Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation
Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria a...
Saved in:
Published in | Journal of neuroinflammation Vol. 18; no. 1; pp. 41 - 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
04.02.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice.
SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity.
Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner.
The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. |
---|---|
AbstractList | Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice.BACKGROUNDPostoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice.SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity.METHODSSIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity.Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner.RESULTSOverexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner.The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.CONCLUSIONThe results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-[alpha]], interleukin [IL]-1[beta] and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. Methods SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Results Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-[alpha]], interleukin [IL]-1[beta] and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. Conclusion The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. Keywords: SIRT3, Postoperative cognitive dysfunction, Mitochondrial oxidative stress, Neuroinflammation, Microglia, Synaptic plasticity Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. Abstract Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. Methods SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Results Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. Conclusion The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. Methods SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Results Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. Conclusion The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. |
ArticleNumber | 41 |
Audience | Academic |
Author | Chen, Chen Wu, Yu-Qing Sun, Yin-Ying Huang, Hui Ma, Lin-Hui Liu, Qiang Sun, Yi-Man Wan, Jie Miao, Hui-Hui |
Author_xml | – sequence: 1 givenname: Qiang surname: Liu fullname: Liu, Qiang – sequence: 2 givenname: Yi-Man surname: Sun fullname: Sun, Yi-Man – sequence: 3 givenname: Hui surname: Huang fullname: Huang, Hui – sequence: 4 givenname: Chen surname: Chen fullname: Chen, Chen – sequence: 5 givenname: Jie surname: Wan fullname: Wan, Jie – sequence: 6 givenname: Lin-Hui surname: Ma fullname: Ma, Lin-Hui – sequence: 7 givenname: Yin-Ying surname: Sun fullname: Sun, Yin-Ying – sequence: 8 givenname: Hui-Hui surname: Miao fullname: Miao, Hui-Hui – sequence: 9 givenname: Yu-Qing surname: Wu fullname: Wu, Yu-Qing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33541361$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstq3TAQhk1JaS7tC3RRDN1048S6WJI3hRB6CQS6aLsWsjT2UbAlV7IDya5v3sk5acgJpQih2ze_NKP_uDgIMUBRvCX1KSFKnGVCW8mrmhLstWqruxfFEZGcVrRu-cGT-WFxnPN1XTPaCPqqOGSs4YQJclT8_u7TsvpQsnJOcQG75NIMxoe8lCZAXjaQvTnLaxog3VY-uNWCK20cgl_8DZQO7OgDlChhBjyZvIWyuy3zOs8JcvZhKDd-nqM102zGMsCaog_9aKbJLD6G18XL3owZ3jyMJ8XPz59-XHytrr59ubw4v6psI9hS9Q6AyI4yzqVQhjsriWodJiGha0nfGmWariMNh77ruXDcWjCiFYpYqtqOnRSXO10XzbWek59MutXReL3diGnQJi3ejqB5Z2gjpe0c6bmTpiMEF6wnUlJpaYNaH3da89pN4CyEJZlxT3T_JPiNHuKNlkowJmoU-PAgkOKvFcusJ58tjCPWPK5ZU64kaVq1Rd8_Q6_jmgKWCqmW1KqW9Ak1GEwA6xvxXnsvqs9Fw4RqGiqQOv0Hhc0B_hu6q_e4vxfw7mmijxn-NRACdAfYFHNO0D8ipNb3LtU7l2p0qd66VN9hkHoWZP2yNQM-x4__C_0DSrTusQ |
CitedBy_id | crossref_primary_10_1093_stmcls_sxac018 crossref_primary_10_31083_j_fbl2711303 crossref_primary_10_1097_WNR_0000000000001901 crossref_primary_10_26599_AGR_2023_9340020 crossref_primary_10_3389_fncel_2021_746631 crossref_primary_10_1186_s12871_022_01750_1 crossref_primary_10_7717_peerj_18507 crossref_primary_10_3389_fphys_2022_908689 crossref_primary_10_3892_etm_2021_10470 crossref_primary_10_3389_fphys_2022_962769 crossref_primary_10_1007_s11011_022_01111_4 crossref_primary_10_1002_glia_24520 crossref_primary_10_1016_j_cej_2022_135984 crossref_primary_10_3389_fnagi_2022_1040569 crossref_primary_10_3389_fnagi_2022_780972 crossref_primary_10_1007_s00011_023_01804_1 crossref_primary_10_1136_bmjopen_2021_057000 crossref_primary_10_1016_j_labinv_2024_102190 crossref_primary_10_1155_2022_3593294 crossref_primary_10_1007_s12640_021_00459_2 crossref_primary_10_1016_j_phymed_2024_155369 crossref_primary_10_1016_j_biopha_2023_115582 crossref_primary_10_1111_cns_14410 crossref_primary_10_1186_s12974_023_02845_3 crossref_primary_10_1007_s00011_023_01738_8 crossref_primary_10_3389_fnins_2022_1100915 crossref_primary_10_3233_JAD_221039 crossref_primary_10_3390_molecules29020503 crossref_primary_10_1016_j_expneurol_2024_115114 crossref_primary_10_1111_cns_14373 crossref_primary_10_1155_2023_7272456 crossref_primary_10_1111_bpa_13289 crossref_primary_10_1016_j_heliyon_2024_e32159 crossref_primary_10_1016_j_exger_2023_112168 crossref_primary_10_1177_17448069231161031 crossref_primary_10_3390_antiox12030714 crossref_primary_10_3390_cimb44110386 crossref_primary_10_1002_j_2769_2795_2021_tb00069_x crossref_primary_10_3389_fimmu_2022_819289 crossref_primary_10_20517_2574_1209_2024_05 crossref_primary_10_1007_s11064_022_03567_3 crossref_primary_10_1186_s12964_024_01938_7 crossref_primary_10_1016_j_bbr_2023_114328 crossref_primary_10_1039_D1FO01817E crossref_primary_10_1016_j_scitotenv_2024_175879 crossref_primary_10_3892_etm_2022_11405 crossref_primary_10_3389_fnagi_2024_1480502 crossref_primary_10_3389_fnins_2022_788675 crossref_primary_10_1007_s12035_022_02924_1 crossref_primary_10_1016_j_brainresbull_2024_111054 crossref_primary_10_1016_j_neuroscience_2024_12_007 crossref_primary_10_1038_s41598_024_53127_8 crossref_primary_10_1186_s12974_024_03285_3 crossref_primary_10_1186_s13578_022_00892_6 crossref_primary_10_1111_cns_70049 crossref_primary_10_1016_j_brainresbull_2024_110913 crossref_primary_10_1016_j_expneurol_2023_114385 crossref_primary_10_1016_j_intimp_2025_114095 crossref_primary_10_7554_eLife_85751 crossref_primary_10_1016_j_expneurol_2024_115136 crossref_primary_10_2147_CIA_S357319 crossref_primary_10_1016_j_bbi_2024_12_019 crossref_primary_10_1016_j_lfs_2025_123574 crossref_primary_10_1016_j_intimp_2022_108712 crossref_primary_10_1155_2022_4428883 crossref_primary_10_1186_s12974_021_02318_5 crossref_primary_10_1007_s11064_023_04020_9 crossref_primary_10_1155_2022_3182220 crossref_primary_10_1021_acschemneuro_3c00310 crossref_primary_10_1186_s13287_024_03925_8 crossref_primary_10_3390_antiox13091104 crossref_primary_10_3389_fphys_2022_886087 crossref_primary_10_12677_acm_2024_1482283 crossref_primary_10_1016_j_brainres_2023_148425 crossref_primary_10_62347_QQKB3082 crossref_primary_10_1515_med_2024_1011 crossref_primary_10_1007_s12020_024_04013_w crossref_primary_10_1111_cns_13762 crossref_primary_10_1039_D4SD00317A crossref_primary_10_18632_aging_204822 crossref_primary_10_3389_fmed_2022_783931 crossref_primary_10_1021_acs_jafc_3c04618 crossref_primary_10_1186_s12871_023_02365_w crossref_primary_10_3390_brainsci13050790 crossref_primary_10_3390_metabo13020187 crossref_primary_10_2147_JIR_S383853 crossref_primary_10_1007_s11064_024_04115_x crossref_primary_10_3389_fnins_2022_990333 crossref_primary_10_1186_s11658_024_00595_5 crossref_primary_10_3389_fphar_2021_738590 crossref_primary_10_3389_fnagi_2024_1390915 crossref_primary_10_1155_2023_7857760 crossref_primary_10_3390_antiox14030297 crossref_primary_10_1016_j_neuropharm_2024_110032 crossref_primary_10_3389_fnagi_2025_1529860 crossref_primary_10_1007_s11010_024_05091_0 crossref_primary_10_31083_j_jin2302038 crossref_primary_10_3389_fnmol_2023_1117146 crossref_primary_10_1016_j_neuint_2024_105765 crossref_primary_10_18632_aging_205182 crossref_primary_10_1016_j_intimp_2024_113464 crossref_primary_10_1016_j_neuropharm_2024_109981 crossref_primary_10_3389_fcell_2023_1154831 crossref_primary_10_1016_j_lfs_2024_122537 crossref_primary_10_1007_s11064_023_04007_6 crossref_primary_10_1186_s12974_023_02849_z crossref_primary_10_3390_biom13050735 crossref_primary_10_1016_j_bbi_2023_12_034 crossref_primary_10_2147_JIR_S482051 crossref_primary_10_1002_agm2_12310 |
Cites_doi | 10.1016/j.bbi.2019.01.020 10.1038/srep44521 10.3389/fnagi.2020.00152 10.1007/s12017-014-8288-8 10.1007/s12630-018-1216-x 10.1073/pnas.91.26.12673 10.1186/s12974-020-01886-2 10.1016/j.cbi.2014.10.016 10.2147/OTT.S172672 10.7554/eLife.46356 10.1177/1744806919842961 10.1002/ana.22664 10.1007/s40520-020-01646-5 10.1016/j.neuroscience.2015.03.006 10.1016/j.neurobiolaging.2014.03.022 10.1097/01.shk.0000228797.41044.08 10.1186/s12974-019-1417-4 10.1213/ANE.0000000000004053 10.1002/jcp.28783 10.1186/s12974-020-01799-0 10.1016/j.nbd.2012.12.009 10.1016/j.jchemneu.2017.11.009 10.2174/1389203719666171129094937 10.1016/j.neulet.2009.03.079 10.1097/ALN.0000000000002334 10.1186/s12974-019-1582-5 10.1038/s41598-018-35890-7 10.1038/nrn.2016.128 10.1002/hipo.22536 10.1007/s12035-017-0787-9 10.1093/bja/aep291 10.1097/ALN.0b013e318195b569 10.1172/JCI123689 10.1111/acel.12538 10.1016/j.ynstr.2018.05.003 10.1016/j.celrep.2013.01.005 10.1038/nature11775 10.1186/s12974-019-1695-x 10.1016/j.bcp.2018.11.003 10.1016/j.bja.2017.11.087 10.1016/j.conb.2011.10.019 10.1213/ANE.0000000000003634 10.1080/15622975.2019.1656820 10.1007/s11481-006-9015-5 10.4065/mcp.2011.0332 10.1186/s12974-016-0782-5 10.1038/nm.3569 10.1073/pnas.1014557107 10.3233/JAD-142427 10.1016/j.bbi.2018.07.016 10.1016/j.neuint.2017.04.012 10.1016/j.celrep.2018.06.009 10.1101/cshperspect.a021758 10.1016/j.neuroscience.2015.10.048 10.3233/JAD-160812 10.1007/s12975-017-0603-x 10.1007/s11064-017-2417-3 10.1155/2019/4050796 10.1126/science.aad8373 10.1038/nn.2741 10.1111/aas.13250 10.1152/ajpregu.00793.2005 10.1042/BSR20190069 10.1007/s12035-019-01819-y |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION NPM 3V. 7T5 7TK 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12974-021-02089-z |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1742-2094 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_4ba2577cbd1f4d7ab117cb3f17727c25 PMC7863360 A653685526 33541361 10_1186_s12974_021_02089_z |
Genre | Journal Article |
GeographicLocations | China United States--US |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81701040 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20191464 – fundername: Beijing Talents Fund grantid: 2017000021469G258 – fundername: ; grantid: 2017000021469G258 – fundername: ; grantid: 81701040 – fundername: ; grantid: BK20191464 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M NPM PMFND PJZUB PPXIY 3V. 7T5 7TK 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c563t-fdee17b2344768a4dc7189d3617eb91f9a8a5bb154efbf46d4ccea69681c289b3 |
IEDL.DBID | M48 |
ISSN | 1742-2094 |
IngestDate | Wed Aug 27 01:07:15 EDT 2025 Thu Aug 21 18:25:24 EDT 2025 Tue Aug 05 10:05:26 EDT 2025 Fri Jul 25 08:23:14 EDT 2025 Mon Aug 11 06:00:11 EDT 2025 Tue Jun 10 20:49:30 EDT 2025 Thu Apr 03 07:05:50 EDT 2025 Tue Jul 01 02:54:33 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mitochondrial oxidative stress Neuroinflammation Postoperative cognitive dysfunction Synaptic plasticity Microglia SIRT3 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-fdee17b2344768a4dc7189d3617eb91f9a8a5bb154efbf46d4ccea69681c289b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12974-021-02089-z |
PMID | 33541361 |
PQID | 2491080720 |
PQPubID | 55345 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ba2577cbd1f4d7ab117cb3f17727c25 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863360 proquest_miscellaneous_2487159860 proquest_journals_2491080720 gale_infotracmisc_A653685526 gale_infotracacademiconefile_A653685526 pubmed_primary_33541361 crossref_primary_10_1186_s12974_021_02089_z crossref_citationtrail_10_1186_s12974_021_02089_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-04 |
PublicationDateYYYYMMDD | 2021-02-04 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of neuroinflammation |
PublicationTitleAlternate | J Neuroinflammation |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | H Zhang (2089_CR29) 2015; 45 2089_CR39 P Penzes (2089_CR53) 2011; 14 LJ Wang (2089_CR22) 2019; 162 L Evered (2089_CR31) 2018; 62 E Bajwa (2089_CR42) 2019; 2019 MB Moser (2089_CR58) 1994; 91 SS Min (2089_CR60) 2009; 456 I Salvatori (2089_CR18) 2017; 109 M Di Filippo (2089_CR43) 2013; 52 P Rangarajan (2089_CR19) 2015; 311 D Huang (2089_CR49) 2019; 234 L Evered (2089_CR34) 2018; 121 S Hong (2089_CR50) 2016; 352 AJ Granger (2089_CR62) 2013; 493 LD Estrada (2089_CR55) 2018; 19 VL Nemeth (2089_CR13) 2017; 55 MB Netto (2089_CR10) 2018; 73 H Miao (2089_CR5) 2018; 55 J Steinmetz (2089_CR2) 2009; 110 M Cieślik (2089_CR35) 2020; 57 J Yan (2089_CR40) 2019; 11 K Bisht (2089_CR57) 2018; 9 K Brown (2089_CR16) 2013; 3 L Chen (2089_CR3) 2019; 78 L Evered (2089_CR30) 2018; 65 A Tyagi (2089_CR20) 2018; 8 Y Zhu (2089_CR25) 2017; 14 MI Lutz (2089_CR36) 2014; 16 KP Mollen (2089_CR47) 2006; 26 RM Levy (2089_CR46) 2006; 291 G Mudò (2089_CR65) 2019; 16 N Terrando (2089_CR11) 2011; 70 N Terrando (2089_CR45) 2011; 86 YN Chen (2089_CR8) 2020; 17 P Miller-Rhodes (2089_CR9) 2019; 16 R Verma (2089_CR38) 2019; 10 LL Qiu (2089_CR4) 2020; 17 L Vutskits (2089_CR6) 2016; 17 K Luo (2089_CR21) 2018; 11 HH Miao (2089_CR27) 2019; 15 EJ Mufson (2089_CR54) 2015; 309 CH Bailey (2089_CR63) 2015; 7 DJ Watson (2089_CR28) 2016; 26 VI Lushchak (2089_CR41) 2014; 224 D Li (2089_CR7) 2020; 17 S Deiner (2089_CR1) 2009; 103 A Ansari (2089_CR17) 2017; 16 L Evered (2089_CR32) 2018; 127 S Belloli (2089_CR52) 2020; 12 SA Villeda (2089_CR44) 2014; 20 2089_CR51 K Wang (2089_CR59) 2017; 7 2089_CR24 H Kim (2089_CR23) 2019; 44 S Subramaniyan (2089_CR12) 2019; 128 L Evered (2089_CR33) 2018; 129 KA Anamika (2089_CR15) 2019; 95 N Terrando (2089_CR48) 2010; 107 YP Shentu (2089_CR56) 2018; 24 P Han (2089_CR37) 2014; 35 JN Bourne (2089_CR64) 2012; 22 K Zhang (2089_CR26) 2019; 129 2089_CR61 GA Garden (2089_CR14) 2006; 1 |
References_xml | – volume: 78 start-page: 188 year: 2019 ident: 2089_CR3 publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2019.01.020 – volume: 7 start-page: 44521 year: 2017 ident: 2089_CR59 publication-title: Sci Rep doi: 10.1038/srep44521 – volume: 12 start-page: 152 year: 2020 ident: 2089_CR52 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2020.00152 – volume: 16 start-page: 405 year: 2014 ident: 2089_CR36 publication-title: Neuromolecular Med doi: 10.1007/s12017-014-8288-8 – volume: 65 start-page: 1248 year: 2018 ident: 2089_CR30 publication-title: Can J Anaesth doi: 10.1007/s12630-018-1216-x – volume: 91 start-page: 12673 year: 1994 ident: 2089_CR58 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.91.26.12673 – volume: 17 start-page: 217 year: 2020 ident: 2089_CR8 publication-title: J Neuroinflammation doi: 10.1186/s12974-020-01886-2 – volume: 224 start-page: 164 year: 2014 ident: 2089_CR41 publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2014.10.016 – volume: 11 start-page: 7559 year: 2018 ident: 2089_CR21 publication-title: Onco Targets Ther doi: 10.2147/OTT.S172672 – ident: 2089_CR61 doi: 10.7554/eLife.46356 – volume: 15 start-page: 174480691984296 year: 2019 ident: 2089_CR27 publication-title: Mol Pain doi: 10.1177/1744806919842961 – volume: 70 start-page: 986 year: 2011 ident: 2089_CR11 publication-title: Ann Neurol doi: 10.1002/ana.22664 – ident: 2089_CR51 doi: 10.1007/s40520-020-01646-5 – volume: 309 start-page: 51 year: 2015 ident: 2089_CR54 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.03.006 – volume: 35 start-page: 2064 year: 2014 ident: 2089_CR37 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2014.03.022 – volume: 26 start-page: 430 year: 2006 ident: 2089_CR47 publication-title: Shock doi: 10.1097/01.shk.0000228797.41044.08 – volume: 16 start-page: 44 year: 2019 ident: 2089_CR65 publication-title: J Neuroinflammation doi: 10.1186/s12974-019-1417-4 – volume: 128 start-page: 781 year: 2019 ident: 2089_CR12 publication-title: Anesth Analg doi: 10.1213/ANE.0000000000004053 – volume: 234 start-page: 22172 year: 2019 ident: 2089_CR49 publication-title: J Cell Physiol doi: 10.1002/jcp.28783 – volume: 17 start-page: 109 year: 2020 ident: 2089_CR7 publication-title: J Neuroinflammation doi: 10.1186/s12974-020-01799-0 – volume: 52 start-page: 229 year: 2013 ident: 2089_CR43 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2012.12.009 – volume: 95 start-page: 43 year: 2019 ident: 2089_CR15 publication-title: J Chem Neuroanat doi: 10.1016/j.jchemneu.2017.11.009 – volume: 19 start-page: 1180 year: 2018 ident: 2089_CR55 publication-title: Curr Protein Pept Sci doi: 10.2174/1389203719666171129094937 – volume: 456 start-page: 20 year: 2009 ident: 2089_CR60 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2009.03.079 – volume: 129 start-page: 872 year: 2018 ident: 2089_CR33 publication-title: Anesthesiology doi: 10.1097/ALN.0000000000002334 – volume: 16 start-page: 193 year: 2019 ident: 2089_CR9 publication-title: J Neuroinflammation doi: 10.1186/s12974-019-1582-5 – volume: 8 start-page: 17547 year: 2018 ident: 2089_CR20 publication-title: Sci Rep doi: 10.1038/s41598-018-35890-7 – volume: 17 start-page: 705 year: 2016 ident: 2089_CR6 publication-title: Nat Rev Neurosci doi: 10.1038/nrn.2016.128 – volume: 26 start-page: 560 year: 2016 ident: 2089_CR28 publication-title: Hippocampus doi: 10.1002/hipo.22536 – volume: 55 start-page: 5623 year: 2018 ident: 2089_CR5 publication-title: Mol Neurobiol doi: 10.1007/s12035-017-0787-9 – volume: 103 start-page: i41 issue: Suppl 1 year: 2009 ident: 2089_CR1 publication-title: Br J Anaesth doi: 10.1093/bja/aep291 – volume: 110 start-page: 548 year: 2009 ident: 2089_CR2 publication-title: Anesthesiology doi: 10.1097/ALN.0b013e318195b569 – volume: 129 start-page: 2333 year: 2019 ident: 2089_CR26 publication-title: J Clin Invest doi: 10.1172/JCI123689 – volume: 16 start-page: 4 year: 2017 ident: 2089_CR17 publication-title: Aging Cell doi: 10.1111/acel.12538 – volume: 9 start-page: 9 year: 2018 ident: 2089_CR57 publication-title: Neurobiol Stress doi: 10.1016/j.ynstr.2018.05.003 – volume: 3 start-page: 319 year: 2013 ident: 2089_CR16 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.01.005 – volume: 493 start-page: 495 year: 2013 ident: 2089_CR62 publication-title: Nature doi: 10.1038/nature11775 – volume: 17 start-page: 23 year: 2020 ident: 2089_CR4 publication-title: J Neuroinflammation doi: 10.1186/s12974-019-1695-x – volume: 162 start-page: 154 year: 2019 ident: 2089_CR22 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2018.11.003 – volume: 121 start-page: 1005 year: 2018 ident: 2089_CR34 publication-title: Br J Anaesth doi: 10.1016/j.bja.2017.11.087 – volume: 22 start-page: 372 year: 2012 ident: 2089_CR64 publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2011.10.019 – volume: 127 start-page: 1189 year: 2018 ident: 2089_CR32 publication-title: Anesth Analg doi: 10.1213/ANE.0000000000003634 – ident: 2089_CR39 doi: 10.1080/15622975.2019.1656820 – volume: 1 start-page: 127 year: 2006 ident: 2089_CR14 publication-title: J Neuroimmune Pharmacol doi: 10.1007/s11481-006-9015-5 – volume: 86 start-page: 885 year: 2011 ident: 2089_CR45 publication-title: Mayo Clin Proc doi: 10.4065/mcp.2011.0332 – volume: 14 start-page: 6 year: 2017 ident: 2089_CR25 publication-title: J Neuroinflammation doi: 10.1186/s12974-016-0782-5 – volume: 20 start-page: 659 year: 2014 ident: 2089_CR44 publication-title: Nat Med doi: 10.1038/nm.3569 – volume: 107 start-page: 20518 year: 2010 ident: 2089_CR48 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1014557107 – volume: 45 start-page: 561 year: 2015 ident: 2089_CR29 publication-title: J Alzheimers Dis doi: 10.3233/JAD-142427 – volume: 73 start-page: 661 year: 2018 ident: 2089_CR10 publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2018.07.016 – volume: 109 start-page: 184 year: 2017 ident: 2089_CR18 publication-title: Neurochem Int doi: 10.1016/j.neuint.2017.04.012 – volume: 24 start-page: 713 year: 2018 ident: 2089_CR56 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.06.009 – volume: 11 start-page: 1555 year: 2019 ident: 2089_CR40 publication-title: Am J Transl Res – volume: 7 start-page: a021758 year: 2015 ident: 2089_CR63 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a021758 – volume: 311 start-page: 398 year: 2015 ident: 2089_CR19 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.10.048 – volume: 55 start-page: 865 year: 2017 ident: 2089_CR13 publication-title: J Alzheimers Dis doi: 10.3233/JAD-160812 – volume: 10 start-page: 57 year: 2019 ident: 2089_CR38 publication-title: Transl Stroke Res doi: 10.1007/s12975-017-0603-x – volume: 44 start-page: 676 year: 2019 ident: 2089_CR23 publication-title: Neurochem Res doi: 10.1007/s11064-017-2417-3 – volume: 2019 start-page: 4050796 year: 2019 ident: 2089_CR42 publication-title: Mediators Inflamm doi: 10.1155/2019/4050796 – volume: 352 start-page: 712 year: 2016 ident: 2089_CR50 publication-title: Science doi: 10.1126/science.aad8373 – volume: 14 start-page: 285 year: 2011 ident: 2089_CR53 publication-title: Nat Neurosci doi: 10.1038/nn.2741 – volume: 62 start-page: 1473 year: 2018 ident: 2089_CR31 publication-title: Acta Anaesthesiol Scand doi: 10.1111/aas.13250 – volume: 291 start-page: R970 year: 2006 ident: 2089_CR46 publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00793.2005 – ident: 2089_CR24 doi: 10.1042/BSR20190069 – volume: 57 start-page: 1374 year: 2020 ident: 2089_CR35 publication-title: Mol Neurobiol doi: 10.1007/s12035-019-01819-y |
SSID | ssj0032562 |
Score | 2.5960898 |
Snippet | Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery.... Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after... Abstract Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 41 |
SubjectTerms | Anesthesia Animal cognition Antibodies Brain research Calcium Care and treatment Cognition disorders Cognitive ability Complications Enzyme-linked immunosorbent assay Enzymes Fractures Health aspects Hippocampus Hippocampus (Brain) Immunofluorescence Inflammation Interleukin 6 Laboratory animals Life span Long-term potentiation Malondialdehyde Memory Microglia Mitochondria Mitochondrial oxidative stress Morbidity NAD Nervous system diseases Neurodegenerative diseases Neuroinflammation Oxidative stress Postoperative cognitive dysfunction Prevention Proteins SIRT3 Superoxide dismutase Surgery Synaptic plasticity Tumor necrosis factor-TNF Tumor necrosis factor-α Western blotting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yB_EifltdJYLgQcK-JmnaHFdxWYT1ogt7C5Ov3QdL97HtO7g3_3MnSV95RdCLxzbT0mR-mQ86-Q0h71t0MdoDZ6ILksnOaqZBcxYiKC0geJW59M6-qdNz-fWiudhr9ZVqwgo9cFm4I2kBUdU66-sofQu2rvFCxBrDwtbxzF6KPm-XTBUbLNCR890RmU4dDejVWslSOUJqSqnZ3cINZbb-P23ynlNaFkzueaCTR-ThFDrS4_LJj8m90D8h98-mn-NPya_v69txu-6poBP7wkDhEjP_YaSAFg1DvWENCL18EJphMo5q9XQuIKI-pHOSgeIr0Mp4mjrVU_uTDttNKZftL-nVerNB94dG5JpmLkxEKIKqHIB8Rs5Pvvz4fMqmDgvMNUqMLPoQ6tbyRPunOpDeoavSXmBYE6yuo4YOGmsxzArRRqm8dC5A4tOpHWZqVjwnB_1NH14SGrkGCxEkvkCCcIBxIThtXYyYkWhekXq34MZN9OOpC8a1yWlIp0xRkkElmawkc1eRj_Mzm0K-8VfpT0mPs2Qizs43EE5mgpP5F5wq8iGhwKTtjZ_nYDqlgJNMRFnmWDWJsr_hqiKHC0nclm45vMORmczCYDDXTTWdLV9V5N08nJ5MpW59uNkmGcxhE2s-yrwosJunJESDQYeqK9IuALmY83KkX19l0vC2U0Ko1av_sUivyQNe9hJbyUNyMN5uwxuMzUb7Nm_D3_P3OgU priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9RAFB-0gngRv02tMoLgQYZuMpNJ5iRVLEWoFy3sbZjP7ULJxk32YG_9z30vmY0NQo_JvIRM3nfy3u8R8qECF6O8KRivg2CitoopowoWopGKm-DlgKV3_kOeXYjvy3KZPrh1qaxybxMHQ-03Dr-RH0OagOVwVbH43P5mODUK_66mERr3yQOELsOSrmo5JVwc3Hmxb5Sp5XEHvq0SDIsScDSlYtczZzRg9v9vmW-5pnnZ5C0_dPqEPE4BJD0ZOf6U3AvNM_LwPP0if05ufq63_W7dUE4TBkNHzQry_66nBuwaBHzd2oAADu3QDFJyYK6nUxkR9QG7JQOFW4Ct8RTn1VP7h3a7diyabVb0ct224ATBlFzRARET5BREa2yDfEEuTr_9-nrG0pwF5krJexZ9CHllCwT_k7UR3oHDUp5DcBOsyqMytSmthWArRBuF9MK5YBBVJ3eQr1n-khw0mya8JjQWylgTjYAbCMOdgejQOGVdjJCXqCIj-f6Fa5dAyHEWxpUekpFa6pFJGpikBybp64x8mq5pRwiOO6m_IB8nSoTPHk5stiudtFELa8BUVc76PApfGZvncMBjDrlG5YoyIx9RCjQqOTyeM6lXATaJcFn6RJYI3F8WMiNHM0pQTjdf3suRTsah0_9EOSPvp2W8EgvemrDZIQ1ksoidDzSvRrGbtsR5CaGHzDNSzQRytuf5SrO-HKDDq1pyLheHdz_WG_KoGLWELcQROei3u_AWYq_evhsU7C8vCjEU priority: 102 providerName: ProQuest |
Title | Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33541361 https://www.proquest.com/docview/2491080720 https://www.proquest.com/docview/2487159860 https://pubmed.ncbi.nlm.nih.gov/PMC7863360 https://doaj.org/article/4ba2577cbd1f4d7ab117cb3f17727c25 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9gLGXse9664IGgz0MbbElS9bDGO1oKYOUsS2QNyHJUmoIThYnsPZt__lOsmNqVsYeHZ1lS3enu4vvfofQGwEmRpY6I7RwjLDCSCK1zIjzmkuqXckjlt7kkl9M2ZdZPttDu3ZH3QY2d4Z2oZ_UdL14_-vn9SdQ-I9R4Qv-oQGbJRgJyQah5aQkN_voECyTCIo6Yf1XBQrmPWsLJDOQDsl2RTR3zjEwVBHP_-9T-5bZGqZU3rJR5w_Rg865xCetNDxCe65-jO5Nus_nT9Dv79V6s61qTHGHz9BgPdcVuIhYw5kHzmBTaRDOWCpNIFwHxpe4TzHCpQuVlA7DFHAOlTj0ssfmGjfbVZtQW8_xVbVagYGEY2aBI1om7CqIXVsi-RRNz89-fL4gXQ8GYnNON8SXzqXCZAEYkBealRaMmSwpOD7OyNRLXejcGHDEnDee8ZJZ63RA3EktxHKGPkMH9bJ2Rwj7TGqjvWYwAdPUavActZXGeg8xi8wSlO42XNkOoDz0yVioGKgUXLVMUsAkFZmkbhL0rr9n1cJz_JP6NPCxpwzQ2vGH5XquOk1VzGg4xoQ1ZepZKbRJU7igPoU4RNgsT9DbIAUqiCS8ntVdHQMsMkBpqROeB1D_POMJOh5QguLa4fBOjtRO7hVEwyHrU2TjBL3uh8OdIRmudsttoIEoN-DqA83zVuz6JVGag1vC0wSJgUAO1jwcqaurCCsuCk4pH7_4j-e-RPezVlXImB2jg816616Bc7YxI7QvZmKEDk_PLr9-G8W_OEZRC_8Azik7-Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiDeGAosE4oBWrXfXa-8BoRZapbSJELRSb8u-nFoqTogTofbGH-I3MutHqIXUW4-J1ytvZuabmXjmG4Rep-BipNOUsMxzwjMjidSSEp9rIZn2TtRceqOxGB7zzyfJyRr60_XChLLKDhNroHZTG_4j34Q0IZTDpXTrw-wnCVOjwtvVboRGoxYH_vwXpGzV-_1PIN83lO7tHn0cknaqALGJYAuSO-_j1NBAdScyzZ0FeJaOgSv3Rsa51JlOjIHQwucm58Jxa70OHDKxhezEMNj3BlrnDFKZAVrf2R1_-dphP4MAgnatOZnYrMCbppyEMogwDFOSi577q6cE_O8LLjnDfqHmJc-3dxfdaUNWvN3o2D205sv76OaofSn_AP3-VswXy6LEDLesDxXWE11A4Ik1ICmEmFWhQeXrBmxSlA7UyeFV4RJ2PvRnegxbALo5_APAC5tzXC1nTZluOcGnxWwGbhfA6wzXHJxgGaDMTePlQ3R8LTJ4hAbltPRPEM6p1EbnmsMGXDOrIR7VVhqb55AJSRqhuPvBlW1pz8P0jTNVpz-ZUI2QFAhJ1UJSFxF6t7pn1pB-XLl6J8hxtTIQdtdfTOcT1dq_4kYDOKbWuDjnLtUmjuEDy2PIblJLkwi9DVqgAqzA41nddkfAIQNBl9oWSRgVkFARoY3eSoAD27_c6ZFq4ahS_4wnQq9Wl8OdocSu9NNlWAO5c2DrhzWPG7VbHYmxBIIdEUco7Slk78z9K2VxWpOVp5lgYCpPr36sl-jW8Gh0qA73xwfP0G3aWAzZ4htosJgv_XOI_BbmRWtuGH2_bgv_C8vhcG8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sirtuin+3+protects+against+anesthesia%2Fsurgery-induced+cognitive+decline+in+aged+mice+by+suppressing+hippocampal+neuroinflammation&rft.jtitle=Journal+of+neuroinflammation&rft.au=Liu%2C+Qiang&rft.au=Sun%2C+Yi-Man&rft.au=Huang%2C+Hui&rft.au=Chen%2C+Chen&rft.date=2021-02-04&rft.issn=1742-2094&rft.eissn=1742-2094&rft.volume=18&rft.issue=1&rft.spage=41&rft_id=info:doi/10.1186%2Fs12974-021-02089-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2094&client=summon |