Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species tha...
Saved in:
Published in | The New phytologist Vol. 224; no. 1; pp. 132 - 145 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.10.2019
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach.
We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration.
We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants.
Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought. |
---|---|
AbstractList | Summary
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach.
We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set‐up to measure root‐exudate‐induced respiration.
We found that soil treatment was unimportant for determining root‐exudate‐induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants.
Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought. Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set‐up to measure root‐exudate‐induced respiration. We found that soil treatment was unimportant for determining root‐exudate‐induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought. Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa , to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set‐up to measure root‐exudate‐induced respiration. We found that soil treatment was unimportant for determining root‐exudate‐induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought. Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought. Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought. Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought. |
Author | McEwing, Rosie de Vries, Franciska T. Langridge, Holly Stringer, Fiona Willcocks, Robert Williams, Alex Straathof, Angela L. |
AuthorAffiliation | 1 School of Earth and Environmental Sciences The University of Manchester Oxford Road Manchester M13 9PT UK 2 Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam PO Box 94240 Amsterdam 1090 GE the Netherlands |
AuthorAffiliation_xml | – name: 2 Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam PO Box 94240 Amsterdam 1090 GE the Netherlands – name: 1 School of Earth and Environmental Sciences The University of Manchester Oxford Road Manchester M13 9PT UK |
Author_xml | – sequence: 1 givenname: Franciska T. surname: de Vries fullname: de Vries, Franciska T. – sequence: 2 givenname: Alex surname: Williams fullname: Williams, Alex – sequence: 3 givenname: Fiona surname: Stringer fullname: Stringer, Fiona – sequence: 4 givenname: Robert surname: Willcocks fullname: Willcocks, Robert – sequence: 5 givenname: Rosie surname: McEwing fullname: McEwing, Rosie – sequence: 6 givenname: Holly surname: Langridge fullname: Langridge, Holly – sequence: 7 givenname: Angela L. surname: Straathof fullname: Straathof, Angela L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31218693$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk-LFDEQxYOsuLOjBz-AEvCih95N0ul057Igi7rCoh4UvIVMuno6Q3cyJulZB7-8cf4suijmEkJ-71H1qs7QifMOEHpKyTnN58Kt-3MqCKEP0IxyIYuGlvUJmhHCmkJw8fUUncW4IoTISrBH6LSkjDZCljP046rXbgkRW4eD96mA71OrExTWtZOBFgeIaxt0sj4DsAE9YI2d38CARzBZbOOIUx_8tOzxbW9Nj9vdI2HddWBSxGB83MYEIzY6LLKP2ZrBuuVj9LDTQ4Qnh3uOvrx98_nqurj5-O791eubwlSC08KAga410DRVy7XuhKaiBVmLSnai4bIUCykoGMMrXkNpNGsk5Ya3tDGGaFLO0eXedz0tRshOLgU9qHWwow5b5bVVf_4426ul3yhR15TnLOfo5cEg-G8TxKRGGw0Mg3bgp6hYyWpZEynq_6OMc8qZZDyjL-6hKz8Fl5PIVEPKklZEZOr578XfVX0cYQYu9oAJPsYAnTI27eaVe7GDokT9WhKVl0TtliQrXt1THE3_xh7cb-0A23-D6sOn66Pi2V6xismHOwXLYeaZsfInFw7X8w |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1084355 crossref_primary_10_1111_nph_18157 crossref_primary_10_3389_fpls_2023_1244591 crossref_primary_10_1016_j_rhisph_2022_100547 crossref_primary_10_3389_fsoil_2023_1129845 crossref_primary_10_1016_j_soilbio_2020_107961 crossref_primary_10_1080_17429145_2024_2323991 crossref_primary_10_1016_j_pedobi_2023_150873 crossref_primary_10_1094_MPMI_11_21_0281_FI crossref_primary_10_1111_1365_2745_13746 crossref_primary_10_1111_nph_17908 crossref_primary_10_1186_s12870_021_03370_2 crossref_primary_10_1016_j_scitotenv_2023_165689 crossref_primary_10_1016_j_scitotenv_2020_139554 crossref_primary_10_1126_science_aaz5192 crossref_primary_10_3390_microorganisms9061273 crossref_primary_10_1038_s41467_021_25675_4 crossref_primary_10_1038_s43247_024_01879_6 crossref_primary_10_1007_s00344_023_11115_8 crossref_primary_10_3390_su16177492 crossref_primary_10_1111_1365_2435_14626 crossref_primary_10_3390_metabo11030131 crossref_primary_10_1007_s42729_024_01660_w crossref_primary_10_1007_s40626_024_00323_6 crossref_primary_10_1038_s41477_021_00967_1 crossref_primary_10_1016_j_plaphy_2021_09_040 crossref_primary_10_1016_j_scitotenv_2024_176342 crossref_primary_10_3390_f15030515 crossref_primary_10_3390_ijms23042374 crossref_primary_10_1016_j_soilbio_2021_108384 crossref_primary_10_1111_1751_7915_14337 crossref_primary_10_3389_fsufs_2023_1253735 crossref_primary_10_1016_j_pedobi_2023_150929 crossref_primary_10_1007_s11104_023_06078_4 crossref_primary_10_1111_nph_19638 crossref_primary_10_1038_s41598_024_69945_9 crossref_primary_10_1007_s11427_024_2876_0 crossref_primary_10_1016_j_envexpbot_2024_105710 crossref_primary_10_3389_fmicb_2020_01892 crossref_primary_10_1016_j_scitotenv_2024_172116 crossref_primary_10_3390_agriculture14030370 crossref_primary_10_1007_s10021_020_00525_4 crossref_primary_10_1007_s11104_023_06204_2 crossref_primary_10_1021_acs_est_3c01816 crossref_primary_10_3389_fpls_2022_997292 crossref_primary_10_1111_nph_19060 crossref_primary_10_1093_jxb_erad045 crossref_primary_10_1016_j_isci_2021_102965 crossref_primary_10_1080_15592324_2022_2129295 crossref_primary_10_1007_s10533_022_00963_3 crossref_primary_10_1080_10643389_2024_2315009 crossref_primary_10_1016_j_soilbio_2021_108155 crossref_primary_10_1016_j_catena_2022_106661 crossref_primary_10_1525_elementa_2023_00007 crossref_primary_10_5194_nhess_24_3173_2024 crossref_primary_10_1016_j_pedsph_2023_07_014 crossref_primary_10_1111_nph_17326 crossref_primary_10_1111_nph_17604 crossref_primary_10_1111_nph_16757 crossref_primary_10_1016_j_soilbio_2021_108391 crossref_primary_10_1093_aob_mcae151 crossref_primary_10_3389_fsoil_2022_904259 crossref_primary_10_1098_rstb_2019_0112 crossref_primary_10_3390_microorganisms9091817 crossref_primary_10_1111_jac_12721 crossref_primary_10_1111_jipb_13154 crossref_primary_10_1093_jxb_erab256 crossref_primary_10_1016_j_apsoil_2024_105351 crossref_primary_10_1111_nph_16223 crossref_primary_10_3389_fevo_2023_1259809 crossref_primary_10_1016_j_apsoil_2023_104803 crossref_primary_10_1094_MPMI_04_23_0038_R crossref_primary_10_1111_1365_2745_13630 crossref_primary_10_1111_gcb_16270 crossref_primary_10_1051_e3sconf_202346302005 crossref_primary_10_1007_s00248_023_02303_w crossref_primary_10_3389_fenvs_2024_1338180 crossref_primary_10_1111_nph_16865 crossref_primary_10_1111_1365_2435_14244 crossref_primary_10_3390_plants12061209 crossref_primary_10_1016_j_apsoil_2021_104296 crossref_primary_10_1016_j_apsoil_2021_104294 crossref_primary_10_3389_fmicb_2024_1362722 crossref_primary_10_1186_s40168_021_01169_9 crossref_primary_10_1016_j_still_2020_104819 crossref_primary_10_1038_s41598_022_11754_z crossref_primary_10_1111_1365_2435_13723 crossref_primary_10_1016_j_scitotenv_2023_169048 crossref_primary_10_1111_ele_14129 crossref_primary_10_3390_agronomy14112551 crossref_primary_10_3390_plants12030630 crossref_primary_10_1016_j_foreco_2024_122413 crossref_primary_10_1016_j_geoderma_2024_117008 crossref_primary_10_1007_s10021_024_00946_5 crossref_primary_10_1016_j_still_2023_105872 crossref_primary_10_1007_s00374_022_01649_6 crossref_primary_10_1007_s11104_021_04963_4 crossref_primary_10_1016_j_apsoil_2020_103775 crossref_primary_10_1016_j_foreco_2023_121316 crossref_primary_10_1016_j_soilbio_2021_108453 crossref_primary_10_1038_s41598_021_80979_1 crossref_primary_10_1111_sum_12866 crossref_primary_10_1186_s40793_024_00550_z crossref_primary_10_1111_nph_18118 crossref_primary_10_1111_nph_18998 crossref_primary_10_1186_s40168_023_01513_1 crossref_primary_10_1111_gcb_16340 crossref_primary_10_1016_j_envexpbot_2024_106057 crossref_primary_10_1111_1365_2664_14641 crossref_primary_10_1016_j_scitotenv_2024_176307 crossref_primary_10_3389_fmicb_2021_644046 crossref_primary_10_3390_w16131920 crossref_primary_10_1007_s11104_023_06421_9 crossref_primary_10_1016_j_envres_2024_118387 crossref_primary_10_1002_sae2_70038 crossref_primary_10_3389_fpls_2022_1050104 crossref_primary_10_1016_j_tim_2023_09_010 crossref_primary_10_1002_sae2_12031 crossref_primary_10_1111_pce_14247 crossref_primary_10_1007_s11104_022_05800_y crossref_primary_10_1007_s11104_024_07049_z crossref_primary_10_1111_gcb_17028 crossref_primary_10_3390_land12020459 crossref_primary_10_1007_s11104_024_07188_3 crossref_primary_10_1007_s11104_022_05696_8 crossref_primary_10_1038_s42003_021_02037_w crossref_primary_10_1016_j_ecolind_2024_113005 crossref_primary_10_1007_s00344_023_11061_5 crossref_primary_10_1111_ppl_14181 crossref_primary_10_3390_plants12244155 crossref_primary_10_1111_gcbb_13148 crossref_primary_10_1007_s11368_024_03844_4 crossref_primary_10_1016_j_jenvman_2025_124746 crossref_primary_10_1029_2023EF004208 crossref_primary_10_1111_pce_13999 crossref_primary_10_1016_j_scitotenv_2023_164406 crossref_primary_10_1016_j_soilbio_2021_108350 crossref_primary_10_1007_s44177_023_00043_7 crossref_primary_10_1016_j_foreco_2022_120566 crossref_primary_10_1016_j_micres_2024_127698 crossref_primary_10_1111_pce_14694 crossref_primary_10_3389_fpls_2023_1272313 crossref_primary_10_3390_f12121797 crossref_primary_10_1016_j_rhisph_2024_100858 crossref_primary_10_1093_femsec_fiae056 crossref_primary_10_1016_j_catena_2023_107317 crossref_primary_10_1111_nph_16957 crossref_primary_10_1186_s40168_024_01933_7 crossref_primary_10_1007_s40333_022_0095_8 crossref_primary_10_1111_nph_18289 crossref_primary_10_1111_nph_19490 crossref_primary_10_1016_j_funbio_2024_09_001 crossref_primary_10_1080_09064710_2021_1948602 crossref_primary_10_3389_frmbi_2023_1310790 crossref_primary_10_1016_j_still_2022_105588 crossref_primary_10_1002_ppj2_20028 crossref_primary_10_1111_gcb_70065 crossref_primary_10_1007_s11104_022_05845_z crossref_primary_10_1111_pce_14466 crossref_primary_10_1016_j_soilbio_2025_109731 crossref_primary_10_1016_j_scitotenv_2022_160025 crossref_primary_10_1016_j_isci_2022_105243 crossref_primary_10_1111_nph_17118 crossref_primary_10_1016_j_soilbio_2023_109097 crossref_primary_10_1002_ael2_20077 crossref_primary_10_1016_j_scitotenv_2023_167354 crossref_primary_10_1016_j_copbio_2021_06_009 crossref_primary_10_1016_S1002_0160_21_60061_9 crossref_primary_10_3389_fpls_2022_1004553 crossref_primary_10_1038_s41467_023_41524_y crossref_primary_10_1186_s12284_023_00636_1 |
Cites_doi | 10.1111/gcb.12493 10.1111/nph.13146 10.1111/j.1469-8137.2004.01130.x 10.1016/j.soilbio.2009.10.009 10.1016/0038-0717(85)90144-0 10.3389/fpls.2018.01593 10.1016/j.apsoil.2015.04.009 10.1038/s41598-018-30150-0 10.1111/1574-6976.12028 10.1016/j.rhisph.2018.06.004 10.1002/ece3.4383 10.1007/s10533-014-0028-5 10.1002/ecs2.1256 10.1016/j.soilbio.2018.04.012 10.1016/j.apsoil.2018.02.014 10.1007/s11104-016-3090-z 10.1111/nph.13832 10.1073/pnas.1118650109 10.1016/0038-0717(93)90113-P 10.1055/s-2001-12905 10.1016/j.soilbio.2007.08.008 10.1038/s41467-018-05516-7 10.1007/BF02280176 10.1016/S0038-0717(03)00154-8 10.1111/gcb.12620 10.1007/s00248-003-2002-y 10.1016/j.soilbio.2014.09.023 10.1016/0038-0717(90)90104-8 10.1111/ele.12601 10.1111/nph.12569 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 10.1111/j.1461-0248.2010.01570.x 10.1007/s00374-008-0334-y 10.1016/j.envexpbot.2012.11.007 10.1016/S0038-0717(03)00105-6 10.1016/j.tplants.2016.01.009 10.1111/1365-2745.12977 10.1016/j.tree.2014.10.006 10.4141/cjss2010-057 10.1146/annurev-ecolsys-110617-062614 10.1016/j.apsoil.2011.02.004 10.1016/j.rhisph.2016.06.003 10.1007/s11104-009-9925-0 10.1016/j.envexpbot.2017.03.009 10.1111/j.1469-8137.2009.03044.x 10.1002/ece3.311 10.1128/AEM.69.6.3593-3599.2003 10.1016/j.soilbio.2018.10.010 10.3389/fmicb.2013.00216 10.1111/1365-2745.12910 10.1016/j.soilbio.2014.04.033 10.1038/s41564-018-0129-3 10.1016/j.soilbio.2012.08.031 10.1016/j.soilbio.2005.05.021 10.1186/s40168-018-0615-0 10.1111/gcb.14508 10.1007/s11104-016-2964-4 10.1016/j.soilbio.2006.01.022 10.3389/fpls.2019.00157 |
ContentType | Journal Article |
Copyright | 2019 The Authors © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. Copyright © 2019 New Phytologist Trust |
Copyright_xml | – notice: 2019 The Authors © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. – notice: Copyright © 2019 New Phytologist Trust |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.16001 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 145 |
ExternalDocumentID | PMC6771481 31218693 10_1111_nph_16001 NPH16001 26779762 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/L02456X/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L02456X/1 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5641-cecefdce885d4aaf6a16de97659f684936b961ecc4547e3ca28914c4d18cc0a03 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 14:32:08 EDT 2025 Fri Jul 11 18:33:57 EDT 2025 Fri Jul 11 03:07:31 EDT 2025 Sat Aug 23 12:26:27 EDT 2025 Thu Apr 03 06:59:05 EDT 2025 Tue Jul 01 02:28:32 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Wed Jan 22 16:38:59 EST 2025 Thu Jul 03 22:04:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | root traits plant-soil interactions drought soil fungi carbon root exudate soil bacteria climate change |
Language | English |
License | Attribution 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5641-cecefdce885d4aaf6a16de97659f684936b961ecc4547e3ca28914c4d18cc0a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6247-2853 0000-0002-6822-8883 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16001 |
PMID | 31218693 |
PQID | 2280331506 |
PQPubID | 2026848 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771481 proquest_miscellaneous_2327970967 proquest_miscellaneous_2244142924 proquest_journals_2280331506 pubmed_primary_31218693 crossref_citationtrail_10_1111_nph_16001 crossref_primary_10_1111_nph_16001 wiley_primary_10_1111_nph_16001_NPH16001 jstor_primary_26779762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1993; 25 2013; 4 1989; 113 2019; 10 2006; 38 2004; 163 2018; 123 2018; 126 2014; 29 2019; 128 2015; 80 2011; 14 2018; 49 2014; 20 2018; 6 1985; 17 2018; 9 2018; 8 2018; 3 2013; 57 2019; 25 2009; 321 1999; 52 2018b; 106 2003; 45 2014; 201 2016; 19 2015; 93 2018; 106 2013; 87 2015; 122 2016; 409 2003; 35 2004 2015; 205 2017; 138 2012; 109 2001; 82 2012; 92 2016; 7 2010; 42 2012; 2 2013; 37 1990; 22 2016; 2 2016; 21 2003; 69 2008; 45 2016; 210 2001; 3 2016 2009; 184 2011; 48 2008; 40 2018a; 9 2014; 76 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 Findlay RH (e_1_2_7_23_1) 2004 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 R Core Team (e_1_2_7_52_1) 2016 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Kuzyakov Y (e_1_2_7_39_1) 1999; 52 |
References_xml | – volume: 29 start-page: 692 year: 2014 end-page: 699 article-title: Going underground: root traits as drivers of ecosystem processes publication-title: Trends in Ecology & Evolution – volume: 19 start-page: 648 year: 2016 end-page: 656 article-title: Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism publication-title: Ecology Letters – volume: 8 start-page: 8573 year: 2018 end-page: 8581 article-title: Root exudation rate as functional trait involved in plant nutrient‐use strategy classification publication-title: Ecology and Evolution – volume: 14 start-page: 187 year: 2011 end-page: 194 article-title: Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long‐term CO fumigation publication-title: Ecology Letters – volume: 2 start-page: 85 year: 2016 end-page: 97 article-title: Drought effects on and metabolites: from phloem to root exudates publication-title: Rhizosphere – volume: 321 start-page: 5 year: 2009 end-page: 33 article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface publication-title: Plant and Soil – volume: 49 start-page: 409 year: 2018 end-page: 432 article-title: Life in dry soils: effects of drought on soil microbial communities and processes publication-title: Annual review of ecology, evolution, and systematics – volume: 21 start-page: 209 year: 2016 end-page: 217 article-title: Root–root interactions: towards a rhizosphere framework publication-title: Trends in Plant Science – volume: 4 start-page: e216 year: 2013 article-title: Rhizosphere priming: a nutrient perspective publication-title: Frontiers in Microbiology – volume: 35 start-page: 775 year: 2003 end-page: 782 article-title: CO evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation publication-title: Soil Biology & Biochemistry – volume: 184 start-page: 950 year: 2009 end-page: 961 article-title: Drought effects on allocation of recent carbon: from beech leaves to soil CO efflux publication-title: New Phytologist – volume: 37 start-page: 634 year: 2013 end-page: 663 article-title: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms publication-title: FEMS Microbiology Reviews – volume: 205 start-page: 1117 year: 2015 end-page: 1127 article-title: Summer drought alters carbon allocation to roots and root respiration in mountain grassland publication-title: New Phytologist – volume: 87 start-page: 235 year: 2013 end-page: 247 article-title: Evaluation of a novel tool for sampling root exudates from soil‐grown plants compared to conventional techniques publication-title: Environmental and Experimental Botany – volume: 409 start-page: 1 year: 2016 end-page: 17 article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience publication-title: Plant and Soil – volume: 48 start-page: 38 year: 2011 end-page: 44 article-title: Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition publication-title: Applied Soil Ecology – volume: 17 start-page: 837 year: 1985 end-page: 842 article-title: Chloroform fumigation and the release of soil‐nitrogen – a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biology & Biochemistry – volume: 25 start-page: 723 year: 1993 end-page: 730 article-title: Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis publication-title: Soil Biology & Biochemistry – volume: 123 start-page: 54 year: 2018 end-page: 63 article-title: Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere publication-title: Soil Biology & Biochemistry – volume: 106 start-page: 2320 year: 2018 end-page: 2331 article-title: Multi‐dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes publication-title: Journal of Ecology – volume: 20 start-page: 1174 year: 2014 end-page: 1190 article-title: Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model publication-title: Global Change Biology – volume: 38 start-page: 509 year: 2006 end-page: 516 article-title: Root exudate effects on the bacterial communities, CO evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils publication-title: Soil Biology & Biochemistry – volume: 80 start-page: 146 year: 2015 end-page: 155 article-title: Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species publication-title: Soil Biology & Biochemistry – volume: 109 start-page: 2666 year: 2012 end-page: 2671 article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis publication-title: Proceedings of the National Academy of Sciences, USA – start-page: 983 year: 2004 end-page: 1005 – volume: 3 start-page: 470 year: 2018 end-page: 480 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nature Microbiology – volume: 35 start-page: 955 year: 2003 end-page: 963 article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techniques publication-title: Soil Biology & Biochemistry – volume: 163 start-page: 459 year: 2004 end-page: 480 article-title: Plant and mycorrhizal regulation of rhizodeposition publication-title: New Phytologist – volume: 82 start-page: 2397 year: 2001 end-page: 2402 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology – start-page: 297 year: 2016 end-page: 312 article-title: Grassland species root response to drought: consequences for soil carbon and nitrogen availability publication-title: Plant and Soil – volume: 42 start-page: 162 year: 2010 end-page: 168 article-title: Plant species influence microbial diversity and carbon allocation in the rhizosphere publication-title: Soil Biology & Biochemistry – volume: 9 start-page: e1593 year: 2018a article-title: Drought‐induced accumulation of root exudates supports post‐drought recovery of microbes in mountain grassland publication-title: Frontiers in Plant Science – volume: 7 start-page: e01256 year: 2016 article-title: Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism publication-title: Ecosphere – volume: 106 start-page: 1230 year: 2018b end-page: 1243 article-title: Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant–microbial interactions publication-title: Journal of Ecology – volume: 93 start-page: 78 year: 2015 end-page: 87 article-title: Identification of benzoic acid and 3‐phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms publication-title: Applied Soil Ecology – volume: 138 start-page: 46 year: 2017 end-page: 56 article-title: Rapid response of the carbon balance strategy in and to recurrent drought publication-title: Environmental and Experimental Botany – volume: 8 start-page: e12696 year: 2018 article-title: Root exudate metabolomes change under drought and show limited capacity for recovery publication-title: Scientific Reports – volume: 113 start-page: 161 year: 1989 end-page: 165 article-title: Solubilization of rock phosphate by rape. II. Local root exduation of organic acids as a response to P‐starvation publication-title: Plant and Soil – volume: 126 start-page: 160 year: 2018 end-page: 164 article-title: Drought responses of root biomass provide an indicator of soil microbial drought resistance in grass monocultures publication-title: Applied Soil Ecology – volume: 22 start-page: 301 year: 1990 end-page: 307 article-title: Estimation of soil microbial C by a fumigation–extraction method: use on soils of high organic matter content, and a reassessment of the ‐factor publication-title: Soil Biology & Biochemistry – volume: 6 start-page: e231 year: 2018 article-title: Rhizosphere microorganisms can influence the timing of plant flowering publication-title: Microbiome – year: 2016 – volume: 69 start-page: 3593 year: 2003 end-page: 3599 article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil publication-title: Applied and Environmental Microbiology – volume: 20 start-page: 3229 year: 2014 end-page: 3237 article-title: Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration publication-title: Global Change Biology – volume: 40 start-page: 302 year: 2008 end-page: 311 article-title: Drying and rewetting effects on soil microbial community composition and nutrient leaching publication-title: Soil Biology & Biochemistry – volume: 9 start-page: e3033 year: 2018 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications – volume: 45 start-page: 115 year: 2008 end-page: 131 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biology and Fertility of Soils – volume: 128 start-page: 111 year: 2019 end-page: 114 article-title: The ratio of Gram‐positive to Gram‐negative bacterial PLFA markers as an indicator of carbon availability in organic soils publication-title: Soil Biology & Biochemistry – volume: 201 start-page: 916 year: 2014 end-page: 927 article-title: Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow publication-title: New Phytologist – volume: 122 start-page: 47 year: 2015 end-page: 59 article-title: A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe N cycling publication-title: Biogeochemistry – volume: 92 start-page: 501 year: 2012 end-page: 507 article-title: Response to water stress of soil enzymes and root exudates from drought and non‐drought tolerant corn hybrids at different growth stages publication-title: Canadian Journal of Soil Science – volume: 45 start-page: 373 year: 2003 end-page: 383 article-title: The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi publication-title: Microbial Ecology – volume: 2 start-page: 1843 year: 2012 end-page: 1852 article-title: Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects publication-title: Ecology and Evolution – volume: 10 start-page: e157 year: 2019 article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli publication-title: Frontiers in Plant Science – volume: 210 start-page: 861 year: 2016 end-page: 874 article-title: Plant community controls on short‐term ecosystem nitrogen retention publication-title: New Phytologist – volume: 3 start-page: 139 year: 2001 end-page: 148 article-title: Characterization of root exudates at different growth stages of ten rice ( L.) cultivars publication-title: Plant Biology – volume: 38 start-page: 2219 year: 2006 end-page: 2232 article-title: Microbial community utilization of added carbon substrates in response to long‐term carbon input manipulation publication-title: Soil Biology & Biochemistry – volume: 52 start-page: 25 year: 1999 end-page: 34 article-title: Abbau der Rückstände von und dadurch initiierte Priming‐Effekte in Boden unterschiedliger Nutzung publication-title: Agrobiological Research – volume: 57 start-page: 477 year: 2013 end-page: 486 article-title: Bacterial growth and respiration responses upon rewetting dry forest soils: impact of drought‐legacy publication-title: Soil Biology & Biochemistry – volume: 25 start-page: 1005 year: 2019 end-page: 1015 article-title: Soil microbial moisture dependences and responses to drying–rewetting: the legacy of 18 years drought publication-title: Global Change Biology – volume: 76 start-page: 183 year: 2014 end-page: 192 article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization publication-title: Soil Biology & Biochemistry – volume: 6 start-page: 116 year: 2018 end-page: 133 article-title: Sampling root exudates – mission impossible? publication-title: Rhizosphere – ident: e_1_2_7_49_1 doi: 10.1111/gcb.12493 – ident: e_1_2_7_31_1 doi: 10.1111/nph.13146 – ident: e_1_2_7_34_1 doi: 10.1111/j.1469-8137.2004.01130.x – ident: e_1_2_7_40_1 doi: 10.1016/j.soilbio.2009.10.009 – ident: e_1_2_7_11_1 doi: 10.1016/0038-0717(85)90144-0 – ident: e_1_2_7_36_1 doi: 10.3389/fpls.2018.01593 – ident: e_1_2_7_42_1 doi: 10.1016/j.apsoil.2015.04.009 – ident: e_1_2_7_26_1 doi: 10.1038/s41598-018-30150-0 – ident: e_1_2_7_44_1 doi: 10.1111/1574-6976.12028 – ident: e_1_2_7_48_1 doi: 10.1016/j.rhisph.2018.06.004 – ident: e_1_2_7_29_1 doi: 10.1002/ece3.4383 – ident: e_1_2_7_38_1 doi: 10.1007/s10533-014-0028-5 – ident: e_1_2_7_33_1 doi: 10.1002/ecs2.1256 – ident: e_1_2_7_15_1 doi: 10.1016/j.soilbio.2018.04.012 – ident: e_1_2_7_9_1 doi: 10.1016/j.apsoil.2018.02.014 – ident: e_1_2_7_51_1 doi: 10.1007/s11104-016-3090-z – ident: e_1_2_7_16_1 doi: 10.1111/nph.13832 – ident: e_1_2_7_22_1 doi: 10.1073/pnas.1118650109 – ident: e_1_2_7_24_1 doi: 10.1016/0038-0717(93)90113-P – ident: e_1_2_7_3_1 doi: 10.1055/s-2001-12905 – ident: e_1_2_7_28_1 doi: 10.1016/j.soilbio.2007.08.008 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-018-05516-7 – ident: e_1_2_7_32_1 doi: 10.1007/BF02280176 – ident: e_1_2_7_5_1 doi: 10.1016/S0038-0717(03)00154-8 – ident: e_1_2_7_59_1 doi: 10.1111/gcb.12620 – ident: e_1_2_7_4_1 doi: 10.1007/s00248-003-2002-y – ident: e_1_2_7_56_1 doi: 10.1016/j.soilbio.2014.09.023 – ident: e_1_2_7_58_1 doi: 10.1016/0038-0717(90)90104-8 – ident: e_1_2_7_2_1 doi: 10.1111/ele.12601 – ident: e_1_2_7_25_1 doi: 10.1111/nph.12569 – ident: e_1_2_7_30_1 doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – ident: e_1_2_7_50_1 doi: 10.1111/j.1461-0248.2010.01570.x – ident: e_1_2_7_8_1 doi: 10.1007/s00374-008-0334-y – ident: e_1_2_7_47_1 doi: 10.1016/j.envexpbot.2012.11.007 – ident: e_1_2_7_20_1 doi: 10.1016/S0038-0717(03)00105-6 – ident: e_1_2_7_45_1 doi: 10.1016/j.tplants.2016.01.009 – ident: e_1_2_7_62_1 doi: 10.1111/1365-2745.12977 – ident: e_1_2_7_6_1 doi: 10.1016/j.tree.2014.10.006 – ident: e_1_2_7_57_1 doi: 10.4141/cjss2010-057 – ident: e_1_2_7_55_1 doi: 10.1146/annurev-ecolsys-110617-062614 – ident: e_1_2_7_54_1 doi: 10.1016/j.apsoil.2011.02.004 – ident: e_1_2_7_14_1 doi: 10.1016/j.rhisph.2016.06.003 – ident: e_1_2_7_35_1 doi: 10.1007/s11104-009-9925-0 – ident: e_1_2_7_60_1 doi: 10.1016/j.envexpbot.2017.03.009 – ident: e_1_2_7_53_1 doi: 10.1111/j.1469-8137.2009.03044.x – ident: e_1_2_7_7_1 doi: 10.1002/ece3.311 – ident: e_1_2_7_12_1 doi: 10.1128/AEM.69.6.3593-3599.2003 – ident: e_1_2_7_21_1 doi: 10.1016/j.soilbio.2018.10.010 – volume: 52 start-page: 25 year: 1999 ident: e_1_2_7_39_1 article-title: Abbau der Rückstände von Lolium perenne und dadurch initiierte Priming‐Effekte in Boden unterschiedliger Nutzung publication-title: Agrobiological Research – volume-title: R: a language and environment for statistical computing year: 2016 ident: e_1_2_7_52_1 – ident: e_1_2_7_19_1 doi: 10.3389/fmicb.2013.00216 – ident: e_1_2_7_37_1 doi: 10.1111/1365-2745.12910 – ident: e_1_2_7_63_1 doi: 10.1016/j.soilbio.2014.04.033 – ident: e_1_2_7_61_1 doi: 10.1038/s41564-018-0129-3 – ident: e_1_2_7_27_1 doi: 10.1016/j.soilbio.2012.08.031 – ident: e_1_2_7_41_1 doi: 10.1016/j.soilbio.2005.05.021 – ident: e_1_2_7_43_1 doi: 10.1186/s40168-018-0615-0 – start-page: 983 volume-title: Molecular microbial ecology manual year: 2004 ident: e_1_2_7_23_1 – ident: e_1_2_7_46_1 doi: 10.1111/gcb.14508 – ident: e_1_2_7_17_1 doi: 10.1007/s11104-016-2964-4 – ident: e_1_2_7_10_1 doi: 10.1016/j.soilbio.2006.01.022 – ident: e_1_2_7_13_1 doi: 10.3389/fpls.2019.00157 |
SSID | ssj0009562 |
Score | 2.6457057 |
Snippet | Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root... Summary Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality... Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 132 |
SubjectTerms | Biological activity Biomass carbon Carbon - metabolism Carbon Cycle Cell Respiration Climate change Drought Droughts Ecosystem Ecosystems Exudates Exudation forbs grasses Grasslands Holcus - microbiology Holcus - physiology Holcus lanatus Microbial activity Microorganisms Nitrogen - metabolism Organic Chemicals - metabolism Plant Exudates - metabolism Plant Roots - cytology Plant Roots - physiology Plant Shoots - physiology plant–soil interactions Regrowth Respiration root exudate root exudates root systems root traits Roots Rumex - microbiology Rumex - physiology Rumex acetosa Soil soil bacteria soil fungi Soil Microbiology soil respiration Soil treatment Soils Species Specificity |
Title | Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling |
URI | https://www.jstor.org/stable/26779762 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16001 https://www.ncbi.nlm.nih.gov/pubmed/31218693 https://www.proquest.com/docview/2280331506 https://www.proquest.com/docview/2244142924 https://www.proquest.com/docview/2327970967 https://pubmed.ncbi.nlm.nih.gov/PMC6771481 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VigMX3gVDqRbEoRdX8e567YgTIKqIQ1UhKuWAZO0rJKJ1qsQBygV-Ar-RX8LMrm0lUBDiZstjex8z9je7M98APOVlKUtdmtSaTKTSK58aV7g0N34wmXieGRMCZI_U6ES-HufjLXjW5cJEfoh-wY0sI3yvycC1Wa4ZeX0-paWRkLtFsVoEiN7wNcJdxTsGZiXVuGUVoiie_s6Nf1EMR7wMaP4eL7mOY8OP6PAGvOu6EONPPhysGnNgv_zC7viffbwJ11uAyp5HjboFW76-DVdfzBFEXtyBrzEbYclmNUPM3fz49t1_XtGqAR6he4-K4tii3b7HKWfEEIWP06yef_Sn7MxTpvFsecbaAkHs03Rmp8yFk4bpGF7C0CmOHNPM6oXB59gLyuF8fxdODl-9fTlK2xoOqc2VzFLrrZ_gwJVl7qTWE6Uz5TxioHw4UaUcCmWGKkM9ImIxL6xGBzCTVrqstHagB2IHtut57e8Dc0XYtNUC75Hc2XKQa-4UARxlnNMJ7HezWdmW4JzqbJxWnaODw1mF4UzgSS96Hlk9LhPaCSrRS3BVFNhynsBupyNVa_HLimiFhCC-xgQe95fRVmkDRtd-viIZBJ9UH0z-RUZwfAk6lkUC96La9Q0QWaggJhIoNhSyFyCu8M0r9WwaOMOx6ej4Yp_2g779udfV0fEoHDz4d9GHcA1x5DDGOO7CdrNY-UeI1RqzB1e4PN4LpvkTrIlBHA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv_BcCBQwCqZdUieM42QMHoFRbWlYItdLeUv-FXbXNVrtZynKBR-BBeBVegidh7PxoFwri0gO3RJk4djxjz9ifvwF4QtOUpSKVvpJh5DPDjS91ov1YmiDPDQ2ldADZHu_us9f9uL8E35qzMBU_RLvgZi3DjdfWwO2C9JyVFycDuzYShDWkcsfMTjFgmzzb3sTefUrp1qu9l12_zingq5iz0FdGmVwrk6axZkLkXIRcG5yT407OU9aJuOzwENtlia5MpAQGJCFTTIepUoEIIiz3Aly0GcQtU__mOzpH8ctpw_nMGe_XPEYWN9RWdWH2qwCQZ7m2vyM05z1nN_VtXYXvzU-rEC-HG9NSbqhPv_BJ_i9_9RpcqX1w8rwymuuwZIobcOnFCP3k2U34XB24mJBhQTCsKH98-Wo-Tu3CCF4NC422oMm4RiigVhNLgoXFCVKMPpgjcmzsYerh5JjUOZDI6WCoBkS7m5KICkFDMO6vaLSJEmOJ5aiZPab6_hbsn0vjV2G5GBXmDhCduH1pEeE7jGqVBrGgmlsfjkuthQfrjfpkquZwt6lEjrImlsPuy1z3efC4FT2piEvOElp1OthKUJ4kWHPqwVqjlFk9qE0yy5wURZaS0oNH7WMcjuwekyjMaGpl0L-2KdDYX2Qiih_B2Dnx4Hal520FotAlSYs8SBYsoBWwdOiLT4rhwNGiY9Uxtsc2rTsF_3Ors97brru4---iD-Fyd-_Nbra73du5ByvoNncqSOcaLJfjqbmPrmkpH7gRgcDBeRvLTwktoAc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VghAXVB4FQ4EFgdSLJXt3vXYOHGhLlFIU5UCl3My-TCK1TpQHJSf4CfwP_hW_pLPrhxJREJfebHmy3s3MeL_Znf0G4DXNMp7JTIVaxSzkVthQmdSEibJRUVgaK-UTZPuid8o_DJPhFvxqzsJU_BDtgpvzDP-9dg4-NcWak5fTkVsaieI6o_LEri4wXpu_PT5C5b6htPv-02EvrEsKhDoRPA611bYw2mZZYriUhZCxMBan5KRTiIx3mFAdEeOwHM-VZVpiPBJzzU2caR3JiGG7N-Cm21x0-WOUD9YYfgVtKJ8FF8OaxsilDbVd3Zj8qvzHq5Dtnwma68DZz3zdHbhbQ1byrrKxe7Bly_tw62CCsHL1AL5X5xPmZFwSROGL3z9-2m9Lt46AVxjwo-kYMqs39NEIiOOMwuYkKSdf7Rk5t-7s8Xh-TuqSQeRiNNYjYvzNgsgq4YRgmFyxThMtZwrb0St3qvPLQzi9FhXswnY5Ke1jICb127iS4W84NTqLEkmNcJBHKGNkAPvN353rmvLcVd44y5vQBzWTe80E8KoVnVY8H1cJ7XqdtRJUpCn2nAaw1ygxr78B89wRDTHmGBwDeNk-Ru91WzKytJOlk0E46iqG8X_IMIovwVAzDeBRZRdtB1jsa4qxANINi2kFHHv45pNyPPIs4th1DIVxTPvetv4-6rw_6PmLJ_8v-gJuD466-cfj_slTuIMgs1MlQO7B9mK2tM8QyC3Uc-9ABD5ft8deAtomXeY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+root-exudate-induced+respiration+reveal+a+novel+mechanism+through+which+drought+affects+ecosystem+carbon+cycling&rft.jtitle=The+New+phytologist&rft.au=de+Vries%2C+Franciska+T&rft.au=Williams%2C+Alex&rft.au=Stringer%2C+Fiona&rft.au=Willcocks%2C+Robert&rft.date=2019-10-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=224&rft.issue=1&rft.spage=132&rft_id=info:doi/10.1111%2Fnph.16001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |