Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation

Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria a...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroinflammation Vol. 18; no. 1; pp. 41 - 16
Main Authors Liu, Qiang, Sun, Yi-Man, Huang, Hui, Chen, Chen, Wan, Jie, Ma, Lin-Hui, Sun, Yin-Ying, Miao, Hui-Hui, Wu, Yu-Qing
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 04.02.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
AbstractList Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice.BACKGROUNDPostoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice.SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity.METHODSSIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity.Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner.RESULTSOverexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner.The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.CONCLUSIONThe results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-[alpha]], interleukin [IL]-1[beta] and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. Methods SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Results Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-[alpha]], interleukin [IL]-1[beta] and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. Conclusion The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD. Keywords: SIRT3, Postoperative cognitive dysfunction, Mitochondrial oxidative stress, Neuroinflammation, Microglia, Synaptic plasticity
Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Abstract Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. Methods SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Results Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. Conclusion The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. Methods SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. Results Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. Conclusion The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
ArticleNumber 41
Audience Academic
Author Chen, Chen
Wu, Yu-Qing
Sun, Yin-Ying
Huang, Hui
Ma, Lin-Hui
Liu, Qiang
Sun, Yi-Man
Wan, Jie
Miao, Hui-Hui
Author_xml – sequence: 1
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
– sequence: 2
  givenname: Yi-Man
  surname: Sun
  fullname: Sun, Yi-Man
– sequence: 3
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
– sequence: 4
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 5
  givenname: Jie
  surname: Wan
  fullname: Wan, Jie
– sequence: 6
  givenname: Lin-Hui
  surname: Ma
  fullname: Ma, Lin-Hui
– sequence: 7
  givenname: Yin-Ying
  surname: Sun
  fullname: Sun, Yin-Ying
– sequence: 8
  givenname: Hui-Hui
  surname: Miao
  fullname: Miao, Hui-Hui
– sequence: 9
  givenname: Yu-Qing
  surname: Wu
  fullname: Wu, Yu-Qing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33541361$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3TAQhk1JaS7tC3RRDN1048S6WJI3hRB6CQS6aLsWsjT2UbAlV7IDya5v3sk5acgJpQih2ze_NKP_uDgIMUBRvCX1KSFKnGVCW8mrmhLstWqruxfFEZGcVrRu-cGT-WFxnPN1XTPaCPqqOGSs4YQJclT8_u7TsvpQsnJOcQG75NIMxoe8lCZAXjaQvTnLaxog3VY-uNWCK20cgl_8DZQO7OgDlChhBjyZvIWyuy3zOs8JcvZhKDd-nqM102zGMsCaog_9aKbJLD6G18XL3owZ3jyMJ8XPz59-XHytrr59ubw4v6psI9hS9Q6AyI4yzqVQhjsriWodJiGha0nfGmWariMNh77ruXDcWjCiFYpYqtqOnRSXO10XzbWek59MutXReL3diGnQJi3ejqB5Z2gjpe0c6bmTpiMEF6wnUlJpaYNaH3da89pN4CyEJZlxT3T_JPiNHuKNlkowJmoU-PAgkOKvFcusJ58tjCPWPK5ZU64kaVq1Rd8_Q6_jmgKWCqmW1KqW9Ak1GEwA6xvxXnsvqs9Fw4RqGiqQOv0Hhc0B_hu6q_e4vxfw7mmijxn-NRACdAfYFHNO0D8ipNb3LtU7l2p0qd66VN9hkHoWZP2yNQM-x4__C_0DSrTusQ
CitedBy_id crossref_primary_10_1093_stmcls_sxac018
crossref_primary_10_31083_j_fbl2711303
crossref_primary_10_1097_WNR_0000000000001901
crossref_primary_10_26599_AGR_2023_9340020
crossref_primary_10_3389_fncel_2021_746631
crossref_primary_10_1186_s12871_022_01750_1
crossref_primary_10_7717_peerj_18507
crossref_primary_10_3389_fphys_2022_908689
crossref_primary_10_3892_etm_2021_10470
crossref_primary_10_3389_fphys_2022_962769
crossref_primary_10_1007_s11011_022_01111_4
crossref_primary_10_1002_glia_24520
crossref_primary_10_1016_j_cej_2022_135984
crossref_primary_10_3389_fnagi_2022_1040569
crossref_primary_10_3389_fnagi_2022_780972
crossref_primary_10_1007_s00011_023_01804_1
crossref_primary_10_1136_bmjopen_2021_057000
crossref_primary_10_1016_j_labinv_2024_102190
crossref_primary_10_1155_2022_3593294
crossref_primary_10_1007_s12640_021_00459_2
crossref_primary_10_1016_j_phymed_2024_155369
crossref_primary_10_1016_j_biopha_2023_115582
crossref_primary_10_1111_cns_14410
crossref_primary_10_1186_s12974_023_02845_3
crossref_primary_10_1007_s00011_023_01738_8
crossref_primary_10_3389_fnins_2022_1100915
crossref_primary_10_3233_JAD_221039
crossref_primary_10_3390_molecules29020503
crossref_primary_10_1016_j_expneurol_2024_115114
crossref_primary_10_1111_cns_14373
crossref_primary_10_1155_2023_7272456
crossref_primary_10_1111_bpa_13289
crossref_primary_10_1016_j_heliyon_2024_e32159
crossref_primary_10_1016_j_exger_2023_112168
crossref_primary_10_1177_17448069231161031
crossref_primary_10_3390_antiox12030714
crossref_primary_10_3390_cimb44110386
crossref_primary_10_1002_j_2769_2795_2021_tb00069_x
crossref_primary_10_3389_fimmu_2022_819289
crossref_primary_10_20517_2574_1209_2024_05
crossref_primary_10_1007_s11064_022_03567_3
crossref_primary_10_1186_s12964_024_01938_7
crossref_primary_10_1016_j_bbr_2023_114328
crossref_primary_10_1039_D1FO01817E
crossref_primary_10_1016_j_scitotenv_2024_175879
crossref_primary_10_3892_etm_2022_11405
crossref_primary_10_3389_fnagi_2024_1480502
crossref_primary_10_3389_fnins_2022_788675
crossref_primary_10_1007_s12035_022_02924_1
crossref_primary_10_1016_j_brainresbull_2024_111054
crossref_primary_10_1016_j_neuroscience_2024_12_007
crossref_primary_10_1038_s41598_024_53127_8
crossref_primary_10_1186_s12974_024_03285_3
crossref_primary_10_1186_s13578_022_00892_6
crossref_primary_10_1111_cns_70049
crossref_primary_10_1016_j_brainresbull_2024_110913
crossref_primary_10_1016_j_expneurol_2023_114385
crossref_primary_10_1016_j_intimp_2025_114095
crossref_primary_10_7554_eLife_85751
crossref_primary_10_1016_j_expneurol_2024_115136
crossref_primary_10_2147_CIA_S357319
crossref_primary_10_1016_j_bbi_2024_12_019
crossref_primary_10_1016_j_lfs_2025_123574
crossref_primary_10_1016_j_intimp_2022_108712
crossref_primary_10_1155_2022_4428883
crossref_primary_10_1186_s12974_021_02318_5
crossref_primary_10_1007_s11064_023_04020_9
crossref_primary_10_1155_2022_3182220
crossref_primary_10_1021_acschemneuro_3c00310
crossref_primary_10_1186_s13287_024_03925_8
crossref_primary_10_3390_antiox13091104
crossref_primary_10_3389_fphys_2022_886087
crossref_primary_10_12677_acm_2024_1482283
crossref_primary_10_1016_j_brainres_2023_148425
crossref_primary_10_62347_QQKB3082
crossref_primary_10_1515_med_2024_1011
crossref_primary_10_1007_s12020_024_04013_w
crossref_primary_10_1111_cns_13762
crossref_primary_10_1039_D4SD00317A
crossref_primary_10_18632_aging_204822
crossref_primary_10_3389_fmed_2022_783931
crossref_primary_10_1021_acs_jafc_3c04618
crossref_primary_10_1186_s12871_023_02365_w
crossref_primary_10_3390_brainsci13050790
crossref_primary_10_3390_metabo13020187
crossref_primary_10_2147_JIR_S383853
crossref_primary_10_1007_s11064_024_04115_x
crossref_primary_10_3389_fnins_2022_990333
crossref_primary_10_1186_s11658_024_00595_5
crossref_primary_10_3389_fphar_2021_738590
crossref_primary_10_3389_fnagi_2024_1390915
crossref_primary_10_1155_2023_7857760
crossref_primary_10_3390_antiox14030297
crossref_primary_10_1016_j_neuropharm_2024_110032
crossref_primary_10_3389_fnagi_2025_1529860
crossref_primary_10_1007_s11010_024_05091_0
crossref_primary_10_31083_j_jin2302038
crossref_primary_10_3389_fnmol_2023_1117146
crossref_primary_10_1016_j_neuint_2024_105765
crossref_primary_10_18632_aging_205182
crossref_primary_10_1016_j_intimp_2024_113464
crossref_primary_10_1016_j_neuropharm_2024_109981
crossref_primary_10_3389_fcell_2023_1154831
crossref_primary_10_1016_j_lfs_2024_122537
crossref_primary_10_1007_s11064_023_04007_6
crossref_primary_10_1186_s12974_023_02849_z
crossref_primary_10_3390_biom13050735
crossref_primary_10_1016_j_bbi_2023_12_034
crossref_primary_10_2147_JIR_S482051
crossref_primary_10_1002_agm2_12310
Cites_doi 10.1016/j.bbi.2019.01.020
10.1038/srep44521
10.3389/fnagi.2020.00152
10.1007/s12017-014-8288-8
10.1007/s12630-018-1216-x
10.1073/pnas.91.26.12673
10.1186/s12974-020-01886-2
10.1016/j.cbi.2014.10.016
10.2147/OTT.S172672
10.7554/eLife.46356
10.1177/1744806919842961
10.1002/ana.22664
10.1007/s40520-020-01646-5
10.1016/j.neuroscience.2015.03.006
10.1016/j.neurobiolaging.2014.03.022
10.1097/01.shk.0000228797.41044.08
10.1186/s12974-019-1417-4
10.1213/ANE.0000000000004053
10.1002/jcp.28783
10.1186/s12974-020-01799-0
10.1016/j.nbd.2012.12.009
10.1016/j.jchemneu.2017.11.009
10.2174/1389203719666171129094937
10.1016/j.neulet.2009.03.079
10.1097/ALN.0000000000002334
10.1186/s12974-019-1582-5
10.1038/s41598-018-35890-7
10.1038/nrn.2016.128
10.1002/hipo.22536
10.1007/s12035-017-0787-9
10.1093/bja/aep291
10.1097/ALN.0b013e318195b569
10.1172/JCI123689
10.1111/acel.12538
10.1016/j.ynstr.2018.05.003
10.1016/j.celrep.2013.01.005
10.1038/nature11775
10.1186/s12974-019-1695-x
10.1016/j.bcp.2018.11.003
10.1016/j.bja.2017.11.087
10.1016/j.conb.2011.10.019
10.1213/ANE.0000000000003634
10.1080/15622975.2019.1656820
10.1007/s11481-006-9015-5
10.4065/mcp.2011.0332
10.1186/s12974-016-0782-5
10.1038/nm.3569
10.1073/pnas.1014557107
10.3233/JAD-142427
10.1016/j.bbi.2018.07.016
10.1016/j.neuint.2017.04.012
10.1016/j.celrep.2018.06.009
10.1101/cshperspect.a021758
10.1016/j.neuroscience.2015.10.048
10.3233/JAD-160812
10.1007/s12975-017-0603-x
10.1007/s11064-017-2417-3
10.1155/2019/4050796
10.1126/science.aad8373
10.1038/nn.2741
10.1111/aas.13250
10.1152/ajpregu.00793.2005
10.1042/BSR20190069
10.1007/s12035-019-01819-y
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
NPM
3V.
7T5
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12974-021-02089-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1742-2094
EndPage 16
ExternalDocumentID oai_doaj_org_article_4ba2577cbd1f4d7ab117cb3f17727c25
PMC7863360
A653685526
33541361
10_1186_s12974_021_02089_z
Genre Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81701040
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20191464
– fundername: Beijing Talents Fund
  grantid: 2017000021469G258
– fundername: ;
  grantid: 2017000021469G258
– fundername: ;
  grantid: 81701040
– fundername: ;
  grantid: BK20191464
GroupedDBID ---
0R~
29L
2WC
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
NPM
PMFND
PJZUB
PPXIY
3V.
7T5
7TK
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-fdee17b2344768a4dc7189d3617eb91f9a8a5bb154efbf46d4ccea69681c289b3
IEDL.DBID M48
ISSN 1742-2094
IngestDate Wed Aug 27 01:07:15 EDT 2025
Thu Aug 21 18:25:24 EDT 2025
Tue Aug 05 10:05:26 EDT 2025
Fri Jul 25 08:23:14 EDT 2025
Mon Aug 11 06:00:11 EDT 2025
Tue Jun 10 20:49:30 EDT 2025
Thu Apr 03 07:05:50 EDT 2025
Tue Jul 01 02:54:33 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mitochondrial oxidative stress
Neuroinflammation
Postoperative cognitive dysfunction
Synaptic plasticity
Microglia
SIRT3
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-fdee17b2344768a4dc7189d3617eb91f9a8a5bb154efbf46d4ccea69681c289b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12974-021-02089-z
PMID 33541361
PQID 2491080720
PQPubID 55345
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_4ba2577cbd1f4d7ab117cb3f17727c25
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863360
proquest_miscellaneous_2487159860
proquest_journals_2491080720
gale_infotracmisc_A653685526
gale_infotracacademiconefile_A653685526
pubmed_primary_33541361
crossref_primary_10_1186_s12974_021_02089_z
crossref_citationtrail_10_1186_s12974_021_02089_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-04
PublicationDateYYYYMMDD 2021-02-04
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of neuroinflammation
PublicationTitleAlternate J Neuroinflammation
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References H Zhang (2089_CR29) 2015; 45
2089_CR39
P Penzes (2089_CR53) 2011; 14
LJ Wang (2089_CR22) 2019; 162
L Evered (2089_CR31) 2018; 62
E Bajwa (2089_CR42) 2019; 2019
MB Moser (2089_CR58) 1994; 91
SS Min (2089_CR60) 2009; 456
I Salvatori (2089_CR18) 2017; 109
M Di Filippo (2089_CR43) 2013; 52
P Rangarajan (2089_CR19) 2015; 311
D Huang (2089_CR49) 2019; 234
L Evered (2089_CR34) 2018; 121
S Hong (2089_CR50) 2016; 352
AJ Granger (2089_CR62) 2013; 493
LD Estrada (2089_CR55) 2018; 19
VL Nemeth (2089_CR13) 2017; 55
MB Netto (2089_CR10) 2018; 73
H Miao (2089_CR5) 2018; 55
J Steinmetz (2089_CR2) 2009; 110
M Cieślik (2089_CR35) 2020; 57
J Yan (2089_CR40) 2019; 11
K Bisht (2089_CR57) 2018; 9
K Brown (2089_CR16) 2013; 3
L Chen (2089_CR3) 2019; 78
L Evered (2089_CR30) 2018; 65
A Tyagi (2089_CR20) 2018; 8
Y Zhu (2089_CR25) 2017; 14
MI Lutz (2089_CR36) 2014; 16
KP Mollen (2089_CR47) 2006; 26
RM Levy (2089_CR46) 2006; 291
G Mudò (2089_CR65) 2019; 16
N Terrando (2089_CR11) 2011; 70
N Terrando (2089_CR45) 2011; 86
YN Chen (2089_CR8) 2020; 17
P Miller-Rhodes (2089_CR9) 2019; 16
R Verma (2089_CR38) 2019; 10
LL Qiu (2089_CR4) 2020; 17
L Vutskits (2089_CR6) 2016; 17
K Luo (2089_CR21) 2018; 11
HH Miao (2089_CR27) 2019; 15
EJ Mufson (2089_CR54) 2015; 309
CH Bailey (2089_CR63) 2015; 7
DJ Watson (2089_CR28) 2016; 26
VI Lushchak (2089_CR41) 2014; 224
D Li (2089_CR7) 2020; 17
S Deiner (2089_CR1) 2009; 103
A Ansari (2089_CR17) 2017; 16
L Evered (2089_CR32) 2018; 127
S Belloli (2089_CR52) 2020; 12
SA Villeda (2089_CR44) 2014; 20
2089_CR51
K Wang (2089_CR59) 2017; 7
2089_CR24
H Kim (2089_CR23) 2019; 44
S Subramaniyan (2089_CR12) 2019; 128
L Evered (2089_CR33) 2018; 129
KA Anamika (2089_CR15) 2019; 95
N Terrando (2089_CR48) 2010; 107
YP Shentu (2089_CR56) 2018; 24
P Han (2089_CR37) 2014; 35
JN Bourne (2089_CR64) 2012; 22
K Zhang (2089_CR26) 2019; 129
2089_CR61
GA Garden (2089_CR14) 2006; 1
References_xml – volume: 78
  start-page: 188
  year: 2019
  ident: 2089_CR3
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2019.01.020
– volume: 7
  start-page: 44521
  year: 2017
  ident: 2089_CR59
  publication-title: Sci Rep
  doi: 10.1038/srep44521
– volume: 12
  start-page: 152
  year: 2020
  ident: 2089_CR52
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2020.00152
– volume: 16
  start-page: 405
  year: 2014
  ident: 2089_CR36
  publication-title: Neuromolecular Med
  doi: 10.1007/s12017-014-8288-8
– volume: 65
  start-page: 1248
  year: 2018
  ident: 2089_CR30
  publication-title: Can J Anaesth
  doi: 10.1007/s12630-018-1216-x
– volume: 91
  start-page: 12673
  year: 1994
  ident: 2089_CR58
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.91.26.12673
– volume: 17
  start-page: 217
  year: 2020
  ident: 2089_CR8
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-020-01886-2
– volume: 224
  start-page: 164
  year: 2014
  ident: 2089_CR41
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2014.10.016
– volume: 11
  start-page: 7559
  year: 2018
  ident: 2089_CR21
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S172672
– ident: 2089_CR61
  doi: 10.7554/eLife.46356
– volume: 15
  start-page: 174480691984296
  year: 2019
  ident: 2089_CR27
  publication-title: Mol Pain
  doi: 10.1177/1744806919842961
– volume: 70
  start-page: 986
  year: 2011
  ident: 2089_CR11
  publication-title: Ann Neurol
  doi: 10.1002/ana.22664
– ident: 2089_CR51
  doi: 10.1007/s40520-020-01646-5
– volume: 309
  start-page: 51
  year: 2015
  ident: 2089_CR54
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.03.006
– volume: 35
  start-page: 2064
  year: 2014
  ident: 2089_CR37
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2014.03.022
– volume: 26
  start-page: 430
  year: 2006
  ident: 2089_CR47
  publication-title: Shock
  doi: 10.1097/01.shk.0000228797.41044.08
– volume: 16
  start-page: 44
  year: 2019
  ident: 2089_CR65
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-019-1417-4
– volume: 128
  start-page: 781
  year: 2019
  ident: 2089_CR12
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000004053
– volume: 234
  start-page: 22172
  year: 2019
  ident: 2089_CR49
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.28783
– volume: 17
  start-page: 109
  year: 2020
  ident: 2089_CR7
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-020-01799-0
– volume: 52
  start-page: 229
  year: 2013
  ident: 2089_CR43
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2012.12.009
– volume: 95
  start-page: 43
  year: 2019
  ident: 2089_CR15
  publication-title: J Chem Neuroanat
  doi: 10.1016/j.jchemneu.2017.11.009
– volume: 19
  start-page: 1180
  year: 2018
  ident: 2089_CR55
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/1389203719666171129094937
– volume: 456
  start-page: 20
  year: 2009
  ident: 2089_CR60
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2009.03.079
– volume: 129
  start-page: 872
  year: 2018
  ident: 2089_CR33
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002334
– volume: 16
  start-page: 193
  year: 2019
  ident: 2089_CR9
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-019-1582-5
– volume: 8
  start-page: 17547
  year: 2018
  ident: 2089_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-35890-7
– volume: 17
  start-page: 705
  year: 2016
  ident: 2089_CR6
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn.2016.128
– volume: 26
  start-page: 560
  year: 2016
  ident: 2089_CR28
  publication-title: Hippocampus
  doi: 10.1002/hipo.22536
– volume: 55
  start-page: 5623
  year: 2018
  ident: 2089_CR5
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-017-0787-9
– volume: 103
  start-page: i41
  issue: Suppl 1
  year: 2009
  ident: 2089_CR1
  publication-title: Br J Anaesth
  doi: 10.1093/bja/aep291
– volume: 110
  start-page: 548
  year: 2009
  ident: 2089_CR2
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e318195b569
– volume: 129
  start-page: 2333
  year: 2019
  ident: 2089_CR26
  publication-title: J Clin Invest
  doi: 10.1172/JCI123689
– volume: 16
  start-page: 4
  year: 2017
  ident: 2089_CR17
  publication-title: Aging Cell
  doi: 10.1111/acel.12538
– volume: 9
  start-page: 9
  year: 2018
  ident: 2089_CR57
  publication-title: Neurobiol Stress
  doi: 10.1016/j.ynstr.2018.05.003
– volume: 3
  start-page: 319
  year: 2013
  ident: 2089_CR16
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.01.005
– volume: 493
  start-page: 495
  year: 2013
  ident: 2089_CR62
  publication-title: Nature
  doi: 10.1038/nature11775
– volume: 17
  start-page: 23
  year: 2020
  ident: 2089_CR4
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-019-1695-x
– volume: 162
  start-page: 154
  year: 2019
  ident: 2089_CR22
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2018.11.003
– volume: 121
  start-page: 1005
  year: 2018
  ident: 2089_CR34
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2017.11.087
– volume: 22
  start-page: 372
  year: 2012
  ident: 2089_CR64
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2011.10.019
– volume: 127
  start-page: 1189
  year: 2018
  ident: 2089_CR32
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000003634
– ident: 2089_CR39
  doi: 10.1080/15622975.2019.1656820
– volume: 1
  start-page: 127
  year: 2006
  ident: 2089_CR14
  publication-title: J Neuroimmune Pharmacol
  doi: 10.1007/s11481-006-9015-5
– volume: 86
  start-page: 885
  year: 2011
  ident: 2089_CR45
  publication-title: Mayo Clin Proc
  doi: 10.4065/mcp.2011.0332
– volume: 14
  start-page: 6
  year: 2017
  ident: 2089_CR25
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-016-0782-5
– volume: 20
  start-page: 659
  year: 2014
  ident: 2089_CR44
  publication-title: Nat Med
  doi: 10.1038/nm.3569
– volume: 107
  start-page: 20518
  year: 2010
  ident: 2089_CR48
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1014557107
– volume: 45
  start-page: 561
  year: 2015
  ident: 2089_CR29
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-142427
– volume: 73
  start-page: 661
  year: 2018
  ident: 2089_CR10
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2018.07.016
– volume: 109
  start-page: 184
  year: 2017
  ident: 2089_CR18
  publication-title: Neurochem Int
  doi: 10.1016/j.neuint.2017.04.012
– volume: 24
  start-page: 713
  year: 2018
  ident: 2089_CR56
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.06.009
– volume: 11
  start-page: 1555
  year: 2019
  ident: 2089_CR40
  publication-title: Am J Transl Res
– volume: 7
  start-page: a021758
  year: 2015
  ident: 2089_CR63
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a021758
– volume: 311
  start-page: 398
  year: 2015
  ident: 2089_CR19
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.10.048
– volume: 55
  start-page: 865
  year: 2017
  ident: 2089_CR13
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160812
– volume: 10
  start-page: 57
  year: 2019
  ident: 2089_CR38
  publication-title: Transl Stroke Res
  doi: 10.1007/s12975-017-0603-x
– volume: 44
  start-page: 676
  year: 2019
  ident: 2089_CR23
  publication-title: Neurochem Res
  doi: 10.1007/s11064-017-2417-3
– volume: 2019
  start-page: 4050796
  year: 2019
  ident: 2089_CR42
  publication-title: Mediators Inflamm
  doi: 10.1155/2019/4050796
– volume: 352
  start-page: 712
  year: 2016
  ident: 2089_CR50
  publication-title: Science
  doi: 10.1126/science.aad8373
– volume: 14
  start-page: 285
  year: 2011
  ident: 2089_CR53
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2741
– volume: 62
  start-page: 1473
  year: 2018
  ident: 2089_CR31
  publication-title: Acta Anaesthesiol Scand
  doi: 10.1111/aas.13250
– volume: 291
  start-page: R970
  year: 2006
  ident: 2089_CR46
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00793.2005
– ident: 2089_CR24
  doi: 10.1042/BSR20190069
– volume: 57
  start-page: 1374
  year: 2020
  ident: 2089_CR35
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-019-01819-y
SSID ssj0032562
Score 2.5960898
Snippet Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery....
Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after...
Abstract Background Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 41
SubjectTerms Anesthesia
Animal cognition
Antibodies
Brain research
Calcium
Care and treatment
Cognition disorders
Cognitive ability
Complications
Enzyme-linked immunosorbent assay
Enzymes
Fractures
Health aspects
Hippocampus
Hippocampus (Brain)
Immunofluorescence
Inflammation
Interleukin 6
Laboratory animals
Life span
Long-term potentiation
Malondialdehyde
Memory
Microglia
Mitochondria
Mitochondrial oxidative stress
Morbidity
NAD
Nervous system diseases
Neurodegenerative diseases
Neuroinflammation
Oxidative stress
Postoperative cognitive dysfunction
Prevention
Proteins
SIRT3
Superoxide dismutase
Surgery
Synaptic plasticity
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Western blotting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yB_EifltdJYLgQcK-JmnaHFdxWYT1ogt7C5Ov3QdL97HtO7g3_3MnSV95RdCLxzbT0mR-mQ86-Q0h71t0MdoDZ6ILksnOaqZBcxYiKC0geJW59M6-qdNz-fWiudhr9ZVqwgo9cFm4I2kBUdU66-sofQu2rvFCxBrDwtbxzF6KPm-XTBUbLNCR890RmU4dDejVWslSOUJqSqnZ3cINZbb-P23ynlNaFkzueaCTR-ThFDrS4_LJj8m90D8h98-mn-NPya_v69txu-6poBP7wkDhEjP_YaSAFg1DvWENCL18EJphMo5q9XQuIKI-pHOSgeIr0Mp4mjrVU_uTDttNKZftL-nVerNB94dG5JpmLkxEKIKqHIB8Rs5Pvvz4fMqmDgvMNUqMLPoQ6tbyRPunOpDeoavSXmBYE6yuo4YOGmsxzArRRqm8dC5A4tOpHWZqVjwnB_1NH14SGrkGCxEkvkCCcIBxIThtXYyYkWhekXq34MZN9OOpC8a1yWlIp0xRkkElmawkc1eRj_Mzm0K-8VfpT0mPs2Qizs43EE5mgpP5F5wq8iGhwKTtjZ_nYDqlgJNMRFnmWDWJsr_hqiKHC0nclm45vMORmczCYDDXTTWdLV9V5N08nJ5MpW59uNkmGcxhE2s-yrwosJunJESDQYeqK9IuALmY83KkX19l0vC2U0Ko1av_sUivyQNe9hJbyUNyMN5uwxuMzUb7Nm_D3_P3OgU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9RAFB-0gngRv02tMoLgQYZuMpNJ5iRVLEWoFy3sbZjP7ULJxk32YG_9z30vmY0NQo_JvIRM3nfy3u8R8qECF6O8KRivg2CitoopowoWopGKm-DlgKV3_kOeXYjvy3KZPrh1qaxybxMHQ-03Dr-RH0OagOVwVbH43P5mODUK_66mERr3yQOELsOSrmo5JVwc3Hmxb5Sp5XEHvq0SDIsScDSlYtczZzRg9v9vmW-5pnnZ5C0_dPqEPE4BJD0ZOf6U3AvNM_LwPP0if05ufq63_W7dUE4TBkNHzQry_66nBuwaBHzd2oAADu3QDFJyYK6nUxkR9QG7JQOFW4Ct8RTn1VP7h3a7diyabVb0ct224ATBlFzRARET5BREa2yDfEEuTr_9-nrG0pwF5krJexZ9CHllCwT_k7UR3oHDUp5DcBOsyqMytSmthWArRBuF9MK5YBBVJ3eQr1n-khw0mya8JjQWylgTjYAbCMOdgejQOGVdjJCXqCIj-f6Fa5dAyHEWxpUekpFa6pFJGpikBybp64x8mq5pRwiOO6m_IB8nSoTPHk5stiudtFELa8BUVc76PApfGZvncMBjDrlG5YoyIx9RCjQqOTyeM6lXATaJcFn6RJYI3F8WMiNHM0pQTjdf3suRTsah0_9EOSPvp2W8EgvemrDZIQ1ksoidDzSvRrGbtsR5CaGHzDNSzQRytuf5SrO-HKDDq1pyLheHdz_WG_KoGLWELcQROei3u_AWYq_evhsU7C8vCjEU
  priority: 102
  providerName: ProQuest
Title Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation
URI https://www.ncbi.nlm.nih.gov/pubmed/33541361
https://www.proquest.com/docview/2491080720
https://www.proquest.com/docview/2487159860
https://pubmed.ncbi.nlm.nih.gov/PMC7863360
https://doaj.org/article/4ba2577cbd1f4d7ab117cb3f17727c25
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9gLGXse9664IGgz0MbbElS9bDGO1oKYOUsS2QNyHJUmoIThYnsPZt__lOsmNqVsYeHZ1lS3enu4vvfofQGwEmRpY6I7RwjLDCSCK1zIjzmkuqXckjlt7kkl9M2ZdZPttDu3ZH3QY2d4Z2oZ_UdL14_-vn9SdQ-I9R4Qv-oQGbJRgJyQah5aQkN_voECyTCIo6Yf1XBQrmPWsLJDOQDsl2RTR3zjEwVBHP_-9T-5bZGqZU3rJR5w_Rg865xCetNDxCe65-jO5Nus_nT9Dv79V6s61qTHGHz9BgPdcVuIhYw5kHzmBTaRDOWCpNIFwHxpe4TzHCpQuVlA7DFHAOlTj0ssfmGjfbVZtQW8_xVbVagYGEY2aBI1om7CqIXVsi-RRNz89-fL4gXQ8GYnNON8SXzqXCZAEYkBealRaMmSwpOD7OyNRLXejcGHDEnDee8ZJZ63RA3EktxHKGPkMH9bJ2Rwj7TGqjvWYwAdPUavActZXGeg8xi8wSlO42XNkOoDz0yVioGKgUXLVMUsAkFZmkbhL0rr9n1cJz_JP6NPCxpwzQ2vGH5XquOk1VzGg4xoQ1ZepZKbRJU7igPoU4RNgsT9DbIAUqiCS8ntVdHQMsMkBpqROeB1D_POMJOh5QguLa4fBOjtRO7hVEwyHrU2TjBL3uh8OdIRmudsttoIEoN-DqA83zVuz6JVGag1vC0wSJgUAO1jwcqaurCCsuCk4pH7_4j-e-RPezVlXImB2jg816616Bc7YxI7QvZmKEDk_PLr9-G8W_OEZRC_8Azik7-Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiDeGAosE4oBWrXfXa-8BoRZapbSJELRSb8u-nFoqTogTofbGH-I3MutHqIXUW4-J1ytvZuabmXjmG4Rep-BipNOUsMxzwjMjidSSEp9rIZn2TtRceqOxGB7zzyfJyRr60_XChLLKDhNroHZTG_4j34Q0IZTDpXTrw-wnCVOjwtvVboRGoxYH_vwXpGzV-_1PIN83lO7tHn0cknaqALGJYAuSO-_j1NBAdScyzZ0FeJaOgSv3Rsa51JlOjIHQwucm58Jxa70OHDKxhezEMNj3BlrnDFKZAVrf2R1_-dphP4MAgnatOZnYrMCbppyEMogwDFOSi577q6cE_O8LLjnDfqHmJc-3dxfdaUNWvN3o2D205sv76OaofSn_AP3-VswXy6LEDLesDxXWE11A4Ik1ICmEmFWhQeXrBmxSlA7UyeFV4RJ2PvRnegxbALo5_APAC5tzXC1nTZluOcGnxWwGbhfA6wzXHJxgGaDMTePlQ3R8LTJ4hAbltPRPEM6p1EbnmsMGXDOrIR7VVhqb55AJSRqhuPvBlW1pz8P0jTNVpz-ZUI2QFAhJ1UJSFxF6t7pn1pB-XLl6J8hxtTIQdtdfTOcT1dq_4kYDOKbWuDjnLtUmjuEDy2PIblJLkwi9DVqgAqzA41nddkfAIQNBl9oWSRgVkFARoY3eSoAD27_c6ZFq4ahS_4wnQq9Wl8OdocSu9NNlWAO5c2DrhzWPG7VbHYmxBIIdEUco7Slk78z9K2VxWpOVp5lgYCpPr36sl-jW8Gh0qA73xwfP0G3aWAzZ4htosJgv_XOI_BbmRWtuGH2_bgv_C8vhcG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sirtuin+3+protects+against+anesthesia%2Fsurgery-induced+cognitive+decline+in+aged+mice+by+suppressing+hippocampal+neuroinflammation&rft.jtitle=Journal+of+neuroinflammation&rft.au=Liu%2C+Qiang&rft.au=Sun%2C+Yi-Man&rft.au=Huang%2C+Hui&rft.au=Chen%2C+Chen&rft.date=2021-02-04&rft.issn=1742-2094&rft.eissn=1742-2094&rft.volume=18&rft.issue=1&rft.spage=41&rft_id=info:doi/10.1186%2Fs12974-021-02089-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2094&client=summon