Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling

Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species tha...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 224; no. 1; pp. 132 - 145
Main Authors de Vries, Franciska T., Williams, Alex, Stringer, Fiona, Willcocks, Robert, McEwing, Rosie, Langridge, Holly, Straathof, Angela L.
Format Journal Article
LanguageEnglish
Published England Wiley 01.10.2019
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.
AbstractList Summary Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set‐up to measure root‐exudate‐induced respiration. We found that soil treatment was unimportant for determining root‐exudate‐induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set‐up to measure root‐exudate‐induced respiration. We found that soil treatment was unimportant for determining root‐exudate‐induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa , to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set‐up to measure root‐exudate‐induced respiration. We found that soil treatment was unimportant for determining root‐exudate‐induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root exudates are unknown. Here, we addressed this knowledge gap in a unique experimental approach. We subjected two common grassland species that differ widely in their growth strategies and root systems, the grass Holcus lanatus and the forb Rumex acetosa, to 2 wk of drought. We collected root exudates and soils at the end of the drought and after 2 wk of recovery and readded all root exudates to all soils in a fully reciprocal set-up to measure root-exudate-induced respiration. We found that soil treatment was unimportant for determining root-exudate-induced respiration. By contrast, root exudates collected from plants that had experienced drought clearly triggered more soil respiration than exudates from undroughted plants. Importantly, this increased respiration compensated for the lower rates of root exudation in droughted plants. Our findings reveal a novel mechanism through which drought can continue to affect ecosystem carbon cycling, and a potential plant strategy to facilitate regrowth through stimulating microbial activity. These findings have important implications for understanding plant and ecosystem response to drought.
Author McEwing, Rosie
de Vries, Franciska T.
Langridge, Holly
Stringer, Fiona
Willcocks, Robert
Williams, Alex
Straathof, Angela L.
AuthorAffiliation 1 School of Earth and Environmental Sciences The University of Manchester Oxford Road Manchester M13 9PT UK
2 Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam PO Box 94240 Amsterdam 1090 GE the Netherlands
AuthorAffiliation_xml – name: 2 Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam PO Box 94240 Amsterdam 1090 GE the Netherlands
– name: 1 School of Earth and Environmental Sciences The University of Manchester Oxford Road Manchester M13 9PT UK
Author_xml – sequence: 1
  givenname: Franciska T.
  surname: de Vries
  fullname: de Vries, Franciska T.
– sequence: 2
  givenname: Alex
  surname: Williams
  fullname: Williams, Alex
– sequence: 3
  givenname: Fiona
  surname: Stringer
  fullname: Stringer, Fiona
– sequence: 4
  givenname: Robert
  surname: Willcocks
  fullname: Willcocks, Robert
– sequence: 5
  givenname: Rosie
  surname: McEwing
  fullname: McEwing, Rosie
– sequence: 6
  givenname: Holly
  surname: Langridge
  fullname: Langridge, Holly
– sequence: 7
  givenname: Angela L.
  surname: Straathof
  fullname: Straathof, Angela L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31218693$$D View this record in MEDLINE/PubMed
BookMark eNqFkk-LFDEQxYOsuLOjBz-AEvCih95N0ul057Igi7rCoh4UvIVMuno6Q3cyJulZB7-8cf4suijmEkJ-71H1qs7QifMOEHpKyTnN58Kt-3MqCKEP0IxyIYuGlvUJmhHCmkJw8fUUncW4IoTISrBH6LSkjDZCljP046rXbgkRW4eD96mA71OrExTWtZOBFgeIaxt0sj4DsAE9YI2d38CARzBZbOOIUx_8tOzxbW9Nj9vdI2HddWBSxGB83MYEIzY6LLKP2ZrBuuVj9LDTQ4Qnh3uOvrx98_nqurj5-O791eubwlSC08KAga410DRVy7XuhKaiBVmLSnai4bIUCykoGMMrXkNpNGsk5Ya3tDGGaFLO0eXedz0tRshOLgU9qHWwow5b5bVVf_4426ul3yhR15TnLOfo5cEg-G8TxKRGGw0Mg3bgp6hYyWpZEynq_6OMc8qZZDyjL-6hKz8Fl5PIVEPKklZEZOr578XfVX0cYQYu9oAJPsYAnTI27eaVe7GDokT9WhKVl0TtliQrXt1THE3_xh7cb-0A23-D6sOn66Pi2V6xismHOwXLYeaZsfInFw7X8w
CitedBy_id crossref_primary_10_3389_fpls_2023_1084355
crossref_primary_10_1111_nph_18157
crossref_primary_10_3389_fpls_2023_1244591
crossref_primary_10_1016_j_rhisph_2022_100547
crossref_primary_10_3389_fsoil_2023_1129845
crossref_primary_10_1016_j_soilbio_2020_107961
crossref_primary_10_1080_17429145_2024_2323991
crossref_primary_10_1016_j_pedobi_2023_150873
crossref_primary_10_1094_MPMI_11_21_0281_FI
crossref_primary_10_1111_1365_2745_13746
crossref_primary_10_1111_nph_17908
crossref_primary_10_1186_s12870_021_03370_2
crossref_primary_10_1016_j_scitotenv_2023_165689
crossref_primary_10_1016_j_scitotenv_2020_139554
crossref_primary_10_1126_science_aaz5192
crossref_primary_10_3390_microorganisms9061273
crossref_primary_10_1038_s41467_021_25675_4
crossref_primary_10_1038_s43247_024_01879_6
crossref_primary_10_1007_s00344_023_11115_8
crossref_primary_10_3390_su16177492
crossref_primary_10_1111_1365_2435_14626
crossref_primary_10_3390_metabo11030131
crossref_primary_10_1007_s42729_024_01660_w
crossref_primary_10_1007_s40626_024_00323_6
crossref_primary_10_1038_s41477_021_00967_1
crossref_primary_10_1016_j_plaphy_2021_09_040
crossref_primary_10_1016_j_scitotenv_2024_176342
crossref_primary_10_3390_f15030515
crossref_primary_10_3390_ijms23042374
crossref_primary_10_1016_j_soilbio_2021_108384
crossref_primary_10_1111_1751_7915_14337
crossref_primary_10_3389_fsufs_2023_1253735
crossref_primary_10_1016_j_pedobi_2023_150929
crossref_primary_10_1007_s11104_023_06078_4
crossref_primary_10_1111_nph_19638
crossref_primary_10_1038_s41598_024_69945_9
crossref_primary_10_1007_s11427_024_2876_0
crossref_primary_10_1016_j_envexpbot_2024_105710
crossref_primary_10_3389_fmicb_2020_01892
crossref_primary_10_1016_j_scitotenv_2024_172116
crossref_primary_10_3390_agriculture14030370
crossref_primary_10_1007_s10021_020_00525_4
crossref_primary_10_1007_s11104_023_06204_2
crossref_primary_10_1021_acs_est_3c01816
crossref_primary_10_3389_fpls_2022_997292
crossref_primary_10_1111_nph_19060
crossref_primary_10_1093_jxb_erad045
crossref_primary_10_1016_j_isci_2021_102965
crossref_primary_10_1080_15592324_2022_2129295
crossref_primary_10_1007_s10533_022_00963_3
crossref_primary_10_1080_10643389_2024_2315009
crossref_primary_10_1016_j_soilbio_2021_108155
crossref_primary_10_1016_j_catena_2022_106661
crossref_primary_10_1525_elementa_2023_00007
crossref_primary_10_5194_nhess_24_3173_2024
crossref_primary_10_1016_j_pedsph_2023_07_014
crossref_primary_10_1111_nph_17326
crossref_primary_10_1111_nph_17604
crossref_primary_10_1111_nph_16757
crossref_primary_10_1016_j_soilbio_2021_108391
crossref_primary_10_1093_aob_mcae151
crossref_primary_10_3389_fsoil_2022_904259
crossref_primary_10_1098_rstb_2019_0112
crossref_primary_10_3390_microorganisms9091817
crossref_primary_10_1111_jac_12721
crossref_primary_10_1111_jipb_13154
crossref_primary_10_1093_jxb_erab256
crossref_primary_10_1016_j_apsoil_2024_105351
crossref_primary_10_1111_nph_16223
crossref_primary_10_3389_fevo_2023_1259809
crossref_primary_10_1016_j_apsoil_2023_104803
crossref_primary_10_1094_MPMI_04_23_0038_R
crossref_primary_10_1111_1365_2745_13630
crossref_primary_10_1111_gcb_16270
crossref_primary_10_1051_e3sconf_202346302005
crossref_primary_10_1007_s00248_023_02303_w
crossref_primary_10_3389_fenvs_2024_1338180
crossref_primary_10_1111_nph_16865
crossref_primary_10_1111_1365_2435_14244
crossref_primary_10_3390_plants12061209
crossref_primary_10_1016_j_apsoil_2021_104296
crossref_primary_10_1016_j_apsoil_2021_104294
crossref_primary_10_3389_fmicb_2024_1362722
crossref_primary_10_1186_s40168_021_01169_9
crossref_primary_10_1016_j_still_2020_104819
crossref_primary_10_1038_s41598_022_11754_z
crossref_primary_10_1111_1365_2435_13723
crossref_primary_10_1016_j_scitotenv_2023_169048
crossref_primary_10_1111_ele_14129
crossref_primary_10_3390_agronomy14112551
crossref_primary_10_3390_plants12030630
crossref_primary_10_1016_j_foreco_2024_122413
crossref_primary_10_1016_j_geoderma_2024_117008
crossref_primary_10_1007_s10021_024_00946_5
crossref_primary_10_1016_j_still_2023_105872
crossref_primary_10_1007_s00374_022_01649_6
crossref_primary_10_1007_s11104_021_04963_4
crossref_primary_10_1016_j_apsoil_2020_103775
crossref_primary_10_1016_j_foreco_2023_121316
crossref_primary_10_1016_j_soilbio_2021_108453
crossref_primary_10_1038_s41598_021_80979_1
crossref_primary_10_1111_sum_12866
crossref_primary_10_1186_s40793_024_00550_z
crossref_primary_10_1111_nph_18118
crossref_primary_10_1111_nph_18998
crossref_primary_10_1186_s40168_023_01513_1
crossref_primary_10_1111_gcb_16340
crossref_primary_10_1016_j_envexpbot_2024_106057
crossref_primary_10_1111_1365_2664_14641
crossref_primary_10_1016_j_scitotenv_2024_176307
crossref_primary_10_3389_fmicb_2021_644046
crossref_primary_10_3390_w16131920
crossref_primary_10_1007_s11104_023_06421_9
crossref_primary_10_1016_j_envres_2024_118387
crossref_primary_10_1002_sae2_70038
crossref_primary_10_3389_fpls_2022_1050104
crossref_primary_10_1016_j_tim_2023_09_010
crossref_primary_10_1002_sae2_12031
crossref_primary_10_1111_pce_14247
crossref_primary_10_1007_s11104_022_05800_y
crossref_primary_10_1007_s11104_024_07049_z
crossref_primary_10_1111_gcb_17028
crossref_primary_10_3390_land12020459
crossref_primary_10_1007_s11104_024_07188_3
crossref_primary_10_1007_s11104_022_05696_8
crossref_primary_10_1038_s42003_021_02037_w
crossref_primary_10_1016_j_ecolind_2024_113005
crossref_primary_10_1007_s00344_023_11061_5
crossref_primary_10_1111_ppl_14181
crossref_primary_10_3390_plants12244155
crossref_primary_10_1111_gcbb_13148
crossref_primary_10_1007_s11368_024_03844_4
crossref_primary_10_1016_j_jenvman_2025_124746
crossref_primary_10_1029_2023EF004208
crossref_primary_10_1111_pce_13999
crossref_primary_10_1016_j_scitotenv_2023_164406
crossref_primary_10_1016_j_soilbio_2021_108350
crossref_primary_10_1007_s44177_023_00043_7
crossref_primary_10_1016_j_foreco_2022_120566
crossref_primary_10_1016_j_micres_2024_127698
crossref_primary_10_1111_pce_14694
crossref_primary_10_3389_fpls_2023_1272313
crossref_primary_10_3390_f12121797
crossref_primary_10_1016_j_rhisph_2024_100858
crossref_primary_10_1093_femsec_fiae056
crossref_primary_10_1016_j_catena_2023_107317
crossref_primary_10_1111_nph_16957
crossref_primary_10_1186_s40168_024_01933_7
crossref_primary_10_1007_s40333_022_0095_8
crossref_primary_10_1111_nph_18289
crossref_primary_10_1111_nph_19490
crossref_primary_10_1016_j_funbio_2024_09_001
crossref_primary_10_1080_09064710_2021_1948602
crossref_primary_10_3389_frmbi_2023_1310790
crossref_primary_10_1016_j_still_2022_105588
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_1111_gcb_70065
crossref_primary_10_1007_s11104_022_05845_z
crossref_primary_10_1111_pce_14466
crossref_primary_10_1016_j_soilbio_2025_109731
crossref_primary_10_1016_j_scitotenv_2022_160025
crossref_primary_10_1016_j_isci_2022_105243
crossref_primary_10_1111_nph_17118
crossref_primary_10_1016_j_soilbio_2023_109097
crossref_primary_10_1002_ael2_20077
crossref_primary_10_1016_j_scitotenv_2023_167354
crossref_primary_10_1016_j_copbio_2021_06_009
crossref_primary_10_1016_S1002_0160_21_60061_9
crossref_primary_10_3389_fpls_2022_1004553
crossref_primary_10_1038_s41467_023_41524_y
crossref_primary_10_1186_s12284_023_00636_1
Cites_doi 10.1111/gcb.12493
10.1111/nph.13146
10.1111/j.1469-8137.2004.01130.x
10.1016/j.soilbio.2009.10.009
10.1016/0038-0717(85)90144-0
10.3389/fpls.2018.01593
10.1016/j.apsoil.2015.04.009
10.1038/s41598-018-30150-0
10.1111/1574-6976.12028
10.1016/j.rhisph.2018.06.004
10.1002/ece3.4383
10.1007/s10533-014-0028-5
10.1002/ecs2.1256
10.1016/j.soilbio.2018.04.012
10.1016/j.apsoil.2018.02.014
10.1007/s11104-016-3090-z
10.1111/nph.13832
10.1073/pnas.1118650109
10.1016/0038-0717(93)90113-P
10.1055/s-2001-12905
10.1016/j.soilbio.2007.08.008
10.1038/s41467-018-05516-7
10.1007/BF02280176
10.1016/S0038-0717(03)00154-8
10.1111/gcb.12620
10.1007/s00248-003-2002-y
10.1016/j.soilbio.2014.09.023
10.1016/0038-0717(90)90104-8
10.1111/ele.12601
10.1111/nph.12569
10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
10.1111/j.1461-0248.2010.01570.x
10.1007/s00374-008-0334-y
10.1016/j.envexpbot.2012.11.007
10.1016/S0038-0717(03)00105-6
10.1016/j.tplants.2016.01.009
10.1111/1365-2745.12977
10.1016/j.tree.2014.10.006
10.4141/cjss2010-057
10.1146/annurev-ecolsys-110617-062614
10.1016/j.apsoil.2011.02.004
10.1016/j.rhisph.2016.06.003
10.1007/s11104-009-9925-0
10.1016/j.envexpbot.2017.03.009
10.1111/j.1469-8137.2009.03044.x
10.1002/ece3.311
10.1128/AEM.69.6.3593-3599.2003
10.1016/j.soilbio.2018.10.010
10.3389/fmicb.2013.00216
10.1111/1365-2745.12910
10.1016/j.soilbio.2014.04.033
10.1038/s41564-018-0129-3
10.1016/j.soilbio.2012.08.031
10.1016/j.soilbio.2005.05.021
10.1186/s40168-018-0615-0
10.1111/gcb.14508
10.1007/s11104-016-2964-4
10.1016/j.soilbio.2006.01.022
10.3389/fpls.2019.00157
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Copyright © 2019 New Phytologist Trust
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
– notice: Copyright © 2019 New Phytologist Trust
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.16001
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 145
ExternalDocumentID PMC6771481
31218693
10_1111_nph_16001
NPH16001
26779762
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/L02456X/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L02456X/1
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5641-cecefdce885d4aaf6a16de97659f684936b961ecc4547e3ca28914c4d18cc0a03
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 14:32:08 EDT 2025
Fri Jul 11 18:33:57 EDT 2025
Fri Jul 11 03:07:31 EDT 2025
Sat Aug 23 12:26:27 EDT 2025
Thu Apr 03 06:59:05 EDT 2025
Tue Jul 01 02:28:32 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Wed Jan 22 16:38:59 EST 2025
Thu Jul 03 22:04:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords root traits
plant-soil interactions
drought
soil fungi
carbon
root exudate
soil bacteria
climate change
Language English
License Attribution
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5641-cecefdce885d4aaf6a16de97659f684936b961ecc4547e3ca28914c4d18cc0a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6247-2853
0000-0002-6822-8883
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16001
PMID 31218693
PQID 2280331506
PQPubID 2026848
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771481
proquest_miscellaneous_2327970967
proquest_miscellaneous_2244142924
proquest_journals_2280331506
pubmed_primary_31218693
crossref_citationtrail_10_1111_nph_16001
crossref_primary_10_1111_nph_16001
wiley_primary_10_1111_nph_16001_NPH16001
jstor_primary_26779762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1993; 25
2013; 4
1989; 113
2019; 10
2006; 38
2004; 163
2018; 123
2018; 126
2014; 29
2019; 128
2015; 80
2011; 14
2018; 49
2014; 20
2018; 6
1985; 17
2018; 9
2018; 8
2018; 3
2013; 57
2019; 25
2009; 321
1999; 52
2018b; 106
2003; 45
2014; 201
2016; 19
2015; 93
2018; 106
2013; 87
2015; 122
2016; 409
2003; 35
2004
2015; 205
2017; 138
2012; 109
2001; 82
2012; 92
2016; 7
2010; 42
2012; 2
2013; 37
1990; 22
2016; 2
2016; 21
2003; 69
2008; 45
2016; 210
2001; 3
2016
2009; 184
2011; 48
2008; 40
2018a; 9
2014; 76
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
Findlay RH (e_1_2_7_23_1) 2004
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
R Core Team (e_1_2_7_52_1) 2016
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Kuzyakov Y (e_1_2_7_39_1) 1999; 52
References_xml – volume: 29
  start-page: 692
  year: 2014
  end-page: 699
  article-title: Going underground: root traits as drivers of ecosystem processes
  publication-title: Trends in Ecology & Evolution
– volume: 19
  start-page: 648
  year: 2016
  end-page: 656
  article-title: Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism
  publication-title: Ecology Letters
– volume: 8
  start-page: 8573
  year: 2018
  end-page: 8581
  article-title: Root exudation rate as functional trait involved in plant nutrient‐use strategy classification
  publication-title: Ecology and Evolution
– volume: 14
  start-page: 187
  year: 2011
  end-page: 194
  article-title: Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long‐term CO fumigation
  publication-title: Ecology Letters
– volume: 2
  start-page: 85
  year: 2016
  end-page: 97
  article-title: Drought effects on and metabolites: from phloem to root exudates
  publication-title: Rhizosphere
– volume: 321
  start-page: 5
  year: 2009
  end-page: 33
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface
  publication-title: Plant and Soil
– volume: 49
  start-page: 409
  year: 2018
  end-page: 432
  article-title: Life in dry soils: effects of drought on soil microbial communities and processes
  publication-title: Annual review of ecology, evolution, and systematics
– volume: 21
  start-page: 209
  year: 2016
  end-page: 217
  article-title: Root–root interactions: towards a rhizosphere framework
  publication-title: Trends in Plant Science
– volume: 4
  start-page: e216
  year: 2013
  article-title: Rhizosphere priming: a nutrient perspective
  publication-title: Frontiers in Microbiology
– volume: 35
  start-page: 775
  year: 2003
  end-page: 782
  article-title: CO evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation
  publication-title: Soil Biology & Biochemistry
– volume: 184
  start-page: 950
  year: 2009
  end-page: 961
