Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers

Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance abso...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 14; no. 1; pp. 64 - 7
Main Authors Wang, Ben-Xin, Tang, Chao, Niu, Qingshan, He, Yuanhao, Chen, Tao
Format Journal Article
LanguageEnglish
Published New York Springer US 22.02.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies.
AbstractList Abstract Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies.
Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies.Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies.
Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies.
Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies.
ArticleNumber 64
Author Chen, Tao
He, Yuanhao
Wang, Ben-Xin
Niu, Qingshan
Tang, Chao
Author_xml – sequence: 1
  givenname: Ben-Xin
  orcidid: 0000-0003-0489-9861
  surname: Wang
  fullname: Wang, Ben-Xin
  email: wangbenxin@jiangnan.edu.cn
  organization: School of Science, Jiangnan University
– sequence: 2
  givenname: Chao
  surname: Tang
  fullname: Tang, Chao
  organization: School of Science, Jiangnan University
– sequence: 3
  givenname: Qingshan
  surname: Niu
  fullname: Niu, Qingshan
  organization: School of Science, Jiangnan University
– sequence: 4
  givenname: Yuanhao
  surname: He
  fullname: He, Yuanhao
  organization: School of Science, Jiangnan University
– sequence: 5
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
  email: tchenjnu@163.com
  organization: School of Mechanical Engineering, Hubei University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30796617$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gB3BBkbhwMbVjxx8XpNItUKnAZZHgZDnOeOtVNt7aXlD59TikBVqJnjyaeefR65k5rPbGMEJVPSf4NSGSHydCuCAIE4UaKTiij6oD0rYcNYJ_3SuxogSJVtD96jClNcZMYMGfVPsUC8U5EQfVtwUkvxrr4OpPJsbwo174ZCNkmIJsRgtpKi52ZkDHy-i3A6C3ZuzrJURzCTH_rD9CNhuTIXoz1CddCrGDmJ5Wj50ZEjy7eY-qL-_Olqcf0MXn9-enJxfItpxlREBIIi0ApcoZx7oeu-Ku67gqmd51VPbAGqmaRlHbYiOc6J1VXYtd2yhJj6rzmdsHs9bb6DcmXutgvP6dCHGlTczeDqAxpcJQYcEZxrAVyjJMGCPW9YQq6Arrzcza7roN9BbGHM1wB3q3MvpLvQrfNaeSi7YtgFc3gBiudpCy3pRxwjCYEcIu6YbIsh8s2qZIX96TrsMujmVUmhJV9toQJh9SFVYZXVklLaoX__r-Y_h2z0UgZoGNIaUITlufTfZh-oYfNMF6uig9X5QuF6Wni9ITmtzrvIU_1NPMPaloxxXEv6b_3_QLmUncOQ
CitedBy_id crossref_primary_10_1007_s11082_020_02513_3
crossref_primary_10_1016_j_optmat_2021_111117
crossref_primary_10_1007_s11664_023_10634_0
crossref_primary_10_1016_j_optcom_2021_127050
crossref_primary_10_1515_freq_2021_0147
crossref_primary_10_1039_C9NA00770A
crossref_primary_10_3389_fphy_2023_1227013
crossref_primary_10_1038_s41598_020_74214_6
crossref_primary_10_1186_s11671_020_03448_0
crossref_primary_10_1177_14644207211017155
crossref_primary_10_1007_s11082_022_03735_3
crossref_primary_10_1007_s11468_022_01629_4
crossref_primary_10_1016_j_rinp_2020_103688
crossref_primary_10_1002_pssr_202100629
crossref_primary_10_1016_j_cjph_2021_12_002
crossref_primary_10_1007_s42341_024_00555_y
crossref_primary_10_1007_s11082_022_04180_y
crossref_primary_10_1007_s11468_020_01228_1
crossref_primary_10_1002_adts_202300918
crossref_primary_10_1016_j_optmat_2020_109801
crossref_primary_10_1016_j_optcom_2022_128191
crossref_primary_10_1016_j_ijleo_2022_169107
crossref_primary_10_1007_s11468_021_01391_z
crossref_primary_10_1016_j_optmat_2019_109330
crossref_primary_10_3390_nano10061102
crossref_primary_10_1016_j_rinp_2020_103454
crossref_primary_10_1007_s11468_020_01184_w
crossref_primary_10_1016_j_physe_2021_115122
crossref_primary_10_1016_j_rinp_2020_103251
crossref_primary_10_1364_OE_416394
crossref_primary_10_1007_s00542_024_05611_4
crossref_primary_10_1016_j_optcom_2023_129573
crossref_primary_10_1007_s11664_020_08337_x
crossref_primary_10_1016_j_matdes_2023_111586
crossref_primary_10_1016_j_wavemoti_2024_103450
crossref_primary_10_1016_j_optcom_2021_127159
crossref_primary_10_1016_j_rinp_2021_104447
crossref_primary_10_3390_ma15186364
crossref_primary_10_1007_s11664_024_11348_7
crossref_primary_10_1016_j_jestch_2024_101801
crossref_primary_10_3389_fphy_2021_665280
crossref_primary_10_1007_s11468_024_02283_8
crossref_primary_10_1007_s11082_022_03753_1
crossref_primary_10_3389_fspas_2023_1338284
crossref_primary_10_1109_JPHOT_2021_3109008
crossref_primary_10_3390_coatings12050687
crossref_primary_10_1007_s11468_024_02427_w
crossref_primary_10_1007_s12200_021_1223_3
crossref_primary_10_1016_j_rinp_2021_103865
crossref_primary_10_1088_1361_6641_ad6d86
crossref_primary_10_1088_2053_1591_ab422d
crossref_primary_10_1117_1_OE_63_11_115102
crossref_primary_10_1007_s12043_021_02201_1
crossref_primary_10_1063_5_0203342
crossref_primary_10_1007_s11468_020_01324_2
crossref_primary_10_1007_s12596_024_01834_w
crossref_primary_10_1007_s12648_024_03292_3
crossref_primary_10_1016_j_optmat_2020_110369
crossref_primary_10_1039_D1SD00005E
crossref_primary_10_1364_OE_381927
crossref_primary_10_1016_j_rinp_2020_102930
crossref_primary_10_1088_1402_4896_ac4f9c
crossref_primary_10_1016_j_ijleo_2021_166959
crossref_primary_10_1016_j_optlastec_2022_108530
crossref_primary_10_1088_1402_4896_ac0e04
crossref_primary_10_1016_j_rinp_2020_103470
crossref_primary_10_1088_1402_4896_ac38d6
crossref_primary_10_1186_s11671_022_03677_5
crossref_primary_10_1039_C9NA00385A
crossref_primary_10_1088_1402_4896_abe830
crossref_primary_10_1007_s11082_022_03821_6
crossref_primary_10_1007_s11082_022_04012_z
crossref_primary_10_1088_0256_307X_40_8_084201
crossref_primary_10_1007_s11082_022_03727_3
crossref_primary_10_1108_CW_05_2020_0083
crossref_primary_10_1016_j_rinp_2020_103077
crossref_primary_10_3389_fphy_2020_00308
crossref_primary_10_1063_5_0092958
crossref_primary_10_1364_OE_456752
crossref_primary_10_1016_j_rinp_2020_103638
crossref_primary_10_1088_1402_4896_ac807f
crossref_primary_10_1016_j_optmat_2021_111129
crossref_primary_10_1007_s10825_021_01794_5
crossref_primary_10_1007_s42452_020_2193_6
crossref_primary_10_1039_D0NA00903B
crossref_primary_10_1016_j_sna_2022_113524
crossref_primary_10_1088_1361_6528_ab60cc
Cites_doi 10.1103/PhysRevApplied.3.037001
10.1103/PhysRevLett.100.207402
10.1364/OE.26.007148
10.1088/0022-3727/49/5/055104
10.1016/j.ijleo.2015.03.005
10.1021/acsphotonics.5b00195
10.1016/j.matlet.2018.09.084
10.1364/JOSAB.27.000498
10.1364/OE.19.009401
10.1063/1.4757879
10.1038/srep24063
10.1063/1.4918289
10.1016/j.matlet.2016.05.183
10.1063/1.4906109
10.1364/OE.23.001679
10.1364/OE.25.000191
10.1016/j.matlet.2018.10.136
10.1364/OE.23.021023
10.1364/OL.37.000371
10.1007/s00339-013-8158-5
10.1364/OL.36.000945
10.1364/JOSAB.30.000656
10.1063/1.4938110
10.1109/TTHZ.2015.2401392
10.1021/ph5001007
10.1063/1.4820569
10.1002/adfm.201501151
10.1364/OE.24.020454
10.1364/OME.5.000227
10.1038/srep39418
10.1364/OE.24.001518
10.1364/OL.38.001125
10.1088/2040-8978/15/5/055106
10.1063/1.4975687
10.1016/j.sna.2015.02.040
10.1088/0022-3727/46/19/195103
10.1364/OE.21.009691
ContentType Journal Article
Copyright The Author(s). 2019
Nanoscale Research Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright Springer Nature B.V. Dec 2019
Copyright_xml – notice: The Author(s). 2019
– notice: Nanoscale Research Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright Springer Nature B.V. Dec 2019
DBID C6C
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s11671-019-2876-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-276X
EndPage 7
ExternalDocumentID oai_doaj_org_article_0337a37cefa440c79c401441cfd139eb
PMC6386755
30796617
10_1186_s11671_019_2876_3
Genre Journal Article
GroupedDBID -A0
.4S
.86
.DC
0R~
123
29M
2VQ
2WC
4.4
40G
5VS
6NX
8FE
8FG
8FH
AAFWJ
ABJCF
ABMNI
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADINQ
ADRAZ
AEGXH
AENEX
AEUYN
AFGCZ
AFKRA
AFPKN
AFRAH
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARCSS
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BGNMA
BHPHI
C1A
C24
C6C
CAG
CCPQU
COF
CS3
D1I
DU5
EBS
EDO
EJD
F5P
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HYE
HZ~
I09
IAO
IPNFZ
IZQ
KB.
KDC
KQ8
LK8
M48
M4Y
M7P
MM.
