJOXV
AMFUW
M0N
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c564t-37a9e3fba6bf2002e8d4bd2d93555b406c5866cf9122c36fad1db1dcb8c3001e3
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Fri Jul 11 02:50:15 EDT 2025
Wed Aug 13 09:02:32 EDT 2025
Mon Jul 21 05:55:02 EDT 2025
Tue Jul 01 03:29:05 EDT 2025
Thu Apr 24 23:11:19 EDT 2025
Sat Jan 18 16:09:16 EST 2025
Wed Jun 18 06:48:28 EDT 2025
Tue Aug 26 20:14:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords B-SMOTE
Sleep stage classification
Truncated cross-entropy
Cross-domain adaption
Biosignal processing
Supervised contrastive learning
Multimodal polysomnography
Residual network
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-37a9e3fba6bf2002e8d4bd2d93555b406c5866cf9122c36fad1db1dcb8c3001e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4877-8287
0000-0003-2137-8363
0000-0003-3288-750X
0000-0003-3210-3891
0000-0003-4581-4107
0009-0009-0649-675X
0000-0001-7640-1220
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482523009666
PMID 37742416
PQID 2883298038
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2868671274
proquest_journals_2883298038
pubmed_primary_37742416
crossref_citationtrail_10_1016_j_compbiomed_2023_107501
crossref_primary_10_1016_j_compbiomed_2023_107501
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107501
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523009666
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Hrozanova, Klöckner, Sandbakk, Pallesen, Moen (b3) 2020; 11
Li, Ruan, Zheng, Su, Lin (b44) 2022; 22
Koyanagi, Stickley (b9) 2015; 38
Yan, Li, Zhou, Ristaniemi, Cong (b33) 2021; 348
Chapman, Liu, McKnight-Eily, Croft, Holt, Balkin (b11) 2015; 180
Dehkordi, Garde, Karlen, Wensley, Ansermino, Dumont (b19) 2014
Yuan, Jia, Ma, Xun, Wang, Su, Zhang (b34) 2019; 20
McInnes, Healy, Saul, Großberger (b96) 2018; 3
Phan, Mikkelsen (b98) 2022; 43
Sharma, Kavuru (b5) 2010
Jiang, Lu, Ma, Wang (b48) 2019; 121
Camilleri, Camilleri, Fabri (b27) 2014; 10
Bahdanau, Cho, Bengio (b35) 2015
Khalighi, Sousa, Santos, Nunes (b60) 2016; 124
Patel, Steinberg, Patel (b8) 2018; 14
Irshad, Nisar, Huang, Hartz, Flak, Li, Gouverneur, Piet, Oltmanns, Grzegorzek (b85) 2022; 22
Schaltenbrand, Lengelle, Toussaint, Luthringer, Carelli, Jacqmin, Lainey, Muzet, Macher (b49) 1996; 19
M. Arslan, M. Guzel, M. Demirci, S. Ozdemir, SMOTE and Gaussian Noise Based Sensor Data Augmentation, in: 2019 4th International Conference on Computer Science and Engineering, UBMK, 2019, pp. 1–5.
Li, Shirahama, Nisar, Huang, Grzegorzek (b101) 2020; 20
Casal, Di Persia, Schlotthauer (b38) 2022; 59
AASM (b16) 2020
Yubo, Yingying, Bing, Lin, Lei (b22) 2022; 16
Michielli, Acharya, Molinari (b52) 2019; 106
Jia, Lin, Wang, Wang, Xie, Zhang (b82) 2021
Kairouz, McMahan, Avent, Bellet, Bennis, Bhagoji (b72) 2021; 14
Oh, Lee, Zhang (b64) 2011; 8
Phan, Chén, Koch, Lu, McLoughlin, Mertins, De Vos (b25) 2021; 68
Malekzadeh, Hajibabaee, Heidari, Berlin (b100) 2022
Li, Qi, Ding, Zhao, Sang, Lee (b51) 2022; 19
Nasiri, Clifford (b37) 2020
Huang (b66) 2023
Sateia (b7) 2014; 146
S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in: International Conference on Machine Learning, 2015.
Huang, Shirahama, Irshad, Nisar, Piet, Grzegorzek (b81) 2023; 23
Chen, Kornblith, Norouzi, Hinton (b69) 2020
Llugsi, Yacoubi, Fontaine, Lupera (b83) 2021
Estabrooks, Jo, Japkowicz (b62) 2004; 20
Olesen, Jennum, Mignot, Sorensen (b90) 2021; 44
Zheng, Yin, Shao, Li, Yu (b45) 2020
Ming, Chazalon, Luqman, Visani, Burie (b73) 2017
Yildirim, Baloglu, Acharya (b88) 2019; 16
Wen-Yuan, Hui, Wang (b57) 2005
Maniatopoulos, Mitianoudis (b75) 2021; 12
Le-Khac, Healy, Smeaton (b70) 2020; 8
Chen, O’Brien, Horin, McGee Koch, Lee, Xu, Zee, Arora, Jayaraman (b30) 2022; 22
Xie, Hu, Zhu, Guo (b79) 2020; 152
Raghuwanshi, Shukla (b65) 2019; 23
Alickovic, Subasi (b43) 2018; 67
Nisar, Shirahama, Li, Huang, Grzegorzek (b102) 2020; 20
Bernardi, Betta, Ricciardi, Pietrini, Tononi, Siclari (b28) 2019; 39
B.H. Shekar, G. Dagnew, Grid Search-Based Hyperparameter Tuning and Classification of Microarray Cancer Data, in: 2019 Second International Conference on Advanced Computational and Communication Paradigms, ICACCP, 2019, pp. 1–8.
Nie, Tu, Xu (b93) 2021
Zolfaghari, Zhu, Gehler, Brox (b71) 2021
Huang, Shirahama, Li, Grzegorzek (b15) 2020; 110
ElMoaqet, Eid, Ryalat, Penzel (b26) 2022; 22
Chriskos, Frantzidis, Nday, Gkivogkli, Bamidis, Kourtidou-Papadeli (b40) 2021; 55
Kingsbury, Buxton, Emmons, Redline (b10) 2013; 7
Zou, Chen, Tong, Tao (b67) 2021
Sharma, Patel, Acharya (b47) 2021; 224
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b58) 2000; 101
C. Sitawarin, D.A. Wagner, On the Robustness of Deep K-Nearest Neighbors, in: Proceedings of the IEEE Security and Privacy Workshops, ISPW, 2019, pp. 1–7.
Tsinalis, Matthews, Guo (b87) 2015; 44
Lee, Kim, Na, Lim, Cho, Cho, Park (b20) 2021; 9
Zang, Zhang (b77) 2011
Eldele, Chen, Liu, Wu, Kwoh, Li, Guan (b53) 2021; 29
Supratak, Dong, Wu, Guo (b80) 2017; 25
T.-Y. Liu, EasyEnsemble and Feature Selection for Imbalance Data Sets, in: 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, IJCBS, 2009, pp. 517–520.
Pandi-Perumal, Spence, BaHammam (b14) 2014
Phan, Andreotti, Cooray, Chén, De Vos (b89) 2019; 66
Phan, Andreotti, Cooray, Chén, De Vos (b50) 2019; 27
de Goederen, Pu, Silos Viu, Doan, Overeem, Serdijn, Joosten, Long, Dudink (b21) 2021; 82
Carskadon, Dement (b32) 2005
Phan, Mikkelsen, Chén, Koch, Mertins, De Vos (b94) 2022; 69
Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (b59) 2000; 47
Ramar, Malhotra, Carden, Martin, Abbasi-Feinberg, Aurora, Kapur, Olson, Rosen, Rowley, Shelgikar, Trotti (b2) 2021; 17
Shannon (b97) 1949; 37
Tarokh, Saletin, Carskadon (b1) 2016; 70
Awais, Long, Yin, Abbasi, Akbarzadeh, Lu, Wang, Wang, Zhang, Dudink, Chen (b18) 2021; PP
Berry, Mielke (b86) 1988; 48
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, in: 31st Conference on Neural Information Processing Systems, NIPS 2017, 2017.
Che, Yan, Tian, Zhang, Liu, Wu (b6) 2021; 12
Duan, Li, Wang, Qiao, Wang, Sha, Li (b54) 2021; 15
Sadiya, Alhanai, Ghassemi (b99) 2021
Boostani, Karimzadeh, Nami (b24) 2017; 140
Smith (b4) 2001; 5
Perslev, Darkner, Kempfner, Nikolic, Jennum, Igel (b92) 2021; 4
Osman, Carter, Carberry, Eckert (b12) 2018; 10
Rahman, Bhuiyan, Hassan (b41) 2018; 102
Liu, Yin, Sun, Ersoy (b39) 2022; 17
Taran, Sharma, Bajaj (b46) 2020; 192
Lan, Chang, Kuo, Wei, Li, Shaw, Liang (b31) 2015; 246
Johnson, Khoshgoftaar (b61) 2019; 27
Hassan, Subasi (b42) 2017; 128
Danker-Hopfe, Anderer, Zeitlhofer, Boeck, Dorn, Gruber, Heller, Loretz, Moser, Parapatics, Saletu, Schmidt, Dorffner (b13) 2009; 18
Kales, Rechtschaffen (b17) 1968
Cheng, Garrick, Fernando (b78) 2017; 8
Zheng, Huang, Yan, He (b55) 2022
Dutt, Redhu, Goodwin, Omlin (b91) 2022
Guillot, Thorey (b95) 2021; 29
Do, Tran, Reid, Kumar, Hoang, Carneiro (b74) 2019
Baumert, Hartmann, Phan (b29) 2023
Zhu, Luo, Yu (b23) 2020; 17
Berry (10.1016/j.compbiomed.2023.107501_b86) 1988; 48
Zheng (10.1016/j.compbiomed.2023.107501_b45) 2020
Zheng (10.1016/j.compbiomed.2023.107501_b55) 2022
Bahdanau (10.1016/j.compbiomed.2023.107501_b35) 2015
Sharma (10.1016/j.compbiomed.2023.107501_b47) 2021; 224
Nasiri (10.1016/j.compbiomed.2023.107501_b37) 2020
Yubo (10.1016/j.compbiomed.2023.107501_b22) 2022; 16
Bernardi (10.1016/j.compbiomed.2023.107501_b28) 2019; 39
ElMoaqet (10.1016/j.compbiomed.2023.107501_b26) 2022; 22
Supratak (10.1016/j.compbiomed.2023.107501_b80) 2017; 25
Olesen (10.1016/j.compbiomed.2023.107501_b90) 2021; 44
Pandi-Perumal (10.1016/j.compbiomed.2023.107501_b14) 2014
Rahman (10.1016/j.compbiomed.2023.107501_b41) 2018; 102
Hassan (10.1016/j.compbiomed.2023.107501_b42) 2017; 128
Ramar (10.1016/j.compbiomed.2023.107501_b2) 2021; 17
Alickovic (10.1016/j.compbiomed.2023.107501_b43) 2018; 67
Raghuwanshi (10.1016/j.compbiomed.2023.107501_b65) 2019; 23
Perslev (10.1016/j.compbiomed.2023.107501_b92) 2021; 4
Zhu (10.1016/j.compbiomed.2023.107501_b23) 2020; 17
Li (10.1016/j.compbiomed.2023.107501_b101) 2020; 20
Jiang (10.1016/j.compbiomed.2023.107501_b48) 2019; 121
Malekzadeh (10.1016/j.compbiomed.2023.107501_b100) 2022
Shannon (10.1016/j.compbiomed.2023.107501_b97) 1949; 37
Dehkordi (10.1016/j.compbiomed.2023.107501_b19) 2014
Kingsbury (10.1016/j.compbiomed.2023.107501_b10) 2013; 7
Zolfaghari (10.1016/j.compbiomed.2023.107501_b71) 2021
Patel (10.1016/j.compbiomed.2023.107501_b8) 2018; 14
Yan (10.1016/j.compbiomed.2023.107501_b33) 2021; 348
Phan (10.1016/j.compbiomed.2023.107501_b50) 2019; 27
Estabrooks (10.1016/j.compbiomed.2023.107501_b62) 2004; 20
Johnson (10.1016/j.compbiomed.2023.107501_b61) 2019; 27
Phan (10.1016/j.compbiomed.2023.107501_b98) 2022; 43
10.1016/j.compbiomed.2023.107501_b84
Irshad (10.1016/j.compbiomed.2023.107501_b85) 2022; 22
Zou (10.1016/j.compbiomed.2023.107501_b67) 2021
Tsinalis (10.1016/j.compbiomed.2023.107501_b87) 2015; 44
Taran (10.1016/j.compbiomed.2023.107501_b46) 2020; 192
Ming (10.1016/j.compbiomed.2023.107501_b73) 2017
Casal (10.1016/j.compbiomed.2023.107501_b38) 2022; 59
Yildirim (10.1016/j.compbiomed.2023.107501_b88) 2019; 16
Kales (10.1016/j.compbiomed.2023.107501_b17) 1968
Wen-Yuan (10.1016/j.compbiomed.2023.107501_b57) 2005
10.1016/j.compbiomed.2023.107501_b76
Goldberger (10.1016/j.compbiomed.2023.107501_b58) 2000; 101
Sharma (10.1016/j.compbiomed.2023.107501_b5) 2010
Chen (10.1016/j.compbiomed.2023.107501_b69) 2020
Oh (10.1016/j.compbiomed.2023.107501_b64) 2011; 8
McInnes (10.1016/j.compbiomed.2023.107501_b96) 2018; 3
Nisar (10.1016/j.compbiomed.2023.107501_b102) 2020; 20
Tarokh (10.1016/j.compbiomed.2023.107501_b1) 2016; 70
Huang (10.1016/j.compbiomed.2023.107501_b81) 2023; 23
AASM (10.1016/j.compbiomed.2023.107501_b16) 2020
Xie (10.1016/j.compbiomed.2023.107501_b79) 2020; 152
Boostani (10.1016/j.compbiomed.2023.107501_b24) 2017; 140
Phan (10.1016/j.compbiomed.2023.107501_b89) 2019; 66
10.1016/j.compbiomed.2023.107501_b68
Sateia (10.1016/j.compbiomed.2023.107501_b7) 2014; 146
Llugsi (10.1016/j.compbiomed.2023.107501_b83) 2021
Nie (10.1016/j.compbiomed.2023.107501_b93) 2021
10.1016/j.compbiomed.2023.107501_b63
Hrozanova (10.1016/j.compbiomed.2023.107501_b3) 2020; 11
de Goederen (10.1016/j.compbiomed.2023.107501_b21) 2021; 82
Le-Khac (10.1016/j.compbiomed.2023.107501_b70) 2020; 8
Smith (10.1016/j.compbiomed.2023.107501_b4) 2001; 5
Jia (10.1016/j.compbiomed.2023.107501_b82) 2021
Chen (10.1016/j.compbiomed.2023.107501_b30) 2022; 22
Lee (10.1016/j.compbiomed.2023.107501_b20) 2021; 9
Danker-Hopfe (10.1016/j.compbiomed.2023.107501_b13) 2009; 18
Dutt (10.1016/j.compbiomed.2023.107501_b91) 2022
Phan (10.1016/j.compbiomed.2023.107501_b94) 2022; 69
Schaltenbrand (10.1016/j.compbiomed.2023.107501_b49) 1996; 19
Do (10.1016/j.compbiomed.2023.107501_b74) 2019
Zang (10.1016/j.compbiomed.2023.107501_b77) 2011
10.1016/j.compbiomed.2023.107501_b56
Kemp (10.1016/j.compbiomed.2023.107501_b59) 2000; 47
Kairouz (10.1016/j.compbiomed.2023.107501_b72) 2021; 14
Koyanagi (10.1016/j.compbiomed.2023.107501_b9) 2015; 38
Osman (10.1016/j.compbiomed.2023.107501_b12) 2018; 10
Che (10.1016/j.compbiomed.2023.107501_b6) 2021; 12
Cheng (10.1016/j.compbiomed.2023.107501_b78) 2017; 8
Baumert (10.1016/j.compbiomed.2023.107501_b29) 2023
Michielli (10.1016/j.compbiomed.2023.107501_b52) 2019; 106
Yuan (10.1016/j.compbiomed.2023.107501_b34) 2019; 20
Awais (10.1016/j.compbiomed.2023.107501_b18) 2021; PP
Huang (10.1016/j.compbiomed.2023.107501_b15) 2020; 110
Chriskos (10.1016/j.compbiomed.2023.107501_b40) 2021; 55
Liu (10.1016/j.compbiomed.2023.107501_b39) 2022; 17
Camilleri (10.1016/j.compbiomed.2023.107501_b27) 2014; 10
Duan (10.1016/j.compbiomed.2023.107501_b54) 2021; 15
Lan (10.1016/j.compbiomed.2023.107501_b31) 2015; 246
Khalighi (10.1016/j.compbiomed.2023.107501_b60) 2016; 124
Sadiya (10.1016/j.compbiomed.2023.107501_b99) 2021
Huang (10.1016/j.compbiomed.2023.107501_b66) 2023
Li (10.1016/j.compbiomed.2023.107501_b51) 2022; 19
Guillot (10.1016/j.compbiomed.2023.107501_b95) 2021; 29
Carskadon (10.1016/j.compbiomed.2023.107501_b32) 2005
Chapman (10.1016/j.compbiomed.2023.107501_b11) 2015; 180
Phan (10.1016/j.compbiomed.2023.107501_b25) 2021; 68
Maniatopoulos (10.1016/j.compbiomed.2023.107501_b75) 2021; 12
Li (10.1016/j.compbiomed.2023.107501_b44) 2022; 22
Eldele (10.1016/j.compbiomed.2023.107501_b53) 2021; 29
10.1016/j.compbiomed.2023.107501_b36
References_xml – volume: 10
  start-page: 21
  year: 2018
  end-page: 34
  ident: b12
  article-title: Obstructive sleep apnea: current perspective
  publication-title: Nat. Sci. Sleep
– volume: 69
  start-page: 2456
  year: 2022
  end-page: 2467
  ident: b94
  article-title: SleepTransformer: Automatic sleep staging with interpretability and uncertainty quantification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 3
  start-page: 861
  year: 2018
  ident: b96
  article-title: UMAP: Uniform manifold approximation and projection
  publication-title: J. Open Source Softw.
– volume: PP
  start-page: 1
  year: 2021
  ident: b18
  article-title: A hybrid DCNN-SVM model for classifying neonatal sleep and wake states based on facial expressions in video
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 224
  year: 2021
  ident: b47
  article-title: Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel EEG signals
  publication-title: Knowl.-Based Syst.
– year: 1968
  ident: b17
  publication-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects: Allan Rechtschaffen and Anthony Kales, Editors
– volume: 20
  year: 2019
  ident: b34
  article-title: A hybrid self-attention deep learning framework for multivariate sleep stage classification
  publication-title: BMC Bioinformatics
– volume: 22
  start-page: 7711
  year: 2022
  ident: b85
  article-title: SenseHunger: Machine learning approach to hunger detection using wearable sensors
  publication-title: Sensors
– volume: 15
  year: 2021
  ident: b54
  article-title: A novel sleep staging network based on data adaptation and multimodal fusion
  publication-title: Front. Human Neurosci.
– volume: 146
  start-page: 1387
  year: 2014
  end-page: 1394
  ident: b7
  article-title: International classification of sleep disorders-third edition
  publication-title: Chest
– start-page: 13
  year: 2005
  end-page: 23
  ident: b32
  article-title: Chapter 2 - normal human sleep: An overview
  publication-title: Principles and Practice of Sleep Medicine
– volume: 47
  start-page: 1185
  year: 2000
  end-page: 1194
  ident: b59
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  year: 2021
  ident: b20
  article-title: Non-contact sleep/wake monitoring using impulse-Radio ultrawideband radar in neonates
  publication-title: Front. Pediatr.
– volume: 38
  start-page: 1875
  year: 2015
  end-page: 1885
  ident: b9
  article-title: The association between sleep problems and psychotic symptoms in the general population: A global perspective
  publication-title: Sleep
– volume: 17
  start-page: 4152
  year: 2020
  ident: b23
  article-title: Convolution-and attention-based neural network for automated sleep stage classification
  publication-title: Int. J. Environ. Res. Public Health
– year: 2023
  ident: b66
  publication-title: Sensor-Based Sleep Stage Classification using Deep Learning
– start-page: 1458
  year: 2021
  end-page: 1461
  ident: b93
  article-title: RecSleepNet: An automatic sleep staging model based on feature reconstruction
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– reference: S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in: International Conference on Machine Learning, 2015.
– volume: 12
  year: 2021
  ident: b6
  article-title: The association between sleep and metabolic syndrome: A systematic review and meta-analysis
  publication-title: Front. Endocrinol.
– start-page: 1
  year: 2020
  end-page: 21
  ident: b37
  article-title: Attentive adversarial network for large-scale sleep staging
  publication-title: Machine Learning for Healthcare, Vol. 126
– reference: C. Sitawarin, D.A. Wagner, On the Robustness of Deep K-Nearest Neighbors, in: Proceedings of the IEEE Security and Privacy Workshops, ISPW, 2019, pp. 1–7.
– reference: M. Arslan, M. Guzel, M. Demirci, S. Ozdemir, SMOTE and Gaussian Noise Based Sensor Data Augmentation, in: 2019 4th International Conference on Computer Science and Engineering, UBMK, 2019, pp. 1–5.
– start-page: 274
  year: 2022
  end-page: 278
  ident: b55
  article-title: Truncated cross-entropy: A new loss function for multi-category classification
  publication-title: Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics
– year: 2020
  ident: b16
  article-title: The AASM manual for the scoring of sleep and associated events in version 2.6
– volume: 18
  start-page: 74
  year: 2009
  end-page: 84
  ident: b13
  article-title: Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard
  publication-title: J. Sleep Res.
– volume: 4
  start-page: 72
  year: 2021
  ident: b92
  article-title: U-sleep: resilient high-frequency sleep staging
  publication-title: npj Digit. Med.
– volume: 59
  year: 2022
  ident: b38
  article-title: Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals
  publication-title: J. Comput. Sci.
– volume: 8
  start-page: 316
  year: 2011
  end-page: 325
  ident: b64
  article-title: Ensemble learning with active example selection for imbalanced biomedical data classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 152
  year: 2020
  ident: b79
  article-title: Bioacoustic signal classification in continuous recordings: Syllable-segmentation vs sliding-window
  publication-title: Expert Syst. Appl.
– start-page: 495
  year: 2021
  end-page: 498
  ident: b99
  article-title: Artifact detection and correction in EEG data: A review
  publication-title: 2021 10th International IEEE/EMBS Conference on Neural Engineering
– volume: 12
  year: 2021
  ident: b75
  article-title: Learnable leaky ReLU (LeLeLU): An alternative accuracy-optimized activation function
  publication-title: Information
– volume: 44
  start-page: 1587
  year: 2015
  end-page: 1597
  ident: b87
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
– volume: 16
  start-page: 599
  year: 2019
  ident: b88
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: Int. J. Environ. Res. Public Health
– start-page: 1
  year: 2021
  end-page: 6
  ident: b83
  article-title: Comparison between adam, AdaMax and adam w optimizers to implement a weather forecast based on neural networks for the andean city of quito
  publication-title: 2021 IEEE Fifth Ecuador Technical Chapters Meeting
– volume: 27
  year: 2019
  ident: b61
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
– volume: 82
  start-page: 1
  year: 2021
  end-page: 8
  ident: b21
  article-title: Radar-based sleep stage classification in children undergoing polysomnography: a pilot-study
  publication-title: Sleep Med.
– volume: 19
  start-page: 6322
  year: 2022
  ident: b51
  article-title: A deep learning method approach for sleep stage classification with EEG spectrogram
  publication-title: Int. J. Environ. Res. Public Health
– start-page: 297
  year: 2014
  end-page: 300
  ident: b19
  article-title: Sleep stage classification in children using photoplethysmogram pulse rate variability
  publication-title: Computing in Cardiology 2014
– start-page: 878
  year: 2005
  end-page: 887
  ident: b57
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
– volume: 23
  year: 2023
  ident: b81
  article-title: Sleep stage classification in children using self-attention and Gaussian noise data augmentation
  publication-title: Sensors
– volume: 14
  start-page: 1017
  year: 2018
  end-page: 1024
  ident: b8
  article-title: Insomnia in the elderly: A review
  publication-title: J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med.
– volume: 20
  start-page: 3463
  year: 2020
  ident: b102
  article-title: Rank pooling approach for wearable sensor-based ADLs recognition
  publication-title: Sensors
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b58
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
– year: 2023
  ident: b29
  article-title: Automatic sleep staging for the young and the old – Evaluating age bias in deep learning
  publication-title: Sleep Med.
– volume: 106
  start-page: 71
  year: 2019
  end-page: 81
  ident: b52
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
– volume: 246
  start-page: 142
  year: 2015
  end-page: 152
  ident: b31
  article-title: Using off-the-shelf lossy compression for wireless home sleep staging
  publication-title: J. Neurosci. Methods
– year: 2015
  ident: b35
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
– volume: 128
  start-page: 115
  year: 2017
  end-page: 124
  ident: b42
  article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals
  publication-title: Knowl.-Based Syst.
– reference: T.-Y. Liu, EasyEnsemble and Feature Selection for Imbalance Data Sets, in: 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, IJCBS, 2009, pp. 517–520.
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b69
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International Conference on Machine Learning
– volume: 27
  start-page: 400
  year: 2019
  end-page: 410
  ident: b50
  article-title: SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 2614
  year: 2021
  end-page: 2620
  ident: b82
  article-title: SalientSleepNet: Multimodal salient wave detection network for sleep staging
  publication-title: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
– volume: 70
  start-page: 182
  year: 2016
  end-page: 188
  ident: b1
  article-title: Sleep in adolescence: Physiology, cognition and mental health
  publication-title: Neurosci. Biobehav. Rev.
– volume: 29
  start-page: 809
  year: 2021
  end-page: 818
  ident: b53
  article-title: An attention-based deep learning approach for sleep stage classification with single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 1656
  year: 2017
  end-page: 1664
  ident: b73
  article-title: Simple triplet loss based on intra/inter-class metric learning for face verification
  publication-title: 2017 IEEE International Conference on Computer Vision Workshops
– volume: 55
  year: 2021
  ident: b40
  article-title: A review on current trends in automatic sleep staging through bio-signal recordings and future challenges
  publication-title: Sleep Med. Rev.
– volume: 7
  start-page: 387
  year: 2013
  end-page: 394
  ident: b10
  article-title: Sleep and its relationship to racial and ethnic disparities in cardiovascular disease
  publication-title: Curr. Cardiovasc. Risk Rep.
– volume: 20
  start-page: 4271
  year: 2020
  ident: b101
  article-title: Deep transfer learning for time series data based on sensor modality classification
  publication-title: Sensors
– reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, in: 31st Conference on Neural Information Processing Systems, NIPS 2017, 2017.
– volume: 22
  start-page: 8826
  year: 2022
  ident: b26
  article-title: A deep transfer learning framework for sleep stage classification with single-channel EEG signals
  publication-title: Sensors
– year: 2022
  ident: b91
  article-title: SleepXAI: An explainable deep learning approach for multi-class sleep stage identification
  publication-title: Appl. Intell.
– volume: 29
  start-page: 1441
  year: 2021
  end-page: 1451
  ident: b95
  article-title: RobustSleepNet: Transfer learning for automated sleep staging at scale
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 16
  year: 2011
  end-page: 19
  ident: b77
  article-title: Softmax discriminant classifier
  publication-title: 2011 Third International Conference on Multimedia Information Networking and Security
– volume: 110
  year: 2020
  ident: b15
  article-title: Sleep stage classification for child patients using DeConvolutional neural network
  publication-title: Artif. Intell. Med.
– year: 2021
  ident: b67
  article-title: Standardized euclidean distance
  publication-title: Math. Probl. Eng.
– volume: 8
  start-page: 38
  year: 2017
  ident: b78
  article-title: Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
  publication-title: J. Animal Sci. Biotechnol.
– volume: 66
  start-page: 1285
  year: 2019
  end-page: 1296
  ident: b89
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 192
  year: 2020
  ident: b46
  article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform
  publication-title: Knowl.-Based Syst.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 210
  ident: b72
  article-title: Advances and open problems in federated learning
  publication-title: Found. Trends® Mach. Learn.
– volume: 348
  year: 2021
  ident: b33
  article-title: Automatic sleep scoring: A deep learning architecture for multi-modality time series
  publication-title: J. Neurosci. Methods
– volume: 17
  year: 2022
  ident: b39
  article-title: Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism
  publication-title: PLoS One
– start-page: 1875
  year: 2010
  end-page: 1885
  ident: b5
  article-title: Sleep and metabolism: An overview
  publication-title: Int. J. Endocrinol.
– volume: 43
  start-page: 04TR01
  year: 2022
  ident: b98
  article-title: Automatic sleep staging of EEG signals: recent development, challenges, and future directions
  publication-title: Physiol. Meas.
– volume: 48
  start-page: 921
  year: 1988
  end-page: 933
  ident: b86
  article-title: A generalization of cohen’s kappa agreement measure to interval measurement and multiple raters
  publication-title: Educ. Psychol. Meas.
– volume: 121
  start-page: 188
  year: 2019
  end-page: 203
  ident: b48
  article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement
  publication-title: Expert Syst. Appl.
– volume: 20
  year: 2004
  ident: b62
  article-title: A multiple resampling method for learning from imbalanced data sets
  publication-title: Comput. Intell.
– volume: 11
  year: 2020
  ident: b3
  article-title: Reciprocal associations between sleep, mental strain, and training load in junior endurance athletes and the role of poor subjective sleep quality
  publication-title: Front. Psychol.
– year: 2020
  ident: b45
  article-title: Collaborative sleep electroencephalogram data analysis based on improved empirical mode decomposition and clustering algorithm
  publication-title: Complexity
– volume: 17
  start-page: 2115
  year: 2021
  end-page: 2119
  ident: b2
  article-title: Sleep is essential to health: an American academy of sleep medicine position statement
  publication-title: J. Clin. Sleep Med.
– start-page: 1430
  year: 2021
  end-page: 1439
  ident: b71
  article-title: Crossclr: Cross-modal contrastive learning for multi-modal video representations
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision
– volume: 22
  year: 2022
  ident: b30
  article-title: Sleep monitoring during acute stroke rehabilitation: Toward automated measurement using multimodal wireless sensors
  publication-title: Sensors
– volume: 8
  start-page: 193907
  year: 2020
  end-page: 193934
  ident: b70
  article-title: Contrastive representation learning: A framework and review
  publication-title: IEEE Access
– volume: 180
  start-page: 68
  year: 2015
  end-page: 76
  ident: b11
  article-title: Daily insufficient sleep and active duty status
  publication-title: Mil. Med.
– reference: B.H. Shekar, G. Dagnew, Grid Search-Based Hyperparameter Tuning and Classification of Microarray Cancer Data, in: 2019 Second International Conference on Advanced Computational and Communication Paradigms, ICACCP, 2019, pp. 1–8.
– start-page: 10396
  year: 2019
  end-page: 10405
  ident: b74
  article-title: A theoretically sound upper bound on the triplet loss for improving the efficiency of deep distance metric learning
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 68
  start-page: 1787
  year: 2021
  end-page: 1798
  ident: b25
  article-title: Towards more accurate automatic sleep staging via deep transfer learning
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 29
  year: 2014
  end-page: 42
  ident: b14
  article-title: Polysomnography: An overview
  publication-title: Primary Care Sleep Medicine: A Practical Guide
– volume: 25
  start-page: 1998
  year: 2017
  end-page: 2008
  ident: b80
  article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 5
  start-page: 491
  year: 2001
  end-page: 506
  ident: b4
  article-title: Sleep states and memory processes in humans: procedural versus declarative memory systems
  publication-title: Sleep Med. Rev.
– volume: 22
  start-page: 9914
  year: 2022
  ident: b44
  article-title: Fast sleep stage classification using cascaded support vector machines with single-channel EEG signals
  publication-title: Sensors
– volume: 102
  start-page: 211
  year: 2018
  end-page: 220
  ident: b41
  article-title: Sleep stage classification using single-channel EOG
  publication-title: Comput. Biol. Med.
– volume: 124
  start-page: 180
  year: 2016
  end-page: 192
  ident: b60
  article-title: ISRUC-sleep: A comprehensive public dataset for sleep researchers
  publication-title: Comput. Methods Programs Biomed.
– volume: 37
  start-page: 10
  year: 1949
  end-page: 21
  ident: b97
  article-title: Communication in the presence of noise
  publication-title: Proc. IRE
– volume: 10
  start-page: 117
  year: 2014
  end-page: 127
  ident: b27
  article-title: Automatic detection of spindles and K-complexes in sleep EEG using switching multiple models
  publication-title: Biomed. Signal Process. Control
– volume: 140
  start-page: 77
  year: 2017
  end-page: 91
  ident: b24
  article-title: A comparative review on sleep stage classification methods in patients and healthy individuals
  publication-title: Comput. Methods Programs Biomed.
– volume: 19
  start-page: 26
  year: 1996
  end-page: 35
  ident: b49
  article-title: Sleep stage scoring using the neural network model: Comparison between visual and automatic analysis in normal subjects and patients
  publication-title: Sleep
– volume: 16
  year: 2022
  ident: b22
  article-title: MMASleepNet: A multimodal attention network based on electrophysiological signals for automatic sleep staging
  publication-title: Front. Neurosci.
– volume: 67
  start-page: 1258
  year: 2018
  end-page: 1265
  ident: b43
  article-title: Ensemble SVM method for automatic sleep stage classification
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 0080
  year: 2022
  end-page: 0086
  ident: b100
  article-title: Review of deep learning methods for automated sleep staging
  publication-title: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference
– volume: 39
  start-page: 2686
  year: 2019
  end-page: 2697
  ident: b28
  article-title: Regional Delta waves in human rapid eye movement sleep
  publication-title: J. Neurosci.
– volume: 44
  start-page: zsaa161
  year: 2021
  ident: b90
  article-title: Automatic sleep stage classification with deep residual networks in a mixed-cohort setting
  publication-title: Sleep
– volume: 23
  start-page: 1157
  year: 2019
  end-page: 1182
  ident: b65
  article-title: Classifying imbalanced data using BalanceCascade-based kernelized extreme learning machine
  publication-title: Pattern Anal. Appl.
– volume: 348
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b33
  article-title: Automatic sleep scoring: A deep learning architecture for multi-modality time series
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108971
– ident: 10.1016/j.compbiomed.2023.107501_b36
– volume: 43
  start-page: 04TR01
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b98
  article-title: Automatic sleep staging of EEG signals: recent development, challenges, and future directions
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac6049
– start-page: 1458
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b93
  article-title: RecSleepNet: An automatic sleep staging model based on feature reconstruction
– volume: 37
  start-page: 10
  issue: 1
  year: 1949
  ident: 10.1016/j.compbiomed.2023.107501_b97
  article-title: Communication in the presence of noise
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1949.232969
– start-page: 495
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b99
  article-title: Artifact detection and correction in EEG data: A review
– volume: 8
  start-page: 193907
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b70
  article-title: Contrastive representation learning: A framework and review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031549
– start-page: 1597
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b69
  article-title: A simple framework for contrastive learning of visual representations
– volume: 17
  start-page: 4152
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b23
  article-title: Convolution-and attention-based neural network for automated sleep stage classification
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17114152
– volume: 47
  start-page: 1185
  year: 2000
  ident: 10.1016/j.compbiomed.2023.107501_b59
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– volume: 48
  start-page: 921
  issue: 4
  year: 1988
  ident: 10.1016/j.compbiomed.2023.107501_b86
  article-title: A generalization of cohen’s kappa agreement measure to interval measurement and multiple raters
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/0013164488484007
– volume: 16
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b22
  article-title: MMASleepNet: A multimodal attention network based on electrophysiological signals for automatic sleep staging
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.973761
– volume: 20
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b34
  article-title: A hybrid self-attention deep learning framework for multivariate sleep stage classification
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3075-z
– volume: 106
  start-page: 71
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b52
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b3
  article-title: Reciprocal associations between sleep, mental strain, and training load in junior endurance athletes and the role of poor subjective sleep quality
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.545581
– start-page: 297
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107501_b19
  article-title: Sleep stage classification in children using photoplethysmogram pulse rate variability
– volume: 22
  start-page: 8826
  issue: 22
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b26
  article-title: A deep transfer learning framework for sleep stage classification with single-channel EEG signals
  publication-title: Sensors
  doi: 10.3390/s22228826
– volume: 9
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b20
  article-title: Non-contact sleep/wake monitoring using impulse-Radio ultrawideband radar in neonates
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2021.782623
– volume: 110
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b15
  article-title: Sleep stage classification for child patients using DeConvolutional neural network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101981
– volume: 29
  start-page: 1441
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b95
  article-title: RobustSleepNet: Transfer learning for automated sleep staging at scale
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3098968
– volume: 16
  start-page: 599
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b88
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16040599
– start-page: 1875
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107501_b5
  article-title: Sleep and metabolism: An overview
  publication-title: Int. J. Endocrinol.
– volume: 22
  start-page: 9914
  issue: 24
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b44
  article-title: Fast sleep stage classification using cascaded support vector machines with single-channel EEG signals
  publication-title: Sensors
  doi: 10.3390/s22249914
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.compbiomed.2023.107501_b58
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 44
  start-page: 1587
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107501_b87
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1444-y
– volume: 20
  year: 2004
  ident: 10.1016/j.compbiomed.2023.107501_b62
  article-title: A multiple resampling method for learning from imbalanced data sets
  publication-title: Comput. Intell.
  doi: 10.1111/j.0824-7935.2004.t01-1-00228.x
– start-page: 2614
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b82
  article-title: SalientSleepNet: Multimodal salient wave detection network for sleep staging
– volume: 38
  start-page: 1875
  issue: 12
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107501_b9
  article-title: The association between sleep problems and psychotic symptoms in the general population: A global perspective
  publication-title: Sleep
  doi: 10.5665/sleep.5232
– volume: 17
  issue: 6
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b39
  article-title: Multi-scale ResNet and BiGRU automatic sleep staging based on attention mechanism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0269500
– volume: 140
  start-page: 77
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107501_b24
  article-title: A comparative review on sleep stage classification methods in patients and healthy individuals
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.12.004
– ident: 10.1016/j.compbiomed.2023.107501_b76
– volume: 22
  start-page: 7711
  issue: 20
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b85
  article-title: SenseHunger: Machine learning approach to hunger detection using wearable sensors
  publication-title: Sensors
  doi: 10.3390/s22207711
– start-page: 29
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107501_b14
  article-title: Polysomnography: An overview
– year: 1968
  ident: 10.1016/j.compbiomed.2023.107501_b17
– volume: 10
  start-page: 117
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107501_b27
  article-title: Automatic detection of spindles and K-complexes in sleep EEG using switching multiple models
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.01.010
– volume: 192
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b46
  article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105367
– volume: 55
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b40
  article-title: A review on current trends in automatic sleep staging through bio-signal recordings and future challenges
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2020.101377
– volume: 66
  start-page: 1285
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b89
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2872652
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b16
– start-page: 1430
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b71
  article-title: Crossclr: Cross-modal contrastive learning for multi-modal video representations
– volume: 18
  start-page: 74
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107501_b13
  article-title: Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.2008.00700.x
– ident: 10.1016/j.compbiomed.2023.107501_b68
  doi: 10.1109/SPW.2019.00014
– volume: 7
  start-page: 387
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107501_b10
  article-title: Sleep and its relationship to racial and ethnic disparities in cardiovascular disease
  publication-title: Curr. Cardiovasc. Risk Rep.
  doi: 10.1007/s12170-013-0330-0
– volume: 15
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b54
  article-title: A novel sleep staging network based on data adaptation and multimodal fusion
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2021.727139
– volume: 20
  start-page: 3463
  issue: 12
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b102
  article-title: Rank pooling approach for wearable sensor-based ADLs recognition
  publication-title: Sensors
  doi: 10.3390/s20123463
– start-page: 274
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b55
  article-title: Truncated cross-entropy: A new loss function for multi-category classification
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107501_b29
  article-title: Automatic sleep staging for the young and the old – Evaluating age bias in deep learning
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2023.04.002
– volume: 19
  start-page: 26
  issue: 1
  year: 1996
  ident: 10.1016/j.compbiomed.2023.107501_b49
  article-title: Sleep stage scoring using the neural network model: Comparison between visual and automatic analysis in normal subjects and patients
  publication-title: Sleep
  doi: 10.1093/sleep/19.1.26
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b67
  article-title: Standardized euclidean distance
  publication-title: Math. Probl. Eng.
– volume: 12
  issue: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b75
  article-title: Learnable leaky ReLU (LeLeLU): An alternative accuracy-optimized activation function
  publication-title: Information
  doi: 10.3390/info12120513
– start-page: 13
  year: 2005
  ident: 10.1016/j.compbiomed.2023.107501_b32
  article-title: Chapter 2 - normal human sleep: An overview
– volume: 121
  start-page: 188
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b48
  article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.023
– start-page: 1656
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107501_b73
  article-title: Simple triplet loss based on intra/inter-class metric learning for face verification
– ident: 10.1016/j.compbiomed.2023.107501_b63
  doi: 10.1109/IJCBS.2009.22
– volume: 152
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b79
  article-title: Bioacoustic signal classification in continuous recordings: Syllable-segmentation vs sliding-window
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113390
– volume: 59
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b38
  article-title: Temporal convolutional networks and transformers for classifying the sleep stage in awake or asleep using pulse oximetry signals
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101544
– volume: 68
  start-page: 1787
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b25
  article-title: Towards more accurate automatic sleep staging via deep transfer learning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3020381
– volume: 8
  start-page: 38
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107501_b78
  article-title: Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
  publication-title: J. Animal Sci. Biotechnol.
  doi: 10.1186/s40104-017-0164-6
– volume: 23
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107501_b81
  article-title: Sleep stage classification in children using self-attention and Gaussian noise data augmentation
  publication-title: Sensors
– volume: 82
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b21
  article-title: Radar-based sleep stage classification in children undergoing polysomnography: a pilot-study
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2021.03.022
– start-page: 0080
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b100
  article-title: Review of deep learning methods for automated sleep staging
– volume: 69
  start-page: 2456
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b94
  article-title: SleepTransformer: Automatic sleep staging with interpretability and uncertainty quantification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3147187
– volume: 29
  start-page: 809
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b53
  article-title: An attention-based deep learning approach for sleep stage classification with single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3076234
– volume: 8
  start-page: 316
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107501_b64
  article-title: Ensemble learning with active example selection for imbalanced biomedical data classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2010.96
– volume: 5
  start-page: 491
  year: 2001
  ident: 10.1016/j.compbiomed.2023.107501_b4
  article-title: Sleep states and memory processes in humans: procedural versus declarative memory systems
  publication-title: Sleep Med. Rev.
  doi: 10.1053/smrv.2001.0164
– ident: 10.1016/j.compbiomed.2023.107501_b56
  doi: 10.1109/UBMK.2019.8907003
– volume: 102
  start-page: 211
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107501_b41
  article-title: Sleep stage classification using single-channel EOG
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.08.022
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b45
  article-title: Collaborative sleep electroencephalogram data analysis based on improved empirical mode decomposition and clustering algorithm
  publication-title: Complexity
– volume: 224
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b47
  article-title: Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel EEG signals
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107078
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107501_b80
  article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– volume: 22
  issue: 16
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b30
  article-title: Sleep monitoring during acute stroke rehabilitation: Toward automated measurement using multimodal wireless sensors
  publication-title: Sensors
  doi: 10.3390/s22166190
– volume: 128
  start-page: 115
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107501_b42
  article-title: A decision support system for automated identification of sleep stages from single-channel EEG signals
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.05.005
– volume: 3
  start-page: 861
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107501_b96
  article-title: UMAP: Uniform manifold approximation and projection
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– volume: 246
  start-page: 142
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107501_b31
  article-title: Using off-the-shelf lossy compression for wireless home sleep staging
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.03.013
– volume: 23
  start-page: 1157
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b65
  article-title: Classifying imbalanced data using BalanceCascade-based kernelized extreme learning machine
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00844-w
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b91
  article-title: SleepXAI: An explainable deep learning approach for multi-class sleep stage identification
  publication-title: Appl. Intell.
– volume: 70
  start-page: 182
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107501_b1
  article-title: Sleep in adolescence: Physiology, cognition and mental health
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2016.08.008
– start-page: 10396
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b74
  article-title: A theoretically sound upper bound on the triplet loss for improving the efficiency of deep distance metric learning
– volume: 4
  start-page: 72
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b92
  article-title: U-sleep: resilient high-frequency sleep staging
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-021-00440-5
– volume: PP
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b18
  article-title: A hybrid DCNN-SVM model for classifying neonatal sleep and wake states based on facial expressions in video
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b6
  article-title: The association between sleep and metabolic syndrome: A systematic review and meta-analysis
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2021.773646
– volume: 146
  start-page: 1387
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107501_b7
  article-title: International classification of sleep disorders-third edition
  publication-title: Chest
  doi: 10.1378/chest.14-0970
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b37
  article-title: Attentive adversarial network for large-scale sleep staging
– volume: 27
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b61
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
– volume: 14
  start-page: 1
  issue: 1–2
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b72
  article-title: Advances and open problems in federated learning
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000083
– volume: 20
  start-page: 4271
  issue: 15
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107501_b101
  article-title: Deep transfer learning for time series data based on sensor modality classification
  publication-title: Sensors
  doi: 10.3390/s20154271
– volume: 19
  start-page: 6322
  issue: 10
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107501_b51
  article-title: A deep learning method approach for sleep stage classification with EEG spectrogram
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph19106322
– ident: 10.1016/j.compbiomed.2023.107501_b84
  doi: 10.1109/ICACCP.2019.8882943
– volume: 27
  start-page: 400
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b50
  article-title: SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896659
– volume: 44
  start-page: zsaa161
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b90
  article-title: Automatic sleep stage classification with deep residual networks in a mixed-cohort setting
  publication-title: Sleep
  doi: 10.1093/sleep/zsaa161
– volume: 17
  start-page: 2115
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b2
  article-title: Sleep is essential to health: an American academy of sleep medicine position statement
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.9476
– volume: 10
  start-page: 21
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107501_b12
  article-title: Obstructive sleep apnea: current perspective
  publication-title: Nat. Sci. Sleep
  doi: 10.2147/NSS.S124657
– volume: 180
  start-page: 68
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107501_b11
  article-title: Daily insufficient sleep and active duty status
  publication-title: Mil. Med.
  doi: 10.7205/MILMED-D-14-00158
– volume: 67
  start-page: 1258
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107501_b43
  article-title: Ensemble SVM method for automatic sleep stage classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2799059
– volume: 39
  start-page: 2686
  issue: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107501_b28
  article-title: Regional Delta waves in human rapid eye movement sleep
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2298-18.2019
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107501_b83
  article-title: Comparison between adam, AdaMax and adam w optimizers to implement a weather forecast based on neural networks for the andean city of quito
– start-page: 16
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107501_b77
  article-title: Softmax discriminant classifier
– volume: 14
  start-page: 1017
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107501_b8
  article-title: Insomnia in the elderly: A review
  publication-title: J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med.
– year: 2015
  ident: 10.1016/j.compbiomed.2023.107501_b35
  article-title: Neural machine translation by jointly learning to align and translate
– start-page: 878
  year: 2005
  ident: 10.1016/j.compbiomed.2023.107501_b57
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
– volume: 124
  start-page: 180
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107501_b60
  article-title: ISRUC-sleep: A comprehensive public dataset for sleep researchers
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.10.013
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107501_b66
SSID ssj0004030
Score 2.4126618
Snippet Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet,...
AbstractSleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107501
SubjectTerms Adult
Annotations
B-SMOTE
Biosignal processing
Classification
Cross-domain adaption
Datasets
Electroencephalography - methods
Electromyography - methods
Electrooculography - methods
Female
Humans
Internal Medicine
Learning
Male
Multimodal polysomnography
Optimization
Other
Oversampling
Polysomnography - methods
Precision medicine
Residual network
Signal Processing, Computer-Assisted
Sleep
Sleep disorders
Sleep stage classification
Sleep Stages - physiology
Supervised contrastive learning
Supervised Machine Learning
Time series
Truncated cross-entropy
Well being
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CDiWX0o-0dZsWFXJ1spZl2W5PJTSE0jaXBHITkiWXLVl7iXYPzSH_pv-zM5bsEJLAQo_rlSzjGb95Qm9mAPbrFmlqW81SXRV0zFjotK5Fnea54Y5CZBbUFj_lybn4dlFcbMHRmAtDssqI_QHTB7SOVw7j2zxczueU44tbCdzgIIlGHi6p7LYQJXn5wc2tzEPM8pCGgnhDo6OaJ2i8SLYd0twPqI04XsYAmj0Woh6joEMoOn4GTyOHZF_CYz6HLde9gCc_4in5S_h7ijiwmF9jVGL-0rklQwpIzYhY37FBQbjoLd6A-sozckHnP7HvDp06jDJDPU7in8z_6ZAh4jpsMe96anTHSPPpNQnRcehUApbpzjK_XhL0eGcZqdmjV-NKgyBee4JWFvtU_NqF8-OvZ0cnaWzHkDaFFCuEIl27vDVampakHa6ywlhuqUJ7YZAYNEUlZdPWGedNLlttM2sy25iqQQtlLn8F213fuTfABO2GneAaEUbg9lxr3SIzxdtzU-nSJFCOFlBNrFVOLTMu1ShK-61ubafIdirYLoFsmrkM9To2mFOPRlZjPioiqMKgssHc8qG5zkco8CpTnquZuueuCXyeZt7x-A3X3Ru9UU1LUedoXlezvErg4_Q34gUdAunO9WsaI6mkIS9FAq-DF08vKse9ADI6-fa_Hu0d7NCvkLC5B9urq7V7j8xtZT4Mn-Y_JTlFyQ
  priority: 102
  providerName: Elsevier
Title Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523009666
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523009666
https://dx.doi.org/10.1016/j.compbiomed.2023.107501
https://www.ncbi.nlm.nih.gov/pubmed/37742416
https://www.proquest.com/docview/2883298038
https://www.proquest.com/docview/2868671274
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RVkJcEO-almiRuLrEr7VdDqighvAKCKiU22rXu0ZFjR3Y5AAH_k3_Z2e8a-dCUS6JlOzsWp7xzDfeb2cAnpU1wtS6GIeyyGibMZNhWaZlmCQqNhQiI8e2mPHpWfpuns39CzfraZW9T-wctW4rekf-nLrixmUxToqXy58hdY2i3VXfQmMH9qh0GVl1Ps835yLHiTuCgr4mxVTIM3kcv4so2-6I-xG1EMefMXhG14Wn6-BnF4Ymd-C2x4_sxCn8LtwwzT24-dHvkN-Hy0_oAxbnfzAiMXthzJIh_KNGRKxtWMceXLQaJ6Ce8ozMz9hj9sGgQbtRqqvFSdiT2d8NokNchy3Om5aa3DHie1pJJHQcOpR_ZbLRzK6X5Has0YyY7N6icaWODC8tuVXme1R8fwBnk9Nvr6ehb8UQVhlPV-iGZGmSWkmuaqJ1mEKnSseaqrNnCkFBlRWcV3UZxXGV8FrqSKtIV6qoErz9JnkIu03bmH1gKWXCJo0lepcUU3MpZY2oFKePVSFzFUDea0BUvk45tcu4ED0h7YfY6E6Q7oTTXQDRILl0tTq2kCl7JYv-LCp6T4EBZQvZ_F-yxno3YEUkbCzG4mtXBQkNEPM9TBk5D-DFIOmRjkMwW6572FujGJbaPB8BPB3-Rl9BG0CyMe2axnAqZxjnaQCPnBUPNyrBPADRHH_8_8kP4BZdiTuNeQi7q19r8wRh2UqNYOfobzTqnkD8LCZvRrB38vb9dIbfr05nn79cAXqpP8c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkIAXxG8CA4wEj4HEdtwEhBACSse68cAm7c3YsTNtWpOCW6Hx__DK38hdnKQvDPVlr21sV7277-7i7-4IeVZUEKZWeRLrPMNrxkzHRSGKmHPDHLrINLAt9uTkQHw-zA43yJ--FgZplT0mtkBtmxLfkb_EqbisyBOev51_j3FqFN6u9iM0glrsuLOfkLL5N9sfQL7PGRt_3H8_ibupAnGZSbEAi9KF45XR0lTIUHC5FcYyi43GMwP-rcxyKcuqSBkruay0Ta1JbWnykgOmOw77XiKXBQdPjpXp40-rOsyEh5IXwDYBqVfHHAp8MqSIh5L6FziyHD4GZ52e5w7PC3dbtze-Qa538Sp9FxTsJtlw9S1yZbe7kb9Nfn8BzJkd_wIPSP2pc3MK4SYOPqJNTVu24qyxsAHOsKeo7s6_olMHBhSeMm3vT4x1qT-rIRqFc-jsuG5wqB5FfqnXSHqHR4d2s1TXlvrlHGHOO0uROd9ZEJzUku-1Rxin3UyMozvk4EKEdJds1k3t7hMqMPN2gmlAM1EkI611BVEwbM9MrkcmIqNeAqrs-qLjeI5T1RPgTtRKdgplp4LsIpIOK-ehN8gaa4peyKqvfQW0VuDA1lg7-tda5zvY8SpVnqlEfW27LoECQn4JKaqUEXk9rOwiqxAxrXnuVq-NajhqZY8ReTp8DdiEF066ds0Sn5HYPpGNRETuBS0e_igOeQdEj_LB_zd_Qq5O9nenarq9t_OQXMNfFSpBt8jm4sfSPYKQcGEet3ZIybeLNvy_4-t4Ww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFDASHEMT5w1CCGhXLS1LBVTqzbUTBxV1kwXvCpX_w5_g1zETO9kLRXvpdTe2Vzuvb-JvZgCeFjXC1DoPfJkndM2YSL8o4sKPIsU1hcjQsi0m6e5R_P44OV6DP30tDNEqe5_YOeqqLekd-RZNxeVFHkT5Vu1oEYfb49ez7z5NkKKb1n6chlWRfX3-E9M382pvG2X9jPPxzpd3u76bMOCXSRrP0bpkoaNayVTVxFbQeRWrilfUdDxRGOvKJE_Tsi5CzssorWUVViqsSpWXEfp3HeG-V2A9o6xoBOtvdyaHn5ZVmUFkC2DQ08WYiDkekWWXEWHcFtg_pwHm-DGG7vCi4HgR-O2C4Pg6XHPolb2x6nYD1nRzEzY-uPv5W_D7I3qg6ekvjIfMnGk9Ywg-aQwSaxvWcRenbYUb0ER7RsqvzQt2oNGc7FOq6wRKyJeZ8waxKZ7DpqdNSyP2GLFNjSQKPD46NJ9lsqmYWczI6RldMeLRO3vCkzoqvjTk1JmbkPH1NhxdipjuwKhpG30PWEx5uI65RN8WF0EmpawRE-P2XOUyUx5kvQRE6bqk07COM9HT4b6JpewEyU5Y2XkQDitntlPICmuKXsiir4RF3y0wnK2wNvvXWm2cEzIiFIaLQHzuejChAmK2iQlrmnrwcljpcJbFTyueu9lroxiOWlqnB0-Gr9FT0fWTbHS7oGdSaqbIs9iDu1aLhz8qwiwEsWR6__-bP4YNNHpxsDfZfwBX6UfZstBNGM1_LPRDxIdz9cgZIoOTy7b9v2hsfe0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+sleep+staging+on+multimodal+time+series%3A+Leveraging+borderline+synthetic+minority+oversampling+technique+and+supervised+convolutional+contrastive+learning&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Huang%2C+Xinyu&rft.au=Schmelter%2C+Franziska&rft.au=Irshad%2C+Muhammad+Tausif&rft.au=Piet%2C+Artur&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=166&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107501&rft.externalDocID=S0010482523009666
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00134%2Fcov150h.gif