Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS)
Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effec...
Saved in:
Published in | Environmental health Vol. 22; no. 1; pp. 19 - 47 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
22.02.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature.
The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system.
A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed.
Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. |
---|---|
AbstractList | Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature.BACKGROUNDPer- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature.The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system.OBJECTIVEThe aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system.A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed.METHODSA literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed.Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.CONCLUSIONSTaken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. BackgroundPer- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature.ObjectiveThe aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system.MethodsA literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed.ConclusionsTaken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. Objective The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. Methods A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Conclusions Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. Keywords: Per- and polyfluoroalkyl substances, Immune function, Immunotoxicity, Molecular mechanisms, Vaccination response, HBM4EU Abstract Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. Objective The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. Methods A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Conclusions Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life. |
ArticleNumber | 19 |
Audience | Academic |
Author | Hauzenberger, Ingrid Bil, Wieneke Ehrlich, Veronika Granum, Berit Grandjean, Philippe Hartmann, Christina Kaiser, Andreas-Marius Luijten, Mirjam Gundacker, Claudia Vandebriel, Rob Lindeman, Birgitte Uhl, Maria |
Author_xml | – sequence: 1 givenname: Veronika surname: Ehrlich fullname: Ehrlich, Veronika – sequence: 2 givenname: Wieneke surname: Bil fullname: Bil, Wieneke – sequence: 3 givenname: Rob surname: Vandebriel fullname: Vandebriel, Rob – sequence: 4 givenname: Berit surname: Granum fullname: Granum, Berit – sequence: 5 givenname: Mirjam surname: Luijten fullname: Luijten, Mirjam – sequence: 6 givenname: Birgitte surname: Lindeman fullname: Lindeman, Birgitte – sequence: 7 givenname: Philippe surname: Grandjean fullname: Grandjean, Philippe – sequence: 8 givenname: Andreas-Marius surname: Kaiser fullname: Kaiser, Andreas-Marius – sequence: 9 givenname: Ingrid surname: Hauzenberger fullname: Hauzenberger, Ingrid – sequence: 10 givenname: Christina surname: Hartmann fullname: Hartmann, Christina – sequence: 11 givenname: Claudia surname: Gundacker fullname: Gundacker, Claudia – sequence: 12 givenname: Maria surname: Uhl fullname: Uhl, Maria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36814257$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFDEUhgep2A_9A17IgDf1Ymo-zkySG2FZ7AcUFFQQb0JmkmyzziTbZEbdf292t9VuEclFQvKc53DCe1wc-OBNUbzE6Axj3rxNmAhAFSKkQkjUvKqfFEcYWFOhRnw9eHA-LI5TWiKEGW_qZ8UhbTgGUrOj4ts8-OS0iWp0wZfBlis13vxU61TaEEs3DJMPY_jlOjeut88mVqXyulyFfm37KcSg-u_rvkxTm0blO5PK04_ns09vnhdPreqTeXG3nxRfzt9_nl9W1x8uruaz66qrGzpWtgOkEAIrCOeN0BiU4oZyaClmLaJaC2AUQQug21abmhimoSVEI9EwYelJcbXz6qCWchXdoOJaBuXk9iLEhVRxdF1vZEswBgwNQ9YCzg1BK4xwR6jhFujG9W7nWk3tYHRn_BhVvyfdf_HuRi7CDykEAHCcBad3ghhuJ5NGObjUmb5X3oQpScKYoNAgDhl9_Qhdhin6_FWZ4hw4JYL-pRYqD-C8Dblvt5HKGaM8-1BTZ-rsH1Re2gyuy7GxLt_vFbx6OOifCe-TkQG-A7oYUorGypyAbUiy2fUSI7kJodyFUOYQym0I5cZNHpXe2_9T9Bu95tz8 |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_142750 crossref_primary_10_3390_toxics12110828 crossref_primary_10_1097_CEJ_0000000000000935 crossref_primary_10_1016_j_scitotenv_2024_176575 crossref_primary_10_1016_j_envint_2024_108415 crossref_primary_10_1016_j_cbpc_2024_109874 crossref_primary_10_1021_acs_est_3c09950 crossref_primary_10_1016_j_ecoenv_2024_116070 crossref_primary_10_1016_j_scitotenv_2025_178803 crossref_primary_10_1038_s41370_024_00680_z crossref_primary_10_1080_1547691X_2024_2343362 crossref_primary_10_1111_resp_14761 crossref_primary_10_1016_j_envres_2024_119555 crossref_primary_10_1016_j_toxlet_2024_07_884 crossref_primary_10_1016_j_envres_2023_117435 crossref_primary_10_1080_1547691X_2024_2340495 crossref_primary_10_1186_s12940_023_01019_1 crossref_primary_10_2174_0115733963267526231120110100 crossref_primary_10_1021_acs_est_3c10824 crossref_primary_10_3390_w17020149 crossref_primary_10_1016_j_scitotenv_2024_176158 crossref_primary_10_1021_acsnano_4c17420 crossref_primary_10_1016_j_chemosphere_2024_143745 crossref_primary_10_1016_j_envres_2024_119221 crossref_primary_10_1080_1547691X_2024_2371868 crossref_primary_10_1021_acs_est_4c08701 crossref_primary_10_1016_j_envres_2024_119072 crossref_primary_10_1016_j_trac_2024_117754 crossref_primary_10_1016_j_yrtph_2024_105738 crossref_primary_10_1007_s44339_024_00010_w crossref_primary_10_1093_toxres_tfae206 crossref_primary_10_1128_aem_00157_24 crossref_primary_10_1016_j_hazadv_2024_100469 crossref_primary_10_1016_j_scitotenv_2024_170341 crossref_primary_10_1021_acs_est_2c09716 crossref_primary_10_1016_j_envres_2024_120445 crossref_primary_10_1016_j_envint_2024_108703 crossref_primary_10_3389_ftox_2024_1347965 crossref_primary_10_1016_j_chemosphere_2024_143075 crossref_primary_10_1021_acs_est_3c05109 crossref_primary_10_1016_j_envres_2023_117010 crossref_primary_10_1016_j_envpol_2023_122756 crossref_primary_10_1039_D4RA02448F crossref_primary_10_1016_j_envres_2023_117814 crossref_primary_10_1038_s41467_025_57172_3 crossref_primary_10_1007_s40572_024_00441_y crossref_primary_10_1016_j_scitotenv_2024_170032 crossref_primary_10_1016_j_envint_2024_109145 crossref_primary_10_3389_ftox_2024_1425537 crossref_primary_10_1016_j_scitotenv_2024_176895 crossref_primary_10_1007_s00204_025_03993_6 crossref_primary_10_1016_j_envint_2024_108736 crossref_primary_10_1016_j_jhazmat_2024_133891 crossref_primary_10_1021_acsestwater_4c00458 crossref_primary_10_1016_j_taap_2024_117044 crossref_primary_10_3390_jox15010002 crossref_primary_10_1016_j_chemosphere_2025_144297 crossref_primary_10_1016_j_scitotenv_2025_179130 crossref_primary_10_1016_j_jhazmat_2025_137978 crossref_primary_10_1289_EHP12863 crossref_primary_10_1289_EHP13954 crossref_primary_10_1016_j_envres_2023_115969 crossref_primary_10_1016_j_mce_2023_112064 crossref_primary_10_1016_j_chemosphere_2025_144326 crossref_primary_10_3389_fenvs_2024_1381141 crossref_primary_10_1016_j_scitotenv_2024_176941 crossref_primary_10_1016_j_scitotenv_2024_176540 crossref_primary_10_3390_toxics11070567 crossref_primary_10_1016_j_envint_2024_108601 crossref_primary_10_1007_s10661_024_13334_2 crossref_primary_10_1016_j_tox_2024_153763 crossref_primary_10_1038_s41370_024_00723_5 crossref_primary_10_1007_s10311_024_01718_2 crossref_primary_10_1021_acs_est_5c02623 crossref_primary_10_1016_j_jhazmat_2023_132339 crossref_primary_10_1186_s12940_024_01073_3 crossref_primary_10_1002_solr_202400116 crossref_primary_10_1016_j_envint_2024_109203 crossref_primary_10_3390_toxics12090678 crossref_primary_10_1021_acs_est_3c04688 crossref_primary_10_1016_j_envint_2025_109288 crossref_primary_10_3390_toxics11090745 crossref_primary_10_1016_j_envpol_2024_124511 crossref_primary_10_1016_j_cnd_2024_10_003 crossref_primary_10_1016_j_chemosphere_2023_139204 crossref_primary_10_1016_j_envres_2025_121181 crossref_primary_10_3390_cancers16050983 crossref_primary_10_1186_s12302_024_01035_z crossref_primary_10_1016_j_cyto_2024_156753 crossref_primary_10_3389_ftox_2024_1339104 crossref_primary_10_1016_j_chemosphere_2024_141654 crossref_primary_10_1016_j_scitotenv_2024_176004 crossref_primary_10_3390_ani14040529 crossref_primary_10_1016_j_molliq_2024_125485 crossref_primary_10_1016_j_ijheh_2023_114168 crossref_primary_10_1016_j_marpolbul_2025_117554 crossref_primary_10_3390_foods14060958 crossref_primary_10_1016_j_envres_2024_120122 crossref_primary_10_1186_s12940_024_01070_6 |
Cites_doi | 10.1016/j.envpol.2021.116619 10.1016/j.envres.2019.05.008 10.1002/etc.4835 10.1210/endocr/bqab194 10.3390/jox11030008 10.1002/tox.21996 10.1016/j.jhazmat.2014.08.043 10.3389/fphys.2020.00051 10.1080/02772248.2020.1808894 10.1289/ehp.1306606 10.1016/j.bbalip.2007.03.006 10.3390/ijerph182010702 10.1039/D0EM00077A 10.1016/j.neuro.2018.07.015 10.1093/toxsci/kft269 10.1016/j.envint.2013.06.004 10.1021/acs.est.8b06978 10.3389/fimmu.2019.01408 10.1016/j.envint.2021.106926 10.1016/j.scitotenv.2016.03.187 10.1186/1750-1172-4-5 10.1002/tox.20459 10.3390/ijerph18031323 10.1093/toxsci/kfi265 10.1016/s0006-2952(01)00752-3 10.1016/j.envres.2021.111712 10.1007/s00204-008-0361-3 10.1016/j.intimp.2018.09.019 10.1016/j.neuro.2012.10.016 10.1016/j.tiv.2011.04.016 10.1007/s00204-018-2181-4 10.1016/j.scitotenv.2020.142365 10.1002/ieam.258 10.1038/s41467-021-23201-0 10.1074/jbc.M109546200 10.1016/j.tox.2009.01.002 10.1016/j.envres.2019.02.024 10.1093/toxsci/kfp040 10.1016/j.envres.2017.10.012 10.1186/s43141-021-00179-2 10.1016/j.envint.2021.106853 10.3109/1547691X.2012.691123 10.1021/acs.jafc.8b02197 10.1016/j.reprotox.2008.10.001 10.1007/s13273-018-0019-z 10.3390/ijerph18073332 10.1177/0748233717742262 10.1093/toxsci/kfaa138 10.1016/j.bbrc.2005.01.163 10.1016/j.toxlet.2011.04.029 10.3389/fphys.2021.736681 10.1080/15287394.2018.1440188 10.1093/toxsci/kfm053 10.1093/toxsci/kfw251 10.1080/10408444.2021.1888073 10.1016/j.chemosphere.2018.02.137 10.1016/j.tox.2009.06.010 10.1016/j.toxlet.2014.06.004 10.5603/fhc.a2015.0023 10.1016/j.toxlet.2018.05.009 10.1038/srep45468 10.1038/nri.2016.70 10.1016/j.chemosphere.2019.124402 10.1080/15287390802391943 10.1016/j.envint.2018.12.041 10.1002/jat.3389 10.1006/taap.1997.8345 10.1038/s41598-017-04091-z 10.1016/j.envres.2021.112222 10.1016/j.ijheh.2020.113565 10.2903/j.efsa.2018.5194 10.1016/j.taap.2019.02.001 10.1007/s00204-009-0424-0 10.1007/s00204-011-0661-x 10.1111/j.1472-8206.2007.00486.x 10.1016/j.taap.2020.115204 10.1186/s12940-019-0541-z 10.1289/ehp.8566 10.1289/EHP275 10.1002/JLB.3MR0118-034R 10.1016/j.envint.2022.107727 10.1016/j.biocel.2018.09.016 10.1007/s13596-013-0105-7 10.1016/j.imlet.2021.03.006 10.1146/annurev-immunol-032414-112212 10.1016/j.tiv.2011.03.005 10.1016/j.envint.2022.107274 10.1016/j.envres.2020.110156 10.1016/j.toxrep.2016.08.009 10.1074/jbc.M408926200 10.1186/s12891-021-03965-8 10.1289/ehp.10896 10.1155/2015/549691 10.1021/acsomega.1c01304 10.1016/j.envres.2018.11.005 10.1080/10408440490464705 10.1016/j.intimp.2015.05.019 10.1021/acs.est.1c03732 10.3389/fimmu.2012.00247 10.1080/1547691X.2018.1445145 10.1016/j.taap.2011.11.004 10.1007/978-1-60761-401-2_11 10.1080/1547691X.2016.1254306 10.1093/toxsci/kfl135 10.1038/nri2152 10.1016/j.reprotox.2016.08.001 10.1016/j.tox.2021.152789 10.1016/S1567-5769(01)00164-3 10.1016/j.tox.2009.07.011 10.3390/toxics9030045 10.1016/j.ceca.2017.08.002 10.1001/jama.2011.2034 10.1016/j.envint.2020.106204 10.1007/978-1-4939-8549-4_2 10.1016/j.heliyon.2021.e08160 10.1289/EHP4372 10.1016/j.envres.2014.09.026 10.21873/anticanres.13360 10.2131/jts.39.97 10.1002/jat.3119 10.1016/j.reprotox.2019.06.005 10.1093/toxsci/kfn015 10.1097/01.all.0000246620.26623.5b 10.1016/j.molimm.2018.09.010 10.1016/j.envpol.2021.117329 10.1016/j.envres.2021.111905 10.1016/j.taap.2010.11.004 10.1016/j.tox.2009.10.035 10.1080/22423982.2018.1456303 10.1007/s00420-006-0165-9 10.3389/fimmu.2016.00251 10.1093/toxsci/kfp019 10.1152/ajplung.00100.2014 10.1093/toxsci/kfm244 10.1021/es202408a 10.1038/s41598-017-07359-6 10.1016/j.envint.2018.02.044 10.1016/j.envint.2020.106125 10.1016/j.scitotenv.2018.11.297 10.1016/j.chemosphere.2021.133235 10.1006/taap.1995.1131 10.1080/25785826.2020.1756609 10.1289/EHP6837 10.1016/j.chemosphere.2020.126200 10.1038/nri912 10.1002/etc.4890 10.1371/journal.pone.0244815 10.1016/j.fct.2021.112478 10.1080/1547691X.2017.1360968 10.1016/j.metabol.2020.154338 10.1038/s41598-022-10501-8 10.1016/j.envint.2019.105259 10.1038/pr.2015.213 10.1021/acs.est.7b06327 10.1016/j.csbj.2022.03.024 10.1016/j.tiv.2019.104700 10.1007/s00204-020-02715-4 10.1007/s00204-022-03303-4 10.1289/ehp.1205351 10.3389/fphys.2018.01487 10.1016/j.envint.2021.106599 10.3109/1547691X.2012.755580 10.1016/j.toxlet.2012.01.014 10.1038/s41577-018-0110-7 10.1289/ehp.1206449 10.1016/j.envpol.2022.119442 10.1016/j.envint.2021.106524 10.3109/1547691X.2015.1029147 10.1016/j.taap.2018.08.015 10.1016/j.tox.2008.10.002 10.1111/all.12605 10.1016/j.toxlet.2021.09.002 10.1146/annurev.pa.36.040196.001023 10.1073/pnas.2011957118 10.1016/j.theriogenology.2019.05.022 10.1289/EHP10800 10.3390/ijms18061229 10.1136/oemed-2014-102364 10.1016/j.taap.2014.06.020 10.1016/j.ijheh.2019.06.005 10.1016/j.ntt.2018.03.004 10.1016/j.chemosphere.2021.132892 10.1038/ni.2022 10.1007/s00204-012-0877-4 10.3390/toxics9050100 10.1016/j.chemosphere.2013.09.062 10.1016/j.etap.2021.103652 10.1289/ehp.1002409 10.1007/978-94-007-2888-2_44 10.21037/tp-20-246 10.1093/toxsci/kfn127 10.1016/j.fct.2016.12.004 10.1080/1547691X.2021.1922957 10.1038/sigtrans.2017.23 10.1093/toxsci/kfn059 10.3390/toxics10110684 10.4172/2161-1459.S4-002 10.3109/1547691X.2014.996682 10.1021/acs.chemrestox.9b00101 10.1016/j.envint.2016.08.026 10.1093/toxsci/kfn113 10.3109/1547691X.2015.1067259 10.1016/j.envint.2021.106395 10.1016/j.fct.2012.06.023 10.1016/j.ecoenv.2021.112081 10.1177/0192623311427709 10.1289/EHP6517 10.1016/j.fsi.2019.05.018 10.1021/acs.est.0c02386 10.1016/j.envres.2016.05.020 10.1016/j.fsi.2021.03.004 10.1007/s00011-019-01231-1 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T2 7U7 7X7 7XB 88E 8C1 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V M0S M1P M7S PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY 7X8 5PM DOA |
DOI | 10.1186/s12940-022-00958-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health and Safety Science Abstracts (Full archive) Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database (ProQuest) Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Public Health Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1476-069X |
EndPage | 47 |
ExternalDocumentID | oai_doaj_org_article_b211414670ff419284da101c23e8f43f PMC9944481 A738277065 36814257 10_1186_s12940_022_00958_5 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Austria United States--US |
GeographicLocations_xml | – name: Austria – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project; grant agreement No. 733032, HBM4EU project |
GroupedDBID | --- 0R~ 29G 2WC 2XV 4P2 53G 5GY 5VS 6PF 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADFRT ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ATCPS BAPOH BAWUL BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS ECGQY EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEP IHR INH INR ITC ITG ITH KQ8 L6V L7B M1P M48 M7S M~E O5R O5S OK1 OVT PATMY PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RBZ RNS ROL RPM RSV SEV SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB -5A -5G -A0 -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF FRP NPM PMFND 7T2 7U7 7XB 8FK AZQEC C1K DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c563t-fc40a004f928869d14aa8e384b317b03dd947304b44dbbde52e7d4b22d09679f3 |
IEDL.DBID | M48 |
ISSN | 1476-069X |
IngestDate | Wed Aug 27 01:21:24 EDT 2025 Thu Aug 21 18:38:09 EDT 2025 Fri Jul 11 11:33:31 EDT 2025 Fri Jul 25 19:21:02 EDT 2025 Tue Jun 17 21:46:46 EDT 2025 Tue Jun 10 20:16:51 EDT 2025 Wed Feb 19 02:25:02 EST 2025 Thu Apr 24 23:01:37 EDT 2025 Tue Jul 01 02:00:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Vaccination response HBM4EU Immune function Per- and polyfluoroalkyl substances Immunotoxicity Molecular mechanisms |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-fc40a004f928869d14aa8e384b317b03dd947304b44dbbde52e7d4b22d09679f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12940-022-00958-5 |
PMID | 36814257 |
PQID | 2788483293 |
PQPubID | 44372 |
PageCount | 47 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b211414670ff419284da101c23e8f43f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9944481 proquest_miscellaneous_2779346084 proquest_journals_2788483293 gale_infotracmisc_A738277065 gale_infotracacademiconefile_A738277065 pubmed_primary_36814257 crossref_citationtrail_10_1186_s12940_022_00958_5 crossref_primary_10_1186_s12940_022_00958_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-22 |
PublicationDateYYYYMMDD | 2023-02-22 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Environmental health |
PublicationTitleAlternate | Environ Health |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | H Zhang (958_CR213) 2021; 113 P Grandjean (958_CR47) 2020; 15 X Fang (958_CR214) 2012; 86 RP Frawley (958_CR82) 2018; 15 NMS Almeida (958_CR228) 2021; 6 S Feske (958_CR152) 2015; 33 Y Iwasaki (958_CR170) 2020; 43 S Fragki (958_CR109) 2021; 51 M Averina (958_CR50) 2019; 169 EFSA (European Food Safety Authority) (958_CR26) 2018; 16 MK Selgrade (958_CR62) 2007; 100 DE Lefebvre (958_CR75) 2008; 71 J-K Lee (958_CR111) 2018; 81 958_CR97 AV Pontsler (958_CR126) 2002; 277 K Kielsen (958_CR31) 2016; 13 E Corsini (958_CR206) 2012; 258 H Skaggs (958_CR15) 2019; 89 PH Lieder (958_CR85) 2009; 255 B Granum (958_CR35) 2013; 10 J-K Lee (958_CR160) 2018; 14 MH Ryu (958_CR182) 2014; 307 M Takahashi (958_CR88) 2014; 39 LAJ O'Neill (958_CR143) 2016; 16 958_CR95 C-H Li (958_CR122) 2018; 52 OECD (Organisation for Economic Co-operation and Development) (958_CR3) 2018 R Awad (958_CR201) 2020; 22 HM Dusza (958_CR167) 2018; 69 X Pan (958_CR176) 2018; 66 P Grandjean (958_CR28) 2017; 14 Z Wang (958_CR41) 2022; 289 AF AbdelMassih (958_CR127) 2021; 19 Z Kunicka (958_CR113) 2019; 134 CR Stein (958_CR32) 2016; 79 C Miao (958_CR217) 2015; 8 RC Buck (958_CR2) 2011; 7 A Koskela (958_CR133) 2017; 7 J-K Lee (958_CR159) 2017; 37 W Qi (958_CR224) 2020; 102 A Gaylord (958_CR58) 2019; 172 RA Daynes (958_CR115) 2002; 2 F Pappalardo (958_CR198) 2022; 20 CM Bulka (958_CR199) 2021; 275 P Grandjean (958_CR27) 2012; 307 L-Q Wang (958_CR158) 2021; 12 Q Liu (958_CR171) 2018; 103 SA Alharthy (958_CR173) 2021; 86 X Fang (958_CR177) 2018; 34 H-Y Son (958_CR105) 2009; 24 L Zheng (958_CR71) 2009; 83 S Heikkinen (958_CR140) 2007; 1771 X Fang (958_CR94) 2009; 108 958_CR219 F Staud (958_CR131) 2018; 105 C Suo (958_CR83) 2017; 7 M Chen (958_CR5) 2019; 656 L Peyton Myers (958_CR181) 1803; 2018 L Dalsager (958_CR12) 2021; 149 MH Zarei (958_CR172) 2018; 17 Y-H Shih (958_CR37) 2021; 18 X Zhang (958_CR39) 2022; 306 J Yang (958_CR218) 2015; 28 958_CR60 Y-H Zhang (958_CR92) 2013; 10 RR Dietert (958_CR17) 2006; 114 K Matta (958_CR99) 2022; 158 A Impinen (958_CR52) 2018; 160 JM Conley (958_CR229) 2019; 127 958_CR202 X Zhou (958_CR208) 2017; 7 AR Zota (958_CR101) 2018; 115 CB Manzano-Salgado (958_CR42) 2019; 222 K Steenland (958_CR190) 2020; 145 G-H Dong (958_CR72) 2009; 83 958_CR204 CAG Timmermann (958_CR36) 2020; 128 X Chen (958_CR221) 2018; 67 SE Fenton (958_CR7) 2021; 40 IH Beck (958_CR51) 2019; 18 G-H Dong (958_CR54) 2013; 121 Z Pan (958_CR230) 2021; 287 A Impinen (958_CR43) 2019; 124 MP Holsapple (958_CR153) 1996; 36 S Feske (958_CR151) 2007; 7 Y-C Chen (958_CR162) 2017; 67 L Zhang (958_CR148) 2014; 279 JJ Schlezinger (958_CR119) 2020; 405 KA Houck (958_CR146) 2021; 457 K Abraham (958_CR34) 2020; 94 L Torres (958_CR81) 2021; 233 Y-H Shih (958_CR145) 2022; 204 XM Wu (958_CR91) 2015; 136 JA Krieger (958_CR154) 1995; 133 A-KS Knudsen (958_CR103) 2018; 77 TSK Singh (958_CR128) 2012; 210 HF Berntsen (958_CR164) 2018; 357 JC DeWitt (958_CR67) 2009; 109 E Corsini (958_CR205) 2011; 250 W Bil (958_CR203) 2021; 40 Y Oulhote (958_CR102) 2017; 68 Z Stark (958_CR142) 2009; 4 X Liu (958_CR166) 2011; 25 958_CR79 J Ji (958_CR48) 2021; 153 CAG Timmermann (958_CR59) 2017; 14 L Liang (958_CR20) 2022; 291 S de Guise (958_CR63) 2021; 351 958_CR76 J Bogdanska (958_CR134) 2014; 98 M Khazaee (958_CR227) 2021; 9 W Liu (958_CR139) 2019; 367 X Li (958_CR220) 2018; 294 AB Kirk (958_CR135) 2021; 162 CA McDonough (958_CR77) 2020; 178 S Kim (958_CR19) 2011; 45 CR Stein (958_CR33) 2016; 149 CAG Timmermann (958_CR38) 2022; 203 LM Plitnick (958_CR61) 2010; 598 V Vetvicka (958_CR64) 2013; 13 K Steenland (958_CR188) 2013; 121 BD Abbott (958_CR116) 2009; 27 SE Loveless (958_CR65) 2008; 105 ECHA (European Chemicals Agency) (958_CR24) 2022 P Grandjean (958_CR29) 2017; 125 MS Jackson-Browne (958_CR57) 2020; 229 M Wang (958_CR187) 2021; 118 C-H Li (958_CR226) 2019; 53 X Fang (958_CR93) 2008; 105 R Han (958_CR209) 2018; 200 LAM Smit (958_CR53) 2015; 70 MM Peden-Adams (958_CR70) 2008; 104 958_CR11 GL Kennedy (958_CR118) 2004; 34 958_CR10 Y Pan (958_CR163) 2019; 237 Q Yang (958_CR106) 2001; 62 N Kotlarz (958_CR200) 2020; 128 P Pierozan (958_CR232) 2018; 92 J Bodin (958_CR192) 2016; 3 D Kobayashi (958_CR157) 2009; 258 Y Zhong (958_CR212) 2020; 249 L Dalsager (958_CR46) 2016; 96 SP Nobs (958_CR124) 2018; 104 958_CR49 P Saejia (958_CR222) 2019; 39 G-H Dong (958_CR73) 2011; 85 Stockholm Convention (958_CR22) 2022 A Villa (958_CR141) 2006; 6 JC DeWitt (958_CR66) 2008; 116 R Pawliczak (958_CR125) 2004; 279 E Antoniou (958_CR194) 2022; 96 JC DeWitt (958_CR16) 2011; 40 C Giaginis (958_CR137) 2007; 21 WHO (World Health Organization) (958_CR14) 2012 OECD (Organisation for Economic Co-operation and Development) (958_CR1) 2021 O Midasch (958_CR18) 2007; 80 M Xu (958_CR174) 2019; 175 EFSA (European Food and Safety Authority) (958_CR21) 2021 K Harada (958_CR165) 2005; 329 958_CR150 958_CR9 958_CR8 JM Conley (958_CR121) 2021; 146 958_CR4 T Liu (958_CR110) 2017; 2 Y Wang (958_CR207) 2011; 204 MR Qazi (958_CR78) 2010; 267 W Zhang (958_CR215) 2014; 229 MR Qazi (958_CR107) 2012; 50 Y Zhu (958_CR55) 2016; 559 M-B Madel (958_CR138) 2019; 10 O Humblet (958_CR56) 2014; 122 958_CR178 E Papadopoulou (958_CR100) 2021; 157 F Pérez (958_CR136) 2013; 59 NTP (National Toxicology Program) (958_CR84) 2019 J Korbecki (958_CR117) 2019; 68 H Huang (958_CR45) 2020; 191 A Christofides (958_CR114) 2021; 114 M Trebak (958_CR149) 2019; 19 CE Rockwell (958_CR96) 2017; 100 DK Finlay (958_CR129) 2012; 3 J Zhu (958_CR216) 2015; 35 JC D'eon (958_CR6) 2011; 119 J Guo (958_CR211) 2019; 91 U.S. EPA (958_CR13) 2022 JLA Pennings (958_CR120) 2016; 13 F Li (958_CR225) 2021; 214 958_CR168 KJ Fairley (958_CR183) 2007; 97 H Wen (958_CR144) 2011; 12 SE Loveless (958_CR87) 2009; 264 A-C Behr (958_CR231) 2020; 62 P Lochhead (958_CR191) 2022; 207 M Yang (958_CR184) 2021; 766 MH Park (958_CR210) 2019; 32 BJ Mounho (958_CR155) 1998; 149 H Zhang (958_CR112) 2014; 280 K Pallmer (958_CR180) 2016; 7 JC DeWitt (958_CR68) 2016; 13 DE Keil (958_CR74) 2008; 103 IA van Beijsterveldt (958_CR40) 2022; 164 L Ramhøj (958_CR80) 2018 A Croasdell (958_CR123) 2015; 2015 EC (European Commission) (958_CR25) 2021 MR Qazi (958_CR90) 2009; 262 DR Germolec (958_CR196) 2022; 130 W Lin (958_CR223) 2021; 22 Q Hu (958_CR108) 2012; 33 HE Kvalem (958_CR44) 2020; 134 Q Yang (958_CR69) 2002; 2 H Kato (958_CR89) 2015; 30 Z Lv (958_CR175) 2018; 65 A Brieger (958_CR179) 2011; 25 I Bogacka (958_CR132) 2015; 53 K Steenland (958_CR189) 2015; 72 M-J Lopez-Espinosa (958_CR104) 2021; 156 J Gao (958_CR156) 2005; 87 ECHA (European Chemicals Agency) (958_CR23) 2022 Z Zeng (958_CR185) 2021; 10 Y Chen (958_CR169) 2018; 9 958_CR195 R Margolis (958_CR193) 2021 Y Suzuki (958_CR161) 2012 C-H Li (958_CR147) 2020; 54 S-J Park (958_CR186) 2021; 156 ML Takacs (958_CR130) 2007; 95 958_CR197 C Looker (958_CR30) 2014; 138 NTP (National Toxicology Program) (958_CR86) 2019 M Nian (958_CR98) 2022; 12 |
References_xml | – volume: 275 start-page: 116619 year: 2021 ident: 958_CR199 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.116619 – volume: 175 start-page: 63 year: 2019 ident: 958_CR174 publication-title: Environ Res doi: 10.1016/j.envres.2019.05.008 – volume: 40 start-page: 859 year: 2021 ident: 958_CR203 publication-title: Environ Toxicol Chem doi: 10.1002/etc.4835 – volume: 162 start-page: bqab194 year: 2021 ident: 958_CR135 publication-title: Endocrinology doi: 10.1210/endocr/bqab194 – volume-title: Associations between exposures to perfluoroalkyl substances and diabetes, hyperglycemia, or insulin resistance: a scoping review year: 2021 ident: 958_CR193 doi: 10.3390/jox11030008 – volume: 30 start-page: 1244 year: 2015 ident: 958_CR89 publication-title: Environ Toxicol doi: 10.1002/tox.21996 – volume: 280 start-page: 552 year: 2014 ident: 958_CR112 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2014.08.043 – ident: 958_CR178 doi: 10.3389/fphys.2020.00051 – volume: 102 start-page: 585 year: 2020 ident: 958_CR224 publication-title: Toxicol Environ Chem doi: 10.1080/02772248.2020.1808894 – volume: 122 start-page: 1129 year: 2014 ident: 958_CR56 publication-title: Environ Health Perspect doi: 10.1289/ehp.1306606 – volume: 1771 start-page: 999 year: 2007 ident: 958_CR140 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbalip.2007.03.006 – ident: 958_CR49 doi: 10.3390/ijerph182010702 – volume: 22 start-page: 2023 year: 2020 ident: 958_CR201 publication-title: Environ Sci Processes Impacts doi: 10.1039/D0EM00077A – volume: 69 start-page: 266 year: 2018 ident: 958_CR167 publication-title: Neurotoxicology doi: 10.1016/j.neuro.2018.07.015 – volume: 138 start-page: 76 year: 2014 ident: 958_CR30 publication-title: Toxicol Sci doi: 10.1093/toxsci/kft269 – volume: 59 start-page: 354 year: 2013 ident: 958_CR136 publication-title: Environ Int doi: 10.1016/j.envint.2013.06.004 – volume: 53 start-page: 3287 year: 2019 ident: 958_CR226 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b06978 – volume: 10 start-page: 1408 year: 2019 ident: 958_CR138 publication-title: Front Immunol doi: 10.3389/fimmu.2019.01408 – volume: 17 start-page: 995 year: 2018 ident: 958_CR172 publication-title: Iran J Pharm Res – volume: 158 start-page: 106926 year: 2022 ident: 958_CR99 publication-title: Environ Int doi: 10.1016/j.envint.2021.106926 – volume-title: The new POPs under the Stockholm Convention year: 2022 ident: 958_CR22 – volume: 559 start-page: 166 year: 2016 ident: 958_CR55 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.03.187 – volume: 4 start-page: 5 year: 2009 ident: 958_CR142 publication-title: Orphanet J Rare Dis doi: 10.1186/1750-1172-4-5 – volume: 24 start-page: 580 year: 2009 ident: 958_CR105 publication-title: Environ Toxicol doi: 10.1002/tox.20459 – volume-title: Bisphenol A: EFSA draft opinion proposes lowering the tolerable daily intake year: 2021 ident: 958_CR21 – ident: 958_CR60 doi: 10.3390/ijerph18031323 – volume: 87 start-page: 419 year: 2005 ident: 958_CR156 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfi265 – volume: 62 start-page: 1133 year: 2001 ident: 958_CR106 publication-title: Biochem Pharmacol doi: 10.1016/s0006-2952(01)00752-3 – volume: 203 start-page: 111712 year: 2022 ident: 958_CR38 publication-title: Environ Res doi: 10.1016/j.envres.2021.111712 – volume: 83 start-page: 679 year: 2009 ident: 958_CR71 publication-title: Arch Toxicol doi: 10.1007/s00204-008-0361-3 – volume: 65 start-page: 140 year: 2018 ident: 958_CR175 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2018.09.019 – volume: 33 start-page: 1491 year: 2012 ident: 958_CR108 publication-title: Neurotoxicology doi: 10.1016/j.neuro.2012.10.016 – volume: 25 start-page: 1294 year: 2011 ident: 958_CR166 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2011.04.016 – volume: 92 start-page: 1729 year: 2018 ident: 958_CR232 publication-title: Arch Toxicol doi: 10.1007/s00204-018-2181-4 – volume: 766 start-page: 142365 year: 2021 ident: 958_CR184 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142365 – volume: 7 start-page: 513 year: 2011 ident: 958_CR2 publication-title: Integr Environ Assess Manag doi: 10.1002/ieam.258 – volume: 12 start-page: 2915 year: 2021 ident: 958_CR158 publication-title: Nat Commun doi: 10.1038/s41467-021-23201-0 – volume: 277 start-page: 13029 year: 2002 ident: 958_CR126 publication-title: J Biol Chem doi: 10.1074/jbc.M109546200 – volume: 258 start-page: 25 year: 2009 ident: 958_CR157 publication-title: Toxicology doi: 10.1016/j.tox.2009.01.002 – volume: 172 start-page: 266 year: 2019 ident: 958_CR58 publication-title: Environ Res doi: 10.1016/j.envres.2019.02.024 – volume: 109 start-page: 106 year: 2009 ident: 958_CR67 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfp040 – volume: 160 start-page: 518 year: 2018 ident: 958_CR52 publication-title: Environ Res doi: 10.1016/j.envres.2017.10.012 – volume: 19 start-page: 82 year: 2021 ident: 958_CR127 publication-title: J Genet Eng Biotechnol doi: 10.1186/s43141-021-00179-2 – volume: 157 start-page: 106853 year: 2021 ident: 958_CR100 publication-title: Environ Int doi: 10.1016/j.envint.2021.106853 – volume: 10 start-page: 49 year: 2013 ident: 958_CR92 publication-title: J Immunotoxicol doi: 10.3109/1547691X.2012.691123 – volume: 66 start-page: 6414 year: 2018 ident: 958_CR176 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.8b02197 – volume: 27 start-page: 246 year: 2009 ident: 958_CR116 publication-title: Reprod Toxicol doi: 10.1016/j.reprotox.2008.10.001 – volume: 14 start-page: 173 year: 2018 ident: 958_CR160 publication-title: Mol Cell Toxicol doi: 10.1007/s13273-018-0019-z – ident: 958_CR197 doi: 10.3390/ijerph18073332 – volume: 34 start-page: 139 year: 2018 ident: 958_CR177 publication-title: Toxicol Ind Health doi: 10.1177/0748233717742262 – volume: 178 start-page: 104 year: 2020 ident: 958_CR77 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfaa138 – volume: 329 start-page: 487 year: 2005 ident: 958_CR165 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2005.01.163 – volume: 204 start-page: 174 year: 2011 ident: 958_CR207 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2011.04.029 – ident: 958_CR150 doi: 10.3389/fphys.2021.736681 – volume: 81 start-page: 302 year: 2018 ident: 958_CR111 publication-title: J Toxicol Environ Health A. doi: 10.1080/15287394.2018.1440188 – volume-title: Registry of restriction intentions until outcome: per- and polyfluoroalkyl substances (PFAS) year: 2022 ident: 958_CR24 – volume: 97 start-page: 375 year: 2007 ident: 958_CR183 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfm053 – ident: 958_CR76 doi: 10.1093/toxsci/kfw251 – volume: 51 start-page: 141 year: 2021 ident: 958_CR109 publication-title: Crit Rev Toxicol doi: 10.1080/10408444.2021.1888073 – volume: 200 start-page: 283 year: 2018 ident: 958_CR209 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.137 – volume-title: Proposal for a restriction: per- and polyfluoroalkyl substances (PFASs) in firefighting foams year: 2022 ident: 958_CR23 – volume: 262 start-page: 207 year: 2009 ident: 958_CR90 publication-title: Toxicology doi: 10.1016/j.tox.2009.06.010 – volume: 229 start-page: 118 year: 2014 ident: 958_CR215 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2014.06.004 – volume: 53 start-page: 189 year: 2015 ident: 958_CR132 publication-title: Folia Histochem Cytobiol doi: 10.5603/fhc.a2015.0023 – volume: 294 start-page: 44 year: 2018 ident: 958_CR220 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2018.05.009 – volume: 7 start-page: 45468 year: 2017 ident: 958_CR208 publication-title: Sci Rep doi: 10.1038/srep45468 – volume: 16 start-page: 553 year: 2016 ident: 958_CR143 publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.70 – volume: 237 start-page: 124402 year: 2019 ident: 958_CR163 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124402 – start-page: 61 volume-title: OECD environment, health and safety publications series on risk management year: 2021 ident: 958_CR1 – volume: 71 start-page: 1516 year: 2008 ident: 958_CR75 publication-title: J Toxicol Environ Health A doi: 10.1080/15287390802391943 – volume: 124 start-page: 462 year: 2019 ident: 958_CR43 publication-title: Environ Int doi: 10.1016/j.envint.2018.12.041 – volume-title: TOX-96: 1-perfluorobutanesulfonic acid (375-73-5), potassium perfluorohexanesulfonate (3871-99-6), perfluorooctane sulfonate (1763-23-1), WY-14643 (50892-23-4) year: 2019 ident: 958_CR84 – volume: 37 start-page: 554 year: 2017 ident: 958_CR159 publication-title: J Appl Toxicol doi: 10.1002/jat.3389 – volume: 149 start-page: 80 year: 1998 ident: 958_CR155 publication-title: Toxicol Appl Pharmacol doi: 10.1006/taap.1997.8345 – volume: 7 start-page: 5166 year: 2017 ident: 958_CR83 publication-title: Sci Rep doi: 10.1038/s41598-017-04091-z – volume: 207 start-page: 112222 year: 2022 ident: 958_CR191 publication-title: Environ Res doi: 10.1016/j.envres.2021.112222 – volume: 229 start-page: 113565 year: 2020 ident: 958_CR57 publication-title: Int J Hyg Environ Health doi: 10.1016/j.ijheh.2020.113565 – volume: 16 start-page: e05194 year: 2018 ident: 958_CR26 publication-title: EFSA J doi: 10.2903/j.efsa.2018.5194 – volume: 367 start-page: 82 year: 2019 ident: 958_CR139 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2019.02.001 – volume: 83 start-page: 805 year: 2009 ident: 958_CR72 publication-title: Arch Toxicol doi: 10.1007/s00204-009-0424-0 – volume: 8 start-page: 10512 year: 2015 ident: 958_CR217 publication-title: Int J Clin Exp Pathol – volume: 85 start-page: 1235 year: 2011 ident: 958_CR73 publication-title: Arch Toxicol doi: 10.1007/s00204-011-0661-x – volume: 21 start-page: 231 year: 2007 ident: 958_CR137 publication-title: Fundam Clin Pharmacol doi: 10.1111/j.1472-8206.2007.00486.x – volume: 405 start-page: 115204 year: 2020 ident: 958_CR119 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2020.115204 – volume: 18 start-page: 97 year: 2019 ident: 958_CR51 publication-title: Environ Health doi: 10.1186/s12940-019-0541-z – volume: 114 start-page: 477 year: 2006 ident: 958_CR17 publication-title: Environ Health Perspect doi: 10.1289/ehp.8566 – volume: 125 start-page: 77018 year: 2017 ident: 958_CR29 publication-title: Environ Health Perspect doi: 10.1289/EHP275 – volume: 104 start-page: 737 year: 2018 ident: 958_CR124 publication-title: J Leukoc Biol doi: 10.1002/JLB.3MR0118-034R – ident: 958_CR202 doi: 10.1016/j.envint.2022.107727 – volume: 105 start-page: 35 year: 2018 ident: 958_CR131 publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2018.09.016 – volume: 13 start-page: 77 year: 2013 ident: 958_CR64 publication-title: Orient Pharm Exp Med doi: 10.1007/s13596-013-0105-7 – ident: 958_CR195 – volume: 233 start-page: 31 year: 2021 ident: 958_CR81 publication-title: Immunol Lett doi: 10.1016/j.imlet.2021.03.006 – volume: 33 start-page: 291 year: 2015 ident: 958_CR152 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032414-112212 – volume: 25 start-page: 960 year: 2011 ident: 958_CR179 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2011.03.005 – volume: 164 start-page: 107274 year: 2022 ident: 958_CR40 publication-title: Environ Int doi: 10.1016/j.envint.2022.107274 – volume: 191 start-page: 110156 year: 2020 ident: 958_CR45 publication-title: Environ Res doi: 10.1016/j.envres.2020.110156 – volume: 3 start-page: 664 year: 2016 ident: 958_CR192 publication-title: Toxicol Rep doi: 10.1016/j.toxrep.2016.08.009 – volume: 279 start-page: 48550 year: 2004 ident: 958_CR125 publication-title: J Biol Chem doi: 10.1074/jbc.M408926200 – volume: 22 start-page: 90 year: 2021 ident: 958_CR223 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-021-03965-8 – volume: 116 start-page: 644 year: 2008 ident: 958_CR66 publication-title: Environ Health Perspect doi: 10.1289/ehp.10896 – volume: 2015 start-page: 549691 year: 2015 ident: 958_CR123 publication-title: PPAR Res doi: 10.1155/2015/549691 – volume: 6 start-page: 15103 year: 2021 ident: 958_CR228 publication-title: ACS Omega doi: 10.1021/acsomega.1c01304 – ident: 958_CR204 – volume: 169 start-page: 114 year: 2019 ident: 958_CR50 publication-title: Environ Res doi: 10.1016/j.envres.2018.11.005 – volume: 34 start-page: 351 year: 2004 ident: 958_CR118 publication-title: Crit Rev Toxicol doi: 10.1080/10408440490464705 – volume: 28 start-page: 52 year: 2015 ident: 958_CR218 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2015.05.019 – volume-title: International programme on chemical safety. Guidence for immunotoxicity risk assessment for chemicals: harmonization project document no. 10 year: 2012 ident: 958_CR14 – ident: 958_CR4 doi: 10.1021/acs.est.1c03732 – volume: 3 start-page: 247 year: 2012 ident: 958_CR129 publication-title: Front Immunol doi: 10.3389/fimmu.2012.00247 – volume: 15 start-page: 41 year: 2018 ident: 958_CR82 publication-title: J Immunotoxicol doi: 10.1080/1547691X.2018.1445145 – volume: 258 start-page: 248 year: 2012 ident: 958_CR206 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2011.11.004 – volume: 598 start-page: 159 year: 2010 ident: 958_CR61 publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-401-2_11 – ident: 958_CR95 – volume: 14 start-page: 39 year: 2017 ident: 958_CR59 publication-title: J Immunotoxicol doi: 10.1080/1547691X.2016.1254306 – volume: 95 start-page: 108 year: 2007 ident: 958_CR130 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfl135 – volume: 7 start-page: 690 year: 2007 ident: 958_CR151 publication-title: Nat Rev Immunol doi: 10.1038/nri2152 – volume: 68 start-page: 207 year: 2017 ident: 958_CR102 publication-title: Reprod Toxicol doi: 10.1016/j.reprotox.2016.08.001 – volume: 457 start-page: 152789 year: 2021 ident: 958_CR146 publication-title: Toxicology doi: 10.1016/j.tox.2021.152789 – volume: 2 start-page: 389 year: 2002 ident: 958_CR69 publication-title: Int Immunopharmacol doi: 10.1016/S1567-5769(01)00164-3 – volume: 264 start-page: 32 year: 2009 ident: 958_CR87 publication-title: Toxicology doi: 10.1016/j.tox.2009.07.011 – start-page: 39 volume-title: OECD environment, health and safety publications series on risk management year: 2018 ident: 958_CR3 – volume: 9 start-page: 45 year: 2021 ident: 958_CR227 publication-title: Toxics doi: 10.3390/toxics9030045 – volume: 67 start-page: 31 year: 2017 ident: 958_CR162 publication-title: Cell Calcium doi: 10.1016/j.ceca.2017.08.002 – volume: 307 start-page: 391 year: 2012 ident: 958_CR27 publication-title: JAMA doi: 10.1001/jama.2011.2034 – volume: 146 start-page: 106204 year: 2021 ident: 958_CR121 publication-title: Environ Int doi: 10.1016/j.envint.2020.106204 – volume: 2018 start-page: 15 year: 1803 ident: 958_CR181 publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-8549-4_2 – ident: 958_CR11 doi: 10.1016/j.heliyon.2021.e08160 – volume: 127 start-page: 37008 year: 2019 ident: 958_CR229 publication-title: Environ Health Perspect doi: 10.1289/EHP4372 – volume: 136 start-page: 264 year: 2015 ident: 958_CR91 publication-title: Environ Res doi: 10.1016/j.envres.2014.09.026 – ident: 958_CR8 – volume: 39 start-page: 2429 year: 2019 ident: 958_CR222 publication-title: Anticancer Res doi: 10.21873/anticanres.13360 – volume: 39 start-page: 97 year: 2014 ident: 958_CR88 publication-title: J Toxicol Sci doi: 10.2131/jts.39.97 – volume: 35 start-page: 1539 year: 2015 ident: 958_CR216 publication-title: J Appl Toxicol doi: 10.1002/jat.3119 – volume: 89 start-page: 178 year: 2019 ident: 958_CR15 publication-title: Reprod Toxicol doi: 10.1016/j.reprotox.2019.06.005 – volume: 103 start-page: 77 year: 2008 ident: 958_CR74 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfn015 – volume: 6 start-page: 421 year: 2006 ident: 958_CR141 publication-title: Curr Opin Allergy Clin Immunol doi: 10.1097/01.all.0000246620.26623.5b – volume: 103 start-page: 115 year: 2018 ident: 958_CR171 publication-title: Mol Immunol doi: 10.1016/j.molimm.2018.09.010 – volume: 287 start-page: 117329 year: 2021 ident: 958_CR230 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.117329 – volume: 204 start-page: 111905 year: 2022 ident: 958_CR145 publication-title: Environ Res doi: 10.1016/j.envres.2021.111905 – volume: 250 start-page: 108 year: 2011 ident: 958_CR205 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2010.11.004 – volume: 267 start-page: 132 year: 2010 ident: 958_CR78 publication-title: Toxicology doi: 10.1016/j.tox.2009.10.035 – volume: 77 start-page: 1456303 year: 2018 ident: 958_CR103 publication-title: Int J Circumpolar Health doi: 10.1080/22423982.2018.1456303 – volume: 80 start-page: 643 year: 2007 ident: 958_CR18 publication-title: Int Arch Occup Environ Health doi: 10.1007/s00420-006-0165-9 – volume: 7 start-page: 251 year: 2016 ident: 958_CR180 publication-title: Front Immunol doi: 10.3389/fimmu.2016.00251 – volume: 108 start-page: 367 year: 2009 ident: 958_CR94 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfp019 – volume: 307 start-page: L765 year: 2014 ident: 958_CR182 publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00100.2014 – volume: 100 start-page: 328 year: 2007 ident: 958_CR62 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfm244 – volume: 45 start-page: 7465 year: 2011 ident: 958_CR19 publication-title: Environ Sci Technol doi: 10.1021/es202408a – volume: 7 start-page: 6841 year: 2017 ident: 958_CR133 publication-title: Sci Rep doi: 10.1038/s41598-017-07359-6 – volume: 115 start-page: 9 year: 2018 ident: 958_CR101 publication-title: Environ Int doi: 10.1016/j.envint.2018.02.044 – volume: 145 start-page: 106125 year: 2020 ident: 958_CR190 publication-title: Environ Int doi: 10.1016/j.envint.2020.106125 – volume: 656 start-page: 201 year: 2019 ident: 958_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.11.297 – volume: 289 start-page: 133235 year: 2022 ident: 958_CR41 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.133235 – volume: 133 start-page: 102 year: 1995 ident: 958_CR154 publication-title: Toxicol Appl Pharmacol doi: 10.1006/taap.1995.1131 – volume-title: Zero pollution action plan: towards zero pollution for air, water and soil year: 2021 ident: 958_CR25 – volume: 43 start-page: 142 year: 2020 ident: 958_CR170 publication-title: Immunol Med doi: 10.1080/25785826.2020.1756609 – volume: 128 start-page: 77005 year: 2020 ident: 958_CR200 publication-title: North Carolina Environ Health Perspect doi: 10.1289/EHP6837 – volume: 249 start-page: 126200 year: 2020 ident: 958_CR212 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126200 – volume: 2 start-page: 748 year: 2002 ident: 958_CR115 publication-title: Nat Rev Immunol doi: 10.1038/nri912 – volume: 40 start-page: 606 year: 2021 ident: 958_CR7 publication-title: Environ Toxicol Chem doi: 10.1002/etc.4890 – volume: 15 start-page: e0244815 year: 2020 ident: 958_CR47 publication-title: PLoS One doi: 10.1371/journal.pone.0244815 – volume: 156 start-page: 112478 year: 2021 ident: 958_CR186 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2021.112478 – volume: 14 start-page: 188 year: 2017 ident: 958_CR28 publication-title: J Immunotoxicol doi: 10.1080/1547691X.2017.1360968 – volume: 114 start-page: 154338 year: 2021 ident: 958_CR114 publication-title: Metabolism doi: 10.1016/j.metabol.2020.154338 – volume-title: Technical fact sheet: drinking water health advisories for four PFAS (PFOA, PFOS, GenX chemicals, and PFBS) year: 2022 ident: 958_CR13 – volume: 12 start-page: 6517 year: 2022 ident: 958_CR98 publication-title: Sci Rep doi: 10.1038/s41598-022-10501-8 – volume: 134 start-page: 105259 year: 2020 ident: 958_CR44 publication-title: Environ Int doi: 10.1016/j.envint.2019.105259 – volume: 79 start-page: 348 year: 2016 ident: 958_CR32 publication-title: Pediatr Res doi: 10.1038/pr.2015.213 – volume: 52 start-page: 3232 year: 2018 ident: 958_CR122 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b06327 – volume: 20 start-page: 1764 year: 2022 ident: 958_CR198 publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2022.03.024 – volume: 62 start-page: 104700 year: 2020 ident: 958_CR231 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2019.104700 – volume-title: Developmental toxicity of perfluorohexane sulfonate (PFHxS) - effects on the immune and thyroid hormone systems year: 2018 ident: 958_CR80 – volume: 94 start-page: 2131 year: 2020 ident: 958_CR34 publication-title: Arch Toxicol doi: 10.1007/s00204-020-02715-4 – volume: 96 start-page: 2261 year: 2022 ident: 958_CR194 publication-title: Arch Toxicol doi: 10.1007/s00204-022-03303-4 – volume: 121 start-page: 507 year: 2013 ident: 958_CR54 publication-title: Environ Health Perspect doi: 10.1289/ehp.1205351 – ident: 958_CR9 – volume: 9 start-page: 1487 year: 2018 ident: 958_CR169 publication-title: Front Physiol doi: 10.3389/fphys.2018.01487 – volume: 156 start-page: 106599 year: 2021 ident: 958_CR104 publication-title: Environ Int doi: 10.1016/j.envint.2021.106599 – volume: 10 start-page: 373 year: 2013 ident: 958_CR35 publication-title: J Immunotoxicol doi: 10.3109/1547691X.2012.755580 – volume: 210 start-page: 64 year: 2012 ident: 958_CR128 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2012.01.014 – volume: 19 start-page: 154 year: 2019 ident: 958_CR149 publication-title: Nat Rev Immunol doi: 10.1038/s41577-018-0110-7 – volume: 121 start-page: 900 year: 2013 ident: 958_CR188 publication-title: Environ Health Perspect doi: 10.1289/ehp.1206449 – volume: 306 start-page: 119442 year: 2022 ident: 958_CR39 publication-title: Environ Pollut doi: 10.1016/j.envpol.2022.119442 – ident: 958_CR10 – volume: 153 start-page: 106524 year: 2021 ident: 958_CR48 publication-title: Environ Int doi: 10.1016/j.envint.2021.106524 – volume: 13 start-page: 173 year: 2016 ident: 958_CR120 publication-title: J Immunotoxicol doi: 10.3109/1547691X.2015.1029147 – volume: 357 start-page: 19 year: 2018 ident: 958_CR164 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2018.08.015 – volume: 255 start-page: 45 year: 2009 ident: 958_CR85 publication-title: Toxicology doi: 10.1016/j.tox.2008.10.002 – volume: 70 start-page: 653 year: 2015 ident: 958_CR53 publication-title: Allergy doi: 10.1111/all.12605 – volume: 351 start-page: 155 year: 2021 ident: 958_CR63 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2021.09.002 – volume-title: TOX-97: perfluorohexanoic acid (307-24-4), perfluorooctanoic acid (335-67-1), perfluorononanoic acid (375-95-1), perfluorodecanoic acid (335-76-2), WY-14643 (50892-23-4) year: 2019 ident: 958_CR86 – volume: 36 start-page: 131 year: 1996 ident: 958_CR153 publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev.pa.36.040196.001023 – volume: 118 start-page: e2011957118 year: 2021 ident: 958_CR187 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2011957118 – volume: 134 start-page: 112 year: 2019 ident: 958_CR113 publication-title: Theriogenology doi: 10.1016/j.theriogenology.2019.05.022 – volume: 130 start-page: 105001 year: 2022 ident: 958_CR196 publication-title: Environ Health Perspect doi: 10.1289/EHP10800 – ident: 958_CR219 doi: 10.3390/ijms18061229 – volume: 72 start-page: 373 year: 2015 ident: 958_CR189 publication-title: Occup Environ Med doi: 10.1136/oemed-2014-102364 – volume: 279 start-page: 275 year: 2014 ident: 958_CR148 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2014.06.020 – volume: 222 start-page: 945 year: 2019 ident: 958_CR42 publication-title: Int J Hyg Environ Health doi: 10.1016/j.ijheh.2019.06.005 – volume: 67 start-page: 65 year: 2018 ident: 958_CR221 publication-title: Neurotoxicol Teratol doi: 10.1016/j.ntt.2018.03.004 – volume: 291 start-page: 132892 year: 2022 ident: 958_CR20 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132892 – volume: 12 start-page: 408 year: 2011 ident: 958_CR144 publication-title: Nat Immunol doi: 10.1038/ni.2022 – volume: 86 start-page: 1515 year: 2012 ident: 958_CR214 publication-title: Arch Toxicol doi: 10.1007/s00204-012-0877-4 – ident: 958_CR79 doi: 10.3390/toxics9050100 – volume: 98 start-page: 28 year: 2014 ident: 958_CR134 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.062 – volume: 86 start-page: 103652 year: 2021 ident: 958_CR173 publication-title: Environ Toxicol Pharmacol doi: 10.1016/j.etap.2021.103652 – volume: 119 start-page: 344 year: 2011 ident: 958_CR6 publication-title: Environ Health Perspect doi: 10.1289/ehp.1002409 – start-page: 955 volume-title: Calcium signaling year: 2012 ident: 958_CR161 doi: 10.1007/978-94-007-2888-2_44 – volume: 10 start-page: 323 year: 2021 ident: 958_CR185 publication-title: Transl Pediatr doi: 10.21037/tp-20-246 – volume: 105 start-page: 312 year: 2008 ident: 958_CR93 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfn127 – volume: 100 start-page: 24 year: 2017 ident: 958_CR96 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2016.12.004 – volume: 18 start-page: 85 year: 2021 ident: 958_CR37 publication-title: J Immunotoxicol doi: 10.1080/1547691X.2021.1922957 – volume: 2 start-page: 17023 year: 2017 ident: 958_CR110 publication-title: Signal Transduct Target Ther doi: 10.1038/sigtrans.2017.23 – volume: 104 start-page: 144 year: 2008 ident: 958_CR70 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfn059 – ident: 958_CR168 doi: 10.3390/toxics10110684 – ident: 958_CR97 doi: 10.4172/2161-1459.S4-002 – volume: 13 start-page: 38 year: 2016 ident: 958_CR68 publication-title: J Immunotoxicol doi: 10.3109/1547691X.2014.996682 – volume: 32 start-page: 935 year: 2019 ident: 958_CR210 publication-title: Chem Res Toxicol doi: 10.1021/acs.chemrestox.9b00101 – volume: 96 start-page: 58 year: 2016 ident: 958_CR46 publication-title: Environ Int doi: 10.1016/j.envint.2016.08.026 – volume: 105 start-page: 86 year: 2008 ident: 958_CR65 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfn113 – volume: 13 start-page: 270 year: 2016 ident: 958_CR31 publication-title: J Immunotoxicol doi: 10.3109/1547691X.2015.1067259 – volume: 149 start-page: 106395 year: 2021 ident: 958_CR12 publication-title: Environ Int doi: 10.1016/j.envint.2021.106395 – volume: 50 start-page: 2955 year: 2012 ident: 958_CR107 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2012.06.023 – volume: 214 start-page: 112081 year: 2021 ident: 958_CR225 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2021.112081 – volume: 40 start-page: 230 year: 2011 ident: 958_CR16 publication-title: Toxicol Pathol doi: 10.1177/0192623311427709 – volume: 128 start-page: 87002 year: 2020 ident: 958_CR36 publication-title: Environ Health Perspect doi: 10.1289/EHP6517 – volume: 91 start-page: 87 year: 2019 ident: 958_CR211 publication-title: Fish Shellfish Immunol doi: 10.1016/j.fsi.2019.05.018 – volume: 54 start-page: 9529 year: 2020 ident: 958_CR147 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c02386 – volume: 149 start-page: 171 year: 2016 ident: 958_CR33 publication-title: Environ Res doi: 10.1016/j.envres.2016.05.020 – volume: 113 start-page: 9 year: 2021 ident: 958_CR213 publication-title: Fish Shellfish Immunol doi: 10.1016/j.fsi.2021.03.004 – volume: 68 start-page: 443 year: 2019 ident: 958_CR117 publication-title: Inflamm Res doi: 10.1007/s00011-019-01231-1 |
SSID | ssj0017865 |
Score | 2.6222298 |
SecondaryResourceType | review_article |
Snippet | Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on... Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and... BackgroundPer- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and... Abstract Background Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 19 |
SubjectTerms | Acids Alkanesulfonic Acids Animals Antibodies Biocompatibility Bisphenol A Calcium signalling Chemicals Child Children Drinking water Environmental health Environmental Pollutants Environmental protection Epidemiology Fatty acids Fluorocarbons - analysis HBM4EU Health aspects Health risk assessment Health risks Humans Immune function Immune system Immunosuppression Immunotoxicity In vivo methods and tests Keywords Modulation Molecular mechanisms NF-κB protein Nuclear receptors Nuclear safety Oxidative Stress Per- and polyfluoroalkyl substances Perfluoroalkyl & polyfluoroalkyl substances Perfluorooctane sulfonic acid Perfluorooctanoic acid Persistent organic pollutants Physiological aspects Public Health Review Risk Assessment Side effects Signal transduction Signaling Vaccination response |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yD-KL-G31lAqCipTbTfP5uIrLISiCHhy-hKRJ8LjSHtsu3v73N5O2yxZBX3xtJiX5ZT7JZIaQ18pR7oSMhZOaYwszX2hLY1HJGCi3OrgqZVt8Fadn7PM5Pz9o9YU5YUN54AG4EwcRCkNxXsSIN5aKeQtsVNEyqMjKiNoXbN4UTI33B1IJPj2RUeKkA6uGaYwQeKFPoQo-M0OpWv-fOvnAKM0TJg8s0PoeuTu6jvlqWPJ9cis0D8jtL-Pl-EPyc2q-mcDO25hju-Hfdtfl4JnmF_gSpO3bayDvd2k4bIrcNj6_autdrLftprX15a7OO9AmPbJDl7_9tl59f_eInK0__fh4WoytE4qKi7IvYsUWFvg_AmBKaL9k1qpQKubAX3CL0nvNQLaZY8w75wOnQXrmKPUQ0kgdy8fkqGmb8JTk1IrA4CSDVoB9VLbyynMNv1PWcSczspyQNNVYVxzbW9QmxRdKmAF9A-ibhL7hGXm_n3M1VNX4K_UHPKA9JVbETh-AT8zIJ-ZffJKRN3i8BuUWllfZ8fkBbBIrYJmVLBWVeOmbkeMZJchbNR-eGMSM8t4ZKgEcUI66zMir_TDOxBy2JrRbpAFdyMRCsYw8Gfhpv6VSqCVqz4zIGafN9jwfaS5-pWrgWjMIsZfP_gdIz8kdCk5cerJPj8lRv9mGF-B09e5lkq8bTmInFA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ti9MwGA96ggiH6Ply1VMiCCpSbkuTJvkkUxyHoAh6MPwSkibRw9HOtUP33_s8aTevCPd1SUbS3_OaPC-EPFeOCVfKmDupBbYw87m2LOaVjIEJq4OrUrTFp_LsnH9YiMVw4dYOYZU7mZgEtW8qvCM_ZeCrcSA_XbxZ_cqxaxS-rg4tNK6TG1i6DEO65GLvcE2lKsUuUUaVpy3oNgxmBPcLLQuVi5EySjX7_5fMl1TTOGzykh6a3yG3BwOSznrE75JroT4iNz8OT-RH5LC_iKN9ftE98m3XkjNBQJtIsQnxb7ttKdir9ALzQ5qu-QPLu20aDuuc2trTVbPcxuWmWTd2-XO7pC3ImA6JpKUvP89nX17dJ-fz91_fneVDQ4W8EmXR5bHiEwtcETVTqtR-yq1VoVDcgRXhJoX3mgPHc8e5d84HwYL03DHmwdGROhYPyEHd1OGYUGbLwAHfoAEWH5WtvPJCw98p64STGZnuvqyphmrj2PRiaZLXoUrTo2EADZPQMCIjr_drVn2tjStnv0XA9jOxTnb6oVl_NwPbGQf-LUdlMIkR37thrxaEUMWKoCIvYkZeINwGuRm2V9khKQEOiXWxzEwWikl8Cs7IyWgmcGE1Ht4RjBmkQGv-0WxGnu2HcSVGttWh2eAckJC8nCiekYc9fe2PVJRqijI1I3JEeaMzj0fqix-pRrjWHBzv6aOrt_WY3GJgtKUUfXZCDrr1JjwBI6tzTxMn_QWWRiTK priority: 102 providerName: ProQuest |
Title | Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36814257 https://www.proquest.com/docview/2788483293 https://www.proquest.com/docview/2779346084 https://pubmed.ncbi.nlm.nih.gov/PMC9944481 https://doaj.org/article/b211414670ff419284da101c23e8f43f |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1di9QwcLgPEF_Eb6vnUkHwQarbNG2SB5G749ZDuEPUhX0LSZPoYWnP3S5e_72TbLte8RBf8tBMQmYyn00yA_CSa5LrgrlEM5H7EmYmEYq4pGTOklwJq8tw2-K8OJ3Tj4t8sQNDuaOegKsbQztfT2q-rN5c_ezeo8C_CwLPi7crtFn-kiKGVd5j4Em-C_tomZgX1DP651SB8VBaMqUMo-hCLIZHNDfOMTJUIZ__31r7mtkaX6m8ZqNmd-FO71zGhxtuuAc7tr4Pt8764_MH8GUozxm2I25c7AsS_1LdKkbfNb7wb0WatrlC8LYL3XaZxKo28WVTda5aN8tGVT-6Kl6hvmk9w6wewnx28vX4NOmrKiRlXmRt4ko6VSgaThDOC2FSqhS3GacaXQk9zYwRFMWeakqN1sbmxDJDNSEGox0mXPYI9uqmtk8gJqqwFDfZCs6pcVyVhptc4HRc6VyzCNKBhLLsU477yheVDKEHL-SG7BLJLgPZZR7B6-2Yy03CjX9CH_md2UL6ZNnhQ7P8JnvZkxqDXOotwtQ5f-iNa1WoiUqSWe5o5iJ45fdVeibD5ZWqf5mASPrkWPKQZZwwfx4cwcEIEkWxHHcPnCEHTpaEIXFQb4osghfbbj_SX2-rbbP2MKgmaTHlNILHG0baopQVPPWKNQI2YrERzuOe-uJ7SBQuBMXoO3363_g9g9sEnbjwZJ8cwF67XNvn6HS1egK7bMGw5cepb2cfJrB_dHL-6fMk_MaYBEn7DVdwLJg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7rCiqI6HqrrhpBUZGyM2naJg8i42WYdS8I7sLgS0yaRBeHdpx2WOdP-Rs9p5dxi7Bv-9okJen5zq05F0KeCcNik6Q-NKmMsYWZDaVmPsxS71ispTNZHW1xmEyO-adpPN0gf7pcGAyr7GRiLahtkeE_8h0GvhoH-Mno7fxXiF2j8Ha1a6HRwGLPrU7BZSvf7H4A-j5nbPzx6P0kbLsKhFmcRFXoMz7QAA0vmRCJtEOutXCR4AZUqRlE1koOsOeGc2uMdTFzqeWGMQvWfip9BO-9RC6D4h0gR6XTtYM3TEUSd4k5ItkpQZdi8CS4e2jJiDDuKb-6R8D_muCMKuyHaZ7Re-Ob5EZrsNJRg7BbZMPlW-TKQXslv0WuNz_-aJPPdJt87VqA1iSnhafY9PhUr0oK9jE9wXyUoip-w_JqVQ-7RUh1bum8mK38bFksCj37uZrREmRahaAs6cvP49GXV3fI8YV86rtkMy9yd59QphPHAU9OAgysFzqzwsYSXie0iU0akGH3ZVXWVjfHJhszVXs5IlENNRRQQ9XUUHFAXq_XzJvaHufOfocEW8_Eutz1g2LxXbVsrgz40xyVz8B7vF-HvWoQehmLnPA88gF5geRWKD1ge5lukyDgkFiHS43SSLAUr54Dst2bCVyf9Yc7wKhW6pTqH48E5Ol6GFdiJF3uiiXOAYnMk4HgAbnX4Gt9pCgRQ5ThAUl7yOuduT-Sn_yoa5JLycHRHz44f1tPyNXJ0cG-2t893HtIrjEwGOvyAGybbFaLpXsEBl5lHtdcRcm3i2bjv5H3YQk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consideration+of+pathways+for+immunotoxicity+of+per-+and+polyfluoroalkyl+substances&rft.jtitle=Environmental+health&rft.au=Ehrlich%2C+Veronika&rft.au=Bil%2C+Wieneke&rft.au=Vandebriel%2C+Rob&rft.au=Granum%2C+Berit&rft.date=2023-02-22&rft.pub=BioMed+Central+Ltd&rft.issn=1476-069X&rft.eissn=1476-069X&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12940-022-00958-5&rft.externalDocID=A738277065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-069X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-069X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-069X&client=summon |