High V-PPase activity is beneficial under high salt loads, but detrimental without salinity

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 219; no. 4; pp. 1421 - 1432
Main Authors Graus, Dorothea, Konrad, Kai R., Bemm, Felix, Patir Nebioglu, Meliha Görkem, Lorey, Christian, Duscha, Kerstin, Güthoff, Tilman, Herrmann, Johannes, Ferjani, Ali, Cuin, Tracey Ann, Roelfsema, M. Rob G., Schumacher, Karin, Neuhaus, H. Ekkehard, Marten, Irene, Hedrich, Rainer
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.09.2018
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.
AbstractList The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton‐pumping functions has yet to be dissected.For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging.NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants.The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na+ sequestration.
The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H + ‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP i hydrolysis and proton‐pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na + sequestration.
Summary The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton‐pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na+ sequestration.
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.
The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H⁺‐ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V‐PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPᵢ hydrolysis and proton‐pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V‐PPase‐dependent salt tolerance, we transiently overexpressed the pyrophosphate‐driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch‐clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt‐untreated conditions, V‐PPase‐overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP‐hyperactive cells from cell death. Furthermore, a salt‐induced rise in V‐PPase but not of V‐ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V‐PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V‐PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton‐coupled Na⁺ sequestration.
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na sequestration.
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.
Author Kai R. Konrad
Tilman Güthoff
H. Ekkehard Neuhaus
Kerstin Duscha
Ali Ferjani
Karin Schumacher
M. Rob G. Roelfsema
Felix Bemm
Tracey Ann Cuin
Meliha Görkem Patir Nebioglu
Dorothea Graus
Christian Lorey
Johannes Herrmann
Irene Marten
Rainer Hedrich
AuthorAffiliation 1 Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
2 Institute of Bioinformatics Center for Computational and Theoretical, Biology University of Würzburg Am Hubland Würzburg D‐97218 Germany
6 Tasmanian Institute of Agriculture University of Tasmania Hobart TAS 7001 Australia
4 Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany
3 Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany
5 Department of Biology Tokyo Gakugei University Nukui Kitamachi 4‐1‐1 Koganei‐shi Tokyo 184‐8501 Japan
AuthorAffiliation_xml – name: 2 Institute of Bioinformatics Center for Computational and Theoretical, Biology University of Würzburg Am Hubland Würzburg D‐97218 Germany
– name: 4 Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany
– name: 1 Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– name: 5 Department of Biology Tokyo Gakugei University Nukui Kitamachi 4‐1‐1 Koganei‐shi Tokyo 184‐8501 Japan
– name: 3 Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany
– name: 6 Tasmanian Institute of Agriculture University of Tasmania Hobart TAS 7001 Australia
Author_xml – sequence: 1
  givenname: Dorothea
  surname: Graus
  fullname: Graus, Dorothea
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– sequence: 2
  givenname: Kai R.
  surname: Konrad
  fullname: Konrad, Kai R.
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– sequence: 3
  givenname: Felix
  surname: Bemm
  fullname: Bemm, Felix
  organization: Institute of Bioinformatics Center for Computational and Theoretical, Biology University of Würzburg Am Hubland Würzburg D‐97218 Germany
– sequence: 4
  givenname: Meliha Görkem
  surname: Patir Nebioglu
  fullname: Patir Nebioglu, Meliha Görkem
  organization: Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany
– sequence: 5
  givenname: Christian
  surname: Lorey
  fullname: Lorey, Christian
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– sequence: 6
  givenname: Kerstin
  surname: Duscha
  fullname: Duscha, Kerstin
  organization: Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany
– sequence: 7
  givenname: Tilman
  surname: Güthoff
  fullname: Güthoff, Tilman
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– sequence: 8
  givenname: Johannes
  surname: Herrmann
  fullname: Herrmann, Johannes
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– sequence: 9
  givenname: Ali
  surname: Ferjani
  fullname: Ferjani, Ali
  organization: Department of Biology Tokyo Gakugei University Nukui Kitamachi 4‐1‐1 Koganei‐shi Tokyo 184‐8501 Japan
– sequence: 10
  givenname: Tracey Ann
  surname: Cuin
  fullname: Cuin, Tracey Ann
  organization: Tasmanian Institute of Agriculture University of Tasmania Hobart TAS 7001 Australia
– sequence: 11
  givenname: M. Rob G.
  surname: Roelfsema
  fullname: Roelfsema, M. Rob G.
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– sequence: 12
  givenname: Karin
  surname: Schumacher
  fullname: Schumacher, Karin
  organization: Centre for Organismal Studies Developmental Biology of Plants Ruprecht‐Karls‐University of Heidelberg Im Neuenheimer Feld 230 Heidelberg 69120 Germany
– sequence: 13
  givenname: H. Ekkehard
  surname: Neuhaus
  fullname: Neuhaus, H. Ekkehard
  organization: Plant Physiology University Kaiserslautern Postfach 3049 Kaiserslautern D‐67653 Germany
– sequence: 14
  givenname: Irene
  surname: Marten
  fullname: Marten, Irene
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
– sequence: 15
  givenname: Rainer
  surname: Hedrich
  fullname: Hedrich, Rainer
  organization: Institute for Molecular Plant Physiology and Biophysics University of Würzburg Julius von‐Sachs Platz 2 Würzburg D‐97082 Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29938800$$D View this record in MEDLINE/PubMed
BookMark eNqFksFrFDEYxYNU7LZ68A9QBrwoOO2XTJJJLoKU6gpF96AieAiZTKaTZTbZTjIt-98367aLFtRcAsnvPd6XlyN04IO3CD3HcILzOvXr_gQzIuARmmHKZSlwVR-gGQARJaf8xyE6inEJAJJx8gQdEikrIQBm6OfcXfbF93Kx0NEW2iR37dKmcLForLedM04PxeRbOxb9lox6SMUQdBvfFs2Uitam0a2sTxm7cakP-SwzzmeXp-hxp4don93tx-jbh_OvZ_Py4svHT2fvL0rDOIWyaayQNUgQTdcZIRhIzJnGNbZ1ZwXHLRXaaoYby0jNW9NgxmtCJcWGa9ZVx-jdznc9NSvbmpxm1INa52B63KignfrzxrteXYZrxUFKUpFs8PrOYAxXk41JrVw0dhi0t2GKimBWcYIFyP-jwCQwoIJn9NUDdBmm0eeXyJSomMxD00y9_D38PvV9RRl4swPMGGIcbbdHMKht_SrXr37Vn9nTB6xxSScXtnO74V-KGzfYzd-t1efF_F7xYqdYxhTGvULmz0YB0-oWY0nJ8Q
CitedBy_id crossref_primary_10_1016_j_rsci_2023_10_002
crossref_primary_10_3390_genes12111759
crossref_primary_10_1111_tpj_16740
crossref_primary_10_1007_s00344_021_10441_z
crossref_primary_10_1016_j_jbiotec_2021_04_008
crossref_primary_10_1155_2021_5578727
crossref_primary_10_3389_fpls_2024_1435799
crossref_primary_10_3390_plants13162322
crossref_primary_10_1007_s00344_022_10655_9
crossref_primary_10_1093_plphys_kiab538
crossref_primary_10_3389_fmicb_2019_01087
crossref_primary_10_3389_fpls_2019_01429
crossref_primary_10_1016_j_scienta_2025_114064
crossref_primary_10_1016_j_ygeno_2020_07_011
crossref_primary_10_1093_treephys_tpaa050
crossref_primary_10_3389_fpls_2021_672873
crossref_primary_10_3389_fpls_2022_999058
crossref_primary_10_1111_nph_16358
crossref_primary_10_1007_s11103_021_01232_x
crossref_primary_10_1093_pcp_pcz002
crossref_primary_10_1016_j_celrep_2023_112975
crossref_primary_10_1111_nph_18501
crossref_primary_10_1111_nph_19436
crossref_primary_10_1016_j_ecoenv_2023_115655
crossref_primary_10_1007_s00299_024_03401_w
crossref_primary_10_3389_fpls_2022_871387
crossref_primary_10_1007_s11105_020_01194_2
crossref_primary_10_1371_journal_pone_0308541
crossref_primary_10_1016_j_ijfoodmicro_2021_109517
crossref_primary_10_1016_j_plantsci_2019_04_003
crossref_primary_10_3389_fpls_2020_01240
crossref_primary_10_3389_fpls_2022_1077710
crossref_primary_10_1074_jbc_RA118_006315
crossref_primary_10_1016_j_envexpbot_2021_104402
crossref_primary_10_3389_fpls_2022_909429
Cites_doi 10.1073/pnas.0913035107
10.1111/j.1365-313X.2009.03820.x
10.1105/tpc.111.085415
10.1126/science.285.5431.1256
10.1093/jxb/erl090
10.1111/pbi.12145
10.1016/j.jplph.2008.01.003
10.1111/j.1432-1033.1991.tb15779.x
10.1126/science.236.4806.1299
10.1186/1743-422X-2-18
10.1093/treephys/tpv027
10.1016/j.pbi.2010.07.003
10.4161/psb.5.7.11767
10.1105/tpc.15.00733
10.1093/nar/gkl635
10.1007/BF00040721
10.1038/nature10963
10.1093/jxb/erh070
10.1093/pcp/pcq096
10.1007/BF00216819
10.1111/j.1467-7652.2010.00535.x
10.1105/tpc.114.127571
10.1111/j.1399-3054.1993.tb00133.x
10.1073/pnas.89.5.1775
10.1074/jbc.M111.310367
10.1093/jb/mvg184
10.1016/j.molp.2015.07.009
10.1007/s00709-007-0268-5
10.1104/pp.123.1.353
10.1016/S0005-2736(00)00130-9
10.1073/pnas.0509512102
10.1111/j.1399-3054.1987.tb04630.x
10.1073/pnas.191389398
10.1111/nph.12642
10.1007/s11183-005-0121-7
10.1093/nar/gkr1090
10.1016/j.plaphy.2010.09.014
10.1046/j.1365-313X.2002.01309.x
10.1038/nature05013
10.1046/j.1365-313X.2003.01871.x
10.1093/mp/sst079
10.1038/nbt.1883
10.1007/s00425-006-0428-4
10.1016/S1673-8527(08)60164-2
10.1128/MCB.10.1.120
10.1006/bbrc.1996.1573
10.1093/jxb/erp011
10.1093/jexbot/52.365.2355
10.1016/0005-2728(87)90143-5
10.3389/fpls.2013.00410
10.1038/nplants.2014.1
10.1152/physrev.00038.2011
10.1073/pnas.2034966100
10.1007/s11103-009-9549-z
10.1016/j.molp.2016.02.004
10.1007/s11032-006-9005-6
10.1038/ncomms2815
10.1038/nprot.2013.084
10.1111/j.1399-3054.1994.tb02981.x
10.1002/j.1460-2075.1989.tb08430.x
10.1371/journal.pcbi.1002195
10.1111/j.1365-313X.2011.04672.x
ContentType Journal Article
Copyright 2018 New Phytologist Trust
2018 The Authors. © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Copyright © 2018 New Phytologist Trust
Copyright_xml – notice: 2018 New Phytologist Trust
– notice: 2018 The Authors. © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
– notice: Copyright © 2018 New Phytologist Trust
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.15280
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

MEDLINE - Academic
AGRICOLA

MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1432
ExternalDocumentID PMC6099232
29938800
10_1111_nph_15280
NPH15280
90024014
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: FOR1061; IRTG1830; KO3657/2‐4
– fundername: Deutsche Forschungsgemeinschaft
  grantid: FOR1061; IRTG1830; KO3657/2‐4
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5640-bbe8970908bffc88509165a171e7fe861d48aea51be5276dcb156724941c6a5f3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 14:07:29 EDT 2025
Fri Jul 11 18:34:04 EDT 2025
Fri Jul 11 16:31:21 EDT 2025
Sun Jul 13 05:16:35 EDT 2025
Mon Jul 21 05:52:08 EDT 2025
Tue Jul 01 03:09:28 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Wed Jan 22 16:31:24 EST 2025
Thu Jul 03 22:16:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords salt
vacuolar proton-pyrophosphatase (V-PPase)
cell death
vacuolar pH
vacuolar proton-ATPase (V-ATPase)
proton pump currents
plasma membrane voltage
Language English
License Attribution
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5640-bbe8970908bffc88509165a171e7fe861d48aea51be5276dcb156724941c6a5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15280
PMID 29938800
PQID 2083599704
PQPubID 2026848
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099232
proquest_miscellaneous_2153621809
proquest_miscellaneous_2059050486
proquest_journals_2083599704
pubmed_primary_29938800
crossref_primary_10_1111_nph_15280
crossref_citationtrail_10_1111_nph_15280
wiley_primary_10_1111_nph_15280_NPH15280
jstor_primary_90024014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2018
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 35
2007; 225
1991; 196
1990; 10
2012; 484
2013; 4
2012; 287
2010; 13
2010; 107
2006; 34
1987; 71
1999; 285
2014; 26
2013; 8
2013; 6
1996; 31
1996; 227
2009; 58
1987; 236
2005; 102
2011; 68
2011; 23
2000; 123
2010; 5
2011; 29
1992; 89
2006; 442
2014; 202
2014; 12
2000; 1465
2001; 52
2010; 72
2001; 98
2015; 1
2012
2002; 30
2011
2006; 57
1992; 188
2009; 60
1993; 87
2006; 17
1989; 8
2003; 36
2008; 165
1992; 33
2015; 8
2003; 134
1995; 7
2011; 9
2004; 55
2012; 92
2009; 36
1987; 893
2015; 27
2007; 232
2005; 52
2005; 2
2011; 49
1994; 91
2003; 100
2010; 51
2016; 9
2012; 40
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Lodish H (e_1_2_7_33_1) 2012
Lerchl J (e_1_2_7_30_1) 1995; 7
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
Nakamura Y (e_1_2_7_36_1) 1992; 33
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 8
  start-page: 1494
  year: 2013
  end-page: 1512
  article-title: transcript sequence reconstruction from RNA‐Seq: reference generation and analysis with Trinity
  publication-title: Nature Protocols
– volume: 236
  start-page: 1299
  year: 1987
  end-page: 1302
  article-title: Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes
  publication-title: Science
– volume: 7
  start-page: 259
  year: 1995
  end-page: 270
  article-title: Impaired photoassimilate partitioning caused by phloem‐specific removal of pyrophosphate can be complemented by a phloem‐specific cytosolic yeast‐derived invertase in transgenic plants
  publication-title: Plant Cell
– volume: 1
  start-page: 14001
  year: 2015
  article-title: Identification of the transporter responsible for sucrose accumulation in sugar beet taproots
  publication-title: Nature Plants
– volume: 9
  start-page: 88
  year: 2011
  end-page: 99
  article-title: Expression of an Arabidopsis vacuolar H ‐pyrophosphatase gene ( ) in cotton improves drought‐ and salt tolerance and increases fibre yield in the field conditions
  publication-title: Plant Biotechnology Journal
– volume: 5
  start-page: 792
  year: 2010
  end-page: 795
  article-title: How do vacuolar NHX exchangers function in plant salt tolerance?
  publication-title: Plant Signaling & Behavior
– volume: 91
  start-page: 510
  year: 1994
  end-page: 516
  article-title: Enhanced K ‐stimulated pyrophosphatase activity in NaCl‐adapted cells of
  publication-title: Physiologia Plantarum
– volume: 58
  start-page: 715
  year: 2009
  end-page: 723
  article-title: The mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium
  publication-title: Plant Journal
– volume: 285
  start-page: 1256
  year: 1999
  end-page: 1258
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in Arabidopsis
  publication-title: Science
– volume: 188
  start-page: 238
  year: 1992
  end-page: 244
  article-title: Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing pyrophosphatase in their cytosol
  publication-title: Planta
– volume: 57
  start-page: 3259
  year: 2006
  end-page: 3270
  article-title: Cloning of an H ‐PPase gene from and its heterologous expression to improve tobacco salt tolerance
  publication-title: Journal of Experimental Botany
– volume: 23
  start-page: 2895
  year: 2011
  end-page: 2908
  article-title: Keep an eye on PP : the vacuolar‐type H ‐pyrophosphatase regulates postgerminative development in Arabidopsis
  publication-title: Plant Cell
– volume: 9
  start-page: 471
  year: 2016
  end-page: 480
  article-title: Current injection provokes rapid expansion of the guard cell cytosolic volume and triggers Ca signals
  publication-title: Molecular Plant
– volume: 8
  start-page: 1665
  year: 2015
  end-page: 1674
  article-title: Cytosolic Ca signals enhance the vacuolar ion conductivity of bulging Arabidopsis root hair cells
  publication-title: Molecular Plant
– volume: 52
  start-page: 2355
  year: 2001
  end-page: 2365
  article-title: Effects of salt treatment and osmotic stress on V‐ATPase and V‐PPase in leaves of the halophyte
  publication-title: Journal of Experimental Botany
– volume: 87
  start-page: 118
  year: 1993
  end-page: 124
  article-title: Effect of temperature on plasma membrane and tonoplast ion channels in
  publication-title: Physiologia Plantarum
– volume: 40
  start-page: D1202
  year: 2012
  end-page: D1210
  article-title: The Arabidopsis information resource (TAIR): improved gene annotation and new tools
  publication-title: Nucleic Acids Research
– volume: 31
  start-page: 1029
  year: 1996
  end-page: 1038
  article-title: Isolation and characterization of cDNAs encoding vacuolar H ‐pyrophosphatase isoforms from rice ( L.)
  publication-title: Plant Molecular Biology
– volume: 196
  start-page: 11
  year: 1991
  end-page: 17
  article-title: H ‐translocating inorganic pyrophosphatase of plant vacuoles inhibition by Ca , stabilization by Mg and immunological comparison with other inorganic pyrophosphatases
  publication-title: European Journal of Biochemistry
– volume: 6
  start-page: 1419
  year: 2013
  end-page: 1437
  article-title: Organelle pH in the Arabidopsis endomembrane system
  publication-title: Molecular Plant
– volume: 10
  start-page: 120
  year: 1990
  end-page: 130
  article-title: Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19‐kilodalton protein
  publication-title: Molecular and Cellular Biology
– volume: 68
  start-page: 129
  year: 2011
  end-page: 136
  article-title: Proton‐driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2
  publication-title: Plant Journal
– volume: 1465
  start-page: 37
  year: 2000
  end-page: 51
  article-title: Vacuolar H ‐pyrophosphatase
  publication-title: Biochimica et Biophysica Acta (BBA) – Biomembranes
– volume: 12
  start-page: 378
  year: 2014
  end-page: 386
  article-title: Expression of the Arabidopsis vacuolar H ‐pyrophosphatase gene ( ) improves the shoot biomass of transgenic barley and increases grain yield in a saline field
  publication-title: Plant Biotechnology Journal
– volume: 26
  start-page: 3416
  year: 2014
  end-page: 3434
  article-title: Dynamics of vacuoles and H ‐pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures
  publication-title: Plant Cell
– volume: 287
  start-page: 8986
  year: 2012
  end-page: 8993
  article-title: Luminal and cytosolic pH feedback on proton pump activity and ATP affinity of V‐type ATPase from Arabidopsis
  publication-title: Journal of Biological Chemistry
– volume: 51
  start-page: 1350
  year: 2010
  end-page: 1360
  article-title: Quantification, organ‐specific accumulation and intracellular localization of type II H ‐pyrophosphatase in
  publication-title: Plant and Cell Physiology
– volume: 102
  start-page: 18830
  year: 2005
  end-page: 18835
  article-title: Up‐regulation of a H ‐pyrophsophatase (H ‐PPase) as a strategy to engineer drought‐resistant crop plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 60
  start-page: 1363
  year: 2009
  end-page: 1374
  article-title: Activity of tonoplast proton pumps and Na /H exchange in potato cell cultures is modulated by salt
  publication-title: Journal of Experimental Botany
– volume: 13
  start-page: 724
  year: 2010
  end-page: 730
  article-title: The V‐ATPase: small cargo, large effects
  publication-title: Current Opinion in Plant Biology
– volume: 71
  start-page: 131
  year: 1987
  end-page: 141
  article-title: Tonoplast energization: two H pumps, one membrane
  publication-title: Physiologia Plantarum
– volume: 442
  start-page: 939
  year: 2006
  end-page: 942
  article-title: The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles
  publication-title: Nature
– volume: 4
  start-page: 414
  year: 2013
  article-title: Sodium transport system in plant cells
  publication-title: Frontiers in Plant Science
– volume: 165
  start-page: 1830
  year: 2008
  end-page: 1837
  article-title: Modification of vacuolar proton pumps in cucumber roots under salt stress
  publication-title: Journal of Plant Physiology
– volume: 123
  start-page: 353
  year: 2000
  end-page: 362
  article-title: AVP2, a sequence‐divergent, K ‐insensitive H ‐translocating inorganic pyrophosphatase from Arabidopsis
  publication-title: Plant Physiology
– volume: 227
  start-page: 707
  year: 1996
  end-page: 711
  article-title: An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells
  publication-title: Biochemical and Biophysical Research Communications
– volume: 98
  start-page: 11444
  year: 2001
  end-page: 11449
  article-title: Drought‐ and salt‐tolerant plants result from overexpression of the AVP1 H ‐pump
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 55
  start-page: 585
  year: 2004
  end-page: 594
  article-title: Effect of salt and osmotic stresses on the expression of genes for the vacuolar H ‐pyrophosphatase, H ‐ATPase subunit A, and Na /H antiporter from barley
  publication-title: Journal of Experimental Botany
– volume: 52
  start-page: 821
  year: 2005
  end-page: 825
  article-title: Identification and characterization of new members of vacuolar H ‐pyrophosphatase family from genome
  publication-title: Russian Journal of Plant Physiology
– volume: 232
  start-page: 87
  year: 2007
  end-page: 95
  article-title: Heterologous expression of vacuolar H ‐PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance
  publication-title: Protoplasma
– volume: 34
  start-page: e122
  year: 2006
  article-title: Advancing uracil‐excision based cloning towards an ideal technique for cloning PCR fragments
  publication-title: Nucleic Acids Research
– volume: 92
  start-page: 1777
  year: 2012
  end-page: 1811
  article-title: Ion channels in plants
  publication-title: Physiological Reviews
– volume: 4
  start-page: 1804
  year: 2013
  article-title: AtALMT9 is a malate‐activated vacuolar chloride channel required for stomatal opening in Arabidopsis
  publication-title: Nature Communications
– year: 2012
– volume: 202
  start-page: 188
  year: 2014
  end-page: 197
  article-title: Overexpression of a proton‐coupled vacuolar glucose exporter impairs freezing tolerance and seed germination
  publication-title: New Phytologist
– volume: 100
  start-page: 12510
  year: 2003
  end-page: 12515
  article-title: Topological analysis of a plant vacuolar Na /H antiporter reveals a luminal C terminus that regulates antiporter cation selectivity
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 8
  start-page: 2835
  year: 1989
  end-page: 2841
  article-title: Comparative studies on the electrical properties of the H translocating ATPase and pyrophosphatase of the vacuolar‐lysosomal compartment
  publication-title: EMBO Journal
– volume: 35
  start-page: 663
  year: 2015
  end-page: 677
  article-title: Overexpression of a H ‐pyrophsophatase gene PtVP1.1 confers salt tolerance on transgenic poplar
  publication-title: Tree Physiology
– volume: 484
  start-page: 399
  year: 2012
  end-page: 403
  article-title: Crystal structure of a membrane‐embedded H ‐translocating pyrophosphatase
  publication-title: Nature
– volume: 30
  start-page: 529
  year: 2002
  end-page: 539
  article-title: Differential expression and function of NHX Na /H antiporters in the salt stress response
  publication-title: Plant Journal
– volume: 36
  start-page: 711
  year: 2009
  end-page: 720
  article-title: Expression and responses to dehydration and salinity stresses of V‐PPase gene members in wheat
  publication-title: Journal of Genetics and Genomics
– volume: 27
  start-page: 3383
  year: 2015
  end-page: 3396
  article-title: Job sharing in the endomembrane system: vacuolar acidification requires the combined activity of V‐ATPase and V‐PPase
  publication-title: Plant Cell
– volume: 134
  start-page: 615
  year: 2003
  end-page: 623
  article-title: Patch clamp analysis of a H pump heterologously expressed in giant yeast vacuoles
  publication-title: Journal of Biochemistry
– volume: 89
  start-page: 1775
  year: 1992
  end-page: 1779
  article-title: Molecular cloning and sequence of cDNA encoding the pyrophosphate‐energized vacuolar membrane proton pump of
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 893
  start-page: 13
  year: 1987
  end-page: 21
  article-title: Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves
  publication-title: Biochimica et Biophysica Acta (BBA) – Bioenergetics
– volume: 72
  start-page: 47
  year: 2010
  end-page: 60
  article-title: Expression of vacuolar H ‐pyrophosphatase ( ) is under control of an anoxia‐inducible promoter in rice
  publication-title: Plant Molecular Biology
– volume: 33
  start-page: 139
  year: 1992
  end-page: 149
  article-title: Stimulation of the extrusion of protons and H ‐ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean [ ] roots under high‐NaCl stress and its relation to external levels of Ca ions
  publication-title: Plant and Cell Physiology
– volume: 36
  start-page: 229
  year: 2003
  end-page: 239
  article-title: Vacuolar cation/H exchange, ion homeostasis, and leaf development are altered in a T‐DNA insertional mutant of , the Arabidopsis vacuolar Na /H antiporter
  publication-title: Plant Journal
– volume: 17
  start-page: 341
  year: 2006
  end-page: 353
  article-title: Co‐expression of the SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1
  publication-title: Molecular Breeding
– volume: 29
  start-page: 644
  year: 2011
  end-page: 652
  article-title: Trinity: reconstructing a full‐length transcriptome without a genome from RNA‐Seq data
  publication-title: Nature Biotechnology
– volume: 107
  start-page: 3251
  year: 2010
  end-page: 3256
  article-title: Arabidopsis V‐ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 2
  start-page: 18
  year: 2005
  article-title: Soilborne wheat mosaic virus (SBWMV) 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing
  publication-title: Virology Journal
– volume: 225
  start-page: 1179
  year: 2007
  end-page: 1191
  article-title: AKT2 subunits constitute a pH‐ and Ca ‐sensitive inward rectifying K channel
  publication-title: Planta
– start-page: e1002195
  year: 2011
  article-title: Accelerated profile HMM searches
  publication-title: PLoS Computational Biology
– volume: 49
  start-page: 33
  year: 2011
  end-page: 38
  article-title: 1, a vacuolar H+‐translocating inorganic pyrophosphatase (V‐PPase), overexpression improved rice cold tolerance
  publication-title: Plant Physiology and Biochemistry
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.0913035107
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-313X.2009.03820.x
– ident: e_1_2_7_12_1
  doi: 10.1105/tpc.111.085415
– ident: e_1_2_7_2_1
  doi: 10.1126/science.285.5431.1256
– ident: e_1_2_7_14_1
  doi: 10.1093/jxb/erl090
– ident: e_1_2_7_46_1
  doi: 10.1111/pbi.12145
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jplph.2008.01.003
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1432-1033.1991.tb15779.x
– ident: e_1_2_7_24_1
  doi: 10.1126/science.236.4806.1299
– ident: e_1_2_7_52_1
  doi: 10.1186/1743-422X-2-18
– ident: e_1_2_7_61_1
  doi: 10.1093/treephys/tpv027
– ident: e_1_2_7_48_1
  doi: 10.1016/j.pbi.2010.07.003
– ident: e_1_2_7_21_1
  doi: 10.4161/psb.5.7.11767
– ident: e_1_2_7_27_1
  doi: 10.1105/tpc.15.00733
– ident: e_1_2_7_38_1
  doi: 10.1093/nar/gkl635
– ident: e_1_2_7_44_1
  doi: 10.1007/BF00040721
– ident: e_1_2_7_31_1
  doi: 10.1038/nature10963
– ident: e_1_2_7_13_1
  doi: 10.1093/jxb/erh070
– ident: e_1_2_7_50_1
  doi: 10.1093/pcp/pcq096
– ident: e_1_2_7_20_1
  doi: 10.1007/BF00216819
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1467-7652.2010.00535.x
– ident: e_1_2_7_49_1
  doi: 10.1105/tpc.114.127571
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1399-3054.1993.tb00133.x
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.89.5.1775
– volume: 33
  start-page: 139
  year: 1992
  ident: e_1_2_7_36_1
  article-title: Stimulation of the extrusion of protons and H+‐ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean [Vigna mungo] roots under high‐NaCl stress and its relation to external levels of Ca2+ ions
  publication-title: Plant and Cell Physiology
– ident: e_1_2_7_43_1
  doi: 10.1074/jbc.M111.310367
– ident: e_1_2_7_37_1
  doi: 10.1093/jb/mvg184
– ident: e_1_2_7_54_1
  doi: 10.1016/j.molp.2015.07.009
– ident: e_1_2_7_10_1
  doi: 10.1007/s00709-007-0268-5
– ident: e_1_2_7_9_1
  doi: 10.1104/pp.123.1.353
– ident: e_1_2_7_35_1
  doi: 10.1016/S0005-2736(00)00130-9
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.0509512102
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1399-3054.1987.tb04630.x
– ident: e_1_2_7_15_1
  doi: 10.1073/pnas.191389398
– ident: e_1_2_7_25_1
  doi: 10.1111/nph.12642
– ident: e_1_2_7_5_1
  doi: 10.1007/s11183-005-0121-7
– ident: e_1_2_7_28_1
  doi: 10.1093/nar/gkr1090
– ident: e_1_2_7_64_1
  doi: 10.1016/j.plaphy.2010.09.014
– ident: e_1_2_7_62_1
  doi: 10.1046/j.1365-313X.2002.01309.x
– ident: e_1_2_7_7_1
  doi: 10.1038/nature05013
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1365-313X.2003.01871.x
– ident: e_1_2_7_51_1
  doi: 10.1093/mp/sst079
– ident: e_1_2_7_16_1
  doi: 10.1038/nbt.1883
– ident: e_1_2_7_29_1
  doi: 10.1007/s00425-006-0428-4
– ident: e_1_2_7_56_1
  doi: 10.1016/S1673-8527(08)60164-2
– ident: e_1_2_7_58_1
  doi: 10.1128/MCB.10.1.120
– ident: e_1_2_7_63_1
  doi: 10.1006/bbrc.1996.1573
– ident: e_1_2_7_41_1
  doi: 10.1093/jxb/erp011
– ident: e_1_2_7_55_1
  doi: 10.1093/jexbot/52.365.2355
– ident: e_1_2_7_57_1
  doi: 10.1016/0005-2728(87)90143-5
– ident: e_1_2_7_60_1
  doi: 10.3389/fpls.2013.00410
– ident: e_1_2_7_22_1
  doi: 10.1038/nplants.2014.1
– ident: e_1_2_7_18_1
  doi: 10.1152/physrev.00038.2011
– ident: e_1_2_7_59_1
  doi: 10.1073/pnas.2034966100
– ident: e_1_2_7_32_1
  doi: 10.1007/s11103-009-9549-z
– ident: e_1_2_7_53_1
  doi: 10.1016/j.molp.2016.02.004
– ident: e_1_2_7_65_1
  doi: 10.1007/s11032-006-9005-6
– ident: e_1_2_7_8_1
  doi: 10.1038/ncomms2815
– ident: e_1_2_7_17_1
  doi: 10.1038/nprot.2013.084
– volume-title: Molecular cell biology
  year: 2012
  ident: e_1_2_7_33_1
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1399-3054.1994.tb02981.x
– ident: e_1_2_7_19_1
  doi: 10.1002/j.1460-2075.1989.tb08430.x
– ident: e_1_2_7_11_1
  doi: 10.1371/journal.pcbi.1002195
– volume: 7
  start-page: 259
  year: 1995
  ident: e_1_2_7_30_1
  article-title: Impaired photoassimilate partitioning caused by phloem‐specific removal of pyrophosphate can be complemented by a phloem‐specific cytosolic yeast‐derived invertase in transgenic plants
  publication-title: Plant Cell
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-313X.2011.04672.x
SSID ssj0009562
Score 2.445364
Snippet The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+-ATPase, generates the proton motive force that drives vacuolar...
Summary The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar...
The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H + ‐ATPase, generates the proton motive force that drives vacuolar...
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H -ATPase, generates the proton motive force that drives vacuolar...
The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H+‐ATPase, generates the proton motive force that drives vacuolar...
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar...
The membrane‐bound proton‐pumping pyrophosphatase (V‐PPase), together with the V‐type H⁺‐ATPase, generates the proton motive force that drives vacuolar...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1421
SubjectTerms Acidification
Adenosine triphosphatase
Capacity
Cell death
Cell Death - drug effects
Cell Membrane - drug effects
Cell Membrane - metabolism
cell viability
Depolarization
Diphosphates - metabolism
electrodes
enzyme activity
functional properties
gene overexpression
Growth conditions
H-transporting ATP synthase
Hydrogen-Ion Concentration
hydrolysis
Hyperactivity
image analysis
Imaging techniques
Inorganic Pyrophosphatase - metabolism
Isoenzymes - metabolism
Leaves
Membrane potential
Membrane Potentials - drug effects
Mesophyll Cells - drug effects
Mesophyll Cells - enzymology
Necrosis
Negative feedback
Nicotiana - drug effects
Nicotiana - enzymology
Nicotiana benthamiana
pH effects
Photosynthesis
Plant Epidermis - cytology
Plant Epidermis - drug effects
plasma membrane
plasma membrane voltage
proton pump
proton pump currents
Proton Pumps - metabolism
proton-motive force
Protonmotive force
Protons
Pumping
Pyrophosphatase
Salinity
Salinity effects
Salinity tolerance
salt
salt stress
Salt tolerance
sodium
Sodium Chloride - pharmacology
Solute transport
Solutes
Stress, Physiological - drug effects
Transgenic plants
vacuolar pH
Vacuolar Proton-Translocating ATPases - metabolism
vacuolar proton‐ATPase (V‐ATPase)
vacuolar proton‐pyrophosphatase (V‐PPase)
vacuoles
Vacuoles - enzymology
Title High V-PPase activity is beneficial under high salt loads, but detrimental without salinity
URI https://www.jstor.org/stable/90024014
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15280
https://www.ncbi.nlm.nih.gov/pubmed/29938800
https://www.proquest.com/docview/2083599704
https://www.proquest.com/docview/2059050486
https://www.proquest.com/docview/2153621809
https://pubmed.ncbi.nlm.nih.gov/PMC6099232
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VigMXyl9hS6kM4sCBVBuv7TjiBIhqhUS1QhTtARTFjqOuWCVVkz2UE4_QZ-yTMGMn0S4UhLhF8UTyz4z9jTPzDcBzBGwGYWsZKU1XN8KNIzPRZaQLnpZOoUNhKVH4w7Ganoj3cznfgld9Lkzghxgu3Mgy_H5NBp6bZs3Iq7NTKt6jyV-nWC0CRB_5GuGu4j0DsxJq3rEKURTP8OXGWRTCEa8Dmr_HS67jWH8QHe3Al34IIf7k2-GqNYf2-y_sjv85xjtwuwOo7HXQqLuw5ap7cPNNjSDy4j58pbgQ9vnqx-Vshucfo7QIqj7BFg0zuG0GPgpGmWnnjKiQWZMvW7as86J5ycyqZQWV8AoVBRhdAtf4DmUWuLVcPICTo3ef3k6jrkJDZKUSuKzG6TQZp2NtytJqTehDyTxOYpeUTqu4EDp3uYyNkzxRhTXoLibo8YnYqlyWk13YrurKPQImjdbFJCUPphTaGlMklkuHaEt4n3MEL_q1ymxHX05VNJZZ78bgZGV-skbwbBA9C5wd1wnt-gUfJFJP9xaLEez3GpB19txknJBqikPF5qdDM1oi_V7JK1evSEamY0kUhn-RwQNGceJMG8HDoFRDBxAYEDMP9izZULdBgJjAN1uqxalnBEebQqDOcY68Nv151NnxbOof9v5d9DHcQpSoQ2DdPmy35yv3BJFYaw7gBhezA294PwFOEDAk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VggSX8lsIFFgQSBxwZW-86_WBA1CqlLZRhFqUCzJee61GjeyqdoTCiUfgQXgVXoInYWb9owQK4tIDtyg7ivZnfr7ZzH4D8AQBm0bYmjlS0dWNb1xH91XmqJSHmZGYUCT0UHh_KAeH_tuxGK_At_YtTM0P0V24kWVYf00GThfSC1aenxxR9x7lNiWVu2b-CRO28sXOFp7uU8633xy8HjhNTwEnEdLHiWijwsANXaWzLFGK4qUUsRd4JsiMkl7qq9jEwtNG8ECmicYEJ8AcxfcSGYusj797AS5SB3Fi6t96xxcofiVvOZ-lL8cNjxHVDXVTXYp-dQHkWdD29wrNReRsQ9_2Vfjeblpd8XK8Oav0ZvL5Fz7J_2VXr8Fag8HZy9porsOKyW_ApVcF4uT5TfhApS_s_Y8vX0cjDPGMXn5Qgw02KZnGyFBTbjB6fHfKiO2ZlfG0YtMiTsvnTM8qllKXsrppAqN77gK_Q5kJes_5LTg8l6Wtw2pe5OYOMKGVSvshJWmZrxKt0yDhwiCg9G1a3YNnrXJEScPQTo1CplGbqeHhRPZwevC4Ez2paUnOElq3GtZJhJbRzvN7sNGqXNS4rDLiBMZDXCoOP-qG0dnQP0hxbooZyYjQFcTS-BcZjKGSEy1cD27XWtxNALEPkQ_hzIIl_e4EiOx8eSSfHFnSc3QbmItw3COrvn9edTQcDeyHu_8u-hAuDw7296K9neHuPbiCoFjVdYQbsFqdzsx9BJ6VfmDtncHH8zaFn0cVjDY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tC0JcVvwtdFnAIJA4EClxbcc5cACWqstClQOLekEhThxtpSqpNq1QbzwC78Fb8STMOD9qxYK47C2KR5Ez9ni-scffADxDwGYQthae0rR1I6zvmaEuPJ3zqLAKA4qMLgp_nKjxqXg_ldMd-NndhWn4IfoNN7IMt16TgS_yYsPIy8UZFe_RfptReWLX3zBeq18dH-HgPud89O7T27HXlhTwMqkE9sNYHYV-5GtTFJnW5C6VTIMwsGFhtQpyoVObysBYyUOVZwbjmxBDFBFkKpXFEL97Ba7S4SLlj3ERbzD8Kt5RPiuhpi2NEaUN9V3dcn5N_uNFyPbPBM1N4Ow83-gm7LWQlb1u5tgt2LHlbbj2pkJYub4DXyhThH3-9f1HHKNHZHRRgupRsFnNDC6kDUMFo7tq54zIkVmdzpdsXqV5_ZKZ1ZLlVNSrqTHAaFu4wncoM8PFZn0XTi9FwfuwW1alvQ9MGq3zYUQxTSF0ZkweZlxaxF_CRaEDeNEpM8laQnOqqzFPusAG9Z44vQ_gaS-6aFg8LhLadyPSS0SOAC4QAzjshihpLbxOOGHXCH8Vm5_0zWibdOCSlrZakYyMfEmkhv-QQZejOLGoDeBeM-p9BxAqEFcP9izcmg-9AHGDb7eUszPHEY5WhtCdo47czPn7XyeTeOweDv5f9DFcj49GyYfjyckDuIEQUjdZd4ewuzxf2YcI05bmkTMPBl8v2x5_A3lcSwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+V%E2%80%90PPase+activity+is+beneficial+under+high+salt+loads%2C+but+detrimental+without+salinity&rft.jtitle=The+New+phytologist&rft.au=Graus%2C+Dorothea&rft.au=Konrad%2C+Kai+R&rft.au=Bemm%2C+Felix&rft.au=Meliha+G%C3%B6rkem+Patir+Nebioglu&rft.date=2018-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=219&rft.issue=4&rft.spage=1421&rft.epage=1432&rft_id=info:doi/10.1111%2Fnph.15280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon