Genomic evidence for domestication selection in three hatchery populations of Chinook salmon, Oncorhynchus tshawytscha

Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery enviro...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary applications Vol. 17; no. 2; pp. e13656 - n/a
Main Authors Howe, Natasha S., Hale, Matthew C., Waters, Charles D., Schaal, Sara M., Shedd, Kyle R., Larson, Wesley A.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery–wild population pairs. In this study, we used low‐coverage whole‐genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha, after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation (FST) between hatchery–wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence (Dxy) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population‐specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype–phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
AbstractList Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery–wild population pairs. In this study, we used low‐coverage whole‐genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha, after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation (FST) between hatchery–wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence (Dxy) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population‐specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype–phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Abstract Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery–wild population pairs. In this study, we used low‐coverage whole‐genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha , after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation ( F ST ) between hatchery–wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence ( D xy ) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population‐specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype–phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery-wild population pairs. In this study, we used low-coverage whole-genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, , after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation ( ) between hatchery-wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence ( ) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population-specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype-phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery-wild population pairs. In this study, we used low-coverage whole-genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha, after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation (F ST) between hatchery-wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence (D xy) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population-specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype-phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Abstract Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery–wild population pairs. In this study, we used low‐coverage whole‐genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha, after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation (FST) between hatchery–wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence (Dxy) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population‐specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype–phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery–wild population pairs. In this study, we used low‐coverage whole‐genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha , after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation ( F ST ) between hatchery–wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence ( D xy ) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population‐specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype–phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Author Waters, Charles D.
Howe, Natasha S.
Schaal, Sara M.
Hale, Matthew C.
Larson, Wesley A.
Shedd, Kyle R.
AuthorAffiliation 1 Department of Biology Texas Christian University Fort Worth Texas USA
2 National Oceanographic and Atmospheric Administration, National Marine Fisheries Service Alaska Fisheries Science Center, Auke Bay Laboratories Juneau Alaska USA
3 Alaska Department of Fish and Game, Division of Commercial Fisheries Gene Conservation Laboratory Anchorage Alaska USA
AuthorAffiliation_xml – name: 3 Alaska Department of Fish and Game, Division of Commercial Fisheries Gene Conservation Laboratory Anchorage Alaska USA
– name: 1 Department of Biology Texas Christian University Fort Worth Texas USA
– name: 2 National Oceanographic and Atmospheric Administration, National Marine Fisheries Service Alaska Fisheries Science Center, Auke Bay Laboratories Juneau Alaska USA
Author_xml – sequence: 1
  givenname: Natasha S.
  surname: Howe
  fullname: Howe, Natasha S.
  organization: Texas Christian University
– sequence: 2
  givenname: Matthew C.
  orcidid: 0000-0002-7391-2727
  surname: Hale
  fullname: Hale, Matthew C.
  email: m.c.hale@tcu.edu
  organization: Texas Christian University
– sequence: 3
  givenname: Charles D.
  surname: Waters
  fullname: Waters, Charles D.
  organization: Alaska Fisheries Science Center, Auke Bay Laboratories
– sequence: 4
  givenname: Sara M.
  surname: Schaal
  fullname: Schaal, Sara M.
  organization: Alaska Fisheries Science Center, Auke Bay Laboratories
– sequence: 5
  givenname: Kyle R.
  orcidid: 0000-0002-0148-4241
  surname: Shedd
  fullname: Shedd, Kyle R.
  organization: Gene Conservation Laboratory
– sequence: 6
  givenname: Wesley A.
  surname: Larson
  fullname: Larson, Wesley A.
  email: wes.larson@noaa.gov
  organization: Alaska Fisheries Science Center, Auke Bay Laboratories
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38357359$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1r3DAQhk1JaT7aQ_9AEfTSQjfRlyX5FMKSpoFALm2vQpbHsba2tJXsDf73VdZpSArVRYP08DAzvMfFgQ8eiuI9wacknzPYmVPCRCleFUdElnTFS0kOntWHxXFKG4wFFoy-KQ6ZYqVkZXVU7K7Ah8FZBDvXgLeA2hBREwZIo7NmdMGjBD3YfeU8GrsIgDoz2g7ijLZhO_V7LKHQonXnfAi_UDL9EPwXdOttiN3sbTclNKbO3M9jsp15W7xuTZ_g3eN9Uvz4evl9_W11c3t1vb64WdlScLGynElTAyVKtsoKIzghjFBcAae0rIUF1tBGlgoYs0QoQmVj69rwiitjJGUnxfXibYLZ6G10g4mzDsbp_UOId9rEPGgPulF1i6mo67okvFW1aUFySWnTGCsJqbLrfHFtp3qAxoIfo-lfSF_-eNfpu7DTBCshsHro5tOjIYbfU96wHlyy0PfGQ5iSphWVNE-ISUY__oNuwhR93lWmGJEVrSTP1OeFsjGkFKF96oZg_RANnaOh99HI7Ifn7T-Rf7OQgbMFuHc9zP836cufF4vyDzC3xxs
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_172457
crossref_primary_10_1111_eva_13732
crossref_primary_10_1002_fsh_11091
crossref_primary_10_3390_d16060308
Cites_doi 10.1126/science.aba9059
10.1111/eva.12331
10.1111/j.1471-8286.2007.01931.x
10.1111/mec.14141
10.1111/j.1558‐5646.2011.01269.x
10.1046/j.1365‐2664.2003.00815.x
10.1126/science.aaw7271
10.1126/science.1253714
10.1086/688018
10.1371/journal.pgen.1007794
10.1073/pnas.1711229114
10.1371/journal.pbio.3000128
10.1073/pnas.1919039117
10.1139/cjfas‐2016‐0334
10.1016/j.tree.2013.09.009
10.1139/cjfas‐2012‐0135
10.1093/bioinformatics/btu041
10.1098/rstb.2022.0046
10.1111/eva.12183
10.1111/1755‐0998.12157
10.22541/au.168371520.09492745/v1
10.1086/682405
10.3389/fgene.2021.830626
10.1038/hdy.2009.69
10.1534/genetics.118.301336
10.1002/9780470751329.ch27
10.1038/s41576‐020‐0250‐z
10.1093/molbev/msac242
10.1371/journal.pbio.3000391
10.1016/j.livprodsci.2004.11.001
10.1002/zoo.1430050212
10.1534/genetics.108.092221
10.1111/mec.12796
10.1126/science.293.5536.1786
10.1111/j.1095‐8649.2003.00267.x
10.1111/eva.12861
10.1111/j.1558‐5646.1984.tb05657.x
10.1111/mec.13332
10.1101/gr.196485.115
10.1093/bioinformatics/btp324
10.1511/2002.10.130
10.1007/s10592‐022‐01491‐1
10.1534/genetics.113.154740
10.1073/pnas.1416991111
10.1098/rstb.2011.0260
10.1111/evo.14234
10.1139/cjfas‐2022‐0121
10.1093/bioinformatics/btz200
10.1186/s12711‐019‐0495‐1
10.1038/s41467‐018‐08021‐z
10.1038/ncomms2833
10.1371/journal.pone.0257407
10.3389/fnbeh.2018.00210
10.1139/f06‐119
10.1111/j.0022‐1112.2004.0559m.x
10.1080/03632415.2011.626661
10.1111/j.1365‐294X.2011.05058.x
10.1371/journal.pone.0195461
10.1186/s12859‐014‐0356‐4
10.1073/pnas.2216789120
10.1126/science.1203043
10.1146/annurev‐ecolsys‐110617‐062240
10.1534/g3.118.200458
10.1093/bioinformatics/bts460
10.1111/mec.15428
10.1126/science.1107239
10.1111/1755‐0998.12593
10.1111/eva.13235
10.1098/rspb.2020.1671
10.1111/mec.16317
10.1073/pnas.2122152119
10.1111/eva.13263
10.1111/j.1755‐0998.2010.02968.x
10.1111/eva.13375
10.1577/1548‐8640(1989)051<0194:APOCSR>2.3.CO;2
10.1126/science.abj7484
10.1016/j.tig.2006.06.005
10.1007/s10641‐011‐9783‐5
10.1016/s1054‐3139(97)80009‐4
10.1111/1755‐0998.12357
10.1111/eva.12689
10.1016/j.tree.2020.04.009
10.1101/gr.212522.116
10.1111/j.1752‐4571.2008.00025.x
10.1038/s41467‐018‐04963‐6
10.1007/s10641‐022‐01278‐w
10.1371/journal.pone.0128036
10.1073/pnas.1111073109
10.1111/j.0022‐1112.2004.00563.x
10.1186/s12864‐020‐06788‐4
10.1038/s41467‐020‐18972‐x
10.1186/1471‐2105‐10‐421
10.1038/s41437‐020‐0346‐4
10.1111/eva.12258
10.1093/molbev/msaa290
10.1111/eva.12230
10.1371/journal.pgen.1000341
10.1007/s10641‐011‐9929‐5
10.1577/T04‐078.1
10.1371/journal.pone.0006595
10.1002/evl3.46
10.1111/eva.12599
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1111/eva.13656
DatabaseName Wiley Open Access Journals
Wiley Online Library Free Content
PubMed
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
Biotechnology and BioEngineering Abstracts
ProQuest Central
Genetics Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Engineering Research Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Howe et al
EISSN 1752-4571
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d8bf026bbb514f8bafe74722ddac7119
10_1111_eva_13656
38357359
EVA13656
Genre researchArticle
Journal Article
GeographicLocations United States--US
Alaska
GeographicLocations_xml – name: Alaska
– name: United States--US
GroupedDBID 0R~
1OC
24P
29G
31~
4.4
5DZ
5GY
5VS
8-0
8-1
8FE
8FH
AAHHS
AAKDD
AAZKR
ACCFJ
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CAG
CCPQU
COF
CS3
D-8
D-9
DU5
EBS
ECGQY
EJD
ESX
F5P
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
HZ~
IAO
IGS
IHR
KQ8
LK8
M48
M7P
M~E
O9-
OIG
OK1
OVD
PIMPY
PROAC
RNS
RPM
TEORI
WIN
ITC
NPM
AAYXX
CITATION
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c5646-c437abe2187f8c6a641131209e4225b6ce3d2d758e33c168127dcbba4948aa723
IEDL.DBID RPM
ISSN 1752-4571
IngestDate Tue Oct 22 15:15:21 EDT 2024
Tue Sep 17 21:29:52 EDT 2024
Fri Jun 28 11:51:02 EDT 2024
Thu Oct 10 15:54:14 EDT 2024
Thu Sep 26 21:39:45 EDT 2024
Wed Oct 23 10:01:50 EDT 2024
Sat Aug 24 01:06:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hatchery
salmon
domestication selection
rapid adaptation
Southeast Alaska
low‐coverage whole‐genome sequencing
Language English
License Attribution
2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5646-c437abe2187f8c6a641131209e4225b6ce3d2d758e33c168127dcbba4948aa723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7391-2727
0000-0002-0148-4241
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866082/
PMID 38357359
PQID 2931792974
PQPubID 986360
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_d8bf026bbb514f8bafe74722ddac7119
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10866082
proquest_miscellaneous_2927211301
proquest_journals_2931792974
crossref_primary_10_1111_eva_13656
pubmed_primary_38357359
wiley_primary_10_1111_eva_13656_EVA13656
PublicationCentury 2000
PublicationDate February 2024
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Evolutionary applications
PublicationTitleAlternate Evol Appl
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2013; 4
2019; 10
2019; 12
2019; 17
2023; 106
2013; 70
2020; 287
2020; 11
2014; 29
2012; 367
2018; 49
2014; 23
2023; 80
1977
2018; 9
2018; 210
2017; 74
2018; 8
2021; 75
2018; 2
2009; 10
1990
1997; 54
2006; 22
1986; 5
2014; 15
2014; 14
2011; 65
2013; 195
2012; 28
2002; 90
2003; 40
2022; 39
2019; 35
2020; 38
2020; 35
2022; 119
1998; 62
2012; 109
1989; 51
1984; 38
2011; 94
2022; 12
2022; 15
2005; 93
2020; 21
2014; 30
2018; 12
2018; 11
2009; 103
2016; 25
2018; 14
2018; 13
2020; 29
2004; 65
2022; 375
2023; 32
2019; 51
2021; 126
2015; 186
2016; 188
2011; 11
2008; 8
2008; 1
2017; 114
2019; 365
2006; 135
2023; 24
2006; 63
2001; 293
2001
2020; 370
2011; 20
2005; 307
2023; 378
2014; 7
2015; 15
2009; 25
2017; 26
2023; 120
2017; 27
2015; 10
2005
2004
2011; 36
2007; 53
2014; 111
2015; 8
2011; 332
2012; 94
2021; 14
2008; 180
2021; 16
2015; 25
2023
2022
2021
2017; 17
2019
2020; 117
2015
2009; 5
2009; 4
2003; 63
2014; 345
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Templin W. D. (e_1_2_8_98_1) 2001
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
Salomone P. G. (e_1_2_8_90_1) 2022
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Wilson L. (e_1_2_8_112_1) 2023
Barclay A. W. (e_1_2_8_7_1) 2019
Quinn T. P. (e_1_2_8_83_1) 2005
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Hess J. E. (e_1_2_8_52_1) 2015
Meredith B. L. (e_1_2_8_72_1) 2022
RMIS (e_1_2_8_87_1) 1977
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Shedd K. (e_1_2_8_94_1) 2021
Mecum R. D. (e_1_2_8_70_1) 1990
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Utter F. (e_1_2_8_104_1) 1998; 62
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
Naish K. A. (e_1_2_8_78_1) 2007
e_1_2_8_50_1
References_xml – volume: 120
  issue: 3
  year: 2023
  article-title: Genome‐wide parallelism underlies contemporary adaptation in urban lizards
  publication-title: Proceedings of the National Academy of Sciences
– volume: 14
  start-page: 2402
  issue: 10
  year: 2021
  end-page: 2413
  article-title: Epigenomic modifications induced by hatchery rearing persist in germ line cells of adult salmon after their oceanic migration
  publication-title: Evolutionary Applications
– year: 2005
– volume: 36
  start-page: 547
  issue: 11
  year: 2011
  end-page: 561
  article-title: Hatcheries, conservation, and sustainable fisheries—Achieving multiple goals: Results of the hatchery scientific review Group's Columbia River basin review
  publication-title: Fisheries
– volume: 30
  start-page: 1486
  issue: 10
  year: 2014
  end-page: 1487
  article-title: ngsTools: Methods for population genetics analyses from next‐generation sequencing data
  publication-title: Bioinformatics
– volume: 40
  start-page: 535
  issue: 3
  year: 2003
  end-page: 544
  article-title: The relative roles of domestication, rearing environment, prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon
  publication-title: Journal of Applied Ecology
– volume: 17
  issue: 7
  year: 2019
  article-title: Widespread selection and gene flow shape the genomic landscape during a radiation of monkeyflowers
  publication-title: PLoS Biology
– volume: 12
  start-page: 137
  issue: 1
  year: 2019
  end-page: 156
  article-title: Comparing genomic signatures of domestication in two Atlantic salmon ( L.) populations with different geographical origins
  publication-title: Evolutionary Applications
– volume: 370
  start-page: 609
  issue: 6516
  year: 2020
  end-page: 613
  article-title: A complex phenotype in salmon controlled by a simple change in migratory timing
  publication-title: Science
– volume: 32
  start-page: 1549
  issue: 7
  year: 2023
  end-page: 1566
  article-title: Gene flow influences the genomic architecture of local adaptation in six riverine fish species
  publication-title: Molecular Ecology
– volume: 65
  start-page: 1897
  issue: 7
  year: 2011
  end-page: 1911
  article-title: The genetic architecture of adaptation under migration‐selection balance
  publication-title: Evolution
– year: 1990
– volume: 186
  start-page: S74
  issue: Suppl 1
  year: 2015
  end-page: S89
  article-title: Local adaptation by alleles of small effect
  publication-title: The American Naturalist
– volume: 14
  start-page: 1929
  issue: 8
  year: 2021
  end-page: 1957
  article-title: An evaluation of the potential factors affecting lifetime reproductive success in salmonids
  publication-title: Evolutionary Applications
– volume: 367
  start-page: 451
  issue: 1587
  year: 2012
  end-page: 460
  article-title: Divergence hitchhiking and the spread of genomic isolation during ecological speciation‐with‐gene‐flow
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 74
  start-page: 1233
  issue: 8
  year: 2017
  end-page: 1242
  article-title: Measuring the net biological impact of fisheries enhancement: Pink salmon hatcheries can increase yield, but with apparent costs to wild populations
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 49
  start-page: 303
  issue: 1
  year: 2018
  end-page: 330
  article-title: (Non)Parallel evolution
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 378
  issue: 1877
  year: 2023
  article-title: How predictable is adaptation from standing genetic variation? Experimental evolution in drosophila highlights the central role of redundancy and linkage disequilibrium
  publication-title: Philosophical Transactions of the Royal Society, B: Biological Sciences
– volume: 25
  start-page: 1656
  year: 2015
  end-page: 1665
  article-title: Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of
  publication-title: Genome Research
– volume: 345
  start-page: 1074
  issue: 6200
  year: 2014
  end-page: 1079
  article-title: Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication
  publication-title: Science
– volume: 8
  start-page: 3723
  issue: 11
  year: 2018
  end-page: 3736
  article-title: Characterization of genetic and epigenetic variation in sperm and red blood cells from adult hatchery and natural‐origin steelhead,
  publication-title: G3 (Bethesda, Md.)
– year: 2022
– volume: 26
  start-page: 3700
  issue: 14
  year: 2017
  end-page: 3714
  article-title: Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: The local score approach
  publication-title: Molecular Ecology
– volume: 93
  start-page: 3
  year: 2005
  end-page: 14
  article-title: Genetics of adaptation and domestication in livestock
  publication-title: Livestock Production Science
– volume: 8
  start-page: 956
  issue: 10
  year: 2015
  end-page: 971
  article-title: Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding
  publication-title: Evolutionary Applications
– volume: 27
  start-page: 1004
  issue: 6
  year: 2017
  end-page: 1015
  article-title: Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches
  publication-title: Genome Research
– volume: 70
  start-page: 415
  issue: 3
  year: 2013
  end-page: 435
  article-title: Divergent life‐history races do not represent Chinook salmon coast‐wide: The importance of scale in quaternary biogeography
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 188
  start-page: 379
  issue: 4
  year: 2016
  end-page: 397
  article-title: Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions
  publication-title: The American Naturalist
– volume: 51
  start-page: 194
  issue: 4
  year: 1989
  end-page: 200
  article-title: Adult production of Chinook Salmon reared at different densities and released as two Smolt sizes
  publication-title: The Progressive Fish‐Culturist
– year: 2019
– volume: 4
  issue: 8
  year: 2009
  article-title: The genome response to artificial selection: A case study in dairy cattle
  publication-title: PLoS One
– volume: 38
  start-page: 1358
  issue: 6
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 8
  start-page: 93
  issue: 1
  year: 2015
  end-page: 107
  article-title: Population genomic analyses of early‐phase Atlantic Salmon ( ) domestication/captive breeding
  publication-title: Evolutionary Applications
– volume: 35
  start-page: 809
  issue: 9
  year: 2020
  end-page: 822
  article-title: The importance of genetic redundancy in evolution
  publication-title: Trends in Ecology & Evolution
– volume: 39
  start-page: msac242
  issue: 11
  year: 2022
  article-title: The dynamics of adaptation to stress from standing genetic variation and de novo mutations
  publication-title: Molecular Biology and Evolution
– volume: 17
  issue: 2
  year: 2019
  article-title: Genetic redundancy fuels polygenic adaptation in drosophila
  publication-title: PLoS Biology
– start-page: 371
  year: 2004
  end-page: 384
– volume: 103
  start-page: 299
  issue: 4
  year: 2009
  end-page: 309
  article-title: Long‐term changes in the fine‐scale population structure of coho salmon populations ( ) subject to extensive supportive breeding
  publication-title: Heredity
– volume: 332
  start-page: 958
  issue: 6032
  year: 2011
  end-page: 960
  article-title: Industrial Melanism in British peppered moths has a singular and recent mutational origin
  publication-title: Science
– volume: 180
  start-page: 977
  issue: 2
  year: 2008
  end-page: 993
  article-title: A genome‐scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective
  publication-title: Genetics
– volume: 195
  start-page: 979
  issue: 3
  year: 2013
  end-page: 992
  article-title: Quantifying population genetic differentiation from next‐generation sequencing data
  publication-title: Genetics
– volume: 53
  start-page: 61
  year: 2007
  end-page: 194
– volume: 62
  start-page: 623
  year: 1998
  end-page: 640
  article-title: Genetic problems of hatchery‐reared progeny released into the wild, and how to Deal with them
  publication-title: Bulletin of Marine Science
– volume: 24
  start-page: 167
  issue: 2
  year: 2023
  end-page: 179
  article-title: Genomic divergence of hatchery‐ and natural‐origin Chinook salmon ( ) in two supplemented populations
  publication-title: Conservation Genetics
– volume: 22
  start-page: 437
  issue: 8
  year: 2006
  end-page: 446
  article-title: Genomic insights into positive selection
  publication-title: Trends in Genetics
– volume: 65
  issue: s1
  year: 2004
  article-title: Comparison of maturation timing, egg size and fecundity between hatchery lines of Chinook salmon and their wild donor stocks
  publication-title: Journal of Fish Biology
– volume: 5
  issue: 1
  year: 2009
  article-title: Contrasting mode of evolution at a coat color locus in wild and domestic pigs
  publication-title: PLoS Genetics
– volume: 20
  start-page: 1860
  issue: 9
  year: 2011
  end-page: 1869
  article-title: Reduced reproductive success of hatchery coho salmon in the wild: Insights into most likely mechanisms
  publication-title: Molecular Ecology
– volume: 375
  issue: 6586
  year: 2022
  article-title: Direct observation of adaptive tracking on ecological time scales in drosophila
  publication-title: Science
– volume: 94
  start-page: 325
  issue: 1
  year: 2011
  end-page: 342
  article-title: Understanding the adaptive consequences of hatchery‐wild interactions in Alaska salmon
  publication-title: Environmental Biology of Fishes
– volume: 106
  start-page: 1093
  issue: 5
  year: 2023
  end-page: 1111
  article-title: Epigenetic effects associated with salmonid supplementation and domestication
  publication-title: Environmental Biology of Fishes
– volume: 12
  start-page: 1971
  issue: 10
  year: 2019
  end-page: 1987
  article-title: Novel signals of adaptive genetic variation in northwestern Atlantic cod revealed by whole‐genome sequencing
  publication-title: Evolutionary Applications
– volume: 94
  start-page: 135
  issue: 1
  year: 2012
  end-page: 148
  article-title: Wild chinook salmon survive better than hatchery salmon in a period of poor production
  publication-title: Environmental Biology of Fishes
– volume: 114
  start-page: 12964
  issue: 49
  year: 2017
  end-page: 12969
  article-title: Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon
  publication-title: Proceedings of the National Academy of Sciences
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  end-page: 1760
  article-title: Fast and accurate short read alignment with burrows‐wheeler transform
  publication-title: Bioinformatics
– volume: 9
  issue: 1
  year: 2018
  article-title: The origin and remolding of genomic islands of differentiation in the European sea bass
  publication-title: Nature Communications
– volume: 54
  start-page: 1051
  issue: 6
  year: 1997
  end-page: 1063
  article-title: Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication
  publication-title: ICES Journal of Marine Science
– volume: 109
  start-page: 238
  issue: 1
  year: 2012
  end-page: 242
  article-title: Genetic adaptation to captivity can occur in a single generation
  publication-title: Proceedings of the National Academy of Sciences
– volume: 51
  issue: 1
  year: 2019
  article-title: The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds
  publication-title: Genetics Selection Evolution
– volume: 117
  start-page: 20672
  issue: 34
  year: 2020
  end-page: 20680
  article-title: Estimating the genome‐wide contribution of selection to temporal allele frequency change
  publication-title: Proceedings of the National Academy of Sciences
– volume: 293
  start-page: 1786
  issue: 5536
  year: 2001
  end-page: 1790
  article-title: Humans as the World's greatest evolutionary force
  publication-title: Science
– volume: 126
  start-page: 38
  issue: 1
  year: 2021
  end-page: 49
  article-title: Rearing environment affects the genetic architecture and plasticity of DNA methylation in Chinook salmon
  publication-title: Heredity
– volume: 75
  start-page: 2179
  issue: 9
  year: 2021
  end-page: 2196
  article-title: Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent species pairs
  publication-title: Evolution
– volume: 11
  issue: 1
  year: 2020
  article-title: The structural variation landscape in 492 Atlantic salmon genomes
  publication-title: Nature Communications
– year: 2001
– volume: 65
  start-page: 1
  issue: s1
  year: 2004
  end-page: 27
  article-title: About the oldest domesticates among fishes
  publication-title: Journal of Fish Biology
– year: 2021
– volume: 12
  start-page: 210
  year: 2018
  article-title: Neurobiology of Wildand hatchery‐reared Atlantic Salmon: How nurture drives neuroplasticity
  publication-title: Frontiers in Behavioral Neuroscience
– volume: 287
  issue: 1937
  year: 2020
  article-title: Captive‐bred Atlantic salmon released into the wild have fewer offspring than wild‐bred fish and decrease population productivity
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 2
  start-page: 76
  issue: 2
  year: 2018
  end-page: 87
  article-title: Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds
  publication-title: Evolution Letters
– volume: 29
  start-page: 2535
  issue: 14
  year: 2020
  end-page: 2549
  article-title: Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype
  publication-title: Molecular Ecology
– volume: 15
  issue: 1
  year: 2014
  article-title: ANGSD: Analysis of next generation sequencing data
  publication-title: BMC Bioinformatics
– volume: 23
  start-page: 3133
  issue: 13
  year: 2014
  end-page: 3157
  article-title: Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow
  publication-title: Molecular Ecology
– volume: 28
  start-page: 2537
  issue: 19
  year: 2012
  end-page: 2539
  article-title: GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research–an update
  publication-title: Bioinformatics
– volume: 10
  issue: 1
  year: 2009
  article-title: BLAST+: Architecture and applications
  publication-title: BMC Bioinformatics
– volume: 1
  start-page: 222
  issue: 2
  year: 2008
  end-page: 238
  article-title: A review of quantitative genetic components of fitness in salmonids: Implications for adaptation to future change
  publication-title: Evolutionary Applications
– volume: 119
  issue: 30
  year: 2022
  article-title: Genetics of adaptation
  publication-title: Proceedings of the National Academy of Sciences
– volume: 11
  start-page: 853
  issue: 6
  year: 2018
  end-page: 868
  article-title: Genomewide association analyses of fitness traits in captive‐reared Chinook salmon: Applications in evaluating conservation strategies
  publication-title: Evolutionary Applications
– volume: 63
  start-page: 2343
  issue: 10
  year: 2006
  end-page: 2355
  article-title: Changes in run timing and natural smolt production in a naturally spawning coho salmon ( ) population after 60 years of intensive hatchery supplementation
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 17
  start-page: 194
  issue: 2
  year: 2017
  end-page: 208
  article-title: Practical low‐coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species
  publication-title: Molecular Ecology Resources
– volume: 4
  issue: 1
  year: 2013
  article-title: Genomic islands of divergence are not affected by geography of speciation in sunflowers
  publication-title: Nature Communications
– volume: 16
  issue: 12
  year: 2021
  article-title: Offspring of first‐generation hatchery steelhead trout ( ) grow faster in the hatchery than offspring of wild fish, but survive worse in the wild: Possible mechanisms for inadvertent domestication and fitness loss in hatchery salmon
  publication-title: PLoS One
– year: 2015
– volume: 90
  start-page: 130
  issue: 2
  year: 2002
  end-page: 139
  article-title: Adaptive radiation of Darwin's finches: Recent data help explain how this famous group of Galápagos birds evolved, although gaps in our understanding remain
  publication-title: American Scientist
– volume: 14
  start-page: 209
  issue: 1
  year: 2014
  end-page: 214
  article-title: NeEstimator v2: Re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data
  publication-title: Molecular Ecology Resources
– volume: 10
  issue: 1
  year: 2019
  article-title: Supplementary stocking selects for domesticated genotypes
  publication-title: Nature Communications
– volume: 15
  start-page: 853
  issue: 5
  year: 2022
  end-page: 864
  article-title: Introgression of domesticated salmon changes life history and phenology of a wild salmon population
  publication-title: Evolutionary Applications
– volume: 35
  start-page: 3855
  issue: 19
  year: 2019
  end-page: 3856
  article-title: ngsLD: Evaluating linkage disequilibrium using genotype likelihoods
  publication-title: Bioinformatics
– volume: 21
  start-page: 769
  issue: 12
  year: 2020
  end-page: 781
  article-title: Polygenic adaptation: A unifying framework to understand positive selection
  publication-title: Nature Reviews Genetics
– volume: 14
  issue: 11
  year: 2018
  article-title: Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima
  publication-title: PLoS Genetics
– volume: 5
  start-page: 181
  issue: 2
  year: 1986
  end-page: 190
  article-title: Genetic drift and the loss of alleles versus heterozygosity
  publication-title: Zoo Biology
– volume: 63
  start-page: 1565
  issue: 6
  year: 2003
  end-page: 1577
  article-title: Predator avoidance behaviour in wild and hatchery‐reared brown trout: The role of experience and domestication
  publication-title: Journal of Fish Biology
– volume: 25
  start-page: 287
  issue: 1
  year: 2016
  end-page: 305
  article-title: Shared and nonshared genomic divergence in parallel ecotypes of at a local scale
  publication-title: Molecular Ecology
– volume: 7
  start-page: 883
  issue: 8
  year: 2014
  end-page: 896
  article-title: On the reproductive success of early‐generation hatchery fish in the wild
  publication-title: Evolutionary Applications
– year: 1977
– volume: 210
  start-page: 719
  issue: 2
  year: 2018
  end-page: 731
  article-title: Inferring population structure and admixture proportions in low‐depth NGS data
  publication-title: Genetics
– volume: 8
  start-page: 413
  issue: 5
  year: 2015
  end-page: 422
  article-title: Integrating evolution in the management of captive zoo populations
  publication-title: Evolutionary Applications
– volume: 21
  issue: 1
  year: 2020
  article-title: Identification of genetic loci associated with higher resistance to pancreas disease (PD) in Atlantic salmon ( L.)
  publication-title: BMC Genomics
– volume: 80
  start-page: 700
  issue: 4
  year: 2023
  end-page: 718
  article-title: Size and timing of hatchery releases influence juvenile‐to‐adult survival rates of British Columbia Chinook ( ) and coho ( ) salmon
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 38
  start-page: 1317
  issue: 4
  year: 2020
  end-page: 1329
  article-title: Genomic architecture of rapid parallel adaptation to fresh water in a wild fish
  publication-title: Molecular Biology and Evolution
– volume: 307
  start-page: 1928
  issue: 5717
  year: 2005
  end-page: 1933
  article-title: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles
  publication-title: Science
– volume: 29
  start-page: 33
  issue: 1
  year: 2014
  end-page: 41
  article-title: Population size and the rate of evolution
  publication-title: Trends in Ecology & Evolution (Amsterdam)
– volume: 12
  start-page: 830626
  year: 2022
  article-title: Potential risks for seahorse stock enhancement: Insight from the declivity of genetic levels with hatchery management [brief research report]
  publication-title: Frontiers in Genetics
– volume: 8
  start-page: 103
  year: 2008
  end-page: 106
  article-title: Genepop'007: A complete reimplementation of the Genepop software for windows and Linux
  publication-title: Molecular Ecology Resources
– volume: 135
  start-page: 333
  issue: 2
  year: 2006
  end-page: 340
  article-title: Variation of morphology among juvenile Chinook Salmon of hatchery, hybrid, and wild origin
  publication-title: Transactions of the American Fisheries Society
– year: 2023
– volume: 13
  issue: 4
  year: 2018
  article-title: Chinook salmon ( ) genome and transcriptome
  publication-title: PLoS One
– volume: 111
  start-page: E5661
  issue: 52
  year: 2014
  end-page: E5669
  article-title: Prehistoric genomes reveal the genetic foundation and cost of horse domestication
  publication-title: Proceedings of the National Academy of Sciences
– volume: 11
  start-page: 226
  issue: Suppl 1
  year: 2011
  end-page: 246
  article-title: Genetic differentiation of Alaska Chinook salmon: The missing link for migratory studies
  publication-title: Molecular Ecology Resources
– volume: 365
  start-page: 487
  issue: 6452
  year: 2019
  end-page: 490
  article-title: Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing
  publication-title: Science
– volume: 10
  issue: 5
  year: 2015
  article-title: Inexpensive multiplexed library preparation for Megabase‐sized genomes
  publication-title: PLoS One
– volume: 15
  start-page: 855
  issue: 4
  year: 2015
  end-page: 867
  article-title: Genotyping‐in‐thousands by sequencing (GT‐seq): A cost effective SNP genotyping method based on custom amplicon sequencing
  publication-title: Molecular Ecology Resources
– ident: e_1_2_8_103_1
  doi: 10.1126/science.aba9059
– ident: e_1_2_8_108_1
  doi: 10.1111/eva.12331
– ident: e_1_2_8_88_1
  doi: 10.1111/j.1471-8286.2007.01931.x
– ident: e_1_2_8_38_1
  doi: 10.1111/mec.14141
– ident: e_1_2_8_115_1
  doi: 10.1111/j.1558‐5646.2011.01269.x
– volume: 62
  start-page: 623
  year: 1998
  ident: e_1_2_8_104_1
  article-title: Genetic problems of hatchery‐reared progeny released into the wild, and how to Deal with them
  publication-title: Bulletin of Marine Science
  contributor:
    fullname: Utter F.
– ident: e_1_2_8_74_1
  doi: 10.1046/j.1365‐2664.2003.00815.x
– ident: e_1_2_8_102_1
  doi: 10.1126/science.aaw7271
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1253714
– volume-title: Regional mark information system database [online database]
  year: 1977
  ident: e_1_2_8_87_1
  contributor:
    fullname: RMIS
– ident: e_1_2_8_54_1
  doi: 10.1086/688018
– ident: e_1_2_8_97_1
  doi: 10.1371/journal.pgen.1007794
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.1711229114
– ident: e_1_2_8_9_1
  doi: 10.1371/journal.pbio.3000128
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.1919039117
– ident: e_1_2_8_5_1
  doi: 10.1139/cjfas‐2016‐0334
– ident: e_1_2_8_61_1
  doi: 10.1016/j.tree.2013.09.009
– ident: e_1_2_8_77_1
  doi: 10.1139/cjfas‐2012‐0135
– ident: e_1_2_8_46_1
  doi: 10.1093/bioinformatics/btu041
– ident: e_1_2_8_91_1
  doi: 10.1098/rstb.2022.0046
– ident: e_1_2_8_26_1
  doi: 10.1111/eva.12183
– ident: e_1_2_8_32_1
  doi: 10.1111/1755‐0998.12157
– ident: e_1_2_8_36_1
  doi: 10.22541/au.168371520.09492745/v1
– ident: e_1_2_8_114_1
  doi: 10.1086/682405
– ident: e_1_2_8_67_1
  doi: 10.3389/fgene.2021.830626
– ident: e_1_2_8_35_1
  doi: 10.1038/hdy.2009.69
– ident: e_1_2_8_71_1
  doi: 10.1534/genetics.118.301336
– ident: e_1_2_8_85_1
  doi: 10.1002/9780470751329.ch27
– ident: e_1_2_8_8_1
  doi: 10.1038/s41576‐020‐0250‐z
– volume-title: Annual Report: Genetic assessment of Columbia River stocks
  year: 2015
  ident: e_1_2_8_52_1
  contributor:
    fullname: Hess J. E.
– ident: e_1_2_8_4_1
  doi: 10.1093/molbev/msac242
– ident: e_1_2_8_96_1
  doi: 10.1371/journal.pbio.3000391
– volume-title: Stikine River and Andrew Creek Chinook Salmon stock status and action plan
  year: 2022
  ident: e_1_2_8_90_1
  contributor:
    fullname: Salomone P. G.
– ident: e_1_2_8_75_1
  doi: 10.1016/j.livprodsci.2004.11.001
– ident: e_1_2_8_2_1
  doi: 10.1002/zoo.1430050212
– ident: e_1_2_8_41_1
  doi: 10.1534/genetics.108.092221
– ident: e_1_2_8_30_1
  doi: 10.1111/mec.12796
– ident: e_1_2_8_80_1
  doi: 10.1126/science.293.5536.1786
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1095‐8649.2003.00267.x
– ident: e_1_2_8_28_1
  doi: 10.1111/eva.12861
– ident: e_1_2_8_110_1
  doi: 10.1111/j.1558‐5646.1984.tb05657.x
– ident: e_1_2_8_84_1
  doi: 10.1111/mec.13332
– ident: e_1_2_8_19_1
  doi: 10.1101/gr.196485.115
– ident: e_1_2_8_65_1
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_2_8_48_1
  doi: 10.1511/2002.10.130
– ident: e_1_2_8_42_1
  doi: 10.1007/s10592‐022‐01491‐1
– ident: e_1_2_8_45_1
  doi: 10.1534/genetics.113.154740
– ident: e_1_2_8_92_1
  doi: 10.1073/pnas.1416991111
– ident: e_1_2_8_107_1
  doi: 10.1098/rstb.2011.0260
– ident: e_1_2_8_24_1
  doi: 10.1111/evo.14234
– ident: e_1_2_8_56_1
  doi: 10.1139/cjfas‐2022‐0121
– ident: e_1_2_8_44_1
  doi: 10.1093/bioinformatics/btz200
– ident: e_1_2_8_33_1
  doi: 10.1186/s12711‐019‐0495‐1
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467‐018‐08021‐z
– ident: e_1_2_8_86_1
  doi: 10.1038/ncomms2833
– ident: e_1_2_8_15_1
  doi: 10.1371/journal.pone.0257407
– ident: e_1_2_8_73_1
  doi: 10.3389/fnbeh.2018.00210
– ident: e_1_2_8_43_1
  doi: 10.1139/f06‐119
– ident: e_1_2_8_57_1
  doi: 10.1111/j.0022‐1112.2004.0559m.x
– ident: e_1_2_8_81_1
  doi: 10.1080/03632415.2011.626661
– ident: e_1_2_8_100_1
  doi: 10.1111/j.1365‐294X.2011.05058.x
– ident: e_1_2_8_25_1
  doi: 10.1371/journal.pone.0195461
– ident: e_1_2_8_60_1
  doi: 10.1186/s12859‐014‐0356‐4
– ident: e_1_2_8_76_1
– ident: e_1_2_8_113_1
  doi: 10.1073/pnas.2216789120
– ident: e_1_2_8_105_1
  doi: 10.1126/science.1203043
– volume-title: Escapements of Chinook salmon in southeast Alaska and transboundary rivers in 1989
  year: 1990
  ident: e_1_2_8_70_1
  contributor:
    fullname: Mecum R. D.
– ident: e_1_2_8_16_1
  doi: 10.1146/annurev‐ecolsys‐110617‐062240
– ident: e_1_2_8_47_1
  doi: 10.1534/g3.118.200458
– ident: e_1_2_8_82_1
  doi: 10.1093/bioinformatics/bts460
– volume-title: Unuk and Chickamin Chinook Salmon Stock Status and Action Plan
  year: 2022
  ident: e_1_2_8_72_1
  contributor:
    fullname: Meredith B. L.
– volume-title: The behavior and ecology of Pacific salmon and trout
  year: 2005
  ident: e_1_2_8_83_1
  contributor:
    fullname: Quinn T. P.
– ident: e_1_2_8_55_1
  doi: 10.1111/mec.15428
– ident: e_1_2_8_29_1
  doi: 10.1126/science.1107239
– volume-title: Chinook Salmon genetic baseline update for southeast Alaska and Canadian AABM fisheries (Final Report NF‐2019‐I‐10A; PSC Northern Fund)
  year: 2021
  ident: e_1_2_8_94_1
  contributor:
    fullname: Shedd K.
– ident: e_1_2_8_101_1
  doi: 10.1111/1755‐0998.12593
– ident: e_1_2_8_64_1
  doi: 10.1111/eva.13235
– ident: e_1_2_8_79_1
  doi: 10.1098/rspb.2020.1671
– ident: e_1_2_8_95_1
  doi: 10.1111/mec.16317
– start-page: 61
  volume-title: Advances in Marine Biology
  year: 2007
  ident: e_1_2_8_78_1
  contributor:
    fullname: Naish K. A.
– ident: e_1_2_8_17_1
  doi: 10.1073/pnas.2122152119
– ident: e_1_2_8_58_1
  doi: 10.1111/eva.13263
– ident: e_1_2_8_99_1
  doi: 10.1111/j.1755‐0998.2010.02968.x
– ident: e_1_2_8_13_1
  doi: 10.1111/eva.13375
– ident: e_1_2_8_69_1
  doi: 10.1577/1548‐8640(1989)051<0194:APOCSR>2.3.CO;2
– ident: e_1_2_8_89_1
  doi: 10.1126/science.abj7484
– ident: e_1_2_8_14_1
  doi: 10.1016/j.tig.2006.06.005
– ident: e_1_2_8_11_1
  doi: 10.1007/s10641‐011‐9783‐5
– ident: e_1_2_8_39_1
  doi: 10.1016/s1054‐3139(97)80009‐4
– volume-title: The history of propagation and transportation of Chinook Salmon Oncorhynchus tshawytscha. Stocks at Hatcheries in Southeast Alaska, 1972–1998
  year: 2001
  ident: e_1_2_8_98_1
  contributor:
    fullname: Templin W. D.
– ident: e_1_2_8_21_1
  doi: 10.1111/1755‐0998.12357
– ident: e_1_2_8_66_1
  doi: 10.1111/eva.12689
– ident: e_1_2_8_62_1
  doi: 10.1016/j.tree.2020.04.009
– ident: e_1_2_8_51_1
  doi: 10.1101/gr.212522.116
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1752‐4571.2008.00025.x
– volume-title: New genetic baseline for Upper Cook Inlet Chinook salmon allows for the identification of more stocks in mixed stock fisheries: 413 loci and 67 populations
  year: 2019
  ident: e_1_2_8_7_1
  contributor:
    fullname: Barclay A. W.
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467‐018‐04963‐6
– ident: e_1_2_8_59_1
  doi: 10.1007/s10641‐022‐01278‐w
– ident: e_1_2_8_10_1
  doi: 10.1371/journal.pone.0128036
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.1111073109
– ident: e_1_2_8_6_1
  doi: 10.1111/j.0022‐1112.2004.00563.x
– ident: e_1_2_8_53_1
  doi: 10.1186/s12864‐020‐06788‐4
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467‐020‐18972‐x
– ident: e_1_2_8_20_1
  doi: 10.1186/1471‐2105‐10‐421
– ident: e_1_2_8_106_1
  doi: 10.1038/s41437‐020‐0346‐4
– ident: e_1_2_8_93_1
  doi: 10.1111/eva.12258
– ident: e_1_2_8_116_1
  doi: 10.1093/molbev/msaa290
– ident: e_1_2_8_68_1
  doi: 10.1111/eva.12230
– ident: e_1_2_8_37_1
  doi: 10.1371/journal.pgen.1000341
– ident: e_1_2_8_49_1
  doi: 10.1007/s10641‐011‐9929‐5
– ident: e_1_2_8_111_1
  doi: 10.1577/T04‐078.1
– volume-title: Alaska salmon fisheries enhancement annual report 2022
  year: 2023
  ident: e_1_2_8_112_1
  contributor:
    fullname: Wilson L.
– ident: e_1_2_8_40_1
  doi: 10.1371/journal.pone.0006595
– ident: e_1_2_8_31_1
  doi: 10.1002/evl3.46
– ident: e_1_2_8_109_1
  doi: 10.1111/eva.12599
SSID ssj0060632
Score 2.4201806
Snippet Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are...
Abstract Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e13656
SubjectTerms Adaptation
Divergence
Domestication
domestication selection
Fish hatcheries
Fisheries
Genetic diversity
Genomes
Genomics
Genotypes
Hatcheries
hatchery
Linkage disequilibrium
low‐coverage whole‐genome sequencing
Oncorhynchus tshawytscha
Phenotypes
Population genetics
Population studies
rapid adaptation
Salmon
Southeast Alaska
Special Issue
Whole genome sequencing
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VlZC4IAoUAqUyFQcORODYcbLHgloqpJYLrXqLPLajVIJsRbKt9t8zY2dXXRXEhZsVR5Hj5483yfg9gLdKh0DEzedSocm1R7Z5KerczjxKGT6W1vMH_dMzc3Kuv16Wl3esvjgnLMkDp4774GtsKU5ARNra2xptGyoWOPTeukrKdHRPlqtgKq3BxMpVMekIcd5OuLExn8ts7D5RpP9PzPJ-guRd4hp3nuPH8GiijOIwNXUHtkL_BB4kE8nlU7j5EuLRYhEmg1BBPFT4-U_Wz0gf5MQQ3W64dNWLkeALorMRr6W4Xlt4DWLeCjbUJuItBvuDRuh78Y2FLrtl77rFIMahs7fLkSJi-wzOj4--fz7JJzeF3JVGm9xpVVkMtKVXbe2MNVpKxSdng6Y5jcYF5QtP4UNQykmWJau8Q7SsH2NtVahd2O7nfXgBAonzWYneeV_qCou6bcMMaV3VbtYaaTM4WPVyc51EM5pVsEFQNBGKDD5x_69vYJ3reIHQbyb0m3-hn8HeCr1mmnxDQwyGlpmCIqUM3qyradrwvxDbh_mC7yk49qXlLYPnCex1SyhoLytV0sPrjWGw0dTNmv6qi9Lc7FtliFVl8C6OmL-_fnN0cRgLL_9HP7yChwWxrZROvgfb469FeE1sacT9ODF-AxlyFyo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyQuiDeBggziwIEIHDtO9oTaakuFREGIot4iv0IqtcnSZIv23zPjOEtXPG5WYkVxZjz-xp58H8BLIb1H4OZSLoxKpTMk85KVqZ45w7l_m2tHG_ofj9Thsfxwkp_EDbc-llVOMTEEatdZ2iN_g8sS-k6G8Pfd4kdKqlF0uholNK7DdsYlHdNu782PPn-ZYjGic5FFPiGq3_GXOtR1qY1VKJD1_w1h_lkoeRXAhhXo4DbcitCR7Y62vgPXfHsXboxikqt7cPneh1-MmY9CoQzxKHPdOfFojBtzrA-qN9Q6bdmAZvSs0cFuK7ZYS3n1rKsZCWsjAGe9PsOhv2afiPCyWbW2WfZs6Bv9czVgZqzvw_HB_Ov-YRpVFVKbK6lSK0WhjcelvahLq7SSnAv6g9ZLnNtGWS9c5jCN8EJYTvRkhbPGaOKR0brIxAPYarvWPwJmEPtpbpx1LpeFycq69jOD8VXaWa24TuDF9JWrxUieUU1JB5qiCqZIYI--_7oD8V2HC93F9ypOn8qVpsZs0RiDAK8uja59QTSXzmlbcD5LYGeyXhUnYV_9dpkEnq9v4_ShMxHd-m5JfTLKgTHMJfBwNPb6TTB5zwuR48PLDTfYeNXNO-1pEyi6Sb9KIbpK4FXwmH8Pv5p_2w2Nx_8fwhO4mSGeGgvGd2BruFj6p4iHBvMsOv0vEDYO9g
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwEB6VIiQuiJ1AQQZx4EAQXmLnHRAqqKVCKlx4qLfIW0ilkpSXvEL-PWNnERFF4hbFTpR4ZuxvvHwfwHMuvEfg5lLKjUyFM0HmheWpXjlDqX-daRcm9I8_yaO1-HiSnezApLE5NmB7aWoX9KTWm7NXv370bzHg30y7cvyFjru15BW4ygQXwdGPxbyYgBA96pThQMlSkSk6EgwtHl0MS5G9_zLI-ffOyT8RbRySDm_CjRFLkv3B-Ldgx9e34dqgLtnfgYsPPp45Jn5UDiUIUIlrvgdijWGmjrRRBidcndakQ7t6UuloyJ6cz9peLWlKEpS2EZGTVp-h674knwMDZtXXttq2pGsr_bPvsD31XVgfHnx5f5SOMgupzaSQqRVcaeNxrFdlbqWWglIejtR6gcFupPXcMYd5hefc0sBXppw1RgdiGa0V4_dgt25q_wCIQTCoqXHWuUwow_Ky9CuDHa6wq1JSncCzqZWL84FNo5iyEDRFEU2RwLvQ_nOFQIAdbzSbb8UYT4XLTYnpozEGEV-ZG116FXgvndNWUbpKYG-yXjE5VYHQBvsfhilUAk_nYoynsEiia99sQx0WkmLs9xK4Pxh7_hLM5jPFM3x5vnCDxacuS-rTKnJ2B0EriXArgRfRY_79-8XB1_148fD_qz6C6wzB1rCbfA92u83WP0aw1JknMRR-A3FLFCA
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley Open Access Journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwEB6VIiQuiJ1AQQZx4EAkvMTOE6eCWioklgNFvUXe0lSCpGryit6_Z8ZZ1CdA4hbFTuR4PONvHPv7AF5KFSMCt5Bz6XSugiOZF1HmdhUc5_FNYQMt6H_6rI-O1ceT4mQH3s5nYUZ-iGXBjTwjxWtycOv6K04eL23ao6WvwXWENSUNaaG-zmEYgXlSJ8PpUeSqMHyiFaJtPMujW5NR4uz_G9D8c7_kVRybJqLD23BrQpBsfzT5HdiJ7V24MWpKbu7B5YeYThqzOOmFMoSlLHQ_iU5jXJ9jfRK_oauzlg1ozcgam8y3YeeLolfPupqRvjbicNbbHzhgX7MvxHvZbFrfrHs29I39tRkwQbb34fjw4Nv7o3wSV8h9oZXOvZLGuogzvKlLr61WnEs6SBsVurjTPsogAmYTUUrPiaXMBO-cJToZa42QD2C37dr4CJhDCGi5Cz6EQhknyrqOK4dhVvlVrbnN4MXcy9X5yKFRzbkHmqJKpsjgHfX_UoFor9ON7uK0mryoCqWrMWl0ziHOq0tn62iI7TIE6w3nqwz2ZutVky_2FQIajDoCE6cMni_F6EX0a8S2sVtTHUGpMEa7DB6Oxl5agjl8YWSBLy-3hsFWU7dL2rMmMXWTjJVGkJXBqzRi_v351cH3_XTx-P-rPoGbAiHWuId8D3aHi3V8ihBpcM-SK_wGaEcPcQ
  priority: 102
  providerName: Wiley-Blackwell
Title Genomic evidence for domestication selection in three hatchery populations of Chinook salmon, Oncorhynchus tshawytscha
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Feva.13656
https://www.ncbi.nlm.nih.gov/pubmed/38357359
https://www.proquest.com/docview/2931792974
https://search.proquest.com/docview/2927211301
https://pubmed.ncbi.nlm.nih.gov/PMC10866082
https://doaj.org/article/d8bf026bbb514f8bafe74722ddac7119
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-ajsFexrpPr23Qxh72MDeVJcvOY1vSlUG6MNbRN6Mvz4HGDrXTkv9-J9kODd1e9mKEJWxZdyf9Tj79DuAT49YicDMhZUqE3CiX5iVKQzk2ilJ7HEvjNvSnl-Liin-7jq93QPRnYXzQvlbzo_JmcVTOCx9buVzoUR8nNppNz1x2IIFr12gAg4Sx3kdv519E5CzqOIRczI69kz6WS2ytPJ6g_2-o8nFw5EPQ6led8xfwvIOL5KTt1h7s2PIlPG0TSK5fwd1X648VE9slByWIQYmpFo47o92MI7XPdONK85I0KDpLCulltSbLTfqumlQ5ccm0EXSTWt6gdn4h3x3JZbEudbGqSVMX8n7doDcsX8PV-eTn2UXYZVIIdSy4CDVniVQWl_MkT7WQglPK3KlZy9GeldCWmcig62AZ09RRkiVGKyUdd4yUScTewG5ZlfYdEIV4T1JltDExT1SU5rkdK5xTuR7ngsoAPvajnC1bwoysdzRQFJkXRQCnbvw3DRzHtb9R3f7OOklnJlU5eohKKQR1eapkbhNHbWmM1Aml4wAOeullneHVGaIXnGIi9JIC-LCpRpNx_0FkaauVaxM5vxentgDetsLe9AQd9jhhMT483VKDra5u16CWelruXisD-Ow15t-fn01-nfjC-_9_yz48ixBftQHkB7Db3K7sIeKjRg1hEPHZEJ6cTi5nP4Z-lwGvU54OvaH8ATfAGWM
link.rule.ids 230,315,733,786,790,870,891,2115,2236,11589,21416,24346,27955,27956,33777,33778,43838,46085,46509,50847,50956,53825,53827,74657
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiDeBAgZx4EAEjhMne0It2rJAuyDUot4iv0IqtcnSZIv23zPjeBdWPG5REkVx5uFv7Mn3ATwXqXMI3GzMhZZxajXJvCRFrMZWc-5eZ8rSgv7BTE6P0g_H2XFYcOtCW-UqJ_pEbVtDa-SvcFpC30kQ_r6Zf49JNYp2V4OExmXYIsrNYgRbu5PZ5y-rXIzoXCSBT4j6d9yF8n1dcmMW8mT9f0OYfzZK_g5g_Qy0dwOuB-jIdgZb34RLrrkFVwYxyeVtuHjn_C_GzAWhUIZ4lNn2jHg0hoU51nnVGzo6aViPZnSsVt5uSzZfS3l1rK0YCWsjAGedOsWhv2SfiPCyXjamXnSs72r1Y9ljZazuwNHe5PDtNA6qCrHJZCpjk4pcaYdTe14VRiqZci7oD1qXYmxraZywicUywglhONGT5dZorYhHRqk8EXdh1LSNuw9MI_ZTXFtjbZbmOimqyo015tfUjCvJVQTPVl-5nA_kGeWq6EBTlN4UEezS91_fQHzX_kR7_q0M4VPaQldYLWqtEeBVhVaVy4nm0lplcs7HEWyvrFeGIOzKXy4TwdP1ZQwf2hNRjWsXdE9CNTCmuQjuDcZevwl6VJaLDB9ebLjBxqtuXmlOak_RTfpVEtFVBC-8x_x7-OXk644_ePD_ITyBq9PDg_1y__3s40O4liC2GprHt2HUny_cI8RGvX4cAuAnB-MR7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYgL4k2ggEEcOBAVx46dPaEWdimvpUIU9Rb5FVIJkqXJFu2_Z8ZxFlY8blZiRXFmPP7GnnwfIY-58B6Am0sZNzIVzqDMS1akeuIMY_5Zrh1u6L-fy4Mj8eY4P471T10sqxxjYgjUrrW4R74LyxL4Tgbwd7eKZRGHL2fPF99TVJDCk9Yop3GebCshc0jEtven88OPY1wGpM6zyC2EtTz-TIcaL7mxIgXi_r-hzT-LJn8Hs2E1ml0hlyOMpHuD3a-Sc765Ri4MwpKr6-TslQ-_G1MfRUMpYFPq2m_IqTFs0tEuKOBg66ShPZjU01oHG67oYi3r1dG2oiiyDWCcdvorDP0p_YDkl_WqsfWyo31X6x-rHrJkfYMczaafXhykUWEhtbkUMrWCK208LPOqKqzUUjDG8W9aL2CeG2k9d5mDlMJzbhlSlSlnjdHIKaO1yvhNstW0jb9NqAEcqJlx1rlcKJMVVeUnBmKtsJNKMp2QR-NXLhcDkUY5JiBgijKYIiH7-P3XHZD7OlxoT7-UcSqVrjAVZI7GGAB7VWF05RVSXjqnrWJskpCd0XplnJBd-ct9EvJwfRumEp6P6Ma3S-yTYT4MIS8htwZjr98EEvlc8RweXmy4wcarbt5pTupA141aVhKQVkKeBI_59_DL6ee90Ljz_yE8IBfB98t3r-dv75JLGcCsoY58h2z1p0t_D2BSb-5H__8Jq0wWIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+evidence+for+domestication+selection+in+three+hatchery+populations+of+Chinook+salmon%2C+Oncorhynchus+tshawytscha&rft.jtitle=Evolutionary+applications&rft.au=Howe%2C+Natasha+S.&rft.au=Hale%2C+Matthew+C.&rft.au=Waters%2C+Charles+D.&rft.au=Schaal%2C+Sara+M.&rft.date=2024-02-01&rft.issn=1752-4571&rft.eissn=1752-4571&rft.volume=17&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Feva.13656&rft.externalDBID=10.1111%252Feva.13656&rft.externalDocID=EVA13656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-4571&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-4571&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-4571&client=summon