M~E
NU0
O5R
O5S
O9-
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RNS
RPM
RPX
RSV
SCM
SDH
SOJ
TR2
TSK
TUS
U2A
~KM
AAYXX
CITATION
OVT
PHGZM
PHGZT
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c564t-1e7818cee339faf4bd0f079bb69339dfb38de42892293c50a7f7dfc9b50f52983
IEDL.DBID M48
ISSN 1931-7573
IngestDate Wed Aug 27 00:37:02 EDT 2025
Thu Aug 21 18:17:48 EDT 2025
Thu Jul 10 23:57:42 EDT 2025
Fri Jul 25 11:04:25 EDT 2025
Fri Jul 25 10:46:11 EDT 2025
Thu Apr 03 07:08:45 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Jul 01 01:14:03 EDT 2025
Fri Feb 21 02:34:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Perfect absorber
Terahertz
Metamaterial
Narrow discrete distance
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-1e7818cee339faf4bd0f079bb69339dfb38de42892293c50a7f7dfc9b50f52983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0489-9861
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s11671-019-2876-3
PMID 30796617
PQID 2187813073
PQPubID 2034687
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_0337a37cefa440c79c401441cfd139eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386755
proquest_miscellaneous_2185560752
proquest_journals_3196712148
proquest_journals_2187813073
pubmed_primary_30796617
crossref_citationtrail_10_1186_s11671_019_2876_3
crossref_primary_10_1186_s11671_019_2876_3
springer_journals_10_1186_s11671_019_2876_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-22
PublicationDateYYYYMMDD 2019-02-22
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-22
  day: 22
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Nanoscale research letters
PublicationTitleAbbrev Nanoscale Res Lett
PublicationTitleAlternate Nanoscale Res Lett
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: SpringerOpen
References Liu, Chen, Cui (CR34) 2015; 106
Xue, Wu, Jiang, Li, Zhang, Chen (CR14) 2016; 6
Hendrickson, Guo, Zhang, Buchwald, Soref (CR4) 2012; 37
Zhao, Fan, Zhang, Seren, Metcalfe, Wraback, Averitt, Zhang (CR11) 2015; 231
Bhattacharyya, Ghosh, Srivastava (CR24) 2013; 114
Dayal, Ramakrishna (CR28) 2013; 15
Feng, Qiu, Cao, Liu, Ding, Chen (CR19) 2015; 23
Zhang, Zhou, Cheng, Weng, Xie, Deng (CR3) 2013; 38
Wei, Song, Deng, Liu, Chen (CR16) 2019; 236
Ye, Jin, He (CR2) 2010; 27
Wang, Zhai, Wang, Huang, Wang (CR12) 2015; 5
Yao, Ling, Yue, Luo, Ji, Yao (CR26) 2016; 24
Song, Wang, Li, Liu (CR17) 2018; 26
Su, Yin, Zhao (CR35) 2015; 23
Wang, Wang, Wang, Huang, Li, Zhai (CR39) 2014; 115
Liu, Bi, Li, Zhao, Zhou (CR9) 2016; 24
Wen, Ma, Bailey, Matmon, Yu (CR36) 2015; 5
Dao, Chenm, Ishii, Ohi, Nabatame, Kitajima, Nagao (CR7) 2015; 2
Yong, Zhang, Gong, He (CR8) 2016; 6
Park, Tuong, Rhee, Kim, Jang, Choi, Chen, Lee (CR38) 2013; 21
Watts, Liu, Padilla (CR1) 2012; 24
Zhang, Hendrickson, Guo (CR27) 2013; 30
Liu, Zhuge, Ma, Chen, Bao, He, Zhou, Cui (CR31) 2016; 118
Liu, Fan, Shadriovo, Padilla (CR5) 2017; 25
Kajtar, Kafesaki, Economou, Soukoulis (CR30) 2016; 49
Landy, Sajuyigbe, Mock, Smith, Padilla (CR13) 2008; 100
Ma, Chen, Grant, Saha, Khalid, Cumming (CR20) 2011; 36
Shen, Cui, Zhao, Ma, Jiang, Li (CR23) 2011; 19
Shen, Yang, Zang, Gu, Han, Zhang, Cui (CR21) 2012; 101
Wang, Wang (CR37) 2016; 180
Radi, Simovski, Tretyakov (CR6) 2015; 3
Zhou, Kaplan, Chen, Guo (CR40) 2014; 1
Chen, Dao, Ishii, Aono, Nagao (CR10) 2015; 25
Song, Wang, Wei (CR15) 2019; 234
Wen, Huang, Guo, Yang, Han, Zhang (CR32) 2015; 126
Wang, Zhai, Wang, Huang, Wang (CR22) 2015; 7
Astorino, Frezza, Tedeschi (CR29) 2017; 121
Cong, Tan, Yahiaoui, Yan, Zhang, Singh (CR18) 2015; 106
Hu, Wang, Quan, Xu, Li, Wu, Pan (CR33) 2013; 46
Wang (CR25) 2017; 23
CM Watts (2876_CR1) 2012; 24
S Liu (2876_CR34) 2015; 106
G Dayal (2876_CR28) 2013; 15
Z Song (2876_CR17) 2018; 26
S Liu (2876_CR31) 2016; 118
Z Yong (2876_CR8) 2016; 6
JW Park (2876_CR38) 2013; 21
Z Song (2876_CR15) 2019; 234
S Bhattacharyya (2876_CR24) 2013; 114
Y Wen (2876_CR36) 2015; 5
Y Radi (2876_CR6) 2015; 3
F Hu (2876_CR33) 2013; 46
X Shen (2876_CR21) 2012; 101
B Zhang (2876_CR27) 2013; 30
J Zhou (2876_CR40) 2014; 1
G Kajtar (2876_CR30) 2016; 49
NI Landy (2876_CR13) 2008; 100
M Wei (2876_CR16) 2019; 236
BX Wang (2876_CR39) 2014; 115
Z Su (2876_CR35) 2015; 23
N Zhang (2876_CR3) 2013; 38
G Yao (2876_CR26) 2016; 24
K Chen (2876_CR10) 2015; 25
BX Wang (2876_CR25) 2017; 23
BX Wang (2876_CR37) 2016; 180
CH Xue (2876_CR14) 2016; 6
BX Wang (2876_CR22) 2015; 7
MD Astorino (2876_CR29) 2017; 121
L Cong (2876_CR18) 2015; 106
R Feng (2876_CR19) 2015; 23
D Wen (2876_CR32) 2015; 126
X Liu (2876_CR5) 2017; 25
YQ Ye (2876_CR2) 2010; 27
X Liu (2876_CR9) 2016; 24
Y Ma (2876_CR20) 2011; 36
J Hendrickson (2876_CR4) 2012; 37
X Shen (2876_CR23) 2011; 19
TD Dao (2876_CR7) 2015; 2
BX Wang (2876_CR12) 2015; 5
X Zhao (2876_CR11) 2015; 231
References_xml – volume: 3
  start-page: 037001
  year: 2015
  ident: CR6
  article-title: Thin perfect absorbers for electromagnetic waves: theory, design, and realizations
  publication-title: Phys Rev Applied
  doi: 10.1103/PhysRevApplied.3.037001
– volume: 100
  start-page: 207402
  year: 2008
  ident: CR13
  article-title: Perfect metamaterial absorber
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.207402
– volume: 26
  start-page: 7148
  year: 2018
  end-page: 7154
  ident: CR17
  article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials
  publication-title: Opt Express
  doi: 10.1364/OE.26.007148
– volume: 49
  start-page: 055104
  year: 2016
  ident: CR30
  article-title: Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum
  publication-title: J Phys D
  doi: 10.1088/0022-3727/49/5/055104
– volume: 24
  start-page: OP98
  year: 2012
  end-page: OP120
  ident: CR1
  article-title: Metamaterial electromagnetic wave absorbers
  publication-title: Adv Mater
– volume: 126
  start-page: 1018
  year: 2015
  end-page: 1020
  ident: CR32
  article-title: Quadruple-band polarization-insensitive wide-angle metamaterial absorber based on multi-layer structure
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.03.005
– volume: 2
  start-page: 964
  year: 2015
  end-page: 970
  ident: CR7
  article-title: Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al O -Al trilayers
  publication-title: ACS Photon
  doi: 10.1021/acsphotonics.5b00195
– volume: 234
  start-page: 138
  year: 2019
  end-page: 141
  ident: CR15
  article-title: Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.09.084
– volume: 27
  start-page: 498
  year: 2010
  end-page: 504
  ident: CR2
  article-title: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.27.000498
– volume: 19
  start-page: 9401
  year: 2011
  end-page: 9407
  ident: CR23
  article-title: Polarization-independent wide-angle triple-band metamaterial absorber
  publication-title: Opt Express
  doi: 10.1364/OE.19.009401
– volume: 101
  start-page: 154102
  year: 2012
  ident: CR21
  article-title: Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4757879
– volume: 6
  start-page: 24063
  year: 2016
  ident: CR8
  article-title: Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications
  publication-title: Sci Rep
  doi: 10.1038/srep24063
– volume: 106
  start-page: 151601
  year: 2015
  ident: CR34
  article-title: A broadband terahertz absorber using multi-layer stacked bars
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4918289
– volume: 180
  start-page: 317
  year: 2016
  end-page: 321
  ident: CR37
  article-title: Two compact SRR resonators enabling five-band perfect absorption
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2016.05.183
– volume: 106
  start-page: 031107
  year: 2015
  ident: CR18
  article-title: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4906109
– volume: 23
  start-page: 1679
  year: 2015
  end-page: 1690
  ident: CR35
  article-title: Terahertz dual-band metamaterial absorber based on graphene/MgF multilayer structures
  publication-title: Opt Express
  doi: 10.1364/OE.23.001679
– volume: 25
  start-page: 191
  year: 2017
  end-page: 201
  ident: CR5
  article-title: Experimental realization of a terahertz all-dielectric metasurface absorber
  publication-title: Opt Express
  doi: 10.1364/OE.25.000191
– volume: 236
  start-page: 350
  year: 2019
  end-page: 353
  ident: CR16
  article-title: Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.10.136
– volume: 23
  start-page: 21023
  year: 2015
  end-page: 21031
  ident: CR19
  article-title: Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array
  publication-title: Opt Express
  doi: 10.1364/OE.23.021023
– volume: 7
  start-page: 4600108
  year: 2015
  ident: CR22
  article-title: Design of a four-band and polarization-insensitive terahertz metamaterial absorber
  publication-title: IEEE Photon J
– volume: 37
  start-page: 371
  year: 2012
  end-page: 373
  ident: CR4
  article-title: Wideband perfect light absorber at midwave infrared using multiplexed metal structures
  publication-title: Opt Lett
  doi: 10.1364/OL.37.000371
– volume: 115
  start-page: 1187
  year: 2014
  end-page: 1192
  ident: CR39
  article-title: A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber
  publication-title: Appl Phys A Mater Sci Process
  doi: 10.1007/s00339-013-8158-5
– volume: 36
  start-page: 945
  year: 2011
  end-page: 947
  ident: CR20
  article-title: A terahertz polarization insensitive dual band metamaterial absorber
  publication-title: Opt Lett
  doi: 10.1364/OL.36.000945
– volume: 30
  start-page: 656
  year: 2013
  end-page: 662
  ident: CR27
  article-title: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.30.000656
– volume: 23
  start-page: 4700107
  year: 2017
  ident: CR25
  article-title: Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs
  publication-title: IEEE J Sel Top Quantum Electron
– volume: 118
  start-page: 245304
  year: 2016
  ident: CR31
  article-title: A bi-layered quad-band metamaterial absorber at terahertz frequencies
  publication-title: J Appl Phys
  doi: 10.1063/1.4938110
– volume: 5
  start-page: 406
  year: 2015
  end-page: 411
  ident: CR36
  article-title: Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption
  publication-title: IEEE Trans THz Sci Techno
  doi: 10.1109/TTHZ.2015.2401392
– volume: 1
  start-page: 618
  year: 2014
  end-page: 624
  ident: CR40
  article-title: Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array
  publication-title: ACS Photon
  doi: 10.1021/ph5001007
– volume: 114
  start-page: 094514
  year: 2013
  ident: CR24
  article-title: 7nd polarization-independent metamaterial absorber with bandwidth enhancement at X-band
  publication-title: J Appl Phys
  doi: 10.1063/1.4820569
– volume: 25
  start-page: 6637
  year: 2015
  end-page: 6643
  ident: CR10
  article-title: Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201501151
– volume: 24
  start-page: 20454
  year: 2016
  end-page: 20460
  ident: CR9
  article-title: Metamaterial perfect absorber based on artificial dielectric “atoms”
  publication-title: Opt Express
  doi: 10.1364/OE.24.020454
– volume: 5
  start-page: 227
  year: 2015
  end-page: 235
  ident: CR12
  article-title: Frequency tunable metamaterial absorber at deep-subwavelength scale
  publication-title: Opt Mater Express
  doi: 10.1364/OME.5.000227
– volume: 6
  start-page: 39418
  year: 2016
  ident: CR14
  article-title: Wide-angle spectrally selective perfect absorber by utilizing dispersionless tamn plasmon polaritions
  publication-title: Sci Rep
  doi: 10.1038/srep39418
– volume: 24
  start-page: 1518
  year: 2016
  end-page: 1527
  ident: CR26
  article-title: Dual-band tunable perfect metamaterial absorber in the THz range
  publication-title: Opt Express
  doi: 10.1364/OE.24.001518
– volume: 38
  start-page: 1125
  year: 2013
  end-page: 1127
  ident: CR3
  article-title: Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers
  publication-title: Opt Lett
  doi: 10.1364/OL.38.001125
– volume: 15
  start-page: 055106
  year: 2013
  ident: CR28
  article-title: Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks
  publication-title: J Opt
  doi: 10.1088/2040-8978/15/5/055106
– volume: 121
  start-page: 063103
  year: 2017
  ident: CR29
  article-title: Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime
  publication-title: J Appl Phys
  doi: 10.1063/1.4975687
– volume: 231
  start-page: 74
  year: 2015
  end-page: 80
  ident: CR11
  article-title: Optically tunable metamaterial perfect absorber on highly flexible substrate
  publication-title: Sensors Actuators A Phys
  doi: 10.1016/j.sna.2015.02.040
– volume: 46
  start-page: 195103
  year: 2013
  ident: CR33
  article-title: Design of a polarization insensitive multiband terahertz metamaterial absorber
  publication-title: J Phys D
  doi: 10.1088/0022-3727/46/19/195103
– volume: 21
  start-page: 9691
  year: 2013
  end-page: 9702
  ident: CR38
  article-title: Multi-band metamaterial absorber based on the arrangement of donut-type resonators
  publication-title: Opt Express
  doi: 10.1364/OE.21.009691
– volume: 27
  start-page: 498
  year: 2010
  ident: 2876_CR2
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.27.000498
– volume: 114
  start-page: 094514
  year: 2013
  ident: 2876_CR24
  publication-title: J Appl Phys
  doi: 10.1063/1.4820569
– volume: 15
  start-page: 055106
  year: 2013
  ident: 2876_CR28
  publication-title: J Opt
  doi: 10.1088/2040-8978/15/5/055106
– volume: 1
  start-page: 618
  year: 2014
  ident: 2876_CR40
  publication-title: ACS Photon
  doi: 10.1021/ph5001007
– volume: 36
  start-page: 945
  year: 2011
  ident: 2876_CR20
  publication-title: Opt Lett
  doi: 10.1364/OL.36.000945
– volume: 46
  start-page: 195103
  year: 2013
  ident: 2876_CR33
  publication-title: J Phys D
  doi: 10.1088/0022-3727/46/19/195103
– volume: 6
  start-page: 24063
  year: 2016
  ident: 2876_CR8
  publication-title: Sci Rep
  doi: 10.1038/srep24063
– volume: 25
  start-page: 191
  year: 2017
  ident: 2876_CR5
  publication-title: Opt Express
  doi: 10.1364/OE.25.000191
– volume: 23
  start-page: 1679
  year: 2015
  ident: 2876_CR35
  publication-title: Opt Express
  doi: 10.1364/OE.23.001679
– volume: 24
  start-page: OP98
  year: 2012
  ident: 2876_CR1
  publication-title: Adv Mater
– volume: 5
  start-page: 406
  year: 2015
  ident: 2876_CR36
  publication-title: IEEE Trans THz Sci Techno
  doi: 10.1109/TTHZ.2015.2401392
– volume: 106
  start-page: 031107
  year: 2015
  ident: 2876_CR18
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4906109
– volume: 115
  start-page: 1187
  year: 2014
  ident: 2876_CR39
  publication-title: Appl Phys A Mater Sci Process
  doi: 10.1007/s00339-013-8158-5
– volume: 100
  start-page: 207402
  year: 2008
  ident: 2876_CR13
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.207402
– volume: 23
  start-page: 21023
  year: 2015
  ident: 2876_CR19
  publication-title: Opt Express
  doi: 10.1364/OE.23.021023
– volume: 38
  start-page: 1125
  year: 2013
  ident: 2876_CR3
  publication-title: Opt Lett
  doi: 10.1364/OL.38.001125
– volume: 236
  start-page: 350
  year: 2019
  ident: 2876_CR16
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.10.136
– volume: 118
  start-page: 245304
  year: 2016
  ident: 2876_CR31
  publication-title: J Appl Phys
  doi: 10.1063/1.4938110
– volume: 3
  start-page: 037001
  year: 2015
  ident: 2876_CR6
  publication-title: Phys Rev Applied
  doi: 10.1103/PhysRevApplied.3.037001
– volume: 101
  start-page: 154102
  year: 2012
  ident: 2876_CR21
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4757879
– volume: 2
  start-page: 964
  year: 2015
  ident: 2876_CR7
  publication-title: ACS Photon
  doi: 10.1021/acsphotonics.5b00195
– volume: 126
  start-page: 1018
  year: 2015
  ident: 2876_CR32
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.03.005
– volume: 24
  start-page: 20454
  year: 2016
  ident: 2876_CR9
  publication-title: Opt Express
  doi: 10.1364/OE.24.020454
– volume: 25
  start-page: 6637
  year: 2015
  ident: 2876_CR10
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201501151
– volume: 180
  start-page: 317
  year: 2016
  ident: 2876_CR37
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2016.05.183
– volume: 7
  start-page: 4600108
  year: 2015
  ident: 2876_CR22
  publication-title: IEEE Photon J
– volume: 24
  start-page: 1518
  year: 2016
  ident: 2876_CR26
  publication-title: Opt Express
  doi: 10.1364/OE.24.001518
– volume: 30
  start-page: 656
  year: 2013
  ident: 2876_CR27
  publication-title: J Opt Soc Am B
  doi: 10.1364/JOSAB.30.000656
– volume: 49
  start-page: 055104
  year: 2016
  ident: 2876_CR30
  publication-title: J Phys D
  doi: 10.1088/0022-3727/49/5/055104
– volume: 21
  start-page: 9691
  year: 2013
  ident: 2876_CR38
  publication-title: Opt Express
  doi: 10.1364/OE.21.009691
– volume: 19
  start-page: 9401
  year: 2011
  ident: 2876_CR23
  publication-title: Opt Express
  doi: 10.1364/OE.19.009401
– volume: 23
  start-page: 4700107
  year: 2017
  ident: 2876_CR25
  publication-title: IEEE J Sel Top Quantum Electron
– volume: 106
  start-page: 151601
  year: 2015
  ident: 2876_CR34
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4918289
– volume: 6
  start-page: 39418
  year: 2016
  ident: 2876_CR14
  publication-title: Sci Rep
  doi: 10.1038/srep39418
– volume: 37
  start-page: 371
  year: 2012
  ident: 2876_CR4
  publication-title: Opt Lett
  doi: 10.1364/OL.37.000371
– volume: 5
  start-page: 227
  year: 2015
  ident: 2876_CR12
  publication-title: Opt Mater Express
  doi: 10.1364/OME.5.000227
– volume: 26
  start-page: 7148
  year: 2018
  ident: 2876_CR17
  publication-title: Opt Express
  doi: 10.1364/OE.26.007148
– volume: 121
  start-page: 063103
  year: 2017
  ident: 2876_CR29
  publication-title: J Appl Phys
  doi: 10.1063/1.4975687
– volume: 231
  start-page: 74
  year: 2015
  ident: 2876_CR11
  publication-title: Sensors Actuators A Phys
  doi: 10.1016/j.sna.2015.02.040
– volume: 234
  start-page: 138
  year: 2019
  ident: 2876_CR15
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.09.084
SSID ssj0047076
Score 2.5477104
Snippet Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent...
Abstract Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Absorbers
Absorbers (materials)
Absorption
Absorptivity
Chemistry and Materials Science
Design
Materials Science
Metamaterial
Metamaterials
Molecular Medicine
Nano Express
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Narrow discrete distance
Perfect absorber
Resonance
Resonance absorption
Strip
Terahertz
Terahertz frequencies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-hBQWJE8haO7bj5NiyVBUSPW2lcrJsxxaVqizazV749cw42aULBS7cItux4pnxzHuxPQZ4G7wLoq4S81X0TDkd6LCyYo4nlVLQvot5l-9FfX6pPl3pq1tXfdGesDE98Ci4GZfSOGlCTE4pHkwbVCYBIXUIXqIn74sxb0umRh-sDM_XyiE6EcxoI6f1TNHUszWtPBCFbhmyhZrJvYiUE_ffhTZ_3zT5y8ppDkhnj-DhhCTLk3EEh3Av9o_hwa38gk_gyzzvzyiXqbzIyRbL-TW6CcTJ9DCQwtdUOd-4GzZbrOinOzt1fVcuIjqhuBq-l5_j4BDVZkMtT_x6ufKIGJ_C5dnHxYdzNt2lwIKu1cBENBiaMSJK2SaXlO944qb1vm6xpEteNl1EKtJWGP-D5s4k06XQes2TrtpGPoODftnHF1AiHI9OxORF45UPtW_Qa7ouCIdoQqlYAN_K04Yp0Tjdd3FjM-FoajuqwKIKLKnAygLe7V75NmbZ-FvjU1LSriElyM4FaDZ2Mhv7L7Mp4HirYjvN2rVFuINSIq93ZzV5KyMqJJAFvNlV43SkNRbXx-Umd6ERRBpdFfB8NJjdh2LHSC6FKcDsmdLeSPZr-uuvOeU3eklkdrqA91uj-_lZfxTUy_8hqCO4X9FcoVP81TEcDKtNfIU4bPCv85T7AfQFLOE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDcpBQWJE8jaJLbj5IS6bKsKiRVCW6mcLNuxS6UqKZvspb-esdfZslB6i-wkSjwzz2889gzAe6OVycvCEV1YTZjixh9WZkRljjlnuG5s2OW7KE9O2ZczfhYX3Pq4rXLExADUTWf8GvnUq4rIC2Tvn65-EV81ykdXYwmN-7CHEFxVE9ibHS2-fR-xmIkslJdDlpITwQWNcc28Kqe9j0B4V7om6DWUhO7MTCGB_22s89_Nk39FUMPEdPwYHkVGmR5uVOAJ3LPtU3j4R57BZ_BjHvZppJ1LFyHpYjq_QLhAvuwvBi_43nfO1-qSTJcrv_hOZqpt0qVFMLKr4Tr9ageF7DYobHqo-26lkTk-h9Pjo-XnExJrKhDDSzaQ3AqconFmpLR2yjHdZC4TtdZljS2N07RqLLokdYE8wPBMCScaZ2rNM8eLuqIvYNJ2rX0FKdJyq3LrdF5ppk2pK0RP1ZhcIatgzCaQjeMpTUw47uteXMrgeFSl3IhAogikF4GkCXzYPnK1ybZx180zL6TtjT5RdmjoVucy2p3MKBWKCmOdYiwzojYs-JDGNch9rU7gYBSxjNbbS6Q9OEoe_W7tvlHFBN5tu9EsfaxFtbZbh1dwJJOCFwm83CjM9kPxxehk5iIBsaNKO3-y29Ne_AypvxEt0cPjCXwcle7ms_47UPt3_8RreFB4K_Dn9IsDmAyrtX2DTGvQb6M5_QaSaSXL
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucAB8SaloCBxAlmN41dybHepKiR62krlZNmOLSpVWbSbvfDrO-PNLl1YkLhFtmM5ntc3GXsG4EPwLnBdJ-br6Jl0KtBlZclclWRKQfku5lO-F_r8Un65Uldjsmi6C3M3fs8bfbykOAE5vC1DbK-ZuA8PFBeGqjRM9GSjdKWpch05hCOcGWXEGMDcO8WOCcqZ-vfByz9PSf4WKs0W6OwJPB6hY3mypvVTuBf7Z_DoTkLB5_Btmg9klPNUXuTsiuX0GvUCAmN6GIjCS-qcrtwNO54t6C87O3V9V84iap24GH6WX-PgEMZmzixP_HK-8AgRX8Dl2efZ5JyNxRNYUFoOjEeDthhNoBBtckn6rkqVab3XLbZ0yYumi-h7tDUa_KAqZ5LpUmi9qpKq20a8hIN-3sfXUCL-jo7H5HnjpQ_aN6gmXRe4Q_ggZSyg2uynDWNmcSpwcWOzh9FouyaBRRJYIoEVBXzcvvJjnVbjX4NPiUjbgZQROzcgo9hRwGwlhHHChJiclFUwbZDZWQypQ5AbfQFHGxLbUUyXFvEN7hKpub3dpJ4Mr9FjLOD9thvlj4Iqro_zVZ5CIWo0qi7g1ZphtgvFidGb5KYAs8NKO1-y29Nff885vlEtoiunCvi0Ybpfy_rrRh3-1-g38LAmoaD7-fURHAyLVXyLCGvw77Js3QLoxRzo
  priority: 102
  providerName: Springer Nature
Title Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers
URI https://link.springer.com/article/10.1186/s11671-019-2876-3
https://www.ncbi.nlm.nih.gov/pubmed/30796617
https://www.proquest.com/docview/2187813073
https://www.proquest.com/docview/3196712148
https://www.proquest.com/docview/2185560752
https://pubmed.ncbi.nlm.nih.gov/PMC6386755
https://doaj.org/article/0337a37cefa440c79c401441cfd139eb
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0LLYcVzybJUQeIEMpuHHScHhPrY7gppK4RaqZwi27FhpSqBNJWAX8_YTboUCgcuVhInTuJ5fZNxZgBeKClUmESGyEhLQgVT9mdlSkRgqDGKyUK7Vb6T5GpG383ZfA-68lbtBC53una2ntSsXrz-9vX7WxT4N07g0-R8aWMJ1inOCOL_hMT7cIiGiduCBtd0E1SgPHC15hCyhIQzHrdBzp1DHMEd5H70BVwls1uL5RL770Kjfy6q_C2y6gzW-B4ct0jT769Z4z7s6fIB3P0l_-BD-Dhy6zf8yvgTl4zRH92gGkEcbTcayxBL2zlaiQU5n9b2ozwZiLLwpxqVlK6bH_61bgSiXsfIfl8uq1oionwEs_HFdHhF2loLRLGENiTUHE03Wsw4zowwVBaBwfeXMsnwSGFknBYaXZUsQnygWCC44YVRmWSBYVGWxo_hoKxK_QR8hOtahNrIMJVUqkSmqFVFoUKBaINS7UHQzWeu2kTkth7GIncOSZrka2rkSI3cUiOPPXi5ueTLOgvHv04eWCJtTrQJtN2Bqv6Ut_KYB3HMRcyVNoLSQPFMUedbKlMgJtbSg7OOxHnHlDnCIZwlqxV3dlttxsMIHUwPnm-6UVxtDEaUulq5IRiCTM4iD07WDLN50I7hPOBbrLT1Jts95c1nlxIctSh6fsyDVx3T3T7WXyfq9L_v8xSOIisr9tf-6AwOmnqlnyE4a2QP9mlwiW06xvZwcDF5_wH3hsmw5z53YHs5D3tOMLGdRf2fgcM7vw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkGCC8jaPOw4OSDUsixb2u5pK5WTsR0bKlVJ2WSF4EfxGxk7yZaF0ltvq7VjJZ7X92WcGYAXWkkdZ4klKjGKUMm0-1iZEhlZaq1mqjT-lO8smx7Sj0fsaAN-Dd_CuGOVg0_0jrqstXtHPnKqwuME0fvb02_EdY1y2dWhhUanFnvmx3ekbM2b3THK92WSTN7P301J31WAaJbRlsSGY5DC2JCmhZWWqjKyES-UypDbF6VVaV4aBOVFgpFQs0hyy0urC8Uiy5IiT3HdK3CV4mRH9vLJh8HzUx75ZnaIiWLCGU_7LGqcZ6PG5TsccS8IcpSMpGtx0LcLOA_j_ntU8698rQ-Dk1tws8ev4XancLdhw1R34MYfVQ3vwqexPxUS1jac-RKP4fgYnROic_ejdWrWuMHxUp6Q0XzhXvWTHVmV4dyg6zOL9md4YFqJWNqbR7itmnqhEKfeg8NL2ev7sFnVlXkIIZIAI2NjVZwrqnSmcvTVstSxRAxDqQkgGvZT6L68ueuycSI8zckz0YlAoAiEE4FIA3i1uuS0q-1x0eQdJ6TVRFeW2_9RL76I3spFlKZcplwbKymNNC809YxV2xKRtlEBbA0iFr2vaASCLNwl52vPHT5T_ACer4bRCbjMjqxMvfRLMISunCUBPOgUZnWjuDBS2pgHwNdUae1J1keq46--0Dj6ZuSTLIDXg9Kd3dZ_N-rRxQ_xDK5N5wf7Yn93tvcYrifOIlyFgGQLNtvF0jxBjNeqp96wQvh82Zb8G4roYb0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKBAkuICszcOOkwNCXbarlsKqQlupnIzt2FCpSsomKwQ_jV_H2JtsWSi99RbFiZV4Xt8XT2YAnmsldZwllqjEKEIl0-5nZUpkZKm1mqnS-CzfabZ7SN8dsaMN-NX_C-PSKnuf6B11WWv3jXzoVIXHCaL3oe3SIg7Gkzen34jrIOV2Wvt2GksV2Tc_viN9a17vjVHWL5JksjN7u0u6DgNEs4y2JDYcAxbGiTQtrLRUlZGNeKFUhjy_KK1K89IgQC8SjIqaRZJbXlpdKBZZlhR5ivNegU3uWNEANkc704OPfRygPPKt7RAhxYQznnZ7qnGeDRu3--FofEGQsWQkXYuKvnnAeYj338TNv3ZvfVCc3IQbHZoNt5fqdws2THUbrv9R4_AOfBr7HJGwtuHUF3wMx8foqhCru4PWKV3jBscLeUKGs7n78E9GsirDmUFHaObtz_CDaSUia28s4bZq6rlC1HoXDi9lte_BoKor8wBCpARGxsaqOFdU6Uzl6LllqWOJiIZSE0DUr6fQXbFz13PjRHjSk2diKQKBIhBOBCIN4OXqltNlpY-LLh45Ia0udEW6_Yl6_kV0Ni-iNOUy5dpYSWmkeaGp56_aloi7jQpgqxex6DxHIxBy4So5z3vu8JkZBPBsNYwuwe3zyMrUCz8FQyDLWRLA_aXCrB4UJ0aCG_MA-Joqrb3J-kh1_NWXHUdPjeySBfCqV7qzx_rvQj28-CWewlW0YvF-b7r_CK4lziBcuYBkCwbtfGEeI-Br1ZPOskL4fNnG_BsgAmdP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Narrow+Discrete+Distances+of+Dual-%2FTriple-Band+Terahertz+Metamaterial+Absorbers&rft.jtitle=Nanoscale+research+letters&rft.au=Wang%2C+Ben-Xin&rft.au=Tang%2C+Chao&rft.au=Niu%2C+Qingshan&rft.au=He%2C+Yuanhao&rft.date=2019-02-22&rft.pub=Springer+US&rft.issn=1931-7573&rft.eissn=1556-276X&rft.volume=14&rft_id=info:doi/10.1186%2Fs11671-019-2876-3&rft_id=info%3Apmid%2F30796617&rft.externalDocID=PMC6386755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7573&client=summon