  article-title: Drought effects on allocation of recent carbon: from beech leaves to soil CO efflux
  publication-title: New Phytologist
– volume: 37
  start-page: 634
  year: 2013
  end-page: 663
  article-title: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms
  publication-title: FEMS Microbiology Reviews
– volume: 205
  start-page: 1117
  year: 2015
  end-page: 1127
  article-title: Summer drought alters carbon allocation to roots and root respiration in mountain grassland
  publication-title: New Phytologist
– volume: 87
  start-page: 235
  year: 2013
  end-page: 247
  article-title: Evaluation of a novel tool for sampling root exudates from soil‐grown plants compared to conventional techniques
  publication-title: Environmental and Experimental Botany
– volume: 409
  start-page: 1
  year: 2016
  end-page: 17
  article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience
  publication-title: Plant and Soil
– volume: 48
  start-page: 38
  year: 2011
  end-page: 44
  article-title: Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition
  publication-title: Applied Soil Ecology
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  article-title: Chloroform fumigation and the release of soil‐nitrogen – a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biology & Biochemistry
– volume: 25
  start-page: 723
  year: 1993
  end-page: 730
  article-title: Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis
  publication-title: Soil Biology & Biochemistry
– volume: 123
  start-page: 54
  year: 2018
  end-page: 63
  article-title: Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere
  publication-title: Soil Biology & Biochemistry
– volume: 106
  start-page: 2320
  year: 2018
  end-page: 2331
  article-title: Multi‐dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes
  publication-title: Journal of Ecology
– volume: 20
  start-page: 1174
  year: 2014
  end-page: 1190
  article-title: Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model
  publication-title: Global Change Biology
– volume: 38
  start-page: 509
  year: 2006
  end-page: 516
  article-title: Root exudate effects on the bacterial communities, CO evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils
  publication-title: Soil Biology & Biochemistry
– volume: 80
  start-page: 146
  year: 2015
  end-page: 155
  article-title: Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species
  publication-title: Soil Biology & Biochemistry
– volume: 109
  start-page: 2666
  year: 2012
  end-page: 2671
  article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– start-page: 983
  year: 2004
  end-page: 1005
– volume: 3
  start-page: 470
  year: 2018
  end-page: 480
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nature Microbiology
– volume: 35
  start-page: 955
  year: 2003
  end-page: 963
  article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techniques
  publication-title: Soil Biology & Biochemistry
– volume: 163
  start-page: 459
  year: 2004
  end-page: 480
  article-title: Plant and mycorrhizal regulation of rhizodeposition
  publication-title: New Phytologist
– volume: 82
  start-page: 2397
  year: 2001
  end-page: 2402
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
– start-page: 297
  year: 2016
  end-page: 312
  article-title: Grassland species root response to drought: consequences for soil carbon and nitrogen availability
  publication-title: Plant and Soil
– volume: 42
  start-page: 162
  year: 2010
  end-page: 168
  article-title: Plant species influence microbial diversity and carbon allocation in the rhizosphere
  publication-title: Soil Biology & Biochemistry
– volume: 9
  start-page: e1593
  year: 2018a
  article-title: Drought‐induced accumulation of root exudates supports post‐drought recovery of microbes in mountain grassland
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: e01256
  year: 2016
  article-title: Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism
  publication-title: Ecosphere
– volume: 106
  start-page: 1230
  year: 2018b
  end-page: 1243
  article-title: Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant–microbial interactions
  publication-title: Journal of Ecology
– volume: 93
  start-page: 78
  year: 2015
  end-page: 87
  article-title: Identification of benzoic acid and 3‐phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms
  publication-title: Applied Soil Ecology
– volume: 138
  start-page: 46
  year: 2017
  end-page: 56
  article-title: Rapid response of the carbon balance strategy in and to recurrent drought
  publication-title: Environmental and Experimental Botany
– volume: 8
  start-page: e12696
  year: 2018
  article-title: Root exudate metabolomes change under drought and show limited capacity for recovery
  publication-title: Scientific Reports
– volume: 113
  start-page: 161
  year: 1989
  end-page: 165
  article-title: Solubilization of rock phosphate by rape. II. Local root exduation of organic acids as a response to P‐starvation
  publication-title: Plant and Soil
– volume: 126
  start-page: 160
  year: 2018
  end-page: 164
  article-title: Drought responses of root biomass provide an indicator of soil microbial drought resistance in grass monocultures
  publication-title: Applied Soil Ecology
– volume: 22
  start-page: 301
  year: 1990
  end-page: 307
  article-title: Estimation of soil microbial C by a fumigation–extraction method: use on soils of high organic matter content, and a reassessment of the ‐factor
  publication-title: Soil Biology & Biochemistry
– volume: 6
  start-page: e231
  year: 2018
  article-title: Rhizosphere microorganisms can influence the timing of plant flowering
  publication-title: Microbiome
– year: 2016
– volume: 69
  start-page: 3593
  year: 2003
  end-page: 3599
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Applied and Environmental Microbiology
– volume: 20
  start-page: 3229
  year: 2014
  end-page: 3237
  article-title: Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration
  publication-title: Global Change Biology
– volume: 40
  start-page: 302
  year: 2008
  end-page: 311
  article-title: Drying and rewetting effects on soil microbial community composition and nutrient leaching
  publication-title: Soil Biology & Biochemistry
– volume: 9
  start-page: e3033
  year: 2018
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nature Communications
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biology and Fertility of Soils
– volume: 128
  start-page: 111
  year: 2019
  end-page: 114
  article-title: The ratio of Gram‐positive to Gram‐negative bacterial PLFA markers as an indicator of carbon availability in organic soils
  publication-title: Soil Biology & Biochemistry
– volume: 201
  start-page: 916
  year: 2014
  end-page: 927
  article-title: Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow
  publication-title: New Phytologist
– volume: 122
  start-page: 47
  year: 2015
  end-page: 59
  article-title: A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe N cycling
  publication-title: Biogeochemistry
– volume: 92
  start-page: 501
  year: 2012
  end-page: 507
  article-title: Response to water stress of soil enzymes and root exudates from drought and non‐drought tolerant corn hybrids at different growth stages
  publication-title: Canadian Journal of Soil Science
– volume: 45
  start-page: 373
  year: 2003
  end-page: 383
  article-title: The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi
  publication-title: Microbial Ecology
– volume: 2
  start-page: 1843
  year: 2012
  end-page: 1852
  article-title: Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects
  publication-title: Ecology and Evolution
– volume: 10
  start-page: e157
  year: 2019
  article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli
  publication-title: Frontiers in Plant Science
– volume: 210
  start-page: 861
  year: 2016
  end-page: 874
  article-title: Plant community controls on short‐term ecosystem nitrogen retention
  publication-title: New Phytologist
– volume: 3
  start-page: 139
  year: 2001
  end-page: 148
  article-title: Characterization of root exudates at different growth stages of ten rice ( L.) cultivars
  publication-title: Plant Biology
– volume: 38
  start-page: 2219
  year: 2006
  end-page: 2232
  article-title: Microbial community utilization of added carbon substrates in response to long‐term carbon input manipulation
  publication-title: Soil Biology & Biochemistry
– volume: 52
  start-page: 25
  year: 1999
  end-page: 34
  article-title: Abbau der Rückstände von und dadurch initiierte Priming‐Effekte in Boden unterschiedliger Nutzung
  publication-title: Agrobiological Research
– volume: 57
  start-page: 477
  year: 2013
  end-page: 486
  article-title: Bacterial growth and respiration responses upon rewetting dry forest soils: impact of drought‐legacy
  publication-title: Soil Biology & Biochemistry
– volume: 25
  start-page: 1005
  year: 2019
  end-page: 1015
  article-title: Soil microbial moisture dependences and responses to drying–rewetting: the legacy of 18 years drought
  publication-title: Global Change Biology
– volume: 76
  start-page: 183
  year: 2014
  end-page: 192
  article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization
  publication-title: Soil Biology & Biochemistry
– volume: 6
  start-page: 116
  year: 2018
  end-page: 133
  article-title: Sampling root exudates – mission impossible?
  publication-title: Rhizosphere
– ident: e_1_2_7_49_1
  doi: 10.1111/gcb.12493
– ident: e_1_2_7_31_1
  doi: 10.1111/nph.13146
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1469-8137.2004.01130.x
– ident: e_1_2_7_40_1
  doi: 10.1016/j.soilbio.2009.10.009
– ident: e_1_2_7_11_1
  doi: 10.1016/0038-0717(85)90144-0
– ident: e_1_2_7_36_1
  doi: 10.3389/fpls.2018.01593
– ident: e_1_2_7_42_1
  doi: 10.1016/j.apsoil.2015.04.009
– ident: e_1_2_7_26_1
  doi: 10.1038/s41598-018-30150-0
– ident: e_1_2_7_44_1
  doi: 10.1111/1574-6976.12028
– ident: e_1_2_7_48_1
  doi: 10.1016/j.rhisph.2018.06.004
– ident: e_1_2_7_29_1
  doi: 10.1002/ece3.4383
– ident: e_1_2_7_38_1
  doi: 10.1007/s10533-014-0028-5
– ident: e_1_2_7_33_1
  doi: 10.1002/ecs2.1256
– ident: e_1_2_7_15_1
  doi: 10.1016/j.soilbio.2018.04.012
– ident: e_1_2_7_9_1
  doi: 10.1016/j.apsoil.2018.02.014
– ident: e_1_2_7_51_1
  doi: 10.1007/s11104-016-3090-z
– ident: e_1_2_7_16_1
  doi: 10.1111/nph.13832
– ident: e_1_2_7_22_1
  doi: 10.1073/pnas.1118650109
– ident: e_1_2_7_24_1
  doi: 10.1016/0038-0717(93)90113-P
– ident: e_1_2_7_3_1
  doi: 10.1055/s-2001-12905
– ident: e_1_2_7_28_1
  doi: 10.1016/j.soilbio.2007.08.008
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-018-05516-7
– ident: e_1_2_7_32_1
  doi: 10.1007/BF02280176
– ident: e_1_2_7_5_1
  doi: 10.1016/S0038-0717(03)00154-8
– ident: e_1_2_7_59_1
  doi: 10.1111/gcb.12620
– ident: e_1_2_7_4_1
  doi: 10.1007/s00248-003-2002-y
– ident: e_1_2_7_56_1
  doi: 10.1016/j.soilbio.2014.09.023
– ident: e_1_2_7_58_1
  doi: 10.1016/0038-0717(90)90104-8
– ident: e_1_2_7_2_1
  doi: 10.1111/ele.12601
– ident: e_1_2_7_25_1
  doi: 10.1111/nph.12569
– ident: e_1_2_7_30_1
  doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1461-0248.2010.01570.x
– ident: e_1_2_7_8_1
  doi: 10.1007/s00374-008-0334-y
– ident: e_1_2_7_47_1
  doi: 10.1016/j.envexpbot.2012.11.007
– ident: e_1_2_7_20_1
  doi: 10.1016/S0038-0717(03)00105-6
– ident: e_1_2_7_45_1
  doi: 10.1016/j.tplants.2016.01.009
– ident: e_1_2_7_62_1
  doi: 10.1111/1365-2745.12977
– ident: e_1_2_7_6_1
  doi: 10.1016/j.tree.2014.10.006
– ident: e_1_2_7_57_1
  doi: 10.4141/cjss2010-057
– ident: e_1_2_7_55_1
  doi: 10.1146/annurev-ecolsys-110617-062614
– ident: e_1_2_7_54_1
  doi: 10.1016/j.apsoil.2011.02.004
– ident: e_1_2_7_14_1
  doi: 10.1016/j.rhisph.2016.06.003
– ident: e_1_2_7_35_1
  doi: 10.1007/s11104-009-9925-0
– ident: e_1_2_7_60_1
  doi: 10.1016/j.envexpbot.2017.03.009
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1469-8137.2009.03044.x
– ident: e_1_2_7_7_1
  doi: 10.1002/ece3.311
– ident: e_1_2_7_12_1
  doi: 10.1128/AEM.69.6.3593-3599.2003
– ident: e_1_2_7_21_1
  doi: 10.1016/j.soilbio.2018.10.010
– volume: 52
  start-page: 25
  year: 1999
  ident: e_1_2_7_39_1
  article-title: Abbau der Rückstände von Lolium perenne und dadurch initiierte Priming‐Effekte in Boden unterschiedliger Nutzung
  publication-title: Agrobiological Research
– volume-title: R: a language and environment for statistical computing
  year: 2016
  ident: e_1_2_7_52_1
– ident: e_1_2_7_19_1
  doi: 10.3389/fmicb.2013.00216
– ident: e_1_2_7_37_1
  doi: 10.1111/1365-2745.12910
– ident: e_1_2_7_63_1
  doi: 10.1016/j.soilbio.2014.04.033
– ident: e_1_2_7_61_1
  doi: 10.1038/s41564-018-0129-3
– ident: e_1_2_7_27_1
  doi: 10.1016/j.soilbio.2012.08.031
– ident: e_1_2_7_41_1
  doi: 10.1016/j.soilbio.2005.05.021
– ident: e_1_2_7_43_1
  doi: 10.1186/s40168-018-0615-0
– start-page: 983
  volume-title: Molecular microbial ecology manual
  year: 2004
  ident: e_1_2_7_23_1
– ident: e_1_2_7_46_1
  doi: 10.1111/gcb.14508
– ident: e_1_2_7_17_1
  doi: 10.1007/s11104-016-2964-4
– ident: e_1_2_7_10_1
  doi: 10.1016/j.soilbio.2006.01.022
– ident: e_1_2_7_13_1
  doi: 10.3389/fpls.2019.00157
SSID ssj0009562
Score 2.6457057
Snippet Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought-induced changes in the quality of root...
Summary Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality...
Root exudates play an important role in ecosystem response to climate change, but the functional consequences of drought‐induced changes in the quality of root...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 132
SubjectTerms Biological activity
Biomass
carbon
Carbon - metabolism
Carbon Cycle
Cell Respiration
Climate change
Drought
Droughts
Ecosystem
Ecosystems
Exudates
Exudation
forbs
grasses
Grasslands
Holcus - microbiology
Holcus - physiology
Holcus lanatus
Microbial activity
Microorganisms
Nitrogen - metabolism
Organic Chemicals - metabolism
Plant Exudates - metabolism
Plant Roots - cytology
Plant Roots - physiology
Plant Shoots - physiology
plant–soil interactions
Regrowth
Respiration
root exudate
root exudates
root systems
root traits
Roots
Rumex - microbiology
Rumex - physiology
Rumex acetosa
Soil
soil bacteria
soil fungi
Soil Microbiology
soil respiration
Soil treatment
Soils
Species Specificity
Title Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling
URI https://www.jstor.org/stable/26779762
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16001
https://www.ncbi.nlm.nih.gov/pubmed/31218693
https://www.proquest.com/docview/2280331506
https://www.proquest.com/docview/2244142924
https://www.proquest.com/docview/2327970967
https://pubmed.ncbi.nlm.nih.gov/PMC6771481
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VigMX3gVDqRbEoRdX8e567YgTIKqIQ1UhKuWAZO0rJKJ1qsQBygV-Ar-RX8LMrm0lUBDiZstjex8z9je7M98APOVlKUtdmtSaTKTSK58aV7g0N34wmXieGRMCZI_U6ES-HufjLXjW5cJEfoh-wY0sI3yvycC1Wa4ZeX0-paWRkLtFsVoEiN7wNcJdxTsGZiXVuGUVoiie_s6Nf1EMR7wMaP4eL7mOY8OP6PAGvOu6EONPPhysGnNgv_zC7viffbwJ11uAyp5HjboFW76-DVdfzBFEXtyBrzEbYclmNUPM3fz49t1_XtGqAR6he4-K4tii3b7HKWfEEIWP06yef_Sn7MxTpvFsecbaAkHs03Rmp8yFk4bpGF7C0CmOHNPM6oXB59gLyuF8fxdODl-9fTlK2xoOqc2VzFLrrZ_gwJVl7qTWE6Uz5TxioHw4UaUcCmWGKkM9ImIxL6xGBzCTVrqstHagB2IHtut57e8Dc0XYtNUC75Hc2XKQa-4UARxlnNMJ7HezWdmW4JzqbJxWnaODw1mF4UzgSS96Hlk9LhPaCSrRS3BVFNhynsBupyNVa_HLimiFhCC-xgQe95fRVmkDRtd-viIZBJ9UH0z-RUZwfAk6lkUC96La9Q0QWaggJhIoNhSyFyCu8M0r9WwaOMOx6ej4Yp_2g779udfV0fEoHDz4d9GHcA1x5DDGOO7CdrNY-UeI1RqzB1e4PN4LpvkTrIlBHA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv_BcCBQwCqZdUieM42QMHoFRbWlYItdLeUv-FXbXNVrtZynKBR-BBeBVegidh7PxoFwri0gO3RJk4djxjz9ifvwF4QtOUpSKVvpJh5DPDjS91ov1YmiDPDQ2ldADZHu_us9f9uL8E35qzMBU_RLvgZi3DjdfWwO2C9JyVFycDuzYShDWkcsfMTjFgmzzb3sTefUrp1qu9l12_zingq5iz0FdGmVwrk6axZkLkXIRcG5yT407OU9aJuOzwENtlia5MpAQGJCFTTIepUoEIIiz3Aly0GcQtU__mOzpH8ctpw_nMGe_XPEYWN9RWdWH2qwCQZ7m2vyM05z1nN_VtXYXvzU-rEC-HG9NSbqhPv_BJ_i9_9RpcqX1w8rwymuuwZIobcOnFCP3k2U34XB24mJBhQTCsKH98-Wo-Tu3CCF4NC422oMm4RiigVhNLgoXFCVKMPpgjcmzsYerh5JjUOZDI6WCoBkS7m5KICkFDMO6vaLSJEmOJ5aiZPab6_hbsn0vjV2G5GBXmDhCduH1pEeE7jGqVBrGgmlsfjkuthQfrjfpkquZwt6lEjrImlsPuy1z3efC4FT2piEvOElp1OthKUJ4kWHPqwVqjlFk9qE0yy5wURZaS0oNH7WMcjuwekyjMaGpl0L-2KdDYX2Qiih_B2Dnx4Hal520FotAlSYs8SBYsoBWwdOiLT4rhwNGiY9Uxtsc2rTsF_3Ors97brru4---iD-Fyd-_Nbra73du5ByvoNncqSOcaLJfjqbmPrmkpH7gRgcDBeRvLTwktoAc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VghAXVB4FQ4EFgdSLJXt3vXYOHGhLlFIU5UCl3My-TCK1TpQHJSf4CfwP_hW_pLPrhxJREJfebHmy3s3MeL_Znf0G4DXNMp7JTIVaxSzkVthQmdSEibJRUVgaK-UTZPuid8o_DJPhFvxqzsJU_BDtgpvzDP-9dg4-NcWak5fTkVsaieI6o_LEri4wXpu_PT5C5b6htPv-02EvrEsKhDoRPA611bYw2mZZYriUhZCxMBan5KRTiIx3mFAdEeOwHM-VZVpiPBJzzU2caR3JiGG7N-Cm21x0-WOUD9YYfgVtKJ8FF8OaxsilDbVd3Zj8qvzHq5Dtnwma68DZz3zdHbhbQ1byrrKxe7Bly_tw62CCsHL1AL5X5xPmZFwSROGL3z9-2m9Lt46AVxjwo-kYMqs39NEIiOOMwuYkKSdf7Rk5t-7s8Xh-TuqSQeRiNNYjYvzNgsgq4YRgmFyxThMtZwrb0St3qvPLQzi9FhXswnY5Ke1jICb127iS4W84NTqLEkmNcJBHKGNkAPvN353rmvLcVd44y5vQBzWTe80E8KoVnVY8H1cJ7XqdtRJUpCn2nAaw1ygxr78B89wRDTHmGBwDeNk-Ru91WzKytJOlk0E46iqG8X_IMIovwVAzDeBRZRdtB1jsa4qxANINi2kFHHv45pNyPPIs4th1DIVxTPvetv4-6rw_6PmLJ_8v-gJuD466-cfj_slTuIMgs1MlQO7B9mK2tM8QyC3Uc-9ABD5ft8deAtomXeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+root-exudate-induced+respiration+reveal+a+novel+mechanism+through+which+drought+affects+ecosystem+carbon+cycling&rft.jtitle=The+New+phytologist&rft.au=de+Vries%2C+Franciska+T&rft.au=Williams%2C+Alex&rft.au=Stringer%2C+Fiona&rft.au=Willcocks%2C+Robert&rft.date=2019-10-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=224&rft.issue=1&rft.spage=132&rft_id=info:doi/10.1111%2Fnph.16001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon