Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems
This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the searc...
Saved in:
Published in | Biomimetics (Basel, Switzerland) Vol. 8; no. 2; p. 149 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
06.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO’s implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms. |
---|---|
AbstractList | This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms. This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms. |
Audience | Academic |
Author | Trojovský, Pavel Dehghani, Mohammad |
AuthorAffiliation | Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic; mohammad.dehghani@uhk.cz |
AuthorAffiliation_xml | – name: Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic; mohammad.dehghani@uhk.cz |
Author_xml | – sequence: 1 givenname: Pavel orcidid: 0000-0001-8992-125X surname: Trojovský fullname: Trojovský, Pavel – sequence: 2 givenname: Mohammad surname: Dehghani fullname: Dehghani, Mohammad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37092401$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1URMvSP8ABReLCJcVfiRMuaKn4qFQo0sLZsp1x1qsk3trJVvDr8Xa70C0I-WDL885jvzPzFB0NfgCEnhN8xliNX2vne9fD6EysMMWE14_QCWWE5aIU7Oje-RidxrjCGJO6LDjHT9AxE7imHJMTFBeTHoMyo_NDPt9AUC3k71SEJrtaj653PyG8yebZF7jJFjcq9PnFENcupPhnGNUSpuBi-kQ271of3LjsM-tDtvDdxg3tnqG2-Oxr8LqDPj5Dj63qIpze7TP0_cP7b-ef8surjxfn88vcFCUfc8pKRnBVUcs1rpqaYuBWg2UYFGe2aCgzAjMiFBG8sbqkBdOiIqVmIGrD2Qxd7LiNVyu5Dq5X4Yf0ysnbCx9aqUL6ewdS07pMFSooZYJjbhWUqaZNYayuDaQ3Z-jtjrWedA-NgSFVrTuAHkYGt5St30iCSTJCWCK8uiMEfz1BHGXvooGuUwP4KUpa4aIgvGI0SV8-kK78FIZUq6SitRCirMo_qlYlB26wftvILVTORcFrwQXDSXX2D1VaDfTOpJmyLt0fJLy47_S3xf3MJEG1E5jgYwxgpXHjbYcT2XXJsdxOqPx7QlMqfZC6p_8n6Rdu_Owp |
CitedBy_id | crossref_primary_10_1016_j_est_2024_111908 crossref_primary_10_1038_s41598_024_70575_4 crossref_primary_10_1109_ACCESS_2024_3483457 crossref_primary_10_1007_s10586_024_04912_7 crossref_primary_10_1007_s10586_024_04704_z crossref_primary_10_3390_biomimetics8060486 crossref_primary_10_1016_j_asej_2024_103032 crossref_primary_10_1016_j_heliyon_2024_e25848 crossref_primary_10_1088_1742_6596_2963_1_012004 crossref_primary_10_1002_cnm_3859 crossref_primary_10_23919_IEN_2024_0026 crossref_primary_10_1109_ACCESS_2024_3428328 crossref_primary_10_3934_math_2024714 crossref_primary_10_1016_j_energy_2024_131947 crossref_primary_10_32604_cmes_2024_052001 crossref_primary_10_3390_e26030222 crossref_primary_10_3390_sym17010107 crossref_primary_10_1088_1742_6596_2977_1_012114 crossref_primary_10_1007_s11276_024_03869_0 crossref_primary_10_1109_TASC_2024_3442980 crossref_primary_10_1007_s10462_025_11192_z crossref_primary_10_1093_ijlct_ctae117 crossref_primary_10_1016_j_ijepes_2024_110204 crossref_primary_10_1016_j_heliyon_2024_e34326 crossref_primary_10_1038_s41598_024_56521_4 crossref_primary_10_1109_ACCESS_2024_3453488 crossref_primary_10_1016_j_heliyon_2024_e35382 crossref_primary_10_1109_JSEN_2024_3481673 crossref_primary_10_3390_axioms14040235 crossref_primary_10_1007_s13369_024_09807_8 crossref_primary_10_1007_s11760_024_03741_w crossref_primary_10_1088_2631_8695_ad7f29 crossref_primary_10_1038_s41598_024_80954_6 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1016_j_cscm_2024_e03807 crossref_primary_10_1093_cercor_bhae329 crossref_primary_10_1109_ACCESS_2024_3408628 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1016_j_jii_2024_100742 crossref_primary_10_1371_journal_pone_0310133 crossref_primary_10_1007_s12145_024_01499_w crossref_primary_10_1016_j_jobe_2023_107826 crossref_primary_10_1093_cercor_bhae498 crossref_primary_10_12677_pm_2025_151016 crossref_primary_10_12677_csa_2024_148171 crossref_primary_10_1038_s41598_025_90660_6 crossref_primary_10_1038_s41598_024_59597_0 crossref_primary_10_1007_s10586_024_04586_1 crossref_primary_10_1021_acs_energyfuels_4c06404 crossref_primary_10_1007_s00170_024_13369_2 crossref_primary_10_1109_TIM_2024_3436111 crossref_primary_10_1016_j_euromechsol_2025_105587 crossref_primary_10_1109_ACCESS_2024_3403089 crossref_primary_10_1016_j_applthermaleng_2023_122150 crossref_primary_10_1016_j_heliyon_2024_e37819 crossref_primary_10_1007_s11063_024_11467_6 crossref_primary_10_1016_j_envsoft_2024_105957 crossref_primary_10_32604_cmes_2025_061028 crossref_primary_10_1007_s11227_024_06592_x crossref_primary_10_1007_s11227_024_06078_w crossref_primary_10_1080_02664763_2024_2395961 crossref_primary_10_1007_s00202_024_02839_1 crossref_primary_10_3390_rs16122123 crossref_primary_10_1007_s00170_025_15249_9 crossref_primary_10_1038_s41598_024_79420_0 crossref_primary_10_1109_ACCESS_2023_3346533 crossref_primary_10_3934_era_2024093 crossref_primary_10_3389_fgene_2024_1415249 crossref_primary_10_1109_ACCESS_2025_3547537 crossref_primary_10_1016_j_bspc_2024_106443 crossref_primary_10_1364_AO_533817 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1016_j_est_2024_112546 crossref_primary_10_1108_MEQ_07_2024_0313 crossref_primary_10_3390_biomimetics9110670 crossref_primary_10_3390_sym16070866 crossref_primary_10_1007_s10489_024_06124_3 crossref_primary_10_1016_j_asoc_2024_112108 crossref_primary_10_1155_je_5604741 crossref_primary_10_1007_s10462_024_10729_y crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_1088_1361_6501_ad962d crossref_primary_10_1109_JSEN_2023_3344999 crossref_primary_10_3390_biomimetics9110678 crossref_primary_10_3390_jmse12122195 crossref_primary_10_1051_e3sconf_202561603038 crossref_primary_10_1038_s41598_024_71581_2 crossref_primary_10_3390_pr12050889 crossref_primary_10_3390_pr13030680 |
Cites_doi | 10.1016/j.advengsoft.2013.12.007 10.1038/s41598-017-18940-4 10.1016/j.eswa.2021.116158 10.1007/s13042-019-01053-x 10.20998/2074-272X.2018.4.12 10.1016/j.advengsoft.2017.03.014 10.1016/j.advengsoft.2016.01.008 10.1007/s00521-021-06392-x 10.1016/j.cad.2010.12.015 10.1023/A:1022602019183 10.1016/j.eswa.2020.113377 10.1016/j.eswa.2021.116026 10.1016/j.knosys.2019.105190 10.1016/j.asoc.2017.11.043 10.1016/j.eswa.2022.116924 10.1109/3477.484436 10.1111/j.1475-3995.2005.00503.x 10.20998/2074-272X.2020.1.10 10.1109/4235.585893 10.1007/s00521-015-1870-7 10.1016/j.engappai.2020.103541 10.1007/s00521-020-05296-6 10.1038/s41598-022-14225-7 10.20998/2074-272X.2018.5.10 10.1016/j.compstruc.2012.07.010 10.1007/s10489-020-01893-z 10.1007/s11047-020-09837-9 10.20998/2074-272X.2018.6.10 10.1109/IranianCEE.2017.7985256 10.1109/KBEI.2017.8324976 10.1109/ACCESS.2019.2918406 10.1016/j.eswa.2020.114522 10.1007/s40747-021-00605-5 10.1109/ACCESS.2022.3153493 10.1016/j.engappai.2022.104783 10.3390/su122310053 10.1016/j.cie.2021.107408 10.1016/j.matcom.2021.08.013 10.1023/A:1008202821328 10.3390/s21134567 10.1109/ACCESS.2022.3151641 10.1115/1.2919393 10.1016/j.ins.2012.08.023 10.1109/KBEI.2017.8325036 10.1007/11579427_66 10.1016/j.ins.2010.12.024 10.20998/2074-272X.2019.4.10 10.1016/j.ins.2009.03.004 10.1016/j.knosys.2022.108457 10.3390/app10175862 10.1126/science.220.4598.671 10.1007/s42452-020-03511-6 10.1016/j.future.2019.07.015 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/biomimetics8020149 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Physics |
EISSN | 2313-7673 |
ExternalDocumentID | oai_doaj_org_article_b29600052237404fae6201d5cfb9ceef PMC10123613 A754974730 37092401 10_3390_biomimetics8020149 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Project of Excellence of Faculty of Science, University of Hradec Králové grantid: 2209/2023-2024 |
GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c564t-236310882f4b08d920e4fbef30ea43f5d23c70317a174dfb6253b7816b3e79c43 |
IEDL.DBID | BENPR |
ISSN | 2313-7673 |
IngestDate | Wed Aug 27 01:07:08 EDT 2025 Thu Aug 21 18:38:14 EDT 2025 Fri Jul 11 06:11:08 EDT 2025 Fri Jul 25 12:04:50 EDT 2025 Tue Jun 17 21:34:24 EDT 2025 Tue Jun 10 20:28:01 EDT 2025 Thu Jan 02 22:52:47 EST 2025 Tue Jul 01 04:26:20 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | exploitation swarm-inspired metaheuristic exploration optimization subtraction average |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-236310882f4b08d920e4fbef30ea43f5d23c70317a174dfb6253b7816b3e79c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8992-125X |
OpenAccessLink | https://www.proquest.com/docview/2829777686?pq-origsite=%requestingapplication% |
PMID | 37092401 |
PQID | 2829777686 |
PQPubID | 2055439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b29600052237404fae6201d5cfb9ceef pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123613 proquest_miscellaneous_2805514832 proquest_journals_2829777686 gale_infotracmisc_A754974730 gale_infotracacademiconefile_A754974730 pubmed_primary_37092401 crossref_citationtrail_10_3390_biomimetics8020149 crossref_primary_10_3390_biomimetics8020149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230406 |
PublicationDateYYYYMMDD | 2023-04-06 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230406 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomimetics (Basel, Switzerland) |
PublicationTitleAlternate | Biomimetics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Rashedi (ref_39) 2009; 179 Kannan (ref_61) 1994; 116 ref_13 Hatamlou (ref_42) 2013; 222 Mirjalili (ref_34) 2014; 69 ref_11 Jiang (ref_27) 2022; 188 ref_52 Alyasseri (ref_55) 2021; 33 Dorigo (ref_24) 1996; 26 Dehghani (ref_58) 2020; 13 Hashim (ref_48) 2019; 101 ref_16 Goldberg (ref_37) 1988; 3 ref_59 Sergeyev (ref_1) 2018; 8 Faramarzi (ref_28) 2020; 152 Mirjalili (ref_32) 2016; 95 Yuen (ref_6) 2022; 8 Dehghani (ref_14) 2020; 21 Dehghani (ref_7) 2019; 2019 ref_60 Rao (ref_51) 2011; 43 ref_25 ref_23 Premkumar (ref_19) 2021; 67 Hashim (ref_46) 2021; 51 ref_63 Braik (ref_54) 2022; 34 ref_62 Dehghani (ref_12) 2018; 2018 Eskandar (ref_41) 2012; 110 Dehghani (ref_4) 2022; 12 Hashim (ref_30) 2022; 192 Dehghani (ref_21) 2022; 10 Abualigah (ref_26) 2022; 191 Mirjalili (ref_43) 2016; 27 Mohamed (ref_53) 2020; 11 Dehghani (ref_40) 2020; 2 Wolpert (ref_22) 1997; 1 Zeidabadi (ref_5) 2022; 72 Kaur (ref_33) 2020; 90 Kirkpatrick (ref_38) 1983; 220 Dehghani (ref_18) 2018; 2018 Moghdani (ref_57) 2018; 64 Faramarzi (ref_44) 2020; 191 Cuevas (ref_49) 2012; 182 Storn (ref_36) 1997; 11 Tilahun (ref_20) 2022; 21 Abdollahzadeh (ref_29) 2021; 158 Ayyarao (ref_56) 2022; 10 Chopra (ref_35) 2022; 198 Pereira (ref_47) 2021; 170 Koc (ref_3) 2022; 112 Dehghani (ref_15) 2020; 2020 Montazeri (ref_17) 2018; 2018 Liberti (ref_2) 2005; 12 Braik (ref_31) 2022; 243 ref_9 Rezk (ref_10) 2021; 67 ref_8 Wei (ref_50) 2019; 7 Kaveh (ref_45) 2017; 110 |
References_xml | – volume: 69 start-page: 46 year: 2014 ident: ref_34 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 8 start-page: 1 year: 2018 ident: ref_1 article-title: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget publication-title: Sci. Rep. doi: 10.1038/s41598-017-18940-4 – volume: 191 start-page: 116158 year: 2022 ident: ref_26 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 11 start-page: 1501 year: 2020 ident: ref_53 article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-01053-x – volume: 2018 start-page: 70 year: 2018 ident: ref_17 article-title: Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm publication-title: Electr. Eng. Electromechanics doi: 10.20998/2074-272X.2018.4.12 – volume: 67 start-page: 2227 year: 2021 ident: ref_19 article-title: A New Metaheuristic Optimization Algorithms for Brushless Direct Current Wheel Motor Design Problem publication-title: CMC-Comput. Mater. Contin. – volume: 110 start-page: 69 year: 2017 ident: ref_45 article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – volume: 95 start-page: 51 year: 2016 ident: ref_32 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 34 start-page: 409 year: 2022 ident: ref_54 article-title: A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06392-x – volume: 43 start-page: 303 year: 2011 ident: ref_51 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 3 start-page: 95 year: 1988 ident: ref_37 article-title: Genetic Algorithms and Machine Learning publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – volume: 152 start-page: 113377 year: 2020 ident: ref_28 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – ident: ref_23 – volume: 188 start-page: 116026 year: 2022 ident: ref_27 article-title: Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116026 – volume: 191 start-page: 105190 year: 2020 ident: ref_44 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 64 start-page: 161 year: 2018 ident: ref_57 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – volume: 198 start-page: 116924 year: 2022 ident: ref_35 article-title: Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – volume: 26 start-page: 29 year: 1996 ident: ref_24 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/3477.484436 – volume: 12 start-page: 263 year: 2005 ident: ref_2 article-title: Comparison of deterministic and stochastic approaches to global optimization publication-title: Int. Trans. Oper. Res. doi: 10.1111/j.1475-3995.2005.00503.x – volume: 2020 start-page: 61 year: 2020 ident: ref_15 article-title: A New Methodology Called Dice Game Optimizer for Capacitor Placement in Distribution Systems publication-title: Electr. Eng. Electromechanics doi: 10.20998/2074-272X.2020.1.10 – volume: 1 start-page: 67 year: 1997 ident: ref_22 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 27 start-page: 495 year: 2016 ident: ref_43 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 90 start-page: 103541 year: 2020 ident: ref_33 article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 33 start-page: 5011 year: 2021 ident: ref_55 article-title: Coronavirus herd immunity optimizer (CHIO) publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05296-6 – volume: 12 start-page: 9924 year: 2022 ident: ref_4 article-title: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process publication-title: Sci. Rep. doi: 10.1038/s41598-022-14225-7 – volume: 2018 start-page: 62 year: 2018 ident: ref_12 article-title: Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization publication-title: Electr. Eng. Electromechanics doi: 10.20998/2074-272X.2018.5.10 – volume: 110 start-page: 151 year: 2012 ident: ref_41 article-title: Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – ident: ref_62 – volume: 51 start-page: 1531 year: 2021 ident: ref_46 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 21 start-page: 265 year: 2022 ident: ref_20 article-title: Similarity in metaheuristics: A gentle step towards a comparison methodology publication-title: Nat. Comput. doi: 10.1007/s11047-020-09837-9 – ident: ref_59 – volume: 2018 start-page: 68 year: 2018 ident: ref_18 article-title: Spring search algorithm for simultaneous placement of distributed generation and capacitors publication-title: Electr. Eng. Electromechanics doi: 10.20998/2074-272X.2018.6.10 – volume: 72 start-page: 399 year: 2022 ident: ref_5 article-title: Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems publication-title: Comput. Mater. Contin. – ident: ref_11 doi: 10.1109/IranianCEE.2017.7985256 – ident: ref_16 doi: 10.1109/KBEI.2017.8324976 – volume: 7 start-page: 66084 year: 2019 ident: ref_50 article-title: Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918406 – volume: 170 start-page: 114522 year: 2021 ident: ref_47 article-title: Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114522 – volume: 8 start-page: 4571 year: 2022 ident: ref_6 article-title: A metaheuristic-based framework for index tracking with practical constraints publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00605-5 – volume: 13 start-page: 514 year: 2020 ident: ref_58 article-title: Football game based optimization: An application to solve energy commitment problem publication-title: Int. J. Intell. Eng. Syst. – volume: 10 start-page: 25073 year: 2022 ident: ref_56 article-title: War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3153493 – volume: 112 start-page: 104783 year: 2022 ident: ref_3 article-title: Discrete tree seed algorithm for urban land readjustment publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104783 – ident: ref_8 doi: 10.3390/su122310053 – volume: 158 start-page: 107408 year: 2021 ident: ref_29 article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 192 start-page: 84 year: 2022 ident: ref_30 article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.08.013 – volume: 11 start-page: 341 year: 1997 ident: ref_36 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: ref_25 – volume: 21 start-page: 20190217 year: 2020 ident: ref_14 article-title: Optimal sizing and placement of capacitor banks and distributed generation in distribution systems using spring search algorithm publication-title: Int. J. Emerg. Electr. Power Syst. – ident: ref_52 doi: 10.3390/s21134567 – volume: 10 start-page: 49445 year: 2022 ident: ref_21 article-title: Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151641 – volume: 116 start-page: 405 year: 1994 ident: ref_61 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 222 start-page: 175 year: 2013 ident: ref_42 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – ident: ref_13 doi: 10.1109/KBEI.2017.8325036 – volume: 67 start-page: 2271 year: 2021 ident: ref_10 article-title: Energy management control strategy for renewable energy system based on spotted hyena optimizer publication-title: Comput. Mater. Contin. – ident: ref_63 doi: 10.1007/11579427_66 – volume: 182 start-page: 40 year: 2012 ident: ref_49 article-title: Circle detection using electro-magnetism optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.12.024 – volume: 2019 start-page: 69 year: 2019 ident: ref_7 article-title: Energy commitment: A planning of energy carrier based on energy consumption publication-title: Electr. Eng. Electromechanics doi: 10.20998/2074-272X.2019.4.10 – volume: 179 start-page: 2232 year: 2009 ident: ref_39 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – ident: ref_60 – volume: 243 start-page: 108457 year: 2022 ident: ref_31 article-title: White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108457 – ident: ref_9 doi: 10.3390/app10175862 – volume: 220 start-page: 671 year: 1983 ident: ref_38 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 2 start-page: 1 year: 2020 ident: ref_40 article-title: Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03511-6 – volume: 101 start-page: 646 year: 2019 ident: ref_48 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 |
SSID | ssj0001965440 |
Score | 2.580326 |
Snippet | This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 149 |
SubjectTerms | Algorithms Design Efficiency Evolution exploitation exploration Food Hydrologic cycle Literature reviews metaheuristic optimization Optimization algorithms Physics Problem solving Science subtraction average swarm-inspired |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yT76Iev6o3kkE0QcplzZp2vrWE49TOBXOg3sLbTN1V7Zd6XY59K93JukuLQf64usmLZtkMvN90-Qbxl7pMs-Q_ttQUvpeRbENqwxcEQGAEhGtdtqdF5_1-ZX6dJ1cT0p90ZkwLw_sJ-6kihFjU_IylqkSqilBY8yySd1UOTr4hrwvxrwJmfrhRV8SpYS_JSOR15_QbfZlSxcDNxlCpIjEMyeRyAn233bLk7g0PzM5CUJn99m9ET3ywv_rB-wOdA_ZYdEhc25_8dfcned0ifJDtkGfMPT-3kJYoMWi5whPMWhZ_gX9RLv8Df07XnB0c_zypuzb8GNHn92x_QKGcgFbL-LMi9X3db8cFi1HgMsv1yvKQeze4RaWf_VlaTaP2NXZh2_vz8OxxEJYJ1oNYSw14jtE2Y2qRGbzWIBqKmikgFLJJrGxrEnhPi2RudimQrYkqzSLdCUhzWslH7ODbt3BU8ahLgFym9uoobySyC3oTCIetYjfEZcGLNpNt6lH_XEqg7EyyENoicztJQrY2_0zP736xl97n9Iq7nuScrb7Ae3JjPZk_mVPAXtDNmBof9MileM1BRwkKWWZIkVGjRxM4oCOZj1xX9bz5p0VmdEvbAx9t05TpHg6YC_3zfQknXXrYL2lPoJgLLragD3xRrcfkkwFEmYRBSybmeNszPOWbrlwquGRU-uL5LP_MUvP2d0Y0Z47wqSP2MHQb-EY0dlQvXAb8Q8vGToJ priority: 102 providerName: Directory of Open Access Journals |
Title | Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37092401 https://www.proquest.com/docview/2829777686 https://www.proquest.com/docview/2805514832 https://pubmed.ncbi.nlm.nih.gov/PMC10123613 https://doaj.org/article/b29600052237404fae6201d5cfb9ceef |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELZgFRIvCDZgYaMyEoIHFC2JHSfhBSWwaiBtTIxJe4uS2FkrNcmWpELw67lz3K7RpD22dqo6dz5_39n-jpD3IotCoP_SZpi-564n7TxUuoiAUhkgWqG1O0_PxMkl_3HlX5mEW2eOVa5jog7UsikwR36EO35BAOBYfLm5tbFqFO6umhIaj8kEQnAI5GuSHJ-d_7rLskTC59wZbssw4PdHeKt9UeEFwS4EqOSiiObWiqSF---H5631aXx2cmsxmj0nzwyKpPFg9hfkkap3yV5cA4Ou_tIPVJ_r1AnzXfJEfyi6PdJBlOjb4SaDHYMPQyyxE1jGJP0JkaNa_FPtZxpTCHz04k_WVvb3Gjfiof1U9dlcrQZZZxovr-HV9POKAuSlF80SsxLr39CmpudDoZruJbmcHf_-emKbogt24Qve2x4TgPgAd5c8d0IZeY7iZa5K5qiMs9KXHitQ8z7IgMvIMgf-xPIgdEXOVBAVnL0iO3VTq31CVZEpFclIuiVmmpxIKhEyQKgSED0gVYu46xefFkaRHAtjLFNgJmis9L6xLPJp88zNoMfxYO8E7bnpiVra-oumvU7N1ExzD1gcpsc9FnCHl5kS8LD0izKPAEKUFvmI3pDijEcjZebiAgwStbPSOACODayMwYAORz1hphbj5rU_pSZSdOmdX1vk3aYZn8TTb7VqVtjHQWALwdcirwf32wyJBQ5QaMe1SDhyzNGYxy31Yq51xF2t3-eyNw__rwPy1ANkp48riUOy07cr9RaQWJ9PySROviWzqZl2U53R-A8z4jiA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEGwwAgOMxMcDipbEbj6QEEphU8vWMrFN2ltIYmer1KajSTWNP4q_kTsn6RpN2tseU9tR3Duff7-z7w7gnRsHPtJ_aXJy3wvbkWbiK11EQKkYEa2rc3cOR27_RPw47Z6uwb8mFoauVTY2URtqOUvJR75DJ36eh-DY_Xrxx6SqUXS62pTQqNRiX11dImUrvgy-o3zfO87e7vG3vllXFTDTritK0-EuQhoElplILF8GjqVElqiMWyoWPOtKh6eU1N2LEazLLEGCwBPPt92EKy9IBcf33oN1wZHKdGC9tzs6_HXt1QncrhBWFZ3DeWDtUBT9eEoBiYWP0MympJ0rO6AuFHBzO1jZD9t3NVc2v73H8KhGrSys1OwJrKl8AzbDHBn79Ip9YPoeqXbQb8B9_ZAWm1CgVSrnVeSEGeKaQdtl9nDblOwnWqrp-K-af2YhQ0PLji7j-dQc5HTwj-1DVcbnalGlkWbh5AxFUZ5PGUJsdjSbkBekeYdWLXZYFcYpnsLJnYjjGXTyWa6eA1NprFQgA2ln5NmyAqlcnyMilsggEBkbYDd_fJTWGdCpEMckQiZEwopuCsuAT8sxF1X-j1t790iey56Uu1v_MJufRbUpiBIHWSO54x3uCUtksXJxsOymWRIgZMkM-EjaEJGFISHFdaAETpJydUWhh5weWSDHCW23eqJlSNvNjT5FtWUqout1ZMDbZTONpNt2uZotqI9FQBqNvQFblfotp8Q9Cym7ZRvgtxSzNed2Sz4-13nLbZ0v0OYvbv-uN_Cgfzw8iA4Go_2X8NBBVKmvSrnb0CnnC_UKUWCZvK6XHoPfd73a_wNOtnGO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuCFoehgKLxOOArNheZ20jIeTQVg2lIaJU6s3Y3nUTKXFK7KgqP41fx8zaTmNV6q3HZHetbGb222_G8wB4K-LAR_Nfmpzc967tSDPxlW4ioFSMjFbo2p1HQ3Fw4n477Z1uwL8mF4bCKhtM1EAt5yn5yLv0xs_zkByLblaHRYx297-c_zGpgxS9aW3aaVQqcqguL9B8Kz4PdlHW7xxnf-_X1wOz7jBgpj3hlqbDBdIbJJmZm1i-DBxLuVmiMm6p2OVZTzo8pQLvXozEXWYJGgs88XxbJFx5QepyfO4d2PTQKrI6sNnfG45-Xnl4AtFzXavK1OE8sLqUUT-ZUXJi4SNNs6mA59ptqJsGXL8a1u7Gdtzm2kW4_xAe1AyWhZXKPYINlW_Bdpij9T67ZO-ZjinVzvotuKs_pMU2FIhQ5aLKojBDPD-IY2Yfr1DJfiBqzSZ_1eITCxmCLju-iBczc5BTEACOH6kyHqtlVVKahdMzFEU5njGk2-x4PiWPSPMMrWZsVDXJKR7Dya2I4wl08nmungFTaaxUIANpZ-TlsgKphM-RHUu0JpAlG2A3f3yU1tXQqSnHNEKriIQVXReWAR9Xa86rWiA3zu6TPFczqY63_mK-OItqWIgSBy1Ics07HJXIzWIlcLHspVkSIH3JDPhA2hAR2pCQ4jppAjdJdbui0EP7Hi1Cjhvaac1ElEjbw40-RTVKFdHVmTLgzWqYVlLkXa7mS5pjEalG4DfgaaV-qy1xz0Lz3bIN8FuK2dpzeySfjHUNc1vXDrT585t_12u4h6c8-j4YHr6A-w4STB01JXagUy6W6iUSwjJ5VZ88Br9v-7D_B3UwdcM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subtraction-Average-Based+Optimizer%3A+A+New+Swarm-Inspired+Metaheuristic+Algorithm+for+Solving+Optimization+Problems&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Trojovsk%C3%BD%2C+Pavel&rft.au=Dehghani%2C+Mohammad&rft.date=2023-04-06&rft.pub=MDPI+AG&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Fbiomimetics8020149&rft.externalDocID=A754974730 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |