基于CEEMD-EEMD的局部放电阈值去噪新方法

为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识将分解后的信号进行阈值去噪。利用该算法对局部放电的仿真信号和实测信号进行去噪处理,并与常规的小波去噪算法比较分析。仿真和实验的去噪结果表明,基于CEEMD-EEMD的局部放电阈值去噪方法取得了良好的去噪效果,验证了该方法的有效性,从而为局部放电信号的预处理提供了一种新思路。...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 44; no. 15; pp. 93 - 98
Main Author 王恩俊 张建文 马晓伟 马鸿宇
Format Journal Article
LanguageChinese
Published 中国矿业大学信息与电气工程学院,江苏徐州,221008 2016
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.7667/PSPC151487

Cover

Abstract 为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识将分解后的信号进行阈值去噪。利用该算法对局部放电的仿真信号和实测信号进行去噪处理,并与常规的小波去噪算法比较分析。仿真和实验的去噪结果表明,基于CEEMD-EEMD的局部放电阈值去噪方法取得了良好的去噪效果,验证了该方法的有效性,从而为局部放电信号的预处理提供了一种新思路。
AbstractList 为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识将分解后的信号进行阈值去噪。利用该算法对局部放电的仿真信号和实测信号进行去噪处理,并与常规的小波去噪算法比较分析。仿真和实验的去噪结果表明,基于CEEMD-EEMD的局部放电阈值去噪方法取得了良好的去噪效果,验证了该方法的有效性,从而为局部放电信号的预处理提供了一种新思路。
为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解(CEEMD-EEMD)的局部放电阈值去噪新方法.首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识将分解后的信号进行阈值去噪.利用该算法对局部放电的仿真信号和实测信号进行去噪处理,并与常规的小波去噪算法比较分析.仿真和实验的去噪结果表明,基于CEEMD-EEMD的局部放电阈值去噪方法取得了良好的去噪效果,验证了该方法的有效性,从而为局部放电信号的预处理提供了一种新思路.
Author 王恩俊 张建文 马晓伟 马鸿宇
AuthorAffiliation 中国矿业大学信息与电气工程学院,江苏徐州221008
AuthorAffiliation_xml – name: 中国矿业大学信息与电气工程学院,江苏徐州,221008
Author_FL MA Xiaowei
WANG Enjun
ZHANG Jianwen
MA Hongyu
Author_FL_xml – sequence: 1
  fullname: WANG Enjun
– sequence: 2
  fullname: ZHANG Jianwen
– sequence: 3
  fullname: MA Xiaowei
– sequence: 4
  fullname: MA Hongyu
Author_xml – sequence: 1
  fullname: 王恩俊 张建文 马晓伟 马鸿宇
BookMark eNotzT9Lw0AYBvAbKlhrFz-CuEbvzd29lxslxj9QsWD3crlcaoumNkHErWAHp061qIurOCniYBU_jUnpt7BSl-dZfjzPCikl3cQSsgZ0UyLKrfpx3QcB3JMlUgaU3GEcxDKpZlk7pJSBEOipMuH54-RnMvSD4HDH-YvpwyB_7c-un4rR93T0Pru7yftf-fAzv38uxi_F-KN4u10lS7E-zWz1vyuksRs0_H2ndrR34G_XHCOQO1Kha0Pt2UgBUnSNsRoUV4ixURJ0KFSIMtQWNUTSci-ixjOR0CykzLqaVcjGYvZSJ7FOWs1O9yJN5ofNTtRzKSAICnzO1hfMnHSTVq89h-dp-0ynV01EhUohc9kvGtNfrA
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7667/PSPC151487
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate A new threshold denoising algorithm for partial discharge based on CEEMD-EEMD
DocumentTitle_FL A new threshold denoising algorithm for partial discharge based on CEEMD-EEMD
EndPage 98
ExternalDocumentID jdq201615014
669699632
GroupedDBID -03
2RA
5XA
5XD
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
GROUPED_DOAJ
U1G
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c564-7962eba8ed916062ccea194966fc971ab59b67bae6a1d7e48d0c8cd5a3b03e2a3
ISSN 1674-3415
IngestDate Thu May 29 04:03:02 EDT 2025
Wed Feb 14 10:16:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords thresholding denoising
局部放电
完全经验模态分解
EEMD
阈值去噪
wavelet denoising
CEEMD
总体平均经验模态分解
小波去噪
partial discharge
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c564-7962eba8ed916062ccea194966fc971ab59b67bae6a1d7e48d0c8cd5a3b03e2a3
Notes WANG Enjun,ZHANG Jianwen,MA Xiaowei,MA Hongyu(School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221008, China)
To solve the problem that the adaptability of partial discharge signals is not insufficient in denoising process, a new algorithm of partial discharge thresholding denoising based on complete ensemble empirical mode decomposition and ensemble empirical mode decomposition is proposed. Firstly, the discharge signals should be decomposed by CEEMD. Secondly, the intrinsic mode functions which have been broken out by CEEMD should be decomposed by EEMD. Thirdly, the thresholding denoising of decomposed signals is carried on based on the knowledge of mathematical statistics. This paper makes use of the new algorithm to denoise for simulation signals and measured signals and to compare with the conventional wavelet denoising algorithm. The simulation results and experimental results show that the thresholding denoising algorithm for partial discharge based on
PageCount 6
ParticipantIDs wanfang_journals_jdq201615014
chongqing_primary_669699632
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitleAlternate Relay
PublicationTitle_FL Power System Protection and Control
PublicationYear 2016
Publisher 中国矿业大学信息与电气工程学院,江苏徐州,221008
Publisher_xml – name: 中国矿业大学信息与电气工程学院,江苏徐州,221008
SSID ssib003155689
ssib017479473
ssib023166999
ssj0002912115
ssib051374514
ssib002424069
ssib036435463
Score 2.105625
Snippet ...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 93
SubjectTerms 完全经验模态分解
小波去噪
局部放电
总体平均经验模态分解
阈值去噪
Title 基于CEEMD-EEMD的局部放电阈值去噪新方法
URI http://lib.cqvip.com/qk/90494A/201615/669699632.html
https://d.wanfangdata.com.cn/periodical/jdq201615014
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQxcBVCQ4NAgAghKAUuF253_SztO58iJFAkgpTutLfeTURxIXBpUkWCgipViCANLaICIQoC4mu4i_IXzHh9dwuKxKOx5uyZ8XjmbI-99jiKbsuycrwqVJwzx2PKKYyDjGO_AufYcZZVzp-2eMBXHtF762x97txR49TSzrB_p9g9817J_1gV8sCueEv2Hyw7ZQoZAIN9IQULQ_pXNiaWEdUlRhNLMZW2be39TowJsYIoyKKIZBI80WAVkRnRklhOFBBYjwMAwyIliZSIDJim7QFLjPF1KKK1p-LEtCaAQsBkpH6-cuLhNngCB02UwRxAMzVgUGIUt0tUBzkAjqY-R2KNmGOJFp5cEjPdOURqKJHGoyREq8BG6hkKQ9F1ywPGK8bLOpttsaVAqdu-BFqdeS5tkOoMFIVCQRXATtsJl7BHUl_e9P_nIL3ueGVBvbX2u57UF4ElkAcNDQNMzYP4Opk0qNvQwlSJXuOqtqIgmmERmFCaBh_lLZRCd_H4iVexx5FedrC0agUOCo-_pilGW2pMSFzQGDwN1pyx6oiZk57JGvNP_dpk8GTq571_nyMF5_iVfvXhahu8PRpU92vM8cduO_VrgRa-EX8-FSJhje2K4NrhpenG3ICx7Ka_YdnAuZotdTPwfJsvL7AkE5SFL_joNaUKgw3iieNpk-towijv3Zm0GANlc2uwsQ2enb9oN6jywUbDJ1y7FF0Mi7llXffMy9Hc7uaViI7eHv843p_1xJOjF6OPe6fP340Pvp8cfD59_XK09220_3X05v348MP48Mv406ur0VrXrrVX4vA2SVwwTmOheFr2c1k6WF61eFoUZZ4oqjiOeyLJ-0z1uejnJc8TJ0oqXauQhWN5Bqoo0zy7Fs0Ptgbl9WgZtFZVucgKJx3lQFqlQOZUAerJXM4XosVpg3tP6hA0PdAtaJdn6UK0FFTQCwPTs17Tejf-UL4YXUC43lS8Gc0Pn-6US-BmD_u3vL1_AmW3lb0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ECEEMD-EEMD%E7%9A%84%E5%B1%80%E9%83%A8%E6%94%BE%E7%94%B5%E9%98%88%E5%80%BC%E5%8E%BB%E5%99%AA%E6%96%B0%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E7%8E%8B%E6%81%A9%E4%BF%8A&rft.au=%E5%BC%A0%E5%BB%BA%E6%96%87&rft.au=%E9%A9%AC%E6%99%93%E4%BC%9F&rft.au=%E9%A9%AC%E9%B8%BF%E5%AE%87&rft.date=2016&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E5%BE%90%E5%B7%9E%2C221008&rft.issn=1674-3415&rft.volume=44&rft.issue=15&rft.spage=93&rft.epage=98&rft_id=info:doi/10.7667%2FPSPC151487&rft.externalDocID=jdq201615014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg