Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers
Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance abso...
Saved in:
Published in | Nanoscale research letters Vol. 14; no. 1; pp. 64 - 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
22.02.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies. |
---|---|
AbstractList | Abstract Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies. Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies.Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies. Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies. Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent frequencies of multiple absorbers is considerably large, which will inevitably overlook a large amount of information hidden in the off-resonance absorption areas. Herein, a narrow discrete distance of dual-band terahertz absorber based on two pairs of an Au strip/dielectric layer backed by Au film is designed. Two nearly 100% absorptivities of resonance peaks having the discrete distance of only 0.30 THz are realized. The relative discrete distance of the device is 13.33%, and this value can be adjusted via the length change of an Au strip. Furthermore, we present two narrow discrete distances of a triple-band absorber through stacking one more pair of an Au strip and dielectric layer. Results prove that two discrete distances of only 0.14 THz and 0.17 THz in adjacent absorption modes of the first two and the last two are achieved, respectively; the relative discrete distances of them are respectively 6.57% and 7.22%, which are far from previous reports. Narrow discrete distances (or low values of relative discrete distance) of the multiple-band absorbers have a large number of applications in the investigation of some hidden information in very near frequencies. |
ArticleNumber | 64 |
Author | Chen, Tao He, Yuanhao Wang, Ben-Xin Niu, Qingshan Tang, Chao |
Author_xml | – sequence: 1 givenname: Ben-Xin orcidid: 0000-0003-0489-9861 surname: Wang fullname: Wang, Ben-Xin email: wangbenxin@jiangnan.edu.cn organization: School of Science, Jiangnan University – sequence: 2 givenname: Chao surname: Tang fullname: Tang, Chao organization: School of Science, Jiangnan University – sequence: 3 givenname: Qingshan surname: Niu fullname: Niu, Qingshan organization: School of Science, Jiangnan University – sequence: 4 givenname: Yuanhao surname: He fullname: He, Yuanhao organization: School of Science, Jiangnan University – sequence: 5 givenname: Tao surname: Chen fullname: Chen, Tao email: tchenjnu@163.com organization: School of Mechanical Engineering, Hubei University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30796617$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_gB3BBkbhwMbVjxx8XpNItUKnAZZHgZDnOeOtVNt7aXlD59TikBVqJnjyaeefR65k5rPbGMEJVPSf4NSGSHydCuCAIE4UaKTiij6oD0rYcNYJ_3SuxogSJVtD96jClNcZMYMGfVPsUC8U5EQfVtwUkvxrr4OpPJsbwo174ZCNkmIJsRgtpKi52ZkDHy-i3A6C3ZuzrJURzCTH_rD9CNhuTIXoz1CddCrGDmJ5Wj50ZEjy7eY-qL-_Olqcf0MXn9-enJxfItpxlREBIIi0ApcoZx7oeu-Ku67gqmd51VPbAGqmaRlHbYiOc6J1VXYtd2yhJj6rzmdsHs9bb6DcmXutgvP6dCHGlTczeDqAxpcJQYcEZxrAVyjJMGCPW9YQq6Arrzcza7roN9BbGHM1wB3q3MvpLvQrfNaeSi7YtgFc3gBiudpCy3pRxwjCYEcIu6YbIsh8s2qZIX96TrsMujmVUmhJV9toQJh9SFVYZXVklLaoX__r-Y_h2z0UgZoGNIaUITlufTfZh-oYfNMF6uig9X5QuF6Wni9ITmtzrvIU_1NPMPaloxxXEv6b_3_QLmUncOQ |
CitedBy_id | crossref_primary_10_1007_s11082_020_02513_3 crossref_primary_10_1016_j_optmat_2021_111117 crossref_primary_10_1007_s11664_023_10634_0 crossref_primary_10_1016_j_optcom_2021_127050 crossref_primary_10_1515_freq_2021_0147 crossref_primary_10_1039_C9NA00770A crossref_primary_10_3389_fphy_2023_1227013 crossref_primary_10_1038_s41598_020_74214_6 crossref_primary_10_1186_s11671_020_03448_0 crossref_primary_10_1177_14644207211017155 crossref_primary_10_1007_s11082_022_03735_3 crossref_primary_10_1007_s11468_022_01629_4 crossref_primary_10_1016_j_rinp_2020_103688 crossref_primary_10_1002_pssr_202100629 crossref_primary_10_1016_j_cjph_2021_12_002 crossref_primary_10_1007_s42341_024_00555_y crossref_primary_10_1007_s11082_022_04180_y crossref_primary_10_1007_s11468_020_01228_1 crossref_primary_10_1002_adts_202300918 crossref_primary_10_1016_j_optmat_2020_109801 crossref_primary_10_1016_j_optcom_2022_128191 crossref_primary_10_1016_j_ijleo_2022_169107 crossref_primary_10_1007_s11468_021_01391_z crossref_primary_10_1016_j_optmat_2019_109330 crossref_primary_10_3390_nano10061102 crossref_primary_10_1016_j_rinp_2020_103454 crossref_primary_10_1007_s11468_020_01184_w crossref_primary_10_1016_j_physe_2021_115122 crossref_primary_10_1016_j_rinp_2020_103251 crossref_primary_10_1364_OE_416394 crossref_primary_10_1007_s00542_024_05611_4 crossref_primary_10_1016_j_optcom_2023_129573 crossref_primary_10_1007_s11664_020_08337_x crossref_primary_10_1016_j_matdes_2023_111586 crossref_primary_10_1016_j_wavemoti_2024_103450 crossref_primary_10_1016_j_optcom_2021_127159 crossref_primary_10_1016_j_rinp_2021_104447 crossref_primary_10_3390_ma15186364 crossref_primary_10_1007_s11664_024_11348_7 crossref_primary_10_1016_j_jestch_2024_101801 crossref_primary_10_3389_fphy_2021_665280 crossref_primary_10_1007_s11468_024_02283_8 crossref_primary_10_1007_s11082_022_03753_1 crossref_primary_10_3389_fspas_2023_1338284 crossref_primary_10_1109_JPHOT_2021_3109008 crossref_primary_10_3390_coatings12050687 crossref_primary_10_1007_s11468_024_02427_w crossref_primary_10_1007_s12200_021_1223_3 crossref_primary_10_1016_j_rinp_2021_103865 crossref_primary_10_1088_1361_6641_ad6d86 crossref_primary_10_1088_2053_1591_ab422d crossref_primary_10_1117_1_OE_63_11_115102 crossref_primary_10_1007_s12043_021_02201_1 crossref_primary_10_1063_5_0203342 crossref_primary_10_1007_s11468_020_01324_2 crossref_primary_10_1007_s12596_024_01834_w crossref_primary_10_1007_s12648_024_03292_3 crossref_primary_10_1016_j_optmat_2020_110369 crossref_primary_10_1039_D1SD00005E crossref_primary_10_1364_OE_381927 crossref_primary_10_1016_j_rinp_2020_102930 crossref_primary_10_1088_1402_4896_ac4f9c crossref_primary_10_1016_j_ijleo_2021_166959 crossref_primary_10_1016_j_optlastec_2022_108530 crossref_primary_10_1088_1402_4896_ac0e04 crossref_primary_10_1016_j_rinp_2020_103470 crossref_primary_10_1088_1402_4896_ac38d6 crossref_primary_10_1186_s11671_022_03677_5 crossref_primary_10_1039_C9NA00385A crossref_primary_10_1088_1402_4896_abe830 crossref_primary_10_1007_s11082_022_03821_6 crossref_primary_10_1007_s11082_022_04012_z crossref_primary_10_1088_0256_307X_40_8_084201 crossref_primary_10_1007_s11082_022_03727_3 crossref_primary_10_1108_CW_05_2020_0083 crossref_primary_10_1016_j_rinp_2020_103077 crossref_primary_10_3389_fphy_2020_00308 crossref_primary_10_1063_5_0092958 crossref_primary_10_1364_OE_456752 crossref_primary_10_1016_j_rinp_2020_103638 crossref_primary_10_1088_1402_4896_ac807f crossref_primary_10_1016_j_optmat_2021_111129 crossref_primary_10_1007_s10825_021_01794_5 crossref_primary_10_1007_s42452_020_2193_6 crossref_primary_10_1039_D0NA00903B crossref_primary_10_1016_j_sna_2022_113524 crossref_primary_10_1088_1361_6528_ab60cc |
Cites_doi | 10.1103/PhysRevApplied.3.037001 10.1103/PhysRevLett.100.207402 10.1364/OE.26.007148 10.1088/0022-3727/49/5/055104 10.1016/j.ijleo.2015.03.005 10.1021/acsphotonics.5b00195 10.1016/j.matlet.2018.09.084 10.1364/JOSAB.27.000498 10.1364/OE.19.009401 10.1063/1.4757879 10.1038/srep24063 10.1063/1.4918289 10.1016/j.matlet.2016.05.183 10.1063/1.4906109 10.1364/OE.23.001679 10.1364/OE.25.000191 10.1016/j.matlet.2018.10.136 10.1364/OE.23.021023 10.1364/OL.37.000371 10.1007/s00339-013-8158-5 10.1364/OL.36.000945 10.1364/JOSAB.30.000656 10.1063/1.4938110 10.1109/TTHZ.2015.2401392 10.1021/ph5001007 10.1063/1.4820569 10.1002/adfm.201501151 10.1364/OE.24.020454 10.1364/OME.5.000227 10.1038/srep39418 10.1364/OE.24.001518 10.1364/OL.38.001125 10.1088/2040-8978/15/5/055106 10.1063/1.4975687 10.1016/j.sna.2015.02.040 10.1088/0022-3727/46/19/195103 10.1364/OE.21.009691 |
ContentType | Journal Article |
Copyright | The Author(s). 2019 Nanoscale Research Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright Springer Nature B.V. Dec 2019 |
Copyright_xml | – notice: The Author(s). 2019 – notice: Nanoscale Research Letters is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright Springer Nature B.V. Dec 2019 |
DBID | C6C AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s11671-019-2876-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-276X |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_0337a37cefa440c79c401441cfd139eb PMC6386755 30796617 10_1186_s11671_019_2876_3 |
Genre | Journal Article |
GroupedDBID | -A0 .4S .86 .DC 0R~ 123 29M 2VQ 2WC 4.4 40G 5VS 6NX 8FE 8FG 8FH AAFWJ ABJCF ABMNI ACGFO ACGFS ACIWK ACPRK ADBBV ADINQ ADRAZ AEGXH AENEX AEUYN AFGCZ AFKRA AFPKN AFRAH AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARCSS BAPOH BBNVY BCNDV BENPR BGLVJ BGNMA BHPHI C1A C24 C6C CAG CCPQU COF CS3 D1I DU5 EBS EDO EJD F5P GROUPED_DOAJ GX1 H13 HCIFZ HH5 HYE HZ~ I09 IAO IPNFZ IZQ KB. KDC KQ8 LK8 M48 M4Y M7P MM. M~E NU0 O5R O5S O9- OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RNS RPM RPX RSV SCM SDH SOJ TR2 TSK TUS U2A ~KM AAYXX CITATION OVT PHGZM PHGZT NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c564t-1e7818cee339faf4bd0f079bb69339dfb38de42892293c50a7f7dfc9b50f52983 |
IEDL.DBID | M48 |
ISSN | 1931-7573 |
IngestDate | Wed Aug 27 00:37:02 EDT 2025 Thu Aug 21 18:17:48 EDT 2025 Thu Jul 10 23:57:42 EDT 2025 Fri Jul 25 11:04:25 EDT 2025 Fri Jul 25 10:46:11 EDT 2025 Thu Apr 03 07:08:45 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 01:14:03 EDT 2025 Fri Feb 21 02:34:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Perfect absorber Terahertz Metamaterial Narrow discrete distance |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c564t-1e7818cee339faf4bd0f079bb69339dfb38de42892293c50a7f7dfc9b50f52983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0489-9861 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s11671-019-2876-3 |
PMID | 30796617 |
PQID | 2187813073 |
PQPubID | 2034687 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0337a37cefa440c79c401441cfd139eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386755 proquest_miscellaneous_2185560752 proquest_journals_3196712148 proquest_journals_2187813073 pubmed_primary_30796617 crossref_citationtrail_10_1186_s11671_019_2876_3 crossref_primary_10_1186_s11671_019_2876_3 springer_journals_10_1186_s11671_019_2876_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-22 |
PublicationDateYYYYMMDD | 2019-02-22 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
PublicationTitle | Nanoscale research letters |
PublicationTitleAbbrev | Nanoscale Res Lett |
PublicationTitleAlternate | Nanoscale Res Lett |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: SpringerOpen |
References | Liu, Chen, Cui (CR34) 2015; 106 Xue, Wu, Jiang, Li, Zhang, Chen (CR14) 2016; 6 Hendrickson, Guo, Zhang, Buchwald, Soref (CR4) 2012; 37 Zhao, Fan, Zhang, Seren, Metcalfe, Wraback, Averitt, Zhang (CR11) 2015; 231 Bhattacharyya, Ghosh, Srivastava (CR24) 2013; 114 Dayal, Ramakrishna (CR28) 2013; 15 Feng, Qiu, Cao, Liu, Ding, Chen (CR19) 2015; 23 Zhang, Zhou, Cheng, Weng, Xie, Deng (CR3) 2013; 38 Wei, Song, Deng, Liu, Chen (CR16) 2019; 236 Ye, Jin, He (CR2) 2010; 27 Wang, Zhai, Wang, Huang, Wang (CR12) 2015; 5 Yao, Ling, Yue, Luo, Ji, Yao (CR26) 2016; 24 Song, Wang, Li, Liu (CR17) 2018; 26 Su, Yin, Zhao (CR35) 2015; 23 Wang, Wang, Wang, Huang, Li, Zhai (CR39) 2014; 115 Liu, Bi, Li, Zhao, Zhou (CR9) 2016; 24 Wen, Ma, Bailey, Matmon, Yu (CR36) 2015; 5 Dao, Chenm, Ishii, Ohi, Nabatame, Kitajima, Nagao (CR7) 2015; 2 Yong, Zhang, Gong, He (CR8) 2016; 6 Park, Tuong, Rhee, Kim, Jang, Choi, Chen, Lee (CR38) 2013; 21 Watts, Liu, Padilla (CR1) 2012; 24 Zhang, Hendrickson, Guo (CR27) 2013; 30 Liu, Zhuge, Ma, Chen, Bao, He, Zhou, Cui (CR31) 2016; 118 Liu, Fan, Shadriovo, Padilla (CR5) 2017; 25 Kajtar, Kafesaki, Economou, Soukoulis (CR30) 2016; 49 Landy, Sajuyigbe, Mock, Smith, Padilla (CR13) 2008; 100 Ma, Chen, Grant, Saha, Khalid, Cumming (CR20) 2011; 36 Shen, Cui, Zhao, Ma, Jiang, Li (CR23) 2011; 19 Shen, Yang, Zang, Gu, Han, Zhang, Cui (CR21) 2012; 101 Wang, Wang (CR37) 2016; 180 Radi, Simovski, Tretyakov (CR6) 2015; 3 Zhou, Kaplan, Chen, Guo (CR40) 2014; 1 Chen, Dao, Ishii, Aono, Nagao (CR10) 2015; 25 Song, Wang, Wei (CR15) 2019; 234 Wen, Huang, Guo, Yang, Han, Zhang (CR32) 2015; 126 Wang, Zhai, Wang, Huang, Wang (CR22) 2015; 7 Astorino, Frezza, Tedeschi (CR29) 2017; 121 Cong, Tan, Yahiaoui, Yan, Zhang, Singh (CR18) 2015; 106 Hu, Wang, Quan, Xu, Li, Wu, Pan (CR33) 2013; 46 Wang (CR25) 2017; 23 CM Watts (2876_CR1) 2012; 24 S Liu (2876_CR34) 2015; 106 G Dayal (2876_CR28) 2013; 15 Z Song (2876_CR17) 2018; 26 S Liu (2876_CR31) 2016; 118 Z Yong (2876_CR8) 2016; 6 JW Park (2876_CR38) 2013; 21 Z Song (2876_CR15) 2019; 234 S Bhattacharyya (2876_CR24) 2013; 114 Y Wen (2876_CR36) 2015; 5 Y Radi (2876_CR6) 2015; 3 F Hu (2876_CR33) 2013; 46 X Shen (2876_CR21) 2012; 101 B Zhang (2876_CR27) 2013; 30 J Zhou (2876_CR40) 2014; 1 G Kajtar (2876_CR30) 2016; 49 NI Landy (2876_CR13) 2008; 100 M Wei (2876_CR16) 2019; 236 BX Wang (2876_CR39) 2014; 115 Z Su (2876_CR35) 2015; 23 N Zhang (2876_CR3) 2013; 38 G Yao (2876_CR26) 2016; 24 K Chen (2876_CR10) 2015; 25 BX Wang (2876_CR25) 2017; 23 BX Wang (2876_CR37) 2016; 180 CH Xue (2876_CR14) 2016; 6 BX Wang (2876_CR22) 2015; 7 MD Astorino (2876_CR29) 2017; 121 L Cong (2876_CR18) 2015; 106 R Feng (2876_CR19) 2015; 23 D Wen (2876_CR32) 2015; 126 X Liu (2876_CR5) 2017; 25 YQ Ye (2876_CR2) 2010; 27 X Liu (2876_CR9) 2016; 24 Y Ma (2876_CR20) 2011; 36 J Hendrickson (2876_CR4) 2012; 37 X Shen (2876_CR23) 2011; 19 TD Dao (2876_CR7) 2015; 2 BX Wang (2876_CR12) 2015; 5 X Zhao (2876_CR11) 2015; 231 |
References_xml | – volume: 3 start-page: 037001 year: 2015 ident: CR6 article-title: Thin perfect absorbers for electromagnetic waves: theory, design, and realizations publication-title: Phys Rev Applied doi: 10.1103/PhysRevApplied.3.037001 – volume: 100 start-page: 207402 year: 2008 ident: CR13 article-title: Perfect metamaterial absorber publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.207402 – volume: 26 start-page: 7148 year: 2018 end-page: 7154 ident: CR17 article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials publication-title: Opt Express doi: 10.1364/OE.26.007148 – volume: 49 start-page: 055104 year: 2016 ident: CR30 article-title: Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum publication-title: J Phys D doi: 10.1088/0022-3727/49/5/055104 – volume: 24 start-page: OP98 year: 2012 end-page: OP120 ident: CR1 article-title: Metamaterial electromagnetic wave absorbers publication-title: Adv Mater – volume: 126 start-page: 1018 year: 2015 end-page: 1020 ident: CR32 article-title: Quadruple-band polarization-insensitive wide-angle metamaterial absorber based on multi-layer structure publication-title: Optik doi: 10.1016/j.ijleo.2015.03.005 – volume: 2 start-page: 964 year: 2015 end-page: 970 ident: CR7 article-title: Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al O -Al trilayers publication-title: ACS Photon doi: 10.1021/acsphotonics.5b00195 – volume: 234 start-page: 138 year: 2019 end-page: 141 ident: CR15 article-title: Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces publication-title: Mater Lett doi: 10.1016/j.matlet.2018.09.084 – volume: 27 start-page: 498 year: 2010 end-page: 504 ident: CR2 article-title: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.27.000498 – volume: 19 start-page: 9401 year: 2011 end-page: 9407 ident: CR23 article-title: Polarization-independent wide-angle triple-band metamaterial absorber publication-title: Opt Express doi: 10.1364/OE.19.009401 – volume: 101 start-page: 154102 year: 2012 ident: CR21 article-title: Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation publication-title: Appl Phys Lett doi: 10.1063/1.4757879 – volume: 6 start-page: 24063 year: 2016 ident: CR8 article-title: Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications publication-title: Sci Rep doi: 10.1038/srep24063 – volume: 106 start-page: 151601 year: 2015 ident: CR34 article-title: A broadband terahertz absorber using multi-layer stacked bars publication-title: Appl Phys Lett doi: 10.1063/1.4918289 – volume: 180 start-page: 317 year: 2016 end-page: 321 ident: CR37 article-title: Two compact SRR resonators enabling five-band perfect absorption publication-title: Mater Lett doi: 10.1016/j.matlet.2016.05.183 – volume: 106 start-page: 031107 year: 2015 ident: CR18 article-title: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces publication-title: Appl Phys Lett doi: 10.1063/1.4906109 – volume: 23 start-page: 1679 year: 2015 end-page: 1690 ident: CR35 article-title: Terahertz dual-band metamaterial absorber based on graphene/MgF multilayer structures publication-title: Opt Express doi: 10.1364/OE.23.001679 – volume: 25 start-page: 191 year: 2017 end-page: 201 ident: CR5 article-title: Experimental realization of a terahertz all-dielectric metasurface absorber publication-title: Opt Express doi: 10.1364/OE.25.000191 – volume: 236 start-page: 350 year: 2019 end-page: 353 ident: CR16 article-title: Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces publication-title: Mater Lett doi: 10.1016/j.matlet.2018.10.136 – volume: 23 start-page: 21023 year: 2015 end-page: 21031 ident: CR19 article-title: Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array publication-title: Opt Express doi: 10.1364/OE.23.021023 – volume: 7 start-page: 4600108 year: 2015 ident: CR22 article-title: Design of a four-band and polarization-insensitive terahertz metamaterial absorber publication-title: IEEE Photon J – volume: 37 start-page: 371 year: 2012 end-page: 373 ident: CR4 article-title: Wideband perfect light absorber at midwave infrared using multiplexed metal structures publication-title: Opt Lett doi: 10.1364/OL.37.000371 – volume: 115 start-page: 1187 year: 2014 end-page: 1192 ident: CR39 article-title: A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber publication-title: Appl Phys A Mater Sci Process doi: 10.1007/s00339-013-8158-5 – volume: 36 start-page: 945 year: 2011 end-page: 947 ident: CR20 article-title: A terahertz polarization insensitive dual band metamaterial absorber publication-title: Opt Lett doi: 10.1364/OL.36.000945 – volume: 30 start-page: 656 year: 2013 end-page: 662 ident: CR27 article-title: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.30.000656 – volume: 23 start-page: 4700107 year: 2017 ident: CR25 article-title: Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs publication-title: IEEE J Sel Top Quantum Electron – volume: 118 start-page: 245304 year: 2016 ident: CR31 article-title: A bi-layered quad-band metamaterial absorber at terahertz frequencies publication-title: J Appl Phys doi: 10.1063/1.4938110 – volume: 5 start-page: 406 year: 2015 end-page: 411 ident: CR36 article-title: Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption publication-title: IEEE Trans THz Sci Techno doi: 10.1109/TTHZ.2015.2401392 – volume: 1 start-page: 618 year: 2014 end-page: 624 ident: CR40 article-title: Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array publication-title: ACS Photon doi: 10.1021/ph5001007 – volume: 114 start-page: 094514 year: 2013 ident: CR24 article-title: 7nd polarization-independent metamaterial absorber with bandwidth enhancement at X-band publication-title: J Appl Phys doi: 10.1063/1.4820569 – volume: 25 start-page: 6637 year: 2015 end-page: 6643 ident: CR10 article-title: Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy publication-title: Adv Funct Mater doi: 10.1002/adfm.201501151 – volume: 24 start-page: 20454 year: 2016 end-page: 20460 ident: CR9 article-title: Metamaterial perfect absorber based on artificial dielectric “atoms” publication-title: Opt Express doi: 10.1364/OE.24.020454 – volume: 5 start-page: 227 year: 2015 end-page: 235 ident: CR12 article-title: Frequency tunable metamaterial absorber at deep-subwavelength scale publication-title: Opt Mater Express doi: 10.1364/OME.5.000227 – volume: 6 start-page: 39418 year: 2016 ident: CR14 article-title: Wide-angle spectrally selective perfect absorber by utilizing dispersionless tamn plasmon polaritions publication-title: Sci Rep doi: 10.1038/srep39418 – volume: 24 start-page: 1518 year: 2016 end-page: 1527 ident: CR26 article-title: Dual-band tunable perfect metamaterial absorber in the THz range publication-title: Opt Express doi: 10.1364/OE.24.001518 – volume: 38 start-page: 1125 year: 2013 end-page: 1127 ident: CR3 article-title: Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers publication-title: Opt Lett doi: 10.1364/OL.38.001125 – volume: 15 start-page: 055106 year: 2013 ident: CR28 article-title: Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks publication-title: J Opt doi: 10.1088/2040-8978/15/5/055106 – volume: 121 start-page: 063103 year: 2017 ident: CR29 article-title: Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime publication-title: J Appl Phys doi: 10.1063/1.4975687 – volume: 231 start-page: 74 year: 2015 end-page: 80 ident: CR11 article-title: Optically tunable metamaterial perfect absorber on highly flexible substrate publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2015.02.040 – volume: 46 start-page: 195103 year: 2013 ident: CR33 article-title: Design of a polarization insensitive multiband terahertz metamaterial absorber publication-title: J Phys D doi: 10.1088/0022-3727/46/19/195103 – volume: 21 start-page: 9691 year: 2013 end-page: 9702 ident: CR38 article-title: Multi-band metamaterial absorber based on the arrangement of donut-type resonators publication-title: Opt Express doi: 10.1364/OE.21.009691 – volume: 27 start-page: 498 year: 2010 ident: 2876_CR2 publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.27.000498 – volume: 114 start-page: 094514 year: 2013 ident: 2876_CR24 publication-title: J Appl Phys doi: 10.1063/1.4820569 – volume: 15 start-page: 055106 year: 2013 ident: 2876_CR28 publication-title: J Opt doi: 10.1088/2040-8978/15/5/055106 – volume: 1 start-page: 618 year: 2014 ident: 2876_CR40 publication-title: ACS Photon doi: 10.1021/ph5001007 – volume: 36 start-page: 945 year: 2011 ident: 2876_CR20 publication-title: Opt Lett doi: 10.1364/OL.36.000945 – volume: 46 start-page: 195103 year: 2013 ident: 2876_CR33 publication-title: J Phys D doi: 10.1088/0022-3727/46/19/195103 – volume: 6 start-page: 24063 year: 2016 ident: 2876_CR8 publication-title: Sci Rep doi: 10.1038/srep24063 – volume: 25 start-page: 191 year: 2017 ident: 2876_CR5 publication-title: Opt Express doi: 10.1364/OE.25.000191 – volume: 23 start-page: 1679 year: 2015 ident: 2876_CR35 publication-title: Opt Express doi: 10.1364/OE.23.001679 – volume: 24 start-page: OP98 year: 2012 ident: 2876_CR1 publication-title: Adv Mater – volume: 5 start-page: 406 year: 2015 ident: 2876_CR36 publication-title: IEEE Trans THz Sci Techno doi: 10.1109/TTHZ.2015.2401392 – volume: 106 start-page: 031107 year: 2015 ident: 2876_CR18 publication-title: Appl Phys Lett doi: 10.1063/1.4906109 – volume: 115 start-page: 1187 year: 2014 ident: 2876_CR39 publication-title: Appl Phys A Mater Sci Process doi: 10.1007/s00339-013-8158-5 – volume: 100 start-page: 207402 year: 2008 ident: 2876_CR13 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.207402 – volume: 23 start-page: 21023 year: 2015 ident: 2876_CR19 publication-title: Opt Express doi: 10.1364/OE.23.021023 – volume: 38 start-page: 1125 year: 2013 ident: 2876_CR3 publication-title: Opt Lett doi: 10.1364/OL.38.001125 – volume: 236 start-page: 350 year: 2019 ident: 2876_CR16 publication-title: Mater Lett doi: 10.1016/j.matlet.2018.10.136 – volume: 118 start-page: 245304 year: 2016 ident: 2876_CR31 publication-title: J Appl Phys doi: 10.1063/1.4938110 – volume: 3 start-page: 037001 year: 2015 ident: 2876_CR6 publication-title: Phys Rev Applied doi: 10.1103/PhysRevApplied.3.037001 – volume: 101 start-page: 154102 year: 2012 ident: 2876_CR21 publication-title: Appl Phys Lett doi: 10.1063/1.4757879 – volume: 2 start-page: 964 year: 2015 ident: 2876_CR7 publication-title: ACS Photon doi: 10.1021/acsphotonics.5b00195 – volume: 126 start-page: 1018 year: 2015 ident: 2876_CR32 publication-title: Optik doi: 10.1016/j.ijleo.2015.03.005 – volume: 24 start-page: 20454 year: 2016 ident: 2876_CR9 publication-title: Opt Express doi: 10.1364/OE.24.020454 – volume: 25 start-page: 6637 year: 2015 ident: 2876_CR10 publication-title: Adv Funct Mater doi: 10.1002/adfm.201501151 – volume: 180 start-page: 317 year: 2016 ident: 2876_CR37 publication-title: Mater Lett doi: 10.1016/j.matlet.2016.05.183 – volume: 7 start-page: 4600108 year: 2015 ident: 2876_CR22 publication-title: IEEE Photon J – volume: 24 start-page: 1518 year: 2016 ident: 2876_CR26 publication-title: Opt Express doi: 10.1364/OE.24.001518 – volume: 30 start-page: 656 year: 2013 ident: 2876_CR27 publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.30.000656 – volume: 49 start-page: 055104 year: 2016 ident: 2876_CR30 publication-title: J Phys D doi: 10.1088/0022-3727/49/5/055104 – volume: 21 start-page: 9691 year: 2013 ident: 2876_CR38 publication-title: Opt Express doi: 10.1364/OE.21.009691 – volume: 19 start-page: 9401 year: 2011 ident: 2876_CR23 publication-title: Opt Express doi: 10.1364/OE.19.009401 – volume: 23 start-page: 4700107 year: 2017 ident: 2876_CR25 publication-title: IEEE J Sel Top Quantum Electron – volume: 106 start-page: 151601 year: 2015 ident: 2876_CR34 publication-title: Appl Phys Lett doi: 10.1063/1.4918289 – volume: 6 start-page: 39418 year: 2016 ident: 2876_CR14 publication-title: Sci Rep doi: 10.1038/srep39418 – volume: 37 start-page: 371 year: 2012 ident: 2876_CR4 publication-title: Opt Lett doi: 10.1364/OL.37.000371 – volume: 5 start-page: 227 year: 2015 ident: 2876_CR12 publication-title: Opt Mater Express doi: 10.1364/OME.5.000227 – volume: 26 start-page: 7148 year: 2018 ident: 2876_CR17 publication-title: Opt Express doi: 10.1364/OE.26.007148 – volume: 121 start-page: 063103 year: 2017 ident: 2876_CR29 publication-title: J Appl Phys doi: 10.1063/1.4975687 – volume: 231 start-page: 74 year: 2015 ident: 2876_CR11 publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2015.02.040 – volume: 234 start-page: 138 year: 2019 ident: 2876_CR15 publication-title: Mater Lett doi: 10.1016/j.matlet.2018.09.084 |
SSID | ssj0047076 |
Score | 2.5477104 |
Snippet | Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent... Abstract Various kinds of structure designs have been proposed to achieve the multiple-band metamaterial absorbers. However, the discrete distance of adjacent... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 64 |
SubjectTerms | Absorbers Absorbers (materials) Absorption Absorptivity Chemistry and Materials Science Design Materials Science Metamaterial Metamaterials Molecular Medicine Nano Express Nanochemistry Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Narrow discrete distance Perfect absorber Resonance Resonance absorption Strip Terahertz Terahertz frequencies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-hBQWJE8haO7bj5NiyVBUSPW2lcrJsxxaVqizazV749cw42aULBS7cItux4pnxzHuxPQZ4G7wLoq4S81X0TDkd6LCyYo4nlVLQvot5l-9FfX6pPl3pq1tXfdGesDE98Ci4GZfSOGlCTE4pHkwbVCYBIXUIXqIn74sxb0umRh-sDM_XyiE6EcxoI6f1TNHUszWtPBCFbhmyhZrJvYiUE_ffhTZ_3zT5y8ppDkhnj-DhhCTLk3EEh3Av9o_hwa38gk_gyzzvzyiXqbzIyRbL-TW6CcTJ9DCQwtdUOd-4GzZbrOinOzt1fVcuIjqhuBq-l5_j4BDVZkMtT_x6ufKIGJ_C5dnHxYdzNt2lwIKu1cBENBiaMSJK2SaXlO944qb1vm6xpEteNl1EKtJWGP-D5s4k06XQes2TrtpGPoODftnHF1AiHI9OxORF45UPtW_Qa7ouCIdoQqlYAN_K04Yp0Tjdd3FjM-FoajuqwKIKLKnAygLe7V75NmbZ-FvjU1LSriElyM4FaDZ2Mhv7L7Mp4HirYjvN2rVFuINSIq93ZzV5KyMqJJAFvNlV43SkNRbXx-Umd6ERRBpdFfB8NJjdh2LHSC6FKcDsmdLeSPZr-uuvOeU3eklkdrqA91uj-_lZfxTUy_8hqCO4X9FcoVP81TEcDKtNfIU4bPCv85T7AfQFLOE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDcpBQWJE8jaJLbj5IS6bKsKiRVCW6mcLNuxS6UqKZvspb-esdfZslB6i-wkSjwzz2889gzAe6OVycvCEV1YTZjixh9WZkRljjlnuG5s2OW7KE9O2ZczfhYX3Pq4rXLExADUTWf8GvnUq4rIC2Tvn65-EV81ykdXYwmN-7CHEFxVE9ibHS2-fR-xmIkslJdDlpITwQWNcc28Kqe9j0B4V7om6DWUhO7MTCGB_22s89_Nk39FUMPEdPwYHkVGmR5uVOAJ3LPtU3j4R57BZ_BjHvZppJ1LFyHpYjq_QLhAvuwvBi_43nfO1-qSTJcrv_hOZqpt0qVFMLKr4Tr9ageF7DYobHqo-26lkTk-h9Pjo-XnExJrKhDDSzaQ3AqconFmpLR2yjHdZC4TtdZljS2N07RqLLokdYE8wPBMCScaZ2rNM8eLuqIvYNJ2rX0FKdJyq3LrdF5ppk2pK0RP1ZhcIatgzCaQjeMpTUw47uteXMrgeFSl3IhAogikF4GkCXzYPnK1ybZx180zL6TtjT5RdmjoVucy2p3MKBWKCmOdYiwzojYs-JDGNch9rU7gYBSxjNbbS6Q9OEoe_W7tvlHFBN5tu9EsfaxFtbZbh1dwJJOCFwm83CjM9kPxxehk5iIBsaNKO3-y29Ne_AypvxEt0cPjCXwcle7ms_47UPt3_8RreFB4K_Dn9IsDmAyrtX2DTGvQb6M5_QaSaSXL priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucAB8SaloCBxAlmN41dybHepKiR62krlZNmOLSpVWbSbvfDrO-PNLl1YkLhFtmM5ntc3GXsG4EPwLnBdJ-br6Jl0KtBlZclclWRKQfku5lO-F_r8Un65Uldjsmi6C3M3fs8bfbykOAE5vC1DbK-ZuA8PFBeGqjRM9GSjdKWpch05hCOcGWXEGMDcO8WOCcqZ-vfByz9PSf4WKs0W6OwJPB6hY3mypvVTuBf7Z_DoTkLB5_Btmg9klPNUXuTsiuX0GvUCAmN6GIjCS-qcrtwNO54t6C87O3V9V84iap24GH6WX-PgEMZmzixP_HK-8AgRX8Dl2efZ5JyNxRNYUFoOjEeDthhNoBBtckn6rkqVab3XLbZ0yYumi-h7tDUa_KAqZ5LpUmi9qpKq20a8hIN-3sfXUCL-jo7H5HnjpQ_aN6gmXRe4Q_ggZSyg2uynDWNmcSpwcWOzh9FouyaBRRJYIoEVBXzcvvJjnVbjX4NPiUjbgZQROzcgo9hRwGwlhHHChJiclFUwbZDZWQypQ5AbfQFHGxLbUUyXFvEN7hKpub3dpJ4Mr9FjLOD9thvlj4Iqro_zVZ5CIWo0qi7g1ZphtgvFidGb5KYAs8NKO1-y29Nff885vlEtoiunCvi0Ybpfy_rrRh3-1-g38LAmoaD7-fURHAyLVXyLCGvw77Js3QLoxRzo priority: 102 providerName: Springer Nature |
Title | Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers |
URI | https://link.springer.com/article/10.1186/s11671-019-2876-3 https://www.ncbi.nlm.nih.gov/pubmed/30796617 https://www.proquest.com/docview/2187813073 https://www.proquest.com/docview/3196712148 https://www.proquest.com/docview/2185560752 https://pubmed.ncbi.nlm.nih.gov/PMC6386755 https://doaj.org/article/0337a37cefa440c79c401441cfd139eb |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0LLYcVzybJUQeIEMpuHHScHhPrY7gppK4RaqZwi27FhpSqBNJWAX8_YTboUCgcuVhInTuJ5fZNxZgBeKClUmESGyEhLQgVT9mdlSkRgqDGKyUK7Vb6T5GpG383ZfA-68lbtBC53una2ntSsXrz-9vX7WxT4N07g0-R8aWMJ1inOCOL_hMT7cIiGiduCBtd0E1SgPHC15hCyhIQzHrdBzp1DHMEd5H70BVwls1uL5RL770Kjfy6q_C2y6gzW-B4ct0jT769Z4z7s6fIB3P0l_-BD-Dhy6zf8yvgTl4zRH92gGkEcbTcayxBL2zlaiQU5n9b2ozwZiLLwpxqVlK6bH_61bgSiXsfIfl8uq1oionwEs_HFdHhF2loLRLGENiTUHE03Wsw4zowwVBaBwfeXMsnwSGFknBYaXZUsQnygWCC44YVRmWSBYVGWxo_hoKxK_QR8hOtahNrIMJVUqkSmqFVFoUKBaINS7UHQzWeu2kTkth7GIncOSZrka2rkSI3cUiOPPXi5ueTLOgvHv04eWCJtTrQJtN2Bqv6Ut_KYB3HMRcyVNoLSQPFMUedbKlMgJtbSg7OOxHnHlDnCIZwlqxV3dlttxsMIHUwPnm-6UVxtDEaUulq5IRiCTM4iD07WDLN50I7hPOBbrLT1Jts95c1nlxIctSh6fsyDVx3T3T7WXyfq9L_v8xSOIisr9tf-6AwOmnqlnyE4a2QP9mlwiW06xvZwcDF5_wH3hsmw5z53YHs5D3tOMLGdRf2fgcM7vw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkGCC8jaPOw4OSDUsixb2u5pK5WTsR0bKlVJ2WSF4EfxGxk7yZaF0ltvq7VjJZ7X92WcGYAXWkkdZ4klKjGKUMm0-1iZEhlZaq1mqjT-lO8smx7Sj0fsaAN-Dd_CuGOVg0_0jrqstXtHPnKqwuME0fvb02_EdY1y2dWhhUanFnvmx3ekbM2b3THK92WSTN7P301J31WAaJbRlsSGY5DC2JCmhZWWqjKyES-UypDbF6VVaV4aBOVFgpFQs0hyy0urC8Uiy5IiT3HdK3CV4mRH9vLJh8HzUx75ZnaIiWLCGU_7LGqcZ6PG5TsccS8IcpSMpGtx0LcLOA_j_ntU8698rQ-Dk1tws8ev4XancLdhw1R34MYfVQ3vwqexPxUS1jac-RKP4fgYnROic_ejdWrWuMHxUp6Q0XzhXvWTHVmV4dyg6zOL9md4YFqJWNqbR7itmnqhEKfeg8NL2ev7sFnVlXkIIZIAI2NjVZwrqnSmcvTVstSxRAxDqQkgGvZT6L68ueuycSI8zckz0YlAoAiEE4FIA3i1uuS0q-1x0eQdJ6TVRFeW2_9RL76I3spFlKZcplwbKymNNC809YxV2xKRtlEBbA0iFr2vaASCLNwl52vPHT5T_ACer4bRCbjMjqxMvfRLMISunCUBPOgUZnWjuDBS2pgHwNdUae1J1keq46--0Dj6ZuSTLIDXg9Kd3dZ_N-rRxQ_xDK5N5wf7Yn93tvcYrifOIlyFgGQLNtvF0jxBjNeqp96wQvh82Zb8G4roYb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKBAkuICszcOOkwNCXbarlsKqQlupnIzt2FCpSsomKwQ_jV_H2JtsWSi99RbFiZV4Xt8XT2YAnmsldZwllqjEKEIl0-5nZUpkZKm1mqnS-CzfabZ7SN8dsaMN-NX_C-PSKnuf6B11WWv3jXzoVIXHCaL3oe3SIg7Gkzen34jrIOV2Wvt2GksV2Tc_viN9a17vjVHWL5JksjN7u0u6DgNEs4y2JDYcAxbGiTQtrLRUlZGNeKFUhjy_KK1K89IgQC8SjIqaRZJbXlpdKBZZlhR5ivNegU3uWNEANkc704OPfRygPPKt7RAhxYQznnZ7qnGeDRu3--FofEGQsWQkXYuKvnnAeYj338TNv3ZvfVCc3IQbHZoNt5fqdws2THUbrv9R4_AOfBr7HJGwtuHUF3wMx8foqhCru4PWKV3jBscLeUKGs7n78E9GsirDmUFHaObtz_CDaSUia28s4bZq6rlC1HoXDi9lte_BoKor8wBCpARGxsaqOFdU6Uzl6LllqWOJiIZSE0DUr6fQXbFz13PjRHjSk2diKQKBIhBOBCIN4OXqltNlpY-LLh45Ia0udEW6_Yl6_kV0Ni-iNOUy5dpYSWmkeaGp56_aloi7jQpgqxex6DxHIxBy4So5z3vu8JkZBPBsNYwuwe3zyMrUCz8FQyDLWRLA_aXCrB4UJ0aCG_MA-Joqrb3J-kh1_NWXHUdPjeySBfCqV7qzx_rvQj28-CWewlW0YvF-b7r_CK4lziBcuYBkCwbtfGEeI-Br1ZPOskL4fNnG_BsgAmdP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Narrow+Discrete+Distances+of+Dual-%2FTriple-Band+Terahertz+Metamaterial+Absorbers&rft.jtitle=Nanoscale+research+letters&rft.au=Wang%2C+Ben-Xin&rft.au=Tang%2C+Chao&rft.au=Niu%2C+Qingshan&rft.au=He%2C+Yuanhao&rft.date=2019-02-22&rft.pub=Springer+US&rft.issn=1931-7573&rft.eissn=1556-276X&rft.volume=14&rft_id=info:doi/10.1186%2Fs11671-019-2876-3&rft_id=info%3Apmid%2F30796617&rft.externalDocID=PMC6386755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7573&client=summon |