Habitat type and host grazing regimen influence the soil microbial diversity and communities within potential biting midge larval habitats

Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we cha...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiome Vol. 18; no. 1; p. 5
Main Authors Neupane, Saraswoti, Davis, Travis, Nayduch, Dana, McGregor, Bethany L
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 19.01.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.
AbstractList Background Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. Results Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). Conclusions Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site. Keywords: Potential midge larval habitat, Soil, rRNA gene, Bacteria, Protists, Fungi, Metazoa community, Diversity
Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.
BACKGROUNDBiting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. RESULTSBacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). CONCLUSIONSHabitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.
Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.
Abstract Background Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. Results Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67–100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). Conclusions Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.
ArticleNumber 5
Audience Academic
Author Nayduch, Dana
Neupane, Saraswoti
McGregor, Bethany L
Davis, Travis
Author_xml – sequence: 1
  givenname: Saraswoti
  surname: Neupane
  fullname: Neupane, Saraswoti
  organization: Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
– sequence: 2
  givenname: Travis
  surname: Davis
  fullname: Davis, Travis
  organization: Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA
– sequence: 3
  givenname: Dana
  surname: Nayduch
  fullname: Nayduch, Dana
  organization: Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA
– sequence: 4
  givenname: Bethany L
  surname: McGregor
  fullname: McGregor, Bethany L
  email: bethany.mcgregor@usda.gov
  organization: Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA. bethany.mcgregor@usda.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36658608$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAUhSNUREvpC7BAltiwSfHP2LE3SFUFtFIlNrC2nPgm41FiD7Yz1fAIPDWemVLNIJRFoptzvuvre15XZz54qKq3BF8TIsXHtMCNYjWmtMZ4wUUtX1QXlNNFLVhDz46-z6urlFYYY8oIF5y_qs6ZEFwKLC-q33emddlklLdrQMZbtAwpoyGaX84PKMLgJvDI-X6cwXeA8hJQCm5Ek-tiaJ0ZkXUbiMnl7d7fhWmavcsOEnp0eek8WocMPu-kpdcOOzk7ABpN3JTa8nCC9KZ62ZsxwdXT-7L68eXz99u7-uHb1_vbm4e644Llum-gMwqDkNIA4dDhlnPS2kVD255gTDi2IKgCIy2zSrQLipkwxcY4xqpll9X9gWuDWel1dJOJWx2M0_tCiIM2MbtuBC06w4EpIzkrmBYUV0LZ0l5YhlkrCuvTgbWe2wlsV8aMZjyBnv7xbqmHsNFK8nIuXAAfngAx_JwhZT251ME4Gg9hTpo2QlKmaEOK9P0_0lWYoy9XtVMJSagUR6rBlAHK3kLp2-2g-qZhTApFyaKorv-jKo-FsteStN6V-omBHgxl6SlF6J9nJFjvAqkPgdQlkHofSC2L6d3x7Txb_saP_QF3G974
CitedBy_id crossref_primary_10_3390_biom13040585
crossref_primary_10_1016_j_apsoil_2023_105259
crossref_primary_10_1186_s40793_023_00468_y
Cites_doi 10.3852/09-316
10.1079/9780851998183.0277
10.1016/S0932-4739(88)80037-3
10.1016/j.funbio.2011.02.004
10.1111/jeu.12691
10.1128/AEM.00062-07
10.21423/bovine-vol1983no18p45-49
10.7717/peerj.2584
10.1093/jmedent/36.3.382
10.1016/B978-0-12-409548-9.09403-3
10.1111/j.1574-6941.1994.tb00115.x
10.1186/s13071-019-3626-1
10.1139/z03-110
10.1016/B978-0-12-814043-7.00013-3
10.1021/acs.est.0c02531
10.3389/fmicb.2017.00606
10.1111/mve.12379
10.1016/j.soilbio.2009.11.008
10.1093/jmedent/9.1.32
10.1093/nar/gkt1209
10.1038/s41467-019-13036-1
10.1603/0022-2585-37.1.58
10.1128/AEM.00335-09
10.1136/vr.162.4.131
10.1093/jmedent/29.2.232
10.1093/jme/tjz154
10.1111/jvec.12150
10.1371/journal.pone.0131498
10.1128/AEM.01541-09
10.1080/00275514.2001.12063153
10.1016/j.fbr.2010.03.004
10.2460/javma.1998.212.06.820
10.1007/s10021-009-9252-6
10.1038/s41598-017-15598-w
10.1093/nar/gks808
10.1007/s00374-003-0586-5
10.1111/mve.12006
10.1038/s41598-020-63561-z
10.1126/science.1243768
10.3389/fmicb.2019.00240
10.2136/sssaj1987.03615995005100010037x
10.2307/3226836
10.1016/j.soilbio.2018.03.023
10.1002/ldr.3835
10.11646/zootaxa.2273.1.1
10.1016/j.vetpar.2009.12.007
10.3389/fvets.2020.00065
10.1186/s12866-021-02418-5
10.1111/j.1570-7458.1977.tb02666.x
10.1016/0167-5877(84)90022-9
10.1111/j.1462-2920.2011.02444.x
10.1038/s41598-019-49290-y
10.1111/mec.14919
10.1051/parasite/2007142173
ContentType Journal Article
Copyright 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022
Copyright_xml – notice: 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s40793-022-00456-8
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2524-6372
EndPage 5
ExternalDocumentID oai_doaj_org_article_6ca5e39a853b42be95969dca96d303b6
A733869214
10_1186_s40793_022_00456_8
36658608
Genre Journal Article
GeographicLocations United States--US
Kansas
GeographicLocations_xml – name: Kansas
– name: United States--US
GrantInformation_xml – fundername: U.S. Department of Agriculture
  grantid: National Program 104, 3020-32000-007-00D and 3020-32000-018-00D
– fundername: ;
  grantid: National Program 104, 3020-32000-007-00D and 3020-32000-018-00D
GroupedDBID 0R~
2XV
7X7
8FI
8FJ
AAFWJ
AAJSJ
ABDBF
ABUWG
ACRMQ
ADBBV
ADUKV
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
C24
C6C
CCPQU
EBD
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
IAO
IHR
ITC
M7P
M~E
NPM
OK1
PIMPY
ROL
RPM
RSV
SOJ
UKHRP
AAYXX
CITATION
ABVAZ
AFGXO
AFNRJ
AFPKN
3V.
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
K9.
LK8
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c563t-f7eca90e688ae15ec0b551bd472bf100150de629ea8d3d96b42036af7e35009b3
IEDL.DBID RPM
ISSN 2524-6372
IngestDate Tue Oct 22 15:00:35 EDT 2024
Tue Sep 17 21:30:38 EDT 2024
Fri Oct 25 05:56:58 EDT 2024
Thu Nov 07 05:18:48 EST 2024
Thu Feb 22 23:51:21 EST 2024
Tue Nov 12 22:37:28 EST 2024
Wed Oct 16 15:34:28 EDT 2024
Wed Oct 16 00:40:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fungi
Protists
Diversity
Soil
Bacteria
Metazoa community
Potential midge larval habitat
rRNA gene
Language English
License 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-f7eca90e688ae15ec0b551bd472bf100150de629ea8d3d96b42036af7e35009b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854200/
PMID 36658608
PQID 2766812861
PQPubID 2040190
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6ca5e39a853b42be95969dca96d303b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9854200
proquest_miscellaneous_2768239271
proquest_journals_2766812861
gale_infotracmisc_A733869214
gale_infotracacademiconefile_A733869214
crossref_primary_10_1186_s40793_022_00456_8
pubmed_primary_36658608
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Environmental microbiome
PublicationTitleAlternate Environ Microbiome
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 36855174 - Environ Microbiome. 2023 Feb 28;18(1):13
TWR Möhlmann (456_CR34) 2019; 33
BJ Finlay (456_CR48) 1988; 23
A Bauer (456_CR32) 1987; 51
BL McGregor (456_CR35) 2021; 58
ET Schmidtmann (456_CR11) 2000; 37
G Schulz (456_CR28) 2019; 10
BE Guhl (456_CR49) 1994; 14
CL Lauber (456_CR44) 2009; 75
TM Porter (456_CR57) 2011; 115
FJ Alderink (456_CR4) 1984; 3
TJ Lysyk (456_CR13) 1999; 36
SG Field (456_CR47) 2003; 81
Q Wang (456_CR24) 2007; 73
JS Johnson (456_CR62) 2019; 10
L Guillou (456_CR26) 2013; 41 Database iss
FH Gleason (456_CR56) 2010; 24
RE Clopton (456_CR46) 1995; 114
SM Adl (456_CR27) 2019; 66
FV Battle (456_CR10) 1972; 9
S Wu (456_CR63) 2015; 10
P Yilmaz (456_CR22) 2014; 42 Database iss
MD Parker (456_CR16) 1977; 21
X Chen (456_CR50) 2017; 8
K Rojas-Jimenez (456_CR54) 2017; 7
T Rognes (456_CR23) 2016; 4
K Jangid (456_CR37) 2010; 42
WW Wirth (456_CR18) 1985; 22
P Timper (456_CR60) 2004
AH Eom (456_CR52) 2001; 93
ET Schmidtmann (456_CR12) 1992; 29
A Klindworth (456_CR19) 2013; 41
Y Hirakata (456_CR64) 2019; 9
A Borkent (456_CR17) 2009; 2273
RS Pfannenstiel (456_CR42) 2015; 40
S Neupane (456_CR14) 2021; 21
H Zhang (456_CR51) 2021; 32
N Fierer (456_CR38) 2013; 342
J Choi (456_CR20) 2020; 10
456_CR31
456_CR30
GW Yeates (456_CR59) 2003; 37
C Barceló (456_CR43) 2020; 129
S Monchy (456_CR53) 2011; 13
AM Hayek (456_CR6) 1998; 212
D Erram (456_CR15) 2020; 57
J Gethmann (456_CR2) 2020; 7
456_CR3
456_CR1
456_CR7
D Erram (456_CR9) 2019; 12
U Uslu (456_CR36) 2010; 169
RA Golluscio (456_CR33) 2009; 12
B-AT Nguyen (456_CR29) 2020; 54
LE Harrup (456_CR8) 2013; 27
CM Carson (456_CR39) 2018; 121
WJ Goodger (456_CR5) 1985; 186
L Zinger (456_CR58) 2019; 28
K Zhang (456_CR45) 2016; 7
456_CR61