Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems

This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the searc...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 2; p. 149
Main Authors Trojovský, Pavel, Dehghani, Mohammad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO’s implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.
AbstractList This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.
This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.
Audience Academic
Author Trojovský, Pavel
Dehghani, Mohammad
AuthorAffiliation Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic; mohammad.dehghani@uhk.cz
AuthorAffiliation_xml – name: Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic; mohammad.dehghani@uhk.cz
Author_xml – sequence: 1
  givenname: Pavel
  orcidid: 0000-0001-8992-125X
  surname: Trojovský
  fullname: Trojovský, Pavel
– sequence: 2
  givenname: Mohammad
  surname: Dehghani
  fullname: Dehghani, Mohammad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37092401$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URMvSP8ABReLCJcVfiRMuaKn4qFQo0sLZsp1x1qsk3trJVvDr8Xa70C0I-WDL885jvzPzFB0NfgCEnhN8xliNX2vne9fD6EysMMWE14_QCWWE5aIU7Oje-RidxrjCGJO6LDjHT9AxE7imHJMTFBeTHoMyo_NDPt9AUC3k71SEJrtaj653PyG8yebZF7jJFjcq9PnFENcupPhnGNUSpuBi-kQ271of3LjsM-tDtvDdxg3tnqG2-Oxr8LqDPj5Dj63qIpze7TP0_cP7b-ef8surjxfn88vcFCUfc8pKRnBVUcs1rpqaYuBWg2UYFGe2aCgzAjMiFBG8sbqkBdOiIqVmIGrD2Qxd7LiNVyu5Dq5X4Yf0ysnbCx9aqUL6ewdS07pMFSooZYJjbhWUqaZNYayuDaQ3Z-jtjrWedA-NgSFVrTuAHkYGt5St30iCSTJCWCK8uiMEfz1BHGXvooGuUwP4KUpa4aIgvGI0SV8-kK78FIZUq6SitRCirMo_qlYlB26wftvILVTORcFrwQXDSXX2D1VaDfTOpJmyLt0fJLy47_S3xf3MJEG1E5jgYwxgpXHjbYcT2XXJsdxOqPx7QlMqfZC6p_8n6Rdu_Owp
CitedBy_id crossref_primary_10_1016_j_est_2024_111908
crossref_primary_10_1038_s41598_024_70575_4
crossref_primary_10_1109_ACCESS_2024_3483457
crossref_primary_10_1007_s10586_024_04912_7
crossref_primary_10_1007_s10586_024_04704_z
crossref_primary_10_3390_biomimetics8060486
crossref_primary_10_1016_j_asej_2024_103032
crossref_primary_10_1016_j_heliyon_2024_e25848
crossref_primary_10_1088_1742_6596_2963_1_012004
crossref_primary_10_1002_cnm_3859
crossref_primary_10_23919_IEN_2024_0026
crossref_primary_10_1109_ACCESS_2024_3428328
crossref_primary_10_3934_math_2024714
crossref_primary_10_1016_j_energy_2024_131947
crossref_primary_10_32604_cmes_2024_052001
crossref_primary_10_3390_e26030222
crossref_primary_10_3390_sym17010107
crossref_primary_10_1088_1742_6596_2977_1_012114
crossref_primary_10_1007_s11276_024_03869_0
crossref_primary_10_1109_TASC_2024_3442980
crossref_primary_10_1007_s10462_025_11192_z
crossref_primary_10_1093_ijlct_ctae117
crossref_primary_10_1016_j_ijepes_2024_110204
crossref_primary_10_1016_j_heliyon_2024_e34326
crossref_primary_10_1038_s41598_024_56521_4
crossref_primary_10_1109_ACCESS_2024_3453488
crossref_primary_10_1016_j_heliyon_2024_e35382
crossref_primary_10_1109_JSEN_2024_3481673
crossref_primary_10_3390_axioms14040235
crossref_primary_10_1007_s13369_024_09807_8
crossref_primary_10_1007_s11760_024_03741_w
crossref_primary_10_1088_2631_8695_ad7f29
crossref_primary_10_1038_s41598_024_80954_6
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_1016_j_cscm_2024_e03807
crossref_primary_10_1093_cercor_bhae329
crossref_primary_10_1109_ACCESS_2024_3408628
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1016_j_jii_2024_100742
crossref_primary_10_1371_journal_pone_0310133
crossref_primary_10_1007_s12145_024_01499_w
crossref_primary_10_1016_j_jobe_2023_107826
crossref_primary_10_1093_cercor_bhae498
crossref_primary_10_12677_pm_2025_151016
crossref_primary_10_12677_csa_2024_148171
crossref_primary_10_1038_s41598_025_90660_6
crossref_primary_10_1038_s41598_024_59597_0
crossref_primary_10_1007_s10586_024_04586_1
crossref_primary_10_1021_acs_energyfuels_4c06404
crossref_primary_10_1007_s00170_024_13369_2
crossref_primary_10_1109_TIM_2024_3436111
crossref_primary_10_1016_j_euromechsol_2025_105587
crossref_primary_10_1109_ACCESS_2024_3403089
crossref_primary_10_1016_j_applthermaleng_2023_122150
crossref_primary_10_1016_j_heliyon_2024_e37819
crossref_primary_10_1007_s11063_024_11467_6
crossref_primary_10_1016_j_envsoft_2024_105957
crossref_primary_10_32604_cmes_2025_061028
crossref_primary_10_1007_s11227_024_06592_x
crossref_primary_10_1007_s11227_024_06078_w
crossref_primary_10_1080_02664763_2024_2395961
crossref_primary_10_1007_s00202_024_02839_1
crossref_primary_10_3390_rs16122123
crossref_primary_10_1007_s00170_025_15249_9
crossref_primary_10_1038_s41598_024_79420_0
crossref_primary_10_1109_ACCESS_2023_3346533
crossref_primary_10_3934_era_2024093
crossref_primary_10_3389_fgene_2024_1415249
crossref_primary_10_1109_ACCESS_2025_3547537
crossref_primary_10_1016_j_bspc_2024_106443
crossref_primary_10_1364_AO_533817
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1016_j_est_2024_112546
crossref_primary_10_1108_MEQ_07_2024_0313
crossref_primary_10_3390_biomimetics9110670
crossref_primary_10_3390_sym16070866
crossref_primary_10_1007_s10489_024_06124_3
crossref_primary_10_1016_j_asoc_2024_112108
crossref_primary_10_1155_je_5604741
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_1016_j_eswa_2024_124190
crossref_primary_10_1088_1361_6501_ad962d
crossref_primary_10_1109_JSEN_2023_3344999
crossref_primary_10_3390_biomimetics9110678
crossref_primary_10_3390_jmse12122195
crossref_primary_10_1051_e3sconf_202561603038
crossref_primary_10_1038_s41598_024_71581_2
crossref_primary_10_3390_pr12050889
crossref_primary_10_3390_pr13030680
Cites_doi 10.1016/j.advengsoft.2013.12.007
10.1038/s41598-017-18940-4
10.1016/j.eswa.2021.116158
10.1007/s13042-019-01053-x
10.20998/2074-272X.2018.4.12
10.1016/j.advengsoft.2017.03.014
10.1016/j.advengsoft.2016.01.008
10.1007/s00521-021-06392-x
10.1016/j.cad.2010.12.015
10.1023/A:1022602019183
10.1016/j.eswa.2020.113377
10.1016/j.eswa.2021.116026
10.1016/j.knosys.2019.105190
10.1016/j.asoc.2017.11.043
10.1016/j.eswa.2022.116924
10.1109/3477.484436
10.1111/j.1475-3995.2005.00503.x
10.20998/2074-272X.2020.1.10
10.1109/4235.585893
10.1007/s00521-015-1870-7
10.1016/j.engappai.2020.103541
10.1007/s00521-020-05296-6
10.1038/s41598-022-14225-7
10.20998/2074-272X.2018.5.10
10.1016/j.compstruc.2012.07.010
10.1007/s10489-020-01893-z
10.1007/s11047-020-09837-9
10.20998/2074-272X.2018.6.10
10.1109/IranianCEE.2017.7985256
10.1109/KBEI.2017.8324976
10.1109/ACCESS.2019.2918406
10.1016/j.eswa.2020.114522
10.1007/s40747-021-00605-5
10.1109/ACCESS.2022.3153493
10.1016/j.engappai.2022.104783
10.3390/su122310053
10.1016/j.cie.2021.107408
10.1016/j.matcom.2021.08.013
10.1023/A:1008202821328
10.3390/s21134567
10.1109/ACCESS.2022.3151641
10.1115/1.2919393
10.1016/j.ins.2012.08.023
10.1109/KBEI.2017.8325036
10.1007/11579427_66
10.1016/j.ins.2010.12.024
10.20998/2074-272X.2019.4.10
10.1016/j.ins.2009.03.004
10.1016/j.knosys.2022.108457
10.3390/app10175862
10.1126/science.220.4598.671
10.1007/s42452-020-03511-6
10.1016/j.future.2019.07.015
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomimetics8020149
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (New)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Physics
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_b29600052237404fae6201d5cfb9ceef
PMC10123613
A754974730
37092401
10_3390_biomimetics8020149
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Project of Excellence of Faculty of Science, University of Hradec Králové
  grantid: 2209/2023-2024
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c564t-236310882f4b08d920e4fbef30ea43f5d23c70317a174dfb6253b7816b3e79c43
IEDL.DBID BENPR
ISSN 2313-7673
IngestDate Wed Aug 27 01:07:08 EDT 2025
Thu Aug 21 18:38:14 EDT 2025
Fri Jul 11 06:11:08 EDT 2025
Fri Jul 25 12:04:50 EDT 2025
Tue Jun 17 21:34:24 EDT 2025
Tue Jun 10 20:28:01 EDT 2025
Thu Jan 02 22:52:47 EST 2025
Tue Jul 01 04:26:20 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords exploitation
swarm-inspired
metaheuristic
exploration
optimization
subtraction average
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-236310882f4b08d920e4fbef30ea43f5d23c70317a174dfb6253b7816b3e79c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8992-125X
OpenAccessLink https://www.proquest.com/docview/2829777686?pq-origsite=%requestingapplication%
PMID 37092401
PQID 2829777686
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_b29600052237404fae6201d5cfb9ceef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123613
proquest_miscellaneous_2805514832
proquest_journals_2829777686
gale_infotracmisc_A754974730
gale_infotracacademiconefile_A754974730
pubmed_primary_37092401
crossref_citationtrail_10_3390_biomimetics8020149
crossref_primary_10_3390_biomimetics8020149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230406
PublicationDateYYYYMMDD 2023-04-06
PublicationDate_xml – month: 4
  year: 2023
  text: 20230406
  day: 6
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Rashedi (ref_39) 2009; 179
Kannan (ref_61) 1994; 116
ref_13
Hatamlou (ref_42) 2013; 222
Mirjalili (ref_34) 2014; 69
ref_11
Jiang (ref_27) 2022; 188
ref_52
Alyasseri (ref_55) 2021; 33
Dorigo (ref_24) 1996; 26
Dehghani (ref_58) 2020; 13
Hashim (ref_48) 2019; 101
ref_16
Goldberg (ref_37) 1988; 3
ref_59
Sergeyev (ref_1) 2018; 8
Faramarzi (ref_28) 2020; 152
Mirjalili (ref_32) 2016; 95
Yuen (ref_6) 2022; 8
Dehghani (ref_14) 2020; 21
Dehghani (ref_7) 2019; 2019
ref_60
Rao (ref_51) 2011; 43
ref_25
ref_23
Premkumar (ref_19) 2021; 67
Hashim (ref_46) 2021; 51
ref_63
Braik (ref_54) 2022; 34
ref_62
Dehghani (ref_12) 2018; 2018
Eskandar (ref_41) 2012; 110
Dehghani (ref_4) 2022; 12
Hashim (ref_30) 2022; 192
Dehghani (ref_21) 2022; 10
Abualigah (ref_26) 2022; 191
Mirjalili (ref_43) 2016; 27
Mohamed (ref_53) 2020; 11
Dehghani (ref_40) 2020; 2
Wolpert (ref_22) 1997; 1
Zeidabadi (ref_5) 2022; 72
Kaur (ref_33) 2020; 90
Kirkpatrick (ref_38) 1983; 220
Dehghani (ref_18) 2018; 2018
Moghdani (ref_57) 2018; 64
Faramarzi (ref_44) 2020; 191
Cuevas (ref_49) 2012; 182
Storn (ref_36) 1997; 11
Tilahun (ref_20) 2022; 21
Abdollahzadeh (ref_29) 2021; 158
Ayyarao (ref_56) 2022; 10
Chopra (ref_35) 2022; 198
Pereira (ref_47) 2021; 170
Koc (ref_3) 2022; 112
Dehghani (ref_15) 2020; 2020
Montazeri (ref_17) 2018; 2018
Liberti (ref_2) 2005; 12
Braik (ref_31) 2022; 243
ref_9
Rezk (ref_10) 2021; 67
ref_8
Wei (ref_50) 2019; 7
Kaveh (ref_45) 2017; 110
References_xml – volume: 69
  start-page: 46
  year: 2014
  ident: ref_34
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_1
  article-title: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18940-4
– volume: 191
  start-page: 116158
  year: 2022
  ident: ref_26
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 11
  start-page: 1501
  year: 2020
  ident: ref_53
  article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01053-x
– volume: 2018
  start-page: 70
  year: 2018
  ident: ref_17
  article-title: Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm
  publication-title: Electr. Eng. Electromechanics
  doi: 10.20998/2074-272X.2018.4.12
– volume: 67
  start-page: 2227
  year: 2021
  ident: ref_19
  article-title: A New Metaheuristic Optimization Algorithms for Brushless Direct Current Wheel Motor Design Problem
  publication-title: CMC-Comput. Mater. Contin.
– volume: 110
  start-page: 69
  year: 2017
  ident: ref_45
  article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_32
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 34
  start-page: 409
  year: 2022
  ident: ref_54
  article-title: A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06392-x
– volume: 43
  start-page: 303
  year: 2011
  ident: ref_51
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 3
  start-page: 95
  year: 1988
  ident: ref_37
  article-title: Genetic Algorithms and Machine Learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– volume: 152
  start-page: 113377
  year: 2020
  ident: ref_28
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– ident: ref_23
– volume: 188
  start-page: 116026
  year: 2022
  ident: ref_27
  article-title: Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116026
– volume: 191
  start-page: 105190
  year: 2020
  ident: ref_44
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 64
  start-page: 161
  year: 2018
  ident: ref_57
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– volume: 198
  start-page: 116924
  year: 2022
  ident: ref_35
  article-title: Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– volume: 26
  start-page: 29
  year: 1996
  ident: ref_24
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/3477.484436
– volume: 12
  start-page: 263
  year: 2005
  ident: ref_2
  article-title: Comparison of deterministic and stochastic approaches to global optimization
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/j.1475-3995.2005.00503.x
– volume: 2020
  start-page: 61
  year: 2020
  ident: ref_15
  article-title: A New Methodology Called Dice Game Optimizer for Capacitor Placement in Distribution Systems
  publication-title: Electr. Eng. Electromechanics
  doi: 10.20998/2074-272X.2020.1.10
– volume: 1
  start-page: 67
  year: 1997
  ident: ref_22
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 27
  start-page: 495
  year: 2016
  ident: ref_43
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 90
  start-page: 103541
  year: 2020
  ident: ref_33
  article-title: Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 33
  start-page: 5011
  year: 2021
  ident: ref_55
  article-title: Coronavirus herd immunity optimizer (CHIO)
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05296-6
– volume: 12
  start-page: 9924
  year: 2022
  ident: ref_4
  article-title: A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-14225-7
– volume: 2018
  start-page: 62
  year: 2018
  ident: ref_12
  article-title: Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization
  publication-title: Electr. Eng. Electromechanics
  doi: 10.20998/2074-272X.2018.5.10
– volume: 110
  start-page: 151
  year: 2012
  ident: ref_41
  article-title: Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– ident: ref_62
– volume: 51
  start-page: 1531
  year: 2021
  ident: ref_46
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 21
  start-page: 265
  year: 2022
  ident: ref_20
  article-title: Similarity in metaheuristics: A gentle step towards a comparison methodology
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-020-09837-9
– ident: ref_59
– volume: 2018
  start-page: 68
  year: 2018
  ident: ref_18
  article-title: Spring search algorithm for simultaneous placement of distributed generation and capacitors
  publication-title: Electr. Eng. Electromechanics
  doi: 10.20998/2074-272X.2018.6.10
– volume: 72
  start-page: 399
  year: 2022
  ident: ref_5
  article-title: Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems
  publication-title: Comput. Mater. Contin.
– ident: ref_11
  doi: 10.1109/IranianCEE.2017.7985256
– ident: ref_16
  doi: 10.1109/KBEI.2017.8324976
– volume: 7
  start-page: 66084
  year: 2019
  ident: ref_50
  article-title: Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918406
– volume: 170
  start-page: 114522
  year: 2021
  ident: ref_47
  article-title: Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114522
– volume: 8
  start-page: 4571
  year: 2022
  ident: ref_6
  article-title: A metaheuristic-based framework for index tracking with practical constraints
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00605-5
– volume: 13
  start-page: 514
  year: 2020
  ident: ref_58
  article-title: Football game based optimization: An application to solve energy commitment problem
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 10
  start-page: 25073
  year: 2022
  ident: ref_56
  article-title: War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3153493
– volume: 112
  start-page: 104783
  year: 2022
  ident: ref_3
  article-title: Discrete tree seed algorithm for urban land readjustment
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104783
– ident: ref_8
  doi: 10.3390/su122310053
– volume: 158
  start-page: 107408
  year: 2021
  ident: ref_29
  article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 192
  start-page: 84
  year: 2022
  ident: ref_30
  article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.08.013
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_36
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– ident: ref_25
– volume: 21
  start-page: 20190217
  year: 2020
  ident: ref_14
  article-title: Optimal sizing and placement of capacitor banks and distributed generation in distribution systems using spring search algorithm
  publication-title: Int. J. Emerg. Electr. Power Syst.
– ident: ref_52
  doi: 10.3390/s21134567
– volume: 10
  start-page: 49445
  year: 2022
  ident: ref_21
  article-title: Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151641
– volume: 116
  start-page: 405
  year: 1994
  ident: ref_61
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 222
  start-page: 175
  year: 2013
  ident: ref_42
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– ident: ref_13
  doi: 10.1109/KBEI.2017.8325036
– volume: 67
  start-page: 2271
  year: 2021
  ident: ref_10
  article-title: Energy management control strategy for renewable energy system based on spotted hyena optimizer
  publication-title: Comput. Mater. Contin.
– ident: ref_63
  doi: 10.1007/11579427_66
– volume: 182
  start-page: 40
  year: 2012
  ident: ref_49
  article-title: Circle detection using electro-magnetism optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.12.024
– volume: 2019
  start-page: 69
  year: 2019
  ident: ref_7
  article-title: Energy commitment: A planning of energy carrier based on energy consumption
  publication-title: Electr. Eng. Electromechanics
  doi: 10.20998/2074-272X.2019.4.10
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref_39
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– ident: ref_60
– volume: 243
  start-page: 108457
  year: 2022
  ident: ref_31
  article-title: White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108457
– ident: ref_9
  doi: 10.3390/app10175862
– volume: 220
  start-page: 671
  year: 1983
  ident: ref_38
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 2
  start-page: 1
  year: 2020
  ident: ref_40
  article-title: Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03511-6
– volume: 101
  start-page: 646
  year: 2019
  ident: ref_48
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
SSID ssj0001965440
Score 2.580326
Snippet This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 149
SubjectTerms Algorithms
Design
Efficiency
Evolution
exploitation
exploration
Food
Hydrologic cycle
Literature reviews
metaheuristic
optimization
Optimization algorithms
Physics
Problem solving
Science
subtraction average
swarm-inspired
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yT76Iev6o3kkE0QcplzZp2vrWE49TOBXOg3sLbTN1V7Zd6XY59K93JukuLQf64usmLZtkMvN90-Qbxl7pMs-Q_ttQUvpeRbENqwxcEQGAEhGtdtqdF5_1-ZX6dJ1cT0p90ZkwLw_sJ-6kihFjU_IylqkSqilBY8yySd1UOTr4hrwvxrwJmfrhRV8SpYS_JSOR15_QbfZlSxcDNxlCpIjEMyeRyAn233bLk7g0PzM5CUJn99m9ET3ywv_rB-wOdA_ZYdEhc25_8dfcned0ifJDtkGfMPT-3kJYoMWi5whPMWhZ_gX9RLv8Df07XnB0c_zypuzb8GNHn92x_QKGcgFbL-LMi9X3db8cFi1HgMsv1yvKQeze4RaWf_VlaTaP2NXZh2_vz8OxxEJYJ1oNYSw14jtE2Y2qRGbzWIBqKmikgFLJJrGxrEnhPi2RudimQrYkqzSLdCUhzWslH7ODbt3BU8ahLgFym9uoobySyC3oTCIetYjfEZcGLNpNt6lH_XEqg7EyyENoicztJQrY2_0zP736xl97n9Iq7nuScrb7Ae3JjPZk_mVPAXtDNmBof9MileM1BRwkKWWZIkVGjRxM4oCOZj1xX9bz5p0VmdEvbAx9t05TpHg6YC_3zfQknXXrYL2lPoJgLLragD3xRrcfkkwFEmYRBSybmeNszPOWbrlwquGRU-uL5LP_MUvP2d0Y0Z47wqSP2MHQb-EY0dlQvXAb8Q8vGToJ
  priority: 102
  providerName: Directory of Open Access Journals
Title Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems
URI https://www.ncbi.nlm.nih.gov/pubmed/37092401
https://www.proquest.com/docview/2829777686
https://www.proquest.com/docview/2805514832
https://pubmed.ncbi.nlm.nih.gov/PMC10123613
https://doaj.org/article/b29600052237404fae6201d5cfb9ceef
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELZgFRIvCDZgYaMyEoIHFC2JHSfhBSWwaiBtTIxJe4uS2FkrNcmWpELw67lz3K7RpD22dqo6dz5_39n-jpD3IotCoP_SZpi-564n7TxUuoiAUhkgWqG1O0_PxMkl_3HlX5mEW2eOVa5jog7UsikwR36EO35BAOBYfLm5tbFqFO6umhIaj8kEQnAI5GuSHJ-d_7rLskTC59wZbssw4PdHeKt9UeEFwS4EqOSiiObWiqSF---H5631aXx2cmsxmj0nzwyKpPFg9hfkkap3yV5cA4Ou_tIPVJ_r1AnzXfJEfyi6PdJBlOjb4SaDHYMPQyyxE1jGJP0JkaNa_FPtZxpTCHz04k_WVvb3Gjfiof1U9dlcrQZZZxovr-HV9POKAuSlF80SsxLr39CmpudDoZruJbmcHf_-emKbogt24Qve2x4TgPgAd5c8d0IZeY7iZa5K5qiMs9KXHitQ8z7IgMvIMgf-xPIgdEXOVBAVnL0iO3VTq31CVZEpFclIuiVmmpxIKhEyQKgSED0gVYu46xefFkaRHAtjLFNgJmis9L6xLPJp88zNoMfxYO8E7bnpiVra-oumvU7N1ExzD1gcpsc9FnCHl5kS8LD0izKPAEKUFvmI3pDijEcjZebiAgwStbPSOACODayMwYAORz1hphbj5rU_pSZSdOmdX1vk3aYZn8TTb7VqVtjHQWALwdcirwf32wyJBQ5QaMe1SDhyzNGYxy31Yq51xF2t3-eyNw__rwPy1ANkp48riUOy07cr9RaQWJ9PySROviWzqZl2U53R-A8z4jiA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEGwwAgOMxMcDipbEbj6QEEphU8vWMrFN2ltIYmer1KajSTWNP4q_kTsn6RpN2tseU9tR3Duff7-z7w7gnRsHPtJ_aXJy3wvbkWbiK11EQKkYEa2rc3cOR27_RPw47Z6uwb8mFoauVTY2URtqOUvJR75DJ36eh-DY_Xrxx6SqUXS62pTQqNRiX11dImUrvgy-o3zfO87e7vG3vllXFTDTritK0-EuQhoElplILF8GjqVElqiMWyoWPOtKh6eU1N2LEazLLEGCwBPPt92EKy9IBcf33oN1wZHKdGC9tzs6_HXt1QncrhBWFZ3DeWDtUBT9eEoBiYWP0MympJ0rO6AuFHBzO1jZD9t3NVc2v73H8KhGrSys1OwJrKl8AzbDHBn79Ip9YPoeqXbQb8B9_ZAWm1CgVSrnVeSEGeKaQdtl9nDblOwnWqrp-K-af2YhQ0PLji7j-dQc5HTwj-1DVcbnalGlkWbh5AxFUZ5PGUJsdjSbkBekeYdWLXZYFcYpnsLJnYjjGXTyWa6eA1NprFQgA2ln5NmyAqlcnyMilsggEBkbYDd_fJTWGdCpEMckQiZEwopuCsuAT8sxF1X-j1t790iey56Uu1v_MJufRbUpiBIHWSO54x3uCUtksXJxsOymWRIgZMkM-EjaEJGFISHFdaAETpJydUWhh5weWSDHCW23eqJlSNvNjT5FtWUqout1ZMDbZTONpNt2uZotqI9FQBqNvQFblfotp8Q9Cym7ZRvgtxSzNed2Sz4-13nLbZ0v0OYvbv-uN_Cgfzw8iA4Go_2X8NBBVKmvSrnb0CnnC_UKUWCZvK6XHoPfd73a_wNOtnGO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuCFoehgKLxOOArNheZ20jIeTQVg2lIaJU6s3Y3nUTKXFK7KgqP41fx8zaTmNV6q3HZHetbGb222_G8wB4K-LAR_Nfmpzc967tSDPxlW4ioFSMjFbo2p1HQ3Fw4n477Z1uwL8mF4bCKhtM1EAt5yn5yLv0xs_zkByLblaHRYx297-c_zGpgxS9aW3aaVQqcqguL9B8Kz4PdlHW7xxnf-_X1wOz7jBgpj3hlqbDBdIbJJmZm1i-DBxLuVmiMm6p2OVZTzo8pQLvXozEXWYJGgs88XxbJFx5QepyfO4d2PTQKrI6sNnfG45-Xnl4AtFzXavK1OE8sLqUUT-ZUXJi4SNNs6mA59ptqJsGXL8a1u7Gdtzm2kW4_xAe1AyWhZXKPYINlW_Bdpij9T67ZO-ZjinVzvotuKs_pMU2FIhQ5aLKojBDPD-IY2Yfr1DJfiBqzSZ_1eITCxmCLju-iBczc5BTEACOH6kyHqtlVVKahdMzFEU5njGk2-x4PiWPSPMMrWZsVDXJKR7Dya2I4wl08nmungFTaaxUIANpZ-TlsgKphM-RHUu0JpAlG2A3f3yU1tXQqSnHNEKriIQVXReWAR9Xa86rWiA3zu6TPFczqY63_mK-OItqWIgSBy1Ics07HJXIzWIlcLHspVkSIH3JDPhA2hAR2pCQ4jppAjdJdbui0EP7Hi1Cjhvaac1ElEjbw40-RTVKFdHVmTLgzWqYVlLkXa7mS5pjEalG4DfgaaV-qy1xz0Lz3bIN8FuK2dpzeySfjHUNc1vXDrT585t_12u4h6c8-j4YHr6A-w4STB01JXagUy6W6iUSwjJ5VZ88Br9v-7D_B3UwdcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subtraction-Average-Based+Optimizer%3A+A+New+Swarm-Inspired+Metaheuristic+Algorithm+for+Solving+Optimization+Problems&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Trojovsk%C3%BD%2C+Pavel&rft.au=Dehghani%2C+Mohammad&rft.date=2023-04-06&rft.pub=MDPI+AG&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Fbiomimetics8020149&rft.externalDocID=A754974730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon