Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS)

Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effec...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental health Vol. 22; no. 1; pp. 19 - 47
Main Authors Ehrlich, Veronika, Bil, Wieneke, Vandebriel, Rob, Granum, Berit, Luijten, Mirjam, Lindeman, Birgitte, Grandjean, Philippe, Kaiser, Andreas-Marius, Hauzenberger, Ingrid, Hartmann, Christina, Gundacker, Claudia, Uhl, Maria
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 22.02.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
AbstractList Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature.BACKGROUNDPer- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature.The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system.OBJECTIVEThe aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system.A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed.METHODSA literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed.Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.CONCLUSIONSTaken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
BackgroundPer- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature.ObjectiveThe aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system.MethodsA literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed.ConclusionsTaken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. Objective The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. Methods A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Conclusions Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. Keywords: Per- and polyfluoroalkyl substances, Immune function, Immunotoxicity, Molecular mechanisms, Vaccination response, HBM4EU
Abstract Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. Objective The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. Methods A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Conclusions Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
ArticleNumber 19
Audience Academic
Author Hauzenberger, Ingrid
Bil, Wieneke
Ehrlich, Veronika
Granum, Berit
Grandjean, Philippe
Hartmann, Christina
Kaiser, Andreas-Marius
Luijten, Mirjam
Gundacker, Claudia
Vandebriel, Rob
Lindeman, Birgitte
Uhl, Maria
Author_xml – sequence: 1
  givenname: Veronika
  surname: Ehrlich
  fullname: Ehrlich, Veronika
– sequence: 2
  givenname: Wieneke
  surname: Bil
  fullname: Bil, Wieneke
– sequence: 3
  givenname: Rob
  surname: Vandebriel
  fullname: Vandebriel, Rob
– sequence: 4
  givenname: Berit
  surname: Granum
  fullname: Granum, Berit
– sequence: 5
  givenname: Mirjam
  surname: Luijten
  fullname: Luijten, Mirjam
– sequence: 6
  givenname: Birgitte
  surname: Lindeman
  fullname: Lindeman, Birgitte
– sequence: 7
  givenname: Philippe
  surname: Grandjean
  fullname: Grandjean, Philippe
– sequence: 8
  givenname: Andreas-Marius
  surname: Kaiser
  fullname: Kaiser, Andreas-Marius
– sequence: 9
  givenname: Ingrid
  surname: Hauzenberger
  fullname: Hauzenberger, Ingrid
– sequence: 10
  givenname: Christina
  surname: Hartmann
  fullname: Hartmann, Christina
– sequence: 11
  givenname: Claudia
  surname: Gundacker
  fullname: Gundacker, Claudia
– sequence: 12
  givenname: Maria
  surname: Uhl
  fullname: Uhl, Maria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36814257$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2A_9A17IgDf1Ymo-zkySG2FZ7AcUFFQQb0JmkmyzziTbZEbdf292t9VuEclFQvKc53DCe1wc-OBNUbzE6Axj3rxNmAhAFSKkQkjUvKqfFEcYWFOhRnw9eHA-LI5TWiKEGW_qZ8UhbTgGUrOj4ts8-OS0iWp0wZfBlis13vxU61TaEEs3DJMPY_jlOjeut88mVqXyulyFfm37KcSg-u_rvkxTm0blO5PK04_ns09vnhdPreqTeXG3nxRfzt9_nl9W1x8uruaz66qrGzpWtgOkEAIrCOeN0BiU4oZyaClmLaJaC2AUQQug21abmhimoSVEI9EwYelJcbXz6qCWchXdoOJaBuXk9iLEhVRxdF1vZEswBgwNQ9YCzg1BK4xwR6jhFujG9W7nWk3tYHRn_BhVvyfdf_HuRi7CDykEAHCcBad3ghhuJ5NGObjUmb5X3oQpScKYoNAgDhl9_Qhdhin6_FWZ4hw4JYL-pRYqD-C8Dblvt5HKGaM8-1BTZ-rsH1Re2gyuy7GxLt_vFbx6OOifCe-TkQG-A7oYUorGypyAbUiy2fUSI7kJodyFUOYQym0I5cZNHpXe2_9T9Bu95tz8
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_142750
crossref_primary_10_3390_toxics12110828
crossref_primary_10_1097_CEJ_0000000000000935
crossref_primary_10_1016_j_scitotenv_2024_176575
crossref_primary_10_1016_j_envint_2024_108415
crossref_primary_10_1016_j_cbpc_2024_109874
crossref_primary_10_1021_acs_est_3c09950
crossref_primary_10_1016_j_ecoenv_2024_116070
crossref_primary_10_1016_j_scitotenv_2025_178803
crossref_primary_10_1038_s41370_024_00680_z
crossref_primary_10_1080_1547691X_2024_2343362
crossref_primary_10_1111_resp_14761
crossref_primary_10_1016_j_envres_2024_119555
crossref_primary_10_1016_j_toxlet_2024_07_884
crossref_primary_10_1016_j_envres_2023_117435
crossref_primary_10_1080_1547691X_2024_2340495
crossref_primary_10_1186_s12940_023_01019_1
crossref_primary_10_2174_0115733963267526231120110100
crossref_primary_10_1021_acs_est_3c10824
crossref_primary_10_3390_w17020149
crossref_primary_10_1016_j_scitotenv_2024_176158
crossref_primary_10_1021_acsnano_4c17420
crossref_primary_10_1016_j_chemosphere_2024_143745
crossref_primary_10_1016_j_envres_2024_119221
crossref_primary_10_1080_1547691X_2024_2371868
crossref_primary_10_1021_acs_est_4c08701
crossref_primary_10_1016_j_envres_2024_119072
crossref_primary_10_1016_j_trac_2024_117754
crossref_primary_10_1016_j_yrtph_2024_105738
crossref_primary_10_1007_s44339_024_00010_w
crossref_primary_10_1093_toxres_tfae206
crossref_primary_10_1128_aem_00157_24
crossref_primary_10_1016_j_hazadv_2024_100469
crossref_primary_10_1016_j_scitotenv_2024_170341
crossref_primary_10_1021_acs_est_2c09716
crossref_primary_10_1016_j_envres_2024_120445
crossref_primary_10_1016_j_envint_2024_108703
crossref_primary_10_3389_ftox_2024_1347965
crossref_primary_10_1016_j_chemosphere_2024_143075
crossref_primary_10_1021_acs_est_3c05109
crossref_primary_10_1016_j_envres_2023_117010
crossref_primary_10_1016_j_envpol_2023_122756
crossref_primary_10_1039_D4RA02448F
crossref_primary_10_1016_j_envres_2023_117814
crossref_primary_10_1038_s41467_025_57172_3
crossref_primary_10_1007_s40572_024_00441_y
crossref_primary_10_1016_j_scitotenv_2024_170032
crossref_primary_10_1016_j_envint_2024_109145
crossref_primary_10_3389_ftox_2024_1425537
crossref_primary_10_1016_j_scitotenv_2024_176895
crossref_primary_10_1007_s00204_025_03993_6
crossref_primary_10_1016_j_envint_2024_108736
crossref_primary_10_1016_j_jhazmat_2024_133891
crossref_primary_10_1021_acsestwater_4c00458
crossref_primary_10_1016_j_taap_2024_117044
crossref_primary_10_3390_jox15010002
crossref_primary_10_1016_j_chemosphere_2025_144297
crossref_primary_10_1016_j_scitotenv_2025_179130
crossref_primary_10_1016_j_jhazmat_2025_137978
crossref_primary_10_1289_EHP12863
crossref_primary_10_1289_EHP13954
crossref_primary_10_1016_j_envres_2023_115969
crossref_primary_10_1016_j_mce_2023_112064
crossref_primary_10_1016_j_chemosphere_2025_144326
crossref_primary_10_3389_fenvs_2024_1381141
crossref_primary_10_1016_j_scitotenv_2024_176941
crossref_primary_10_1016_j_scitotenv_2024_176540
crossref_primary_10_3390_toxics11070567
crossref_primary_10_1016_j_envint_2024_108601
crossref_primary_10_1007_s10661_024_13334_2
crossref_primary_10_1016_j_tox_2024_153763
crossref_primary_10_1038_s41370_024_00723_5
crossref_primary_10_1007_s10311_024_01718_2
crossref_primary_10_1021_acs_est_5c02623
crossref_primary_10_1016_j_jhazmat_2023_132339
crossref_primary_10_1186_s12940_024_01073_3
crossref_primary_10_1002_solr_202400116
crossref_primary_10_1016_j_envint_2024_109203
crossref_primary_10_3390_toxics12090678
crossref_primary_10_1021_acs_est_3c04688
crossref_primary_10_1016_j_envint_2025_109288
crossref_primary_10_3390_toxics11090745
crossref_primary_10_1016_j_envpol_2024_124511
crossref_primary_10_1016_j_cnd_2024_10_003
crossref_primary_10_1016_j_chemosphere_2023_139204
crossref_primary_10_1016_j_envres_2025_121181
crossref_primary_10_3390_cancers16050983
crossref_primary_10_1186_s12302_024_01035_z
crossref_primary_10_1016_j_cyto_2024_156753
crossref_primary_10_3389_ftox_2024_1339104
crossref_primary_10_1016_j_chemosphere_2024_141654
crossref_primary_10_1016_j_scitotenv_2024_176004
crossref_primary_10_3390_ani14040529
crossref_primary_10_1016_j_molliq_2024_125485
crossref_primary_10_1016_j_ijheh_2023_114168
crossref_primary_10_1016_j_marpolbul_2025_117554
crossref_primary_10_3390_foods14060958
crossref_primary_10_1016_j_envres_2024_120122
crossref_primary_10_1186_s12940_024_01070_6
Cites_doi 10.1016/j.envpol.2021.116619
10.1016/j.envres.2019.05.008
10.1002/etc.4835
10.1210/endocr/bqab194
10.3390/jox11030008
10.1002/tox.21996
10.1016/j.jhazmat.2014.08.043
10.3389/fphys.2020.00051
10.1080/02772248.2020.1808894
10.1289/ehp.1306606
10.1016/j.bbalip.2007.03.006
10.3390/ijerph182010702
10.1039/D0EM00077A
10.1016/j.neuro.2018.07.015
10.1093/toxsci/kft269
10.1016/j.envint.2013.06.004
10.1021/acs.est.8b06978
10.3389/fimmu.2019.01408
10.1016/j.envint.2021.106926
10.1016/j.scitotenv.2016.03.187
10.1186/1750-1172-4-5
10.1002/tox.20459
10.3390/ijerph18031323
10.1093/toxsci/kfi265
10.1016/s0006-2952(01)00752-3
10.1016/j.envres.2021.111712
10.1007/s00204-008-0361-3
10.1016/j.intimp.2018.09.019
10.1016/j.neuro.2012.10.016
10.1016/j.tiv.2011.04.016
10.1007/s00204-018-2181-4
10.1016/j.scitotenv.2020.142365
10.1002/ieam.258
10.1038/s41467-021-23201-0
10.1074/jbc.M109546200
10.1016/j.tox.2009.01.002
10.1016/j.envres.2019.02.024
10.1093/toxsci/kfp040
10.1016/j.envres.2017.10.012
10.1186/s43141-021-00179-2
10.1016/j.envint.2021.106853
10.3109/1547691X.2012.691123
10.1021/acs.jafc.8b02197
10.1016/j.reprotox.2008.10.001
10.1007/s13273-018-0019-z
10.3390/ijerph18073332
10.1177/0748233717742262
10.1093/toxsci/kfaa138
10.1016/j.bbrc.2005.01.163
10.1016/j.toxlet.2011.04.029
10.3389/fphys.2021.736681
10.1080/15287394.2018.1440188
10.1093/toxsci/kfm053
10.1093/toxsci/kfw251
10.1080/10408444.2021.1888073
10.1016/j.chemosphere.2018.02.137
10.1016/j.tox.2009.06.010
10.1016/j.toxlet.2014.06.004
10.5603/fhc.a2015.0023
10.1016/j.toxlet.2018.05.009
10.1038/srep45468
10.1038/nri.2016.70
10.1016/j.chemosphere.2019.124402
10.1080/15287390802391943
10.1016/j.envint.2018.12.041
10.1002/jat.3389
10.1006/taap.1997.8345
10.1038/s41598-017-04091-z
10.1016/j.envres.2021.112222
10.1016/j.ijheh.2020.113565
10.2903/j.efsa.2018.5194
10.1016/j.taap.2019.02.001
10.1007/s00204-009-0424-0
10.1007/s00204-011-0661-x
10.1111/j.1472-8206.2007.00486.x
10.1016/j.taap.2020.115204
10.1186/s12940-019-0541-z
10.1289/ehp.8566
10.1289/EHP275
10.1002/JLB.3MR0118-034R
10.1016/j.envint.2022.107727
10.1016/j.biocel.2018.09.016
10.1007/s13596-013-0105-7
10.1016/j.imlet.2021.03.006
10.1146/annurev-immunol-032414-112212
10.1016/j.tiv.2011.03.005
10.1016/j.envint.2022.107274
10.1016/j.envres.2020.110156
10.1016/j.toxrep.2016.08.009
10.1074/jbc.M408926200
10.1186/s12891-021-03965-8
10.1289/ehp.10896
10.1155/2015/549691
10.1021/acsomega.1c01304
10.1016/j.envres.2018.11.005
10.1080/10408440490464705
10.1016/j.intimp.2015.05.019
10.1021/acs.est.1c03732
10.3389/fimmu.2012.00247
10.1080/1547691X.2018.1445145
10.1016/j.taap.2011.11.004
10.1007/978-1-60761-401-2_11
10.1080/1547691X.2016.1254306
10.1093/toxsci/kfl135
10.1038/nri2152
10.1016/j.reprotox.2016.08.001
10.1016/j.tox.2021.152789
10.1016/S1567-5769(01)00164-3
10.1016/j.tox.2009.07.011
10.3390/toxics9030045
10.1016/j.ceca.2017.08.002
10.1001/jama.2011.2034
10.1016/j.envint.2020.106204
10.1007/978-1-4939-8549-4_2
10.1016/j.heliyon.2021.e08160
10.1289/EHP4372
10.1016/j.envres.2014.09.026
10.21873/anticanres.13360
10.2131/jts.39.97
10.1002/jat.3119
10.1016/j.reprotox.2019.06.005
10.1093/toxsci/kfn015
10.1097/01.all.0000246620.26623.5b
10.1016/j.molimm.2018.09.010
10.1016/j.envpol.2021.117329
10.1016/j.envres.2021.111905
10.1016/j.taap.2010.11.004
10.1016/j.tox.2009.10.035
10.1080/22423982.2018.1456303
10.1007/s00420-006-0165-9
10.3389/fimmu.2016.00251
10.1093/toxsci/kfp019
10.1152/ajplung.00100.2014
10.1093/toxsci/kfm244
10.1021/es202408a
10.1038/s41598-017-07359-6
10.1016/j.envint.2018.02.044
10.1016/j.envint.2020.106125
10.1016/j.scitotenv.2018.11.297
10.1016/j.chemosphere.2021.133235
10.1006/taap.1995.1131
10.1080/25785826.2020.1756609
10.1289/EHP6837
10.1016/j.chemosphere.2020.126200
10.1038/nri912
10.1002/etc.4890
10.1371/journal.pone.0244815
10.1016/j.fct.2021.112478
10.1080/1547691X.2017.1360968
10.1016/j.metabol.2020.154338
10.1038/s41598-022-10501-8
10.1016/j.envint.2019.105259
10.1038/pr.2015.213
10.1021/acs.est.7b06327
10.1016/j.csbj.2022.03.024
10.1016/j.tiv.2019.104700
10.1007/s00204-020-02715-4
10.1007/s00204-022-03303-4
10.1289/ehp.1205351
10.3389/fphys.2018.01487
10.1016/j.envint.2021.106599
10.3109/1547691X.2012.755580
10.1016/j.toxlet.2012.01.014
10.1038/s41577-018-0110-7
10.1289/ehp.1206449
10.1016/j.envpol.2022.119442
10.1016/j.envint.2021.106524
10.3109/1547691X.2015.1029147
10.1016/j.taap.2018.08.015
10.1016/j.tox.2008.10.002
10.1111/all.12605
10.1016/j.toxlet.2021.09.002
10.1146/annurev.pa.36.040196.001023
10.1073/pnas.2011957118
10.1016/j.theriogenology.2019.05.022
10.1289/EHP10800
10.3390/ijms18061229
10.1136/oemed-2014-102364
10.1016/j.taap.2014.06.020
10.1016/j.ijheh.2019.06.005
10.1016/j.ntt.2018.03.004
10.1016/j.chemosphere.2021.132892
10.1038/ni.2022
10.1007/s00204-012-0877-4
10.3390/toxics9050100
10.1016/j.chemosphere.2013.09.062
10.1016/j.etap.2021.103652
10.1289/ehp.1002409
10.1007/978-94-007-2888-2_44
10.21037/tp-20-246
10.1093/toxsci/kfn127
10.1016/j.fct.2016.12.004
10.1080/1547691X.2021.1922957
10.1038/sigtrans.2017.23
10.1093/toxsci/kfn059
10.3390/toxics10110684
10.4172/2161-1459.S4-002
10.3109/1547691X.2014.996682
10.1021/acs.chemrestox.9b00101
10.1016/j.envint.2016.08.026
10.1093/toxsci/kfn113
10.3109/1547691X.2015.1067259
10.1016/j.envint.2021.106395
10.1016/j.fct.2012.06.023
10.1016/j.ecoenv.2021.112081
10.1177/0192623311427709
10.1289/EHP6517
10.1016/j.fsi.2019.05.018
10.1021/acs.est.0c02386
10.1016/j.envres.2016.05.020
10.1016/j.fsi.2021.03.004
10.1007/s00011-019-01231-1
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T2
7U7
7X7
7XB
88E
8C1
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
M0S
M1P
M7S
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
7X8
5PM
DOA
DOI 10.1186/s12940-022-00958-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Public Health
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-069X
EndPage 47
ExternalDocumentID oai_doaj_org_article_b211414670ff419284da101c23e8f43f
PMC9944481
A738277065
36814257
10_1186_s12940_022_00958_5
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Austria
United States--US
GeographicLocations_xml – name: Austria
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project
GroupedDBID ---
0R~
29G
2WC
2XV
4P2
53G
5GY
5VS
6PF
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADFRT
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECGQY
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEP
IHR
INH
INR
ITC
ITG
ITH
KQ8
L6V
L7B
M1P
M48
M7S
M~E
O5R
O5S
OK1
OVT
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RBZ
RNS
ROL
RPM
RSV
SEV
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
-5A
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
FRP
NPM
PMFND
7T2
7U7
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-fc40a004f928869d14aa8e384b317b03dd947304b44dbbde52e7d4b22d09679f3
IEDL.DBID M48
ISSN 1476-069X
IngestDate Wed Aug 27 01:21:24 EDT 2025
Thu Aug 21 18:38:09 EDT 2025
Fri Jul 11 11:33:31 EDT 2025
Fri Jul 25 19:21:02 EDT 2025
Tue Jun 17 21:46:46 EDT 2025
Tue Jun 10 20:16:51 EDT 2025
Wed Feb 19 02:25:02 EST 2025
Thu Apr 24 23:01:37 EDT 2025
Tue Jul 01 02:00:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vaccination response
HBM4EU
Immune function
Per- and polyfluoroalkyl substances
Immunotoxicity
Molecular mechanisms
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-fc40a004f928869d14aa8e384b317b03dd947304b44dbbde52e7d4b22d09679f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12940-022-00958-5
PMID 36814257
PQID 2788483293
PQPubID 44372
PageCount 47
ParticipantIDs doaj_primary_oai_doaj_org_article_b211414670ff419284da101c23e8f43f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9944481
proquest_miscellaneous_2779346084
proquest_journals_2788483293
gale_infotracmisc_A738277065
gale_infotracacademiconefile_A738277065
pubmed_primary_36814257
crossref_citationtrail_10_1186_s12940_022_00958_5
crossref_primary_10_1186_s12940_022_00958_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-22
PublicationDateYYYYMMDD 2023-02-22
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Environmental health
PublicationTitleAlternate Environ Health
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References H Zhang (958_CR213) 2021; 113
P Grandjean (958_CR47) 2020; 15
X Fang (958_CR214) 2012; 86
RP Frawley (958_CR82) 2018; 15
NMS Almeida (958_CR228) 2021; 6
S Feske (958_CR152) 2015; 33
Y Iwasaki (958_CR170) 2020; 43
S Fragki (958_CR109) 2021; 51
M Averina (958_CR50) 2019; 169
EFSA (European Food Safety Authority) (958_CR26) 2018; 16
MK Selgrade (958_CR62) 2007; 100
DE Lefebvre (958_CR75) 2008; 71
J-K Lee (958_CR111) 2018; 81
958_CR97
AV Pontsler (958_CR126) 2002; 277
K Kielsen (958_CR31) 2016; 13
E Corsini (958_CR206) 2012; 258
H Skaggs (958_CR15) 2019; 89
PH Lieder (958_CR85) 2009; 255
B Granum (958_CR35) 2013; 10
J-K Lee (958_CR160) 2018; 14
MH Ryu (958_CR182) 2014; 307
M Takahashi (958_CR88) 2014; 39
LAJ O'Neill (958_CR143) 2016; 16
958_CR95
C-H Li (958_CR122) 2018; 52
OECD (Organisation for Economic Co-operation and Development) (958_CR3) 2018
R Awad (958_CR201) 2020; 22
HM Dusza (958_CR167) 2018; 69
X Pan (958_CR176) 2018; 66
P Grandjean (958_CR28) 2017; 14
Z Wang (958_CR41) 2022; 289
AF AbdelMassih (958_CR127) 2021; 19
Z Kunicka (958_CR113) 2019; 134
CR Stein (958_CR32) 2016; 79
C Miao (958_CR217) 2015; 8
RC Buck (958_CR2) 2011; 7
A Koskela (958_CR133) 2017; 7
J-K Lee (958_CR159) 2017; 37
W Qi (958_CR224) 2020; 102
A Gaylord (958_CR58) 2019; 172
RA Daynes (958_CR115) 2002; 2
F Pappalardo (958_CR198) 2022; 20
CM Bulka (958_CR199) 2021; 275
P Grandjean (958_CR27) 2012; 307
L-Q Wang (958_CR158) 2021; 12
Q Liu (958_CR171) 2018; 103
SA Alharthy (958_CR173) 2021; 86
X Fang (958_CR177) 2018; 34
H-Y Son (958_CR105) 2009; 24
L Zheng (958_CR71) 2009; 83
S Heikkinen (958_CR140) 2007; 1771
X Fang (958_CR94) 2009; 108
958_CR219
F Staud (958_CR131) 2018; 105
C Suo (958_CR83) 2017; 7
M Chen (958_CR5) 2019; 656
L Peyton Myers (958_CR181) 1803; 2018
L Dalsager (958_CR12) 2021; 149
MH Zarei (958_CR172) 2018; 17
Y-H Shih (958_CR37) 2021; 18
X Zhang (958_CR39) 2022; 306
J Yang (958_CR218) 2015; 28
958_CR60
Y-H Zhang (958_CR92) 2013; 10
RR Dietert (958_CR17) 2006; 114
K Matta (958_CR99) 2022; 158
A Impinen (958_CR52) 2018; 160
JM Conley (958_CR229) 2019; 127
958_CR202
X Zhou (958_CR208) 2017; 7
AR Zota (958_CR101) 2018; 115
CB Manzano-Salgado (958_CR42) 2019; 222
K Steenland (958_CR190) 2020; 145
G-H Dong (958_CR72) 2009; 83
958_CR204
CAG Timmermann (958_CR36) 2020; 128
X Chen (958_CR221) 2018; 67
SE Fenton (958_CR7) 2021; 40
IH Beck (958_CR51) 2019; 18
G-H Dong (958_CR54) 2013; 121
Z Pan (958_CR230) 2021; 287
A Impinen (958_CR43) 2019; 124
MP Holsapple (958_CR153) 1996; 36
S Feske (958_CR151) 2007; 7
Y-C Chen (958_CR162) 2017; 67
L Zhang (958_CR148) 2014; 279
JJ Schlezinger (958_CR119) 2020; 405
KA Houck (958_CR146) 2021; 457
K Abraham (958_CR34) 2020; 94
L Torres (958_CR81) 2021; 233
Y-H Shih (958_CR145) 2022; 204
XM Wu (958_CR91) 2015; 136
JA Krieger (958_CR154) 1995; 133
A-KS Knudsen (958_CR103) 2018; 77
TSK Singh (958_CR128) 2012; 210
HF Berntsen (958_CR164) 2018; 357
JC DeWitt (958_CR67) 2009; 109
E Corsini (958_CR205) 2011; 250
W Bil (958_CR203) 2021; 40
Y Oulhote (958_CR102) 2017; 68
Z Stark (958_CR142) 2009; 4
X Liu (958_CR166) 2011; 25
958_CR79
J Ji (958_CR48) 2021; 153
CAG Timmermann (958_CR59) 2017; 14
L Liang (958_CR20) 2022; 291
S de Guise (958_CR63) 2021; 351
958_CR76
J Bogdanska (958_CR134) 2014; 98
M Khazaee (958_CR227) 2021; 9
W Liu (958_CR139) 2019; 367
X Li (958_CR220) 2018; 294
AB Kirk (958_CR135) 2021; 162
CA McDonough (958_CR77) 2020; 178
S Kim (958_CR19) 2011; 45
CR Stein (958_CR33) 2016; 149
CAG Timmermann (958_CR38) 2022; 203
LM Plitnick (958_CR61) 2010; 598
V Vetvicka (958_CR64) 2013; 13
K Steenland (958_CR188) 2013; 121
BD Abbott (958_CR116) 2009; 27
SE Loveless (958_CR65) 2008; 105
ECHA (European Chemicals Agency) (958_CR24) 2022
P Grandjean (958_CR29) 2017; 125
MS Jackson-Browne (958_CR57) 2020; 229
M Wang (958_CR187) 2021; 118
C-H Li (958_CR226) 2019; 53
X Fang (958_CR93) 2008; 105
R Han (958_CR209) 2018; 200
LAM Smit (958_CR53) 2015; 70
MM Peden-Adams (958_CR70) 2008; 104
958_CR11
GL Kennedy (958_CR118) 2004; 34
958_CR10
Y Pan (958_CR163) 2019; 237
Q Yang (958_CR106) 2001; 62
N Kotlarz (958_CR200) 2020; 128
P Pierozan (958_CR232) 2018; 92
J Bodin (958_CR192) 2016; 3
D Kobayashi (958_CR157) 2009; 258
Y Zhong (958_CR212) 2020; 249
L Dalsager (958_CR46) 2016; 96
SP Nobs (958_CR124) 2018; 104
958_CR49
P Saejia (958_CR222) 2019; 39
G-H Dong (958_CR73) 2011; 85
Stockholm Convention (958_CR22) 2022
A Villa (958_CR141) 2006; 6
JC DeWitt (958_CR66) 2008; 116
R Pawliczak (958_CR125) 2004; 279
E Antoniou (958_CR194) 2022; 96
JC DeWitt (958_CR16) 2011; 40
C Giaginis (958_CR137) 2007; 21
WHO (World Health Organization) (958_CR14) 2012
OECD (Organisation for Economic Co-operation and Development) (958_CR1) 2021
O Midasch (958_CR18) 2007; 80
M Xu (958_CR174) 2019; 175
EFSA (European Food and Safety Authority) (958_CR21) 2021
K Harada (958_CR165) 2005; 329
958_CR150
958_CR9
958_CR8
JM Conley (958_CR121) 2021; 146
958_CR4
T Liu (958_CR110) 2017; 2
Y Wang (958_CR207) 2011; 204
MR Qazi (958_CR78) 2010; 267
W Zhang (958_CR215) 2014; 229
MR Qazi (958_CR107) 2012; 50
Y Zhu (958_CR55) 2016; 559
M-B Madel (958_CR138) 2019; 10
O Humblet (958_CR56) 2014; 122
958_CR178
E Papadopoulou (958_CR100) 2021; 157
F Pérez (958_CR136) 2013; 59
NTP (National Toxicology Program) (958_CR84) 2019
J Korbecki (958_CR117) 2019; 68
H Huang (958_CR45) 2020; 191
A Christofides (958_CR114) 2021; 114
M Trebak (958_CR149) 2019; 19
CE Rockwell (958_CR96) 2017; 100
DK Finlay (958_CR129) 2012; 3
J Zhu (958_CR216) 2015; 35
JC D'eon (958_CR6) 2011; 119
J Guo (958_CR211) 2019; 91
U.S. EPA (958_CR13) 2022
JLA Pennings (958_CR120) 2016; 13
F Li (958_CR225) 2021; 214
958_CR168
KJ Fairley (958_CR183) 2007; 97
H Wen (958_CR144) 2011; 12
SE Loveless (958_CR87) 2009; 264
A-C Behr (958_CR231) 2020; 62
P Lochhead (958_CR191) 2022; 207
M Yang (958_CR184) 2021; 766
MH Park (958_CR210) 2019; 32
BJ Mounho (958_CR155) 1998; 149
H Zhang (958_CR112) 2014; 280
K Pallmer (958_CR180) 2016; 7
JC DeWitt (958_CR68) 2016; 13
DE Keil (958_CR74) 2008; 103
IA van Beijsterveldt (958_CR40) 2022; 164
L Ramhøj (958_CR80) 2018
A Croasdell (958_CR123) 2015; 2015
EC (European Commission) (958_CR25) 2021
MR Qazi (958_CR90) 2009; 262
DR Germolec (958_CR196) 2022; 130
W Lin (958_CR223) 2021; 22
Q Hu (958_CR108) 2012; 33
HE Kvalem (958_CR44) 2020; 134
Q Yang (958_CR69) 2002; 2
H Kato (958_CR89) 2015; 30
Z Lv (958_CR175) 2018; 65
A Brieger (958_CR179) 2011; 25
I Bogacka (958_CR132) 2015; 53
K Steenland (958_CR189) 2015; 72
M-J Lopez-Espinosa (958_CR104) 2021; 156
J Gao (958_CR156) 2005; 87
ECHA (European Chemicals Agency) (958_CR23) 2022
Z Zeng (958_CR185) 2021; 10
Y Chen (958_CR169) 2018; 9
958_CR195
R Margolis (958_CR193) 2021
Y Suzuki (958_CR161) 2012
C-H Li (958_CR147) 2020; 54
S-J Park (958_CR186) 2021; 156
ML Takacs (958_CR130) 2007; 95
958_CR197
C Looker (958_CR30) 2014; 138
NTP (National Toxicology Program) (958_CR86) 2019
M Nian (958_CR98) 2022; 12
References_xml – volume: 275
  start-page: 116619
  year: 2021
  ident: 958_CR199
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.116619
– volume: 175
  start-page: 63
  year: 2019
  ident: 958_CR174
  publication-title: Environ Res
  doi: 10.1016/j.envres.2019.05.008
– volume: 40
  start-page: 859
  year: 2021
  ident: 958_CR203
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.4835
– volume: 162
  start-page: bqab194
  year: 2021
  ident: 958_CR135
  publication-title: Endocrinology
  doi: 10.1210/endocr/bqab194
– volume-title: Associations between exposures to perfluoroalkyl substances and diabetes, hyperglycemia, or insulin resistance: a scoping review
  year: 2021
  ident: 958_CR193
  doi: 10.3390/jox11030008
– volume: 30
  start-page: 1244
  year: 2015
  ident: 958_CR89
  publication-title: Environ Toxicol
  doi: 10.1002/tox.21996
– volume: 280
  start-page: 552
  year: 2014
  ident: 958_CR112
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2014.08.043
– ident: 958_CR178
  doi: 10.3389/fphys.2020.00051
– volume: 102
  start-page: 585
  year: 2020
  ident: 958_CR224
  publication-title: Toxicol Environ Chem
  doi: 10.1080/02772248.2020.1808894
– volume: 122
  start-page: 1129
  year: 2014
  ident: 958_CR56
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1306606
– volume: 1771
  start-page: 999
  year: 2007
  ident: 958_CR140
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbalip.2007.03.006
– ident: 958_CR49
  doi: 10.3390/ijerph182010702
– volume: 22
  start-page: 2023
  year: 2020
  ident: 958_CR201
  publication-title: Environ Sci Processes Impacts
  doi: 10.1039/D0EM00077A
– volume: 69
  start-page: 266
  year: 2018
  ident: 958_CR167
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2018.07.015
– volume: 138
  start-page: 76
  year: 2014
  ident: 958_CR30
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kft269
– volume: 59
  start-page: 354
  year: 2013
  ident: 958_CR136
  publication-title: Environ Int
  doi: 10.1016/j.envint.2013.06.004
– volume: 53
  start-page: 3287
  year: 2019
  ident: 958_CR226
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b06978
– volume: 10
  start-page: 1408
  year: 2019
  ident: 958_CR138
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01408
– volume: 17
  start-page: 995
  year: 2018
  ident: 958_CR172
  publication-title: Iran J Pharm Res
– volume: 158
  start-page: 106926
  year: 2022
  ident: 958_CR99
  publication-title: Environ Int
  doi: 10.1016/j.envint.2021.106926
– volume-title: The new POPs under the Stockholm Convention
  year: 2022
  ident: 958_CR22
– volume: 559
  start-page: 166
  year: 2016
  ident: 958_CR55
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.03.187
– volume: 4
  start-page: 5
  year: 2009
  ident: 958_CR142
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/1750-1172-4-5
– volume: 24
  start-page: 580
  year: 2009
  ident: 958_CR105
  publication-title: Environ Toxicol
  doi: 10.1002/tox.20459
– volume-title: Bisphenol A: EFSA draft opinion proposes lowering the tolerable daily intake
  year: 2021
  ident: 958_CR21
– ident: 958_CR60
  doi: 10.3390/ijerph18031323
– volume: 87
  start-page: 419
  year: 2005
  ident: 958_CR156
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfi265
– volume: 62
  start-page: 1133
  year: 2001
  ident: 958_CR106
  publication-title: Biochem Pharmacol
  doi: 10.1016/s0006-2952(01)00752-3
– volume: 203
  start-page: 111712
  year: 2022
  ident: 958_CR38
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111712
– volume: 83
  start-page: 679
  year: 2009
  ident: 958_CR71
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-008-0361-3
– volume: 65
  start-page: 140
  year: 2018
  ident: 958_CR175
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2018.09.019
– volume: 33
  start-page: 1491
  year: 2012
  ident: 958_CR108
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2012.10.016
– volume: 25
  start-page: 1294
  year: 2011
  ident: 958_CR166
  publication-title: Toxicol in Vitro
  doi: 10.1016/j.tiv.2011.04.016
– volume: 92
  start-page: 1729
  year: 2018
  ident: 958_CR232
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-018-2181-4
– volume: 766
  start-page: 142365
  year: 2021
  ident: 958_CR184
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.142365
– volume: 7
  start-page: 513
  year: 2011
  ident: 958_CR2
  publication-title: Integr Environ Assess Manag
  doi: 10.1002/ieam.258
– volume: 12
  start-page: 2915
  year: 2021
  ident: 958_CR158
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23201-0
– volume: 277
  start-page: 13029
  year: 2002
  ident: 958_CR126
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109546200
– volume: 258
  start-page: 25
  year: 2009
  ident: 958_CR157
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.01.002
– volume: 172
  start-page: 266
  year: 2019
  ident: 958_CR58
  publication-title: Environ Res
  doi: 10.1016/j.envres.2019.02.024
– volume: 109
  start-page: 106
  year: 2009
  ident: 958_CR67
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfp040
– volume: 160
  start-page: 518
  year: 2018
  ident: 958_CR52
  publication-title: Environ Res
  doi: 10.1016/j.envres.2017.10.012
– volume: 19
  start-page: 82
  year: 2021
  ident: 958_CR127
  publication-title: J Genet Eng Biotechnol
  doi: 10.1186/s43141-021-00179-2
– volume: 157
  start-page: 106853
  year: 2021
  ident: 958_CR100
  publication-title: Environ Int
  doi: 10.1016/j.envint.2021.106853
– volume: 10
  start-page: 49
  year: 2013
  ident: 958_CR92
  publication-title: J Immunotoxicol
  doi: 10.3109/1547691X.2012.691123
– volume: 66
  start-page: 6414
  year: 2018
  ident: 958_CR176
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.8b02197
– volume: 27
  start-page: 246
  year: 2009
  ident: 958_CR116
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2008.10.001
– volume: 14
  start-page: 173
  year: 2018
  ident: 958_CR160
  publication-title: Mol Cell Toxicol
  doi: 10.1007/s13273-018-0019-z
– ident: 958_CR197
  doi: 10.3390/ijerph18073332
– volume: 34
  start-page: 139
  year: 2018
  ident: 958_CR177
  publication-title: Toxicol Ind Health
  doi: 10.1177/0748233717742262
– volume: 178
  start-page: 104
  year: 2020
  ident: 958_CR77
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfaa138
– volume: 329
  start-page: 487
  year: 2005
  ident: 958_CR165
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.01.163
– volume: 204
  start-page: 174
  year: 2011
  ident: 958_CR207
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2011.04.029
– ident: 958_CR150
  doi: 10.3389/fphys.2021.736681
– volume: 81
  start-page: 302
  year: 2018
  ident: 958_CR111
  publication-title: J Toxicol Environ Health A.
  doi: 10.1080/15287394.2018.1440188
– volume-title: Registry of restriction intentions until outcome: per- and polyfluoroalkyl substances (PFAS)
  year: 2022
  ident: 958_CR24
– volume: 97
  start-page: 375
  year: 2007
  ident: 958_CR183
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfm053
– ident: 958_CR76
  doi: 10.1093/toxsci/kfw251
– volume: 51
  start-page: 141
  year: 2021
  ident: 958_CR109
  publication-title: Crit Rev Toxicol
  doi: 10.1080/10408444.2021.1888073
– volume: 200
  start-page: 283
  year: 2018
  ident: 958_CR209
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.137
– volume-title: Proposal for a restriction: per- and polyfluoroalkyl substances (PFASs) in firefighting foams
  year: 2022
  ident: 958_CR23
– volume: 262
  start-page: 207
  year: 2009
  ident: 958_CR90
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.06.010
– volume: 229
  start-page: 118
  year: 2014
  ident: 958_CR215
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2014.06.004
– volume: 53
  start-page: 189
  year: 2015
  ident: 958_CR132
  publication-title: Folia Histochem Cytobiol
  doi: 10.5603/fhc.a2015.0023
– volume: 294
  start-page: 44
  year: 2018
  ident: 958_CR220
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2018.05.009
– volume: 7
  start-page: 45468
  year: 2017
  ident: 958_CR208
  publication-title: Sci Rep
  doi: 10.1038/srep45468
– volume: 16
  start-page: 553
  year: 2016
  ident: 958_CR143
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.70
– volume: 237
  start-page: 124402
  year: 2019
  ident: 958_CR163
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124402
– start-page: 61
  volume-title: OECD environment, health and safety publications series on risk management
  year: 2021
  ident: 958_CR1
– volume: 71
  start-page: 1516
  year: 2008
  ident: 958_CR75
  publication-title: J Toxicol Environ Health A
  doi: 10.1080/15287390802391943
– volume: 124
  start-page: 462
  year: 2019
  ident: 958_CR43
  publication-title: Environ Int
  doi: 10.1016/j.envint.2018.12.041
– volume-title: TOX-96: 1-perfluorobutanesulfonic acid (375-73-5), potassium perfluorohexanesulfonate (3871-99-6), perfluorooctane sulfonate (1763-23-1), WY-14643 (50892-23-4)
  year: 2019
  ident: 958_CR84
– volume: 37
  start-page: 554
  year: 2017
  ident: 958_CR159
  publication-title: J Appl Toxicol
  doi: 10.1002/jat.3389
– volume: 149
  start-page: 80
  year: 1998
  ident: 958_CR155
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1006/taap.1997.8345
– volume: 7
  start-page: 5166
  year: 2017
  ident: 958_CR83
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04091-z
– volume: 207
  start-page: 112222
  year: 2022
  ident: 958_CR191
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.112222
– volume: 229
  start-page: 113565
  year: 2020
  ident: 958_CR57
  publication-title: Int J Hyg Environ Health
  doi: 10.1016/j.ijheh.2020.113565
– volume: 16
  start-page: e05194
  year: 2018
  ident: 958_CR26
  publication-title: EFSA J
  doi: 10.2903/j.efsa.2018.5194
– volume: 367
  start-page: 82
  year: 2019
  ident: 958_CR139
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2019.02.001
– volume: 83
  start-page: 805
  year: 2009
  ident: 958_CR72
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-009-0424-0
– volume: 8
  start-page: 10512
  year: 2015
  ident: 958_CR217
  publication-title: Int J Clin Exp Pathol
– volume: 85
  start-page: 1235
  year: 2011
  ident: 958_CR73
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-011-0661-x
– volume: 21
  start-page: 231
  year: 2007
  ident: 958_CR137
  publication-title: Fundam Clin Pharmacol
  doi: 10.1111/j.1472-8206.2007.00486.x
– volume: 405
  start-page: 115204
  year: 2020
  ident: 958_CR119
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2020.115204
– volume: 18
  start-page: 97
  year: 2019
  ident: 958_CR51
  publication-title: Environ Health
  doi: 10.1186/s12940-019-0541-z
– volume: 114
  start-page: 477
  year: 2006
  ident: 958_CR17
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.8566
– volume: 125
  start-page: 77018
  year: 2017
  ident: 958_CR29
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP275
– volume: 104
  start-page: 737
  year: 2018
  ident: 958_CR124
  publication-title: J Leukoc Biol
  doi: 10.1002/JLB.3MR0118-034R
– ident: 958_CR202
  doi: 10.1016/j.envint.2022.107727
– volume: 105
  start-page: 35
  year: 2018
  ident: 958_CR131
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2018.09.016
– volume: 13
  start-page: 77
  year: 2013
  ident: 958_CR64
  publication-title: Orient Pharm Exp Med
  doi: 10.1007/s13596-013-0105-7
– ident: 958_CR195
– volume: 233
  start-page: 31
  year: 2021
  ident: 958_CR81
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2021.03.006
– volume: 33
  start-page: 291
  year: 2015
  ident: 958_CR152
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032414-112212
– volume: 25
  start-page: 960
  year: 2011
  ident: 958_CR179
  publication-title: Toxicol in Vitro
  doi: 10.1016/j.tiv.2011.03.005
– volume: 164
  start-page: 107274
  year: 2022
  ident: 958_CR40
  publication-title: Environ Int
  doi: 10.1016/j.envint.2022.107274
– volume: 191
  start-page: 110156
  year: 2020
  ident: 958_CR45
  publication-title: Environ Res
  doi: 10.1016/j.envres.2020.110156
– volume: 3
  start-page: 664
  year: 2016
  ident: 958_CR192
  publication-title: Toxicol Rep
  doi: 10.1016/j.toxrep.2016.08.009
– volume: 279
  start-page: 48550
  year: 2004
  ident: 958_CR125
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M408926200
– volume: 22
  start-page: 90
  year: 2021
  ident: 958_CR223
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-021-03965-8
– volume: 116
  start-page: 644
  year: 2008
  ident: 958_CR66
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.10896
– volume: 2015
  start-page: 549691
  year: 2015
  ident: 958_CR123
  publication-title: PPAR Res
  doi: 10.1155/2015/549691
– volume: 6
  start-page: 15103
  year: 2021
  ident: 958_CR228
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c01304
– ident: 958_CR204
– volume: 169
  start-page: 114
  year: 2019
  ident: 958_CR50
  publication-title: Environ Res
  doi: 10.1016/j.envres.2018.11.005
– volume: 34
  start-page: 351
  year: 2004
  ident: 958_CR118
  publication-title: Crit Rev Toxicol
  doi: 10.1080/10408440490464705
– volume: 28
  start-page: 52
  year: 2015
  ident: 958_CR218
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2015.05.019
– volume-title: International programme on chemical safety. Guidence for immunotoxicity risk assessment for chemicals: harmonization project document no. 10
  year: 2012
  ident: 958_CR14
– ident: 958_CR4
  doi: 10.1021/acs.est.1c03732
– volume: 3
  start-page: 247
  year: 2012
  ident: 958_CR129
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2012.00247
– volume: 15
  start-page: 41
  year: 2018
  ident: 958_CR82
  publication-title: J Immunotoxicol
  doi: 10.1080/1547691X.2018.1445145
– volume: 258
  start-page: 248
  year: 2012
  ident: 958_CR206
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2011.11.004
– volume: 598
  start-page: 159
  year: 2010
  ident: 958_CR61
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-401-2_11
– ident: 958_CR95
– volume: 14
  start-page: 39
  year: 2017
  ident: 958_CR59
  publication-title: J Immunotoxicol
  doi: 10.1080/1547691X.2016.1254306
– volume: 95
  start-page: 108
  year: 2007
  ident: 958_CR130
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfl135
– volume: 7
  start-page: 690
  year: 2007
  ident: 958_CR151
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2152
– volume: 68
  start-page: 207
  year: 2017
  ident: 958_CR102
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2016.08.001
– volume: 457
  start-page: 152789
  year: 2021
  ident: 958_CR146
  publication-title: Toxicology
  doi: 10.1016/j.tox.2021.152789
– volume: 2
  start-page: 389
  year: 2002
  ident: 958_CR69
  publication-title: Int Immunopharmacol
  doi: 10.1016/S1567-5769(01)00164-3
– volume: 264
  start-page: 32
  year: 2009
  ident: 958_CR87
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.07.011
– start-page: 39
  volume-title: OECD environment, health and safety publications series on risk management
  year: 2018
  ident: 958_CR3
– volume: 9
  start-page: 45
  year: 2021
  ident: 958_CR227
  publication-title: Toxics
  doi: 10.3390/toxics9030045
– volume: 67
  start-page: 31
  year: 2017
  ident: 958_CR162
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2017.08.002
– volume: 307
  start-page: 391
  year: 2012
  ident: 958_CR27
  publication-title: JAMA
  doi: 10.1001/jama.2011.2034
– volume: 146
  start-page: 106204
  year: 2021
  ident: 958_CR121
  publication-title: Environ Int
  doi: 10.1016/j.envint.2020.106204
– volume: 2018
  start-page: 15
  year: 1803
  ident: 958_CR181
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-8549-4_2
– ident: 958_CR11
  doi: 10.1016/j.heliyon.2021.e08160
– volume: 127
  start-page: 37008
  year: 2019
  ident: 958_CR229
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP4372
– volume: 136
  start-page: 264
  year: 2015
  ident: 958_CR91
  publication-title: Environ Res
  doi: 10.1016/j.envres.2014.09.026
– ident: 958_CR8
– volume: 39
  start-page: 2429
  year: 2019
  ident: 958_CR222
  publication-title: Anticancer Res
  doi: 10.21873/anticanres.13360
– volume: 39
  start-page: 97
  year: 2014
  ident: 958_CR88
  publication-title: J Toxicol Sci
  doi: 10.2131/jts.39.97
– volume: 35
  start-page: 1539
  year: 2015
  ident: 958_CR216
  publication-title: J Appl Toxicol
  doi: 10.1002/jat.3119
– volume: 89
  start-page: 178
  year: 2019
  ident: 958_CR15
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2019.06.005
– volume: 103
  start-page: 77
  year: 2008
  ident: 958_CR74
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfn015
– volume: 6
  start-page: 421
  year: 2006
  ident: 958_CR141
  publication-title: Curr Opin Allergy Clin Immunol
  doi: 10.1097/01.all.0000246620.26623.5b
– volume: 103
  start-page: 115
  year: 2018
  ident: 958_CR171
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2018.09.010
– volume: 287
  start-page: 117329
  year: 2021
  ident: 958_CR230
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.117329
– volume: 204
  start-page: 111905
  year: 2022
  ident: 958_CR145
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111905
– volume: 250
  start-page: 108
  year: 2011
  ident: 958_CR205
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2010.11.004
– volume: 267
  start-page: 132
  year: 2010
  ident: 958_CR78
  publication-title: Toxicology
  doi: 10.1016/j.tox.2009.10.035
– volume: 77
  start-page: 1456303
  year: 2018
  ident: 958_CR103
  publication-title: Int J Circumpolar Health
  doi: 10.1080/22423982.2018.1456303
– volume: 80
  start-page: 643
  year: 2007
  ident: 958_CR18
  publication-title: Int Arch Occup Environ Health
  doi: 10.1007/s00420-006-0165-9
– volume: 7
  start-page: 251
  year: 2016
  ident: 958_CR180
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00251
– volume: 108
  start-page: 367
  year: 2009
  ident: 958_CR94
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfp019
– volume: 307
  start-page: L765
  year: 2014
  ident: 958_CR182
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00100.2014
– volume: 100
  start-page: 328
  year: 2007
  ident: 958_CR62
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfm244
– volume: 45
  start-page: 7465
  year: 2011
  ident: 958_CR19
  publication-title: Environ Sci Technol
  doi: 10.1021/es202408a
– volume: 7
  start-page: 6841
  year: 2017
  ident: 958_CR133
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07359-6
– volume: 115
  start-page: 9
  year: 2018
  ident: 958_CR101
  publication-title: Environ Int
  doi: 10.1016/j.envint.2018.02.044
– volume: 145
  start-page: 106125
  year: 2020
  ident: 958_CR190
  publication-title: Environ Int
  doi: 10.1016/j.envint.2020.106125
– volume: 656
  start-page: 201
  year: 2019
  ident: 958_CR5
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.11.297
– volume: 289
  start-page: 133235
  year: 2022
  ident: 958_CR41
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.133235
– volume: 133
  start-page: 102
  year: 1995
  ident: 958_CR154
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1006/taap.1995.1131
– volume-title: Zero pollution action plan: towards zero pollution for air, water and soil
  year: 2021
  ident: 958_CR25
– volume: 43
  start-page: 142
  year: 2020
  ident: 958_CR170
  publication-title: Immunol Med
  doi: 10.1080/25785826.2020.1756609
– volume: 128
  start-page: 77005
  year: 2020
  ident: 958_CR200
  publication-title: North Carolina Environ Health Perspect
  doi: 10.1289/EHP6837
– volume: 249
  start-page: 126200
  year: 2020
  ident: 958_CR212
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126200
– volume: 2
  start-page: 748
  year: 2002
  ident: 958_CR115
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri912
– volume: 40
  start-page: 606
  year: 2021
  ident: 958_CR7
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.4890
– volume: 15
  start-page: e0244815
  year: 2020
  ident: 958_CR47
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0244815
– volume: 156
  start-page: 112478
  year: 2021
  ident: 958_CR186
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2021.112478
– volume: 14
  start-page: 188
  year: 2017
  ident: 958_CR28
  publication-title: J Immunotoxicol
  doi: 10.1080/1547691X.2017.1360968
– volume: 114
  start-page: 154338
  year: 2021
  ident: 958_CR114
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154338
– volume-title: Technical fact sheet: drinking water health advisories for four PFAS (PFOA, PFOS, GenX chemicals, and PFBS)
  year: 2022
  ident: 958_CR13
– volume: 12
  start-page: 6517
  year: 2022
  ident: 958_CR98
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-10501-8
– volume: 134
  start-page: 105259
  year: 2020
  ident: 958_CR44
  publication-title: Environ Int
  doi: 10.1016/j.envint.2019.105259
– volume: 79
  start-page: 348
  year: 2016
  ident: 958_CR32
  publication-title: Pediatr Res
  doi: 10.1038/pr.2015.213
– volume: 52
  start-page: 3232
  year: 2018
  ident: 958_CR122
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b06327
– volume: 20
  start-page: 1764
  year: 2022
  ident: 958_CR198
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2022.03.024
– volume: 62
  start-page: 104700
  year: 2020
  ident: 958_CR231
  publication-title: Toxicol in Vitro
  doi: 10.1016/j.tiv.2019.104700
– volume-title: Developmental toxicity of perfluorohexane sulfonate (PFHxS) - effects on the immune and thyroid hormone systems
  year: 2018
  ident: 958_CR80
– volume: 94
  start-page: 2131
  year: 2020
  ident: 958_CR34
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-020-02715-4
– volume: 96
  start-page: 2261
  year: 2022
  ident: 958_CR194
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-022-03303-4
– volume: 121
  start-page: 507
  year: 2013
  ident: 958_CR54
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1205351
– ident: 958_CR9
– volume: 9
  start-page: 1487
  year: 2018
  ident: 958_CR169
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.01487
– volume: 156
  start-page: 106599
  year: 2021
  ident: 958_CR104
  publication-title: Environ Int
  doi: 10.1016/j.envint.2021.106599
– volume: 10
  start-page: 373
  year: 2013
  ident: 958_CR35
  publication-title: J Immunotoxicol
  doi: 10.3109/1547691X.2012.755580
– volume: 210
  start-page: 64
  year: 2012
  ident: 958_CR128
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2012.01.014
– volume: 19
  start-page: 154
  year: 2019
  ident: 958_CR149
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-018-0110-7
– volume: 121
  start-page: 900
  year: 2013
  ident: 958_CR188
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1206449
– volume: 306
  start-page: 119442
  year: 2022
  ident: 958_CR39
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2022.119442
– ident: 958_CR10
– volume: 153
  start-page: 106524
  year: 2021
  ident: 958_CR48
  publication-title: Environ Int
  doi: 10.1016/j.envint.2021.106524
– volume: 13
  start-page: 173
  year: 2016
  ident: 958_CR120
  publication-title: J Immunotoxicol
  doi: 10.3109/1547691X.2015.1029147
– volume: 357
  start-page: 19
  year: 2018
  ident: 958_CR164
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2018.08.015
– volume: 255
  start-page: 45
  year: 2009
  ident: 958_CR85
  publication-title: Toxicology
  doi: 10.1016/j.tox.2008.10.002
– volume: 70
  start-page: 653
  year: 2015
  ident: 958_CR53
  publication-title: Allergy
  doi: 10.1111/all.12605
– volume: 351
  start-page: 155
  year: 2021
  ident: 958_CR63
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2021.09.002
– volume-title: TOX-97: perfluorohexanoic acid (307-24-4), perfluorooctanoic acid (335-67-1), perfluorononanoic acid (375-95-1), perfluorodecanoic acid (335-76-2), WY-14643 (50892-23-4)
  year: 2019
  ident: 958_CR86
– volume: 36
  start-page: 131
  year: 1996
  ident: 958_CR153
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev.pa.36.040196.001023
– volume: 118
  start-page: e2011957118
  year: 2021
  ident: 958_CR187
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2011957118
– volume: 134
  start-page: 112
  year: 2019
  ident: 958_CR113
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2019.05.022
– volume: 130
  start-page: 105001
  year: 2022
  ident: 958_CR196
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP10800
– ident: 958_CR219
  doi: 10.3390/ijms18061229
– volume: 72
  start-page: 373
  year: 2015
  ident: 958_CR189
  publication-title: Occup Environ Med
  doi: 10.1136/oemed-2014-102364
– volume: 279
  start-page: 275
  year: 2014
  ident: 958_CR148
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2014.06.020
– volume: 222
  start-page: 945
  year: 2019
  ident: 958_CR42
  publication-title: Int J Hyg Environ Health
  doi: 10.1016/j.ijheh.2019.06.005
– volume: 67
  start-page: 65
  year: 2018
  ident: 958_CR221
  publication-title: Neurotoxicol Teratol
  doi: 10.1016/j.ntt.2018.03.004
– volume: 291
  start-page: 132892
  year: 2022
  ident: 958_CR20
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132892
– volume: 12
  start-page: 408
  year: 2011
  ident: 958_CR144
  publication-title: Nat Immunol
  doi: 10.1038/ni.2022
– volume: 86
  start-page: 1515
  year: 2012
  ident: 958_CR214
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-012-0877-4
– ident: 958_CR79
  doi: 10.3390/toxics9050100
– volume: 98
  start-page: 28
  year: 2014
  ident: 958_CR134
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.062
– volume: 86
  start-page: 103652
  year: 2021
  ident: 958_CR173
  publication-title: Environ Toxicol Pharmacol
  doi: 10.1016/j.etap.2021.103652
– volume: 119
  start-page: 344
  year: 2011
  ident: 958_CR6
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1002409
– start-page: 955
  volume-title: Calcium signaling
  year: 2012
  ident: 958_CR161
  doi: 10.1007/978-94-007-2888-2_44
– volume: 10
  start-page: 323
  year: 2021
  ident: 958_CR185
  publication-title: Transl Pediatr
  doi: 10.21037/tp-20-246
– volume: 105
  start-page: 312
  year: 2008
  ident: 958_CR93
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfn127
– volume: 100
  start-page: 24
  year: 2017
  ident: 958_CR96
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2016.12.004
– volume: 18
  start-page: 85
  year: 2021
  ident: 958_CR37
  publication-title: J Immunotoxicol
  doi: 10.1080/1547691X.2021.1922957
– volume: 2
  start-page: 17023
  year: 2017
  ident: 958_CR110
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/sigtrans.2017.23
– volume: 104
  start-page: 144
  year: 2008
  ident: 958_CR70
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfn059
– ident: 958_CR168
  doi: 10.3390/toxics10110684
– ident: 958_CR97
  doi: 10.4172/2161-1459.S4-002
– volume: 13
  start-page: 38
  year: 2016
  ident: 958_CR68
  publication-title: J Immunotoxicol
  doi: 10.3109/1547691X.2014.996682
– volume: 32
  start-page: 935
  year: 2019
  ident: 958_CR210
  publication-title: Chem Res Toxicol
  doi: 10.1021/acs.chemrestox.9b00101
– volume: 96
  start-page: 58
  year: 2016
  ident: 958_CR46
  publication-title: Environ Int
  doi: 10.1016/j.envint.2016.08.026
– volume: 105
  start-page: 86
  year: 2008
  ident: 958_CR65
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfn113
– volume: 13
  start-page: 270
  year: 2016
  ident: 958_CR31
  publication-title: J Immunotoxicol
  doi: 10.3109/1547691X.2015.1067259
– volume: 149
  start-page: 106395
  year: 2021
  ident: 958_CR12
  publication-title: Environ Int
  doi: 10.1016/j.envint.2021.106395
– volume: 50
  start-page: 2955
  year: 2012
  ident: 958_CR107
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2012.06.023
– volume: 214
  start-page: 112081
  year: 2021
  ident: 958_CR225
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2021.112081
– volume: 40
  start-page: 230
  year: 2011
  ident: 958_CR16
  publication-title: Toxicol Pathol
  doi: 10.1177/0192623311427709
– volume: 128
  start-page: 87002
  year: 2020
  ident: 958_CR36
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP6517
– volume: 91
  start-page: 87
  year: 2019
  ident: 958_CR211
  publication-title: Fish Shellfish Immunol
  doi: 10.1016/j.fsi.2019.05.018
– volume: 54
  start-page: 9529
  year: 2020
  ident: 958_CR147
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c02386
– volume: 149
  start-page: 171
  year: 2016
  ident: 958_CR33
  publication-title: Environ Res
  doi: 10.1016/j.envres.2016.05.020
– volume: 113
  start-page: 9
  year: 2021
  ident: 958_CR213
  publication-title: Fish Shellfish Immunol
  doi: 10.1016/j.fsi.2021.03.004
– volume: 68
  start-page: 443
  year: 2019
  ident: 958_CR117
  publication-title: Inflamm Res
  doi: 10.1007/s00011-019-01231-1
SSID ssj0017865
Score 2.6222298
SecondaryResourceType review_article
Snippet Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on...
Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and...
BackgroundPer- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and...
Abstract Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19
SubjectTerms Acids
Alkanesulfonic Acids
Animals
Antibodies
Biocompatibility
Bisphenol A
Calcium signalling
Chemicals
Child
Children
Drinking water
Environmental health
Environmental Pollutants
Environmental protection
Epidemiology
Fatty acids
Fluorocarbons - analysis
HBM4EU
Health aspects
Health risk assessment
Health risks
Humans
Immune function
Immune system
Immunosuppression
Immunotoxicity
In vivo methods and tests
Keywords
Modulation
Molecular mechanisms
NF-κB protein
Nuclear receptors
Nuclear safety
Oxidative Stress
Per- and polyfluoroalkyl substances
Perfluoroalkyl & polyfluoroalkyl substances
Perfluorooctane sulfonic acid
Perfluorooctanoic acid
Persistent organic pollutants
Physiological aspects
Public Health
Review
Risk Assessment
Side effects
Signal transduction
Signaling
Vaccination response
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yD-KL-G31lAqCipTbTfP5uIrLISiCHhy-hKRJ8LjSHtsu3v73N5O2yxZBX3xtJiX5ZT7JZIaQ18pR7oSMhZOaYwszX2hLY1HJGCi3OrgqZVt8Fadn7PM5Pz9o9YU5YUN54AG4EwcRCkNxXsSIN5aKeQtsVNEyqMjKiNoXbN4UTI33B1IJPj2RUeKkA6uGaYwQeKFPoQo-M0OpWv-fOvnAKM0TJg8s0PoeuTu6jvlqWPJ9cis0D8jtL-Pl-EPyc2q-mcDO25hju-Hfdtfl4JnmF_gSpO3bayDvd2k4bIrcNj6_autdrLftprX15a7OO9AmPbJDl7_9tl59f_eInK0__fh4WoytE4qKi7IvYsUWFvg_AmBKaL9k1qpQKubAX3CL0nvNQLaZY8w75wOnQXrmKPUQ0kgdy8fkqGmb8JTk1IrA4CSDVoB9VLbyynMNv1PWcSczspyQNNVYVxzbW9QmxRdKmAF9A-ibhL7hGXm_n3M1VNX4K_UHPKA9JVbETh-AT8zIJ-ZffJKRN3i8BuUWllfZ8fkBbBIrYJmVLBWVeOmbkeMZJchbNR-eGMSM8t4ZKgEcUI66zMir_TDOxBy2JrRbpAFdyMRCsYw8Gfhpv6VSqCVqz4zIGafN9jwfaS5-pWrgWjMIsZfP_gdIz8kdCk5cerJPj8lRv9mGF-B09e5lkq8bTmInFA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ti9MwGA96ggiH6Ply1VMiCCpSbkuTJvkkUxyHoAh6MPwSkibRw9HOtUP33_s8aTevCPd1SUbS3_OaPC-EPFeOCVfKmDupBbYw87m2LOaVjIEJq4OrUrTFp_LsnH9YiMVw4dYOYZU7mZgEtW8qvCM_ZeCrcSA_XbxZ_cqxaxS-rg4tNK6TG1i6DEO65GLvcE2lKsUuUUaVpy3oNgxmBPcLLQuVi5EySjX7_5fMl1TTOGzykh6a3yG3BwOSznrE75JroT4iNz8OT-RH5LC_iKN9ftE98m3XkjNBQJtIsQnxb7ttKdir9ALzQ5qu-QPLu20aDuuc2trTVbPcxuWmWTd2-XO7pC3ImA6JpKUvP89nX17dJ-fz91_fneVDQ4W8EmXR5bHiEwtcETVTqtR-yq1VoVDcgRXhJoX3mgPHc8e5d84HwYL03DHmwdGROhYPyEHd1OGYUGbLwAHfoAEWH5WtvPJCw98p64STGZnuvqyphmrj2PRiaZLXoUrTo2EADZPQMCIjr_drVn2tjStnv0XA9jOxTnb6oVl_NwPbGQf-LUdlMIkR37thrxaEUMWKoCIvYkZeINwGuRm2V9khKQEOiXWxzEwWikl8Cs7IyWgmcGE1Ht4RjBmkQGv-0WxGnu2HcSVGttWh2eAckJC8nCiekYc9fe2PVJRqijI1I3JEeaMzj0fqix-pRrjWHBzv6aOrt_WY3GJgtKUUfXZCDrr1JjwBI6tzTxMn_QWWRiTK
  priority: 102
  providerName: ProQuest
Title Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS)
URI https://www.ncbi.nlm.nih.gov/pubmed/36814257
https://www.proquest.com/docview/2788483293
https://www.proquest.com/docview/2779346084
https://pubmed.ncbi.nlm.nih.gov/PMC9944481
https://doaj.org/article/b211414670ff419284da101c23e8f43f
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1di9QwcLgPEF_Eb6vnUkHwQarbNG2SB5G749ZDuEPUhX0LSZPoYWnP3S5e_72TbLte8RBf8tBMQmYyn00yA_CSa5LrgrlEM5H7EmYmEYq4pGTOklwJq8tw2-K8OJ3Tj4t8sQNDuaOegKsbQztfT2q-rN5c_ezeo8C_CwLPi7crtFn-kiKGVd5j4Em-C_tomZgX1DP651SB8VBaMqUMo-hCLIZHNDfOMTJUIZ__31r7mtkaX6m8ZqNmd-FO71zGhxtuuAc7tr4Pt8764_MH8GUozxm2I25c7AsS_1LdKkbfNb7wb0WatrlC8LYL3XaZxKo28WVTda5aN8tGVT-6Kl6hvmk9w6wewnx28vX4NOmrKiRlXmRt4ko6VSgaThDOC2FSqhS3GacaXQk9zYwRFMWeakqN1sbmxDJDNSEGox0mXPYI9uqmtk8gJqqwFDfZCs6pcVyVhptc4HRc6VyzCNKBhLLsU477yheVDKEHL-SG7BLJLgPZZR7B6-2Yy03CjX9CH_md2UL6ZNnhQ7P8JnvZkxqDXOotwtQ5f-iNa1WoiUqSWe5o5iJ45fdVeibD5ZWqf5mASPrkWPKQZZwwfx4cwcEIEkWxHHcPnCEHTpaEIXFQb4osghfbbj_SX2-rbbP2MKgmaTHlNILHG0baopQVPPWKNQI2YrERzuOe-uJ7SBQuBMXoO3363_g9g9sEnbjwZJ8cwF67XNvn6HS1egK7bMGw5cepb2cfJrB_dHL-6fMk_MaYBEn7DVdwLJg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7rCiqI6HqrrhpBUZGyM2naJg8i42WYdS8I7sLgS0yaRBeHdpx2WOdP-Rs9p5dxi7Bv-9okJen5zq05F0KeCcNik6Q-NKmMsYWZDaVmPsxS71ispTNZHW1xmEyO-adpPN0gf7pcGAyr7GRiLahtkeE_8h0GvhoH-Mno7fxXiF2j8Ha1a6HRwGLPrU7BZSvf7H4A-j5nbPzx6P0kbLsKhFmcRFXoMz7QAA0vmRCJtEOutXCR4AZUqRlE1koOsOeGc2uMdTFzqeWGMQvWfip9BO-9RC6D4h0gR6XTtYM3TEUSd4k5ItkpQZdi8CS4e2jJiDDuKb-6R8D_muCMKuyHaZ7Re-Ob5EZrsNJRg7BbZMPlW-TKQXslv0WuNz_-aJPPdJt87VqA1iSnhafY9PhUr0oK9jE9wXyUoip-w_JqVQ-7RUh1bum8mK38bFksCj37uZrREmRahaAs6cvP49GXV3fI8YV86rtkMy9yd59QphPHAU9OAgysFzqzwsYSXie0iU0akGH3ZVXWVjfHJhszVXs5IlENNRRQQ9XUUHFAXq_XzJvaHufOfocEW8_Eutz1g2LxXbVsrgz40xyVz8B7vF-HvWoQehmLnPA88gF5geRWKD1ge5lukyDgkFiHS43SSLAUr54Dst2bCVyf9Yc7wKhW6pTqH48E5Ol6GFdiJF3uiiXOAYnMk4HgAbnX4Gt9pCgRQ5ThAUl7yOuduT-Sn_yoa5JLycHRHz44f1tPyNXJ0cG-2t893HtIrjEwGOvyAGybbFaLpXsEBl5lHtdcRcm3i2bjv5H3YQk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consideration+of+pathways+for+immunotoxicity+of+per-+and+polyfluoroalkyl+substances&rft.jtitle=Environmental+health&rft.au=Ehrlich%2C+Veronika&rft.au=Bil%2C+Wieneke&rft.au=Vandebriel%2C+Rob&rft.au=Granum%2C+Berit&rft.date=2023-02-22&rft.pub=BioMed+Central+Ltd&rft.issn=1476-069X&rft.eissn=1476-069X&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12940-022-00958-5&rft.externalDocID=A738277065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-069X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-069X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-069X&client=summon