High V-PPase activity is beneficial under high salt loads, but detrimental without salinity
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative...
Saved in:
Published in | The New phytologist Vol. 219; no. 4; pp. 1421 - 1432 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.09.2018
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected.
For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging.
NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants.
The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration. |
---|---|
AbstractList | The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton‐pumping functions has yet to be dissected.For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging.NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants.The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na+ sequestration. The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H + ‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP i hydrolysis and proton‐pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na + sequestration. Summary The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton‐pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na+ sequestration. The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration. The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H⁺‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPᵢ hydrolysis and proton‐pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na⁺ sequestration. The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na sequestration. The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration. |
Author | Kai R. Konrad Tilman Güthoff H. Ekkehard Neuhaus Kerstin Duscha Ali Ferjani Karin Schumacher M. Rob G. Roelfsema Felix Bemm Tracey Ann Cuin Meliha Görkem Patir Nebioglu Dorothea Graus Christian Lorey Johannes Herrmann Irene Marten Rainer Hedrich |
AuthorAffiliation | 1 Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany 2 Institute of Bioinformatics Center for Computational and Theoretical, Biology University of Würzburg Am Hubland Würzburg D‐97218 Germany 6 Tasmanian Institute of Agriculture University of Tasmania Hobart TAS 7001 Australia 4 Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany 3 Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany 5 Department of Biology Tokyo Gakugei University Nukui Kitamachi 4‐1‐1 Koganei‐shi Tokyo 184‐8501 Japan |
AuthorAffiliation_xml | – name: 2 Institute of Bioinformatics Center for Computational and Theoretical, Biology University of Würzburg Am Hubland Würzburg D‐97218 Germany – name: 4 Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany – name: 1 Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – name: 5 Department of Biology Tokyo Gakugei University Nukui Kitamachi 4‐1‐1 Koganei‐shi Tokyo 184‐8501 Japan – name: 3 Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany – name: 6 Tasmanian Institute of Agriculture University of Tasmania Hobart TAS 7001 Australia |
Author_xml | – sequence: 1 givenname: Dorothea surname: Graus fullname: Graus, Dorothea organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – sequence: 2 givenname: Kai R. surname: Konrad fullname: Konrad, Kai R. organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – sequence: 3 givenname: Felix surname: Bemm fullname: Bemm, Felix organization: Institute of Bioinformatics Center for Computational and Theoretical, Biology University of Würzburg Am Hubland Würzburg D‐97218 Germany – sequence: 4 givenname: Meliha Görkem surname: Patir Nebioglu fullname: Patir Nebioglu, Meliha Görkem organization: Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany – sequence: 5 givenname: Christian surname: Lorey fullname: Lorey, Christian organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – sequence: 6 givenname: Kerstin surname: Duscha fullname: Duscha, Kerstin organization: Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany – sequence: 7 givenname: Tilman surname: Güthoff fullname: Güthoff, Tilman organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – sequence: 8 givenname: Johannes surname: Herrmann fullname: Herrmann, Johannes organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – sequence: 9 givenname: Ali surname: Ferjani fullname: Ferjani, Ali organization: Department of Biology Tokyo Gakugei University Nukui Kitamachi 4‐1‐1 Koganei‐shi Tokyo 184‐8501 Japan – sequence: 10 givenname: Tracey Ann surname: Cuin fullname: Cuin, Tracey Ann organization: Tasmanian Institute of Agriculture University of Tasmania Hobart TAS 7001 Australia – sequence: 11 givenname: M. Rob G. surname: Roelfsema fullname: Roelfsema, M. Rob G. organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – sequence: 12 givenname: Karin surname: Schumacher fullname: Schumacher, Karin organization: Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany – sequence: 13 givenname: H. Ekkehard surname: Neuhaus fullname: Neuhaus, H. Ekkehard organization: Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany – sequence: 14 givenname: Irene surname: Marten fullname: Marten, Irene organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany – sequence: 15 givenname: Rainer surname: Hedrich fullname: Hedrich, Rainer organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29938800$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFrFDEYxYNU7LZ68A9QBrwoOO2XTJJJLoKU6gpF96AieAiZTKaTZTbZTjIt-98367aLFtRcAsnvPd6XlyN04IO3CD3HcILzOvXr_gQzIuARmmHKZSlwVR-gGQARJaf8xyE6inEJAJJx8gQdEikrIQBm6OfcXfbF93Kx0NEW2iR37dKmcLForLedM04PxeRbOxb9lox6SMUQdBvfFs2Uitam0a2sTxm7cakP-SwzzmeXp-hxp4don93tx-jbh_OvZ_Py4svHT2fvL0rDOIWyaayQNUgQTdcZIRhIzJnGNbZ1ZwXHLRXaaoYby0jNW9NgxmtCJcWGa9ZVx-jdznc9NSvbmpxm1INa52B63KignfrzxrteXYZrxUFKUpFs8PrOYAxXk41JrVw0dhi0t2GKimBWcYIFyP-jwCQwoIJn9NUDdBmm0eeXyJSomMxD00y9_D38PvV9RRl4swPMGGIcbbdHMKht_SrXr37Vn9nTB6xxSScXtnO74V-KGzfYzd-t1efF_F7xYqdYxhTGvULmz0YB0-oWY0nJ8Q |
CitedBy_id | crossref_primary_10_1016_j_rsci_2023_10_002 crossref_primary_10_3390_genes12111759 crossref_primary_10_1111_tpj_16740 crossref_primary_10_1007_s00344_021_10441_z crossref_primary_10_1016_j_jbiotec_2021_04_008 crossref_primary_10_1155_2021_5578727 crossref_primary_10_3389_fpls_2024_1435799 crossref_primary_10_3390_plants13162322 crossref_primary_10_1007_s00344_022_10655_9 crossref_primary_10_1093_plphys_kiab538 crossref_primary_10_3389_fmicb_2019_01087 crossref_primary_10_3389_fpls_2019_01429 crossref_primary_10_1016_j_scienta_2025_114064 crossref_primary_10_1016_j_ygeno_2020_07_011 crossref_primary_10_1093_treephys_tpaa050 crossref_primary_10_3389_fpls_2021_672873 crossref_primary_10_3389_fpls_2022_999058 crossref_primary_10_1111_nph_16358 crossref_primary_10_1007_s11103_021_01232_x crossref_primary_10_1093_pcp_pcz002 crossref_primary_10_1016_j_celrep_2023_112975 crossref_primary_10_1111_nph_18501 crossref_primary_10_1111_nph_19436 crossref_primary_10_1016_j_ecoenv_2023_115655 crossref_primary_10_1007_s00299_024_03401_w crossref_primary_10_3389_fpls_2022_871387 crossref_primary_10_1007_s11105_020_01194_2 crossref_primary_10_1371_journal_pone_0308541 crossref_primary_10_1016_j_ijfoodmicro_2021_109517 crossref_primary_10_1016_j_plantsci_2019_04_003 crossref_primary_10_3389_fpls_2020_01240 crossref_primary_10_3389_fpls_2022_1077710 crossref_primary_10_1074_jbc_RA118_006315 crossref_primary_10_1016_j_envexpbot_2021_104402 crossref_primary_10_3389_fpls_2022_909429 |
Cites_doi | 10.1073/pnas.0913035107 10.1111/j.1365-313X.2009.03820.x 10.1105/tpc.111.085415 10.1126/science.285.5431.1256 10.1093/jxb/erl090 10.1111/pbi.12145 10.1016/j.jplph.2008.01.003 10.1111/j.1432-1033.1991.tb15779.x 10.1126/science.236.4806.1299 10.1186/1743-422X-2-18 10.1093/treephys/tpv027 10.1016/j.pbi.2010.07.003 10.4161/psb.5.7.11767 10.1105/tpc.15.00733 10.1093/nar/gkl635 10.1007/BF00040721 10.1038/nature10963 10.1093/jxb/erh070 10.1093/pcp/pcq096 10.1007/BF00216819 10.1111/j.1467-7652.2010.00535.x 10.1105/tpc.114.127571 10.1111/j.1399-3054.1993.tb00133.x 10.1073/pnas.89.5.1775 10.1074/jbc.M111.310367 10.1093/jb/mvg184 10.1016/j.molp.2015.07.009 10.1007/s00709-007-0268-5 10.1104/pp.123.1.353 10.1016/S0005-2736(00)00130-9 10.1073/pnas.0509512102 10.1111/j.1399-3054.1987.tb04630.x 10.1073/pnas.191389398 10.1111/nph.12642 10.1007/s11183-005-0121-7 10.1093/nar/gkr1090 10.1016/j.plaphy.2010.09.014 10.1046/j.1365-313X.2002.01309.x 10.1038/nature05013 10.1046/j.1365-313X.2003.01871.x 10.1093/mp/sst079 10.1038/nbt.1883 10.1007/s00425-006-0428-4 10.1016/S1673-8527(08)60164-2 10.1128/MCB.10.1.120 10.1006/bbrc.1996.1573 10.1093/jxb/erp011 10.1093/jexbot/52.365.2355 10.1016/0005-2728(87)90143-5 10.3389/fpls.2013.00410 10.1038/nplants.2014.1 10.1152/physrev.00038.2011 10.1073/pnas.2034966100 10.1007/s11103-009-9549-z 10.1016/j.molp.2016.02.004 10.1007/s11032-006-9005-6 10.1038/ncomms2815 10.1038/nprot.2013.084 10.1111/j.1399-3054.1994.tb02981.x 10.1002/j.1460-2075.1989.tb08430.x 10.1371/journal.pcbi.1002195 10.1111/j.1365-313X.2011.04672.x |
ContentType | Journal Article |
Copyright | 2018 New Phytologist Trust 2018 The Authors. © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. Copyright © 2018 New Phytologist Trust |
Copyright_xml | – notice: 2018 New Phytologist Trust – notice: 2018 The Authors. © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. – notice: Copyright © 2018 New Phytologist Trust |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.15280 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1432 |
ExternalDocumentID | PMC6099232 29938800 10_1111_nph_15280 NPH15280 90024014 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: FOR1061; IRTG1830; KO3657/2‐4 – fundername: Deutsche Forschungsgemeinschaft grantid: FOR1061; IRTG1830; KO3657/2‐4 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5640-bbe8970908bffc88509165a171e7fe861d48aea51be5276dcb156724941c6a5f3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 14:07:29 EDT 2025 Fri Jul 11 18:34:04 EDT 2025 Fri Jul 11 16:31:21 EDT 2025 Sun Jul 13 05:16:35 EDT 2025 Mon Jul 21 05:52:08 EDT 2025 Tue Jul 01 03:09:28 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Wed Jan 22 16:31:24 EST 2025 Thu Jul 03 22:16:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | salt vacuolar proton-pyrophosphatase (V-PPase) cell death vacuolar pH vacuolar proton-ATPase (V-ATPase) proton pump currents plasma membrane voltage |
Language | English |
License | Attribution 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5640-bbe8970908bffc88509165a171e7fe861d48aea51be5276dcb156724941c6a5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15280 |
PMID | 29938800 |
PQID | 2083599704 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099232 proquest_miscellaneous_2153621809 proquest_miscellaneous_2059050486 proquest_journals_2083599704 pubmed_primary_29938800 crossref_primary_10_1111_nph_15280 crossref_citationtrail_10_1111_nph_15280 wiley_primary_10_1111_nph_15280_NPH15280 jstor_primary_90024014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2018 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2015; 35 2007; 225 1991; 196 1990; 10 2012; 484 2013; 4 2012; 287 2010; 13 2010; 107 2006; 34 1987; 71 1999; 285 2014; 26 2013; 8 2013; 6 1996; 31 1996; 227 2009; 58 1987; 236 2005; 102 2011; 68 2011; 23 2000; 123 2010; 5 2011; 29 1992; 89 2006; 442 2014; 202 2014; 12 2000; 1465 2001; 52 2010; 72 2001; 98 2015; 1 2012 2002; 30 2011 2006; 57 1992; 188 2009; 60 1993; 87 2006; 17 1989; 8 2003; 36 2008; 165 1992; 33 2015; 8 2003; 134 1995; 7 2011; 9 2004; 55 2012; 92 2009; 36 1987; 893 2015; 27 2007; 232 2005; 52 2005; 2 2011; 49 1994; 91 2003; 100 2010; 51 2016; 9 2012; 40 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Lodish H (e_1_2_7_33_1) 2012 Lerchl J (e_1_2_7_30_1) 1995; 7 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 Nakamura Y (e_1_2_7_36_1) 1992; 33 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 8 start-page: 1494 year: 2013 end-page: 1512 article-title: transcript sequence reconstruction from RNA‐Seq: reference generation and analysis with Trinity publication-title: Nature Protocols – volume: 236 start-page: 1299 year: 1987 end-page: 1302 article-title: Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes publication-title: Science – volume: 7 start-page: 259 year: 1995 end-page: 270 article-title: Impaired photoassimilate partitioning caused by phloem‐specific removal of pyrophosphate can be complemented by a phloem‐specific cytosolic yeast‐derived invertase in transgenic plants publication-title: Plant Cell – volume: 1 start-page: 14001 year: 2015 article-title: Identification of the transporter responsible for sucrose accumulation in sugar beet taproots publication-title: Nature Plants – volume: 9 start-page: 88 year: 2011 end-page: 99 article-title: Expression of an Arabidopsis vacuolar H ‐pyrophosphatase gene ( ) in cotton improves drought‐ and salt tolerance and increases fibre yield in the field conditions publication-title: Plant Biotechnology Journal – volume: 5 start-page: 792 year: 2010 end-page: 795 article-title: How do vacuolar NHX exchangers function in plant salt tolerance? publication-title: Plant Signaling & Behavior – volume: 91 start-page: 510 year: 1994 end-page: 516 article-title: Enhanced K ‐stimulated pyrophosphatase activity in NaCl‐adapted cells of publication-title: Physiologia Plantarum – volume: 58 start-page: 715 year: 2009 end-page: 723 article-title: The mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium publication-title: Plant Journal – volume: 285 start-page: 1256 year: 1999 end-page: 1258 article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in Arabidopsis publication-title: Science – volume: 188 start-page: 238 year: 1992 end-page: 244 article-title: Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing pyrophosphatase in their cytosol publication-title: Planta – volume: 57 start-page: 3259 year: 2006 end-page: 3270 article-title: Cloning of an H ‐PPase gene from and its heterologous expression to improve tobacco salt tolerance publication-title: Journal of Experimental Botany – volume: 23 start-page: 2895 year: 2011 end-page: 2908 article-title: Keep an eye on PP : the vacuolar‐type H ‐pyrophosphatase regulates postgerminative development in Arabidopsis publication-title: Plant Cell – volume: 9 start-page: 471 year: 2016 end-page: 480 article-title: Current injection provokes rapid expansion of the guard cell cytosolic volume and triggers Ca signals publication-title: Molecular Plant – volume: 8 start-page: 1665 year: 2015 end-page: 1674 article-title: Cytosolic Ca signals enhance the vacuolar ion conductivity of bulging Arabidopsis root hair cells publication-title: Molecular Plant – volume: 52 start-page: 2355 year: 2001 end-page: 2365 article-title: Effects of salt treatment and osmotic stress on V‐ATPase and V‐PPase in leaves of the halophyte publication-title: Journal of Experimental Botany – volume: 87 start-page: 118 year: 1993 end-page: 124 article-title: Effect of temperature on plasma membrane and tonoplast ion channels in publication-title: Physiologia Plantarum – volume: 40 start-page: D1202 year: 2012 end-page: D1210 article-title: The Arabidopsis information resource (TAIR): improved gene annotation and new tools publication-title: Nucleic Acids Research – volume: 31 start-page: 1029 year: 1996 end-page: 1038 article-title: Isolation and characterization of cDNAs encoding vacuolar H ‐pyrophosphatase isoforms from rice ( L.) publication-title: Plant Molecular Biology – volume: 196 start-page: 11 year: 1991 end-page: 17 article-title: H ‐translocating inorganic pyrophosphatase of plant vacuoles inhibition by Ca , stabilization by Mg and immunological comparison with other inorganic pyrophosphatases publication-title: European Journal of Biochemistry – volume: 6 start-page: 1419 year: 2013 end-page: 1437 article-title: Organelle pH in the Arabidopsis endomembrane system publication-title: Molecular Plant – volume: 10 start-page: 120 year: 1990 end-page: 130 article-title: Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19‐kilodalton protein publication-title: Molecular and Cellular Biology – volume: 68 start-page: 129 year: 2011 end-page: 136 article-title: Proton‐driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2 publication-title: Plant Journal – volume: 1465 start-page: 37 year: 2000 end-page: 51 article-title: Vacuolar H ‐pyrophosphatase publication-title: Biochimica et Biophysica Acta (BBA) – Biomembranes – volume: 12 start-page: 378 year: 2014 end-page: 386 article-title: Expression of the Arabidopsis vacuolar H ‐pyrophosphatase gene ( ) improves the shoot biomass of transgenic barley and increases grain yield in a saline field publication-title: Plant Biotechnology Journal – volume: 26 start-page: 3416 year: 2014 end-page: 3434 article-title: Dynamics of vacuoles and H ‐pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures publication-title: Plant Cell – volume: 287 start-page: 8986 year: 2012 end-page: 8993 article-title: Luminal and cytosolic pH feedback on proton pump activity and ATP affinity of V‐type ATPase from Arabidopsis publication-title: Journal of Biological Chemistry – volume: 51 start-page: 1350 year: 2010 end-page: 1360 article-title: Quantification, organ‐specific accumulation and intracellular localization of type II H ‐pyrophosphatase in publication-title: Plant and Cell Physiology – volume: 102 start-page: 18830 year: 2005 end-page: 18835 article-title: Up‐regulation of a H ‐pyrophsophatase (H ‐PPase) as a strategy to engineer drought‐resistant crop plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 60 start-page: 1363 year: 2009 end-page: 1374 article-title: Activity of tonoplast proton pumps and Na /H exchange in potato cell cultures is modulated by salt publication-title: Journal of Experimental Botany – volume: 13 start-page: 724 year: 2010 end-page: 730 article-title: The V‐ATPase: small cargo, large effects publication-title: Current Opinion in Plant Biology – volume: 71 start-page: 131 year: 1987 end-page: 141 article-title: Tonoplast energization: two H pumps, one membrane publication-title: Physiologia Plantarum – volume: 442 start-page: 939 year: 2006 end-page: 942 article-title: The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles publication-title: Nature – volume: 4 start-page: 414 year: 2013 article-title: Sodium transport system in plant cells publication-title: Frontiers in Plant Science – volume: 165 start-page: 1830 year: 2008 end-page: 1837 article-title: Modification of vacuolar proton pumps in cucumber roots under salt stress publication-title: Journal of Plant Physiology – volume: 123 start-page: 353 year: 2000 end-page: 362 article-title: AVP2, a sequence‐divergent, K ‐insensitive H ‐translocating inorganic pyrophosphatase from Arabidopsis publication-title: Plant Physiology – volume: 227 start-page: 707 year: 1996 end-page: 711 article-title: An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells publication-title: Biochemical and Biophysical Research Communications – volume: 98 start-page: 11444 year: 2001 end-page: 11449 article-title: Drought‐ and salt‐tolerant plants result from overexpression of the AVP1 H ‐pump publication-title: Proceedings of the National Academy of Sciences, USA – volume: 55 start-page: 585 year: 2004 end-page: 594 article-title: Effect of salt and osmotic stresses on the expression of genes for the vacuolar H ‐pyrophosphatase, H ‐ATPase subunit A, and Na /H antiporter from barley publication-title: Journal of Experimental Botany – volume: 52 start-page: 821 year: 2005 end-page: 825 article-title: Identification and characterization of new members of vacuolar H ‐pyrophosphatase family from genome publication-title: Russian Journal of Plant Physiology – volume: 232 start-page: 87 year: 2007 end-page: 95 article-title: Heterologous expression of vacuolar H ‐PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance publication-title: Protoplasma – volume: 34 start-page: e122 year: 2006 article-title: Advancing uracil‐excision based cloning towards an ideal technique for cloning PCR fragments publication-title: Nucleic Acids Research – volume: 92 start-page: 1777 year: 2012 end-page: 1811 article-title: Ion channels in plants publication-title: Physiological Reviews – volume: 4 start-page: 1804 year: 2013 article-title: AtALMT9 is a malate‐activated vacuolar chloride channel required for stomatal opening in Arabidopsis publication-title: Nature Communications – year: 2012 – volume: 202 start-page: 188 year: 2014 end-page: 197 article-title: Overexpression of a proton‐coupled vacuolar glucose exporter impairs freezing tolerance and seed germination publication-title: New Phytologist – volume: 100 start-page: 12510 year: 2003 end-page: 12515 article-title: Topological analysis of a plant vacuolar Na /H antiporter reveals a luminal C terminus that regulates antiporter cation selectivity publication-title: Proceedings of the National Academy of Sciences, USA – volume: 8 start-page: 2835 year: 1989 end-page: 2841 article-title: Comparative studies on the electrical properties of the H translocating ATPase and pyrophosphatase of the vacuolar‐lysosomal compartment publication-title: EMBO Journal – volume: 35 start-page: 663 year: 2015 end-page: 677 article-title: Overexpression of a H ‐pyrophsophatase gene PtVP1.1 confers salt tolerance on transgenic poplar publication-title: Tree Physiology – volume: 484 start-page: 399 year: 2012 end-page: 403 article-title: Crystal structure of a membrane‐embedded H ‐translocating pyrophosphatase publication-title: Nature – volume: 30 start-page: 529 year: 2002 end-page: 539 article-title: Differential expression and function of NHX Na /H antiporters in the salt stress response publication-title: Plant Journal – volume: 36 start-page: 711 year: 2009 end-page: 720 article-title: Expression and responses to dehydration and salinity stresses of V‐PPase gene members in wheat publication-title: Journal of Genetics and Genomics – volume: 27 start-page: 3383 year: 2015 end-page: 3396 article-title: Job sharing in the endomembrane system: vacuolar acidification requires the combined activity of V‐ATPase and V‐PPase publication-title: Plant Cell – volume: 134 start-page: 615 year: 2003 end-page: 623 article-title: Patch clamp analysis of a H pump heterologously expressed in giant yeast vacuoles publication-title: Journal of Biochemistry – volume: 89 start-page: 1775 year: 1992 end-page: 1779 article-title: Molecular cloning and sequence of cDNA encoding the pyrophosphate‐energized vacuolar membrane proton pump of publication-title: Proceedings of the National Academy of Sciences, USA – volume: 893 start-page: 13 year: 1987 end-page: 21 article-title: Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves publication-title: Biochimica et Biophysica Acta (BBA) – Bioenergetics – volume: 72 start-page: 47 year: 2010 end-page: 60 article-title: Expression of vacuolar H ‐pyrophosphatase ( ) is under control of an anoxia‐inducible promoter in rice publication-title: Plant Molecular Biology – volume: 33 start-page: 139 year: 1992 end-page: 149 article-title: Stimulation of the extrusion of protons and H ‐ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean [ ] roots under high‐NaCl stress and its relation to external levels of Ca ions publication-title: Plant and Cell Physiology – volume: 36 start-page: 229 year: 2003 end-page: 239 article-title: Vacuolar cation/H exchange, ion homeostasis, and leaf development are altered in a T‐DNA insertional mutant of , the Arabidopsis vacuolar Na /H antiporter publication-title: Plant Journal – volume: 17 start-page: 341 year: 2006 end-page: 353 article-title: Co‐expression of the SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1 publication-title: Molecular Breeding – volume: 29 start-page: 644 year: 2011 end-page: 652 article-title: Trinity: reconstructing a full‐length transcriptome without a genome from RNA‐Seq data publication-title: Nature Biotechnology – volume: 107 start-page: 3251 year: 2010 end-page: 3256 article-title: Arabidopsis V‐ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 2 start-page: 18 year: 2005 article-title: Soilborne wheat mosaic virus (SBWMV) 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing publication-title: Virology Journal – volume: 225 start-page: 1179 year: 2007 end-page: 1191 article-title: AKT2 subunits constitute a pH‐ and Ca ‐sensitive inward rectifying K channel publication-title: Planta – start-page: e1002195 year: 2011 article-title: Accelerated profile HMM searches publication-title: PLoS Computational Biology – volume: 49 start-page: 33 year: 2011 end-page: 38 article-title: 1, a vacuolar H+‐translocating inorganic pyrophosphatase (V‐PPase), overexpression improved rice cold tolerance publication-title: Plant Physiology and Biochemistry – ident: e_1_2_7_26_1 doi: 10.1073/pnas.0913035107 – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-313X.2009.03820.x – ident: e_1_2_7_12_1 doi: 10.1105/tpc.111.085415 – ident: e_1_2_7_2_1 doi: 10.1126/science.285.5431.1256 – ident: e_1_2_7_14_1 doi: 10.1093/jxb/erl090 – ident: e_1_2_7_46_1 doi: 10.1111/pbi.12145 – ident: e_1_2_7_23_1 doi: 10.1016/j.jplph.2008.01.003 – ident: e_1_2_7_34_1 doi: 10.1111/j.1432-1033.1991.tb15779.x – ident: e_1_2_7_24_1 doi: 10.1126/science.236.4806.1299 – ident: e_1_2_7_52_1 doi: 10.1186/1743-422X-2-18 – ident: e_1_2_7_61_1 doi: 10.1093/treephys/tpv027 – ident: e_1_2_7_48_1 doi: 10.1016/j.pbi.2010.07.003 – ident: e_1_2_7_21_1 doi: 10.4161/psb.5.7.11767 – ident: e_1_2_7_27_1 doi: 10.1105/tpc.15.00733 – ident: e_1_2_7_38_1 doi: 10.1093/nar/gkl635 – ident: e_1_2_7_44_1 doi: 10.1007/BF00040721 – ident: e_1_2_7_31_1 doi: 10.1038/nature10963 – ident: e_1_2_7_13_1 doi: 10.1093/jxb/erh070 – ident: e_1_2_7_50_1 doi: 10.1093/pcp/pcq096 – ident: e_1_2_7_20_1 doi: 10.1007/BF00216819 – ident: e_1_2_7_40_1 doi: 10.1111/j.1467-7652.2010.00535.x – ident: e_1_2_7_49_1 doi: 10.1105/tpc.114.127571 – ident: e_1_2_7_6_1 doi: 10.1111/j.1399-3054.1993.tb00133.x – ident: e_1_2_7_45_1 doi: 10.1073/pnas.89.5.1775 – volume: 33 start-page: 139 year: 1992 ident: e_1_2_7_36_1 article-title: Stimulation of the extrusion of protons and H+‐ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean [Vigna mungo] roots under high‐NaCl stress and its relation to external levels of Ca2+ ions publication-title: Plant and Cell Physiology – ident: e_1_2_7_43_1 doi: 10.1074/jbc.M111.310367 – ident: e_1_2_7_37_1 doi: 10.1093/jb/mvg184 – ident: e_1_2_7_54_1 doi: 10.1016/j.molp.2015.07.009 – ident: e_1_2_7_10_1 doi: 10.1007/s00709-007-0268-5 – ident: e_1_2_7_9_1 doi: 10.1104/pp.123.1.353 – ident: e_1_2_7_35_1 doi: 10.1016/S0005-2736(00)00130-9 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.0509512102 – ident: e_1_2_7_42_1 doi: 10.1111/j.1399-3054.1987.tb04630.x – ident: e_1_2_7_15_1 doi: 10.1073/pnas.191389398 – ident: e_1_2_7_25_1 doi: 10.1111/nph.12642 – ident: e_1_2_7_5_1 doi: 10.1007/s11183-005-0121-7 – ident: e_1_2_7_28_1 doi: 10.1093/nar/gkr1090 – ident: e_1_2_7_64_1 doi: 10.1016/j.plaphy.2010.09.014 – ident: e_1_2_7_62_1 doi: 10.1046/j.1365-313X.2002.01309.x – ident: e_1_2_7_7_1 doi: 10.1038/nature05013 – ident: e_1_2_7_3_1 doi: 10.1046/j.1365-313X.2003.01871.x – ident: e_1_2_7_51_1 doi: 10.1093/mp/sst079 – ident: e_1_2_7_16_1 doi: 10.1038/nbt.1883 – ident: e_1_2_7_29_1 doi: 10.1007/s00425-006-0428-4 – ident: e_1_2_7_56_1 doi: 10.1016/S1673-8527(08)60164-2 – ident: e_1_2_7_58_1 doi: 10.1128/MCB.10.1.120 – ident: e_1_2_7_63_1 doi: 10.1006/bbrc.1996.1573 – ident: e_1_2_7_41_1 doi: 10.1093/jxb/erp011 – ident: e_1_2_7_55_1 doi: 10.1093/jexbot/52.365.2355 – ident: e_1_2_7_57_1 doi: 10.1016/0005-2728(87)90143-5 – ident: e_1_2_7_60_1 doi: 10.3389/fpls.2013.00410 – ident: e_1_2_7_22_1 doi: 10.1038/nplants.2014.1 – ident: e_1_2_7_18_1 doi: 10.1152/physrev.00038.2011 – ident: e_1_2_7_59_1 doi: 10.1073/pnas.2034966100 – ident: e_1_2_7_32_1 doi: 10.1007/s11103-009-9549-z – ident: e_1_2_7_53_1 doi: 10.1016/j.molp.2016.02.004 – ident: e_1_2_7_65_1 doi: 10.1007/s11032-006-9005-6 – ident: e_1_2_7_8_1 doi: 10.1038/ncomms2815 – ident: e_1_2_7_17_1 doi: 10.1038/nprot.2013.084 – volume-title: Molecular cell biology year: 2012 ident: e_1_2_7_33_1 – ident: e_1_2_7_66_1 doi: 10.1111/j.1399-3054.1994.tb02981.x – ident: e_1_2_7_19_1 doi: 10.1002/j.1460-2075.1989.tb08430.x – ident: e_1_2_7_11_1 doi: 10.1371/journal.pcbi.1002195 – volume: 7 start-page: 259 year: 1995 ident: e_1_2_7_30_1 article-title: Impaired photoassimilate partitioning caused by phloem‐specific removal of pyrophosphate can be complemented by a phloem‐specific cytosolic yeast‐derived invertase in transgenic plants publication-title: Plant Cell – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-313X.2011.04672.x |
SSID | ssj0009562 |
Score | 2.445364 |
Snippet | The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar... Summary The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar... The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H + ‐ATPase, generates the proton motive force that drives vacuolar... The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H -ATPase, generates the proton motive force that drives vacuolar... The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar... The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar... The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H⁺‐ATPase, generates the proton motive force that drives vacuolar... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1421 |
SubjectTerms | Acidification Adenosine triphosphatase Capacity Cell death Cell Death - drug effects Cell Membrane - drug effects Cell Membrane - metabolism cell viability Depolarization Diphosphates - metabolism electrodes enzyme activity functional properties gene overexpression Growth conditions H-transporting ATP synthase Hydrogen-Ion Concentration hydrolysis Hyperactivity image analysis Imaging techniques Inorganic Pyrophosphatase - metabolism Isoenzymes - metabolism Leaves Membrane potential Membrane Potentials - drug effects Mesophyll Cells - drug effects Mesophyll Cells - enzymology Necrosis Negative feedback Nicotiana - drug effects Nicotiana - enzymology Nicotiana benthamiana pH effects Photosynthesis Plant Epidermis - cytology Plant Epidermis - drug effects plasma membrane plasma membrane voltage proton pump proton pump currents Proton Pumps - metabolism proton-motive force Protonmotive force Protons Pumping Pyrophosphatase Salinity Salinity effects Salinity tolerance salt salt stress Salt tolerance sodium Sodium Chloride - pharmacology Solute transport Solutes Stress, Physiological - drug effects Transgenic plants vacuolar pH Vacuolar Proton-Translocating ATPases - metabolism vacuolar proton‐ATPase (V‐ATPase) vacuolar proton‐pyrophosphatase (V‐PPase) vacuoles Vacuoles - enzymology |
Title | High V-PPase activity is beneficial under high salt loads, but detrimental without salinity |
URI | https://www.jstor.org/stable/90024014 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15280 https://www.ncbi.nlm.nih.gov/pubmed/29938800 https://www.proquest.com/docview/2083599704 https://www.proquest.com/docview/2059050486 https://www.proquest.com/docview/2153621809 https://pubmed.ncbi.nlm.nih.gov/PMC6099232 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VigMXyl9hS6kM4sCBVBuv7TjiBIhqhUS1QhTtARTFjqOuWCVVkz2UE4_QZ-yTMGMn0S4UhLhF8UTyz4z9jTPzDcBzBGwGYWsZKU1XN8KNIzPRZaQLnpZOoUNhKVH4w7Ganoj3cznfgld9Lkzghxgu3Mgy_H5NBp6bZs3Iq7NTKt6jyV-nWC0CRB_5GuGu4j0DsxJq3rEKURTP8OXGWRTCEa8Dmr_HS67jWH8QHe3Al34IIf7k2-GqNYf2-y_sjv85xjtwuwOo7HXQqLuw5ap7cPNNjSDy4j58pbgQ9vnqx-Vshucfo7QIqj7BFg0zuG0GPgpGmWnnjKiQWZMvW7as86J5ycyqZQWV8AoVBRhdAtf4DmUWuLVcPICTo3ef3k6jrkJDZKUSuKzG6TQZp2NtytJqTehDyTxOYpeUTqu4EDp3uYyNkzxRhTXoLibo8YnYqlyWk13YrurKPQImjdbFJCUPphTaGlMklkuHaEt4n3MEL_q1ymxHX05VNJZZ78bgZGV-skbwbBA9C5wd1wnt-gUfJFJP9xaLEez3GpB19txknJBqikPF5qdDM1oi_V7JK1evSEamY0kUhn-RwQNGceJMG8HDoFRDBxAYEDMP9izZULdBgJjAN1uqxalnBEebQqDOcY68Nv151NnxbOof9v5d9DHcQpSoQ2DdPmy35yv3BJFYaw7gBhezA294PwFOEDAk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VggSX8lsIFFgQSBxwZW-86_WBA1CqlLZRhFqUCzJee61GjeyqdoTCiUfgQXgVXoInYWb9owQK4tIDtyg7ivZnfr7ZzH4D8AQBm0bYmjlS0dWNb1xH91XmqJSHmZGYUCT0UHh_KAeH_tuxGK_At_YtTM0P0V24kWVYf00GThfSC1aenxxR9x7lNiWVu2b-CRO28sXOFp7uU8633xy8HjhNTwEnEdLHiWijwsANXaWzLFGK4qUUsRd4JsiMkl7qq9jEwtNG8ECmicYEJ8AcxfcSGYusj797AS5SB3Fi6t96xxcofiVvOZ-lL8cNjxHVDXVTXYp-dQHkWdD29wrNReRsQ9_2Vfjeblpd8XK8Oav0ZvL5Fz7J_2VXr8Fag8HZy9porsOKyW_ApVcF4uT5TfhApS_s_Y8vX0cjDPGMXn5Qgw02KZnGyFBTbjB6fHfKiO2ZlfG0YtMiTsvnTM8qllKXsrppAqN77gK_Q5kJes_5LTg8l6Wtw2pe5OYOMKGVSvshJWmZrxKt0yDhwiCg9G1a3YNnrXJEScPQTo1CplGbqeHhRPZwevC4Ez2paUnOElq3GtZJhJbRzvN7sNGqXNS4rDLiBMZDXCoOP-qG0dnQP0hxbooZyYjQFcTS-BcZjKGSEy1cD27XWtxNALEPkQ_hzIIl_e4EiOx8eSSfHFnSc3QbmItw3COrvn9edTQcDeyHu_8u-hAuDw7296K9neHuPbiCoFjVdYQbsFqdzsx9BJ6VfmDtncHH8zaFn0cVjDY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tC0JcVvwtdFnAIJA4EClxbcc5cACWqstClQOLekEhThxtpSqpNq1QbzwC78Fb8STMOD9qxYK47C2KR5Ez9ni-scffADxDwGYQthae0rR1I6zvmaEuPJ3zqLAKA4qMLgp_nKjxqXg_ldMd-NndhWn4IfoNN7IMt16TgS_yYsPIy8UZFe_RfptReWLX3zBeq18dH-HgPud89O7T27HXlhTwMqkE9sNYHYV-5GtTFJnW5C6VTIMwsGFhtQpyoVObysBYyUOVZwbjmxBDFBFkKpXFEL97Ba7S4SLlj3ERbzD8Kt5RPiuhpi2NEaUN9V3dcn5N_uNFyPbPBM1N4Ow83-gm7LWQlb1u5tgt2LHlbbj2pkJYub4DXyhThH3-9f1HHKNHZHRRgupRsFnNDC6kDUMFo7tq54zIkVmdzpdsXqV5_ZKZ1ZLlVNSrqTHAaFu4wncoM8PFZn0XTi9FwfuwW1alvQ9MGq3zYUQxTSF0ZkweZlxaxF_CRaEDeNEpM8laQnOqqzFPusAG9Z44vQ_gaS-6aFg8LhLadyPSS0SOAC4QAzjshihpLbxOOGHXCH8Vm5_0zWibdOCSlrZakYyMfEmkhv-QQZejOLGoDeBeM-p9BxAqEFcP9izcmg-9AHGDb7eUszPHEY5WhtCdo47czPn7XyeTeOweDv5f9DFcj49GyYfjyckDuIEQUjdZd4ewuzxf2YcI05bmkTMPBl8v2x5_A3lcSwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+V%E2%80%90PPase+activity+is+beneficial+under+high+salt+loads%2C+but+detrimental+without+salinity&rft.jtitle=The+New+phytologist&rft.au=Graus%2C+Dorothea&rft.au=Konrad%2C+Kai+R&rft.au=Bemm%2C+Felix&rft.au=Meliha+G%C3%B6rkem+Patir+Nebioglu&rft.date=2018-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=219&rft.issue=4&rft.spage=1421&rft.epage=1432&rft_id=info:doi/10.1111%2Fnph.15280&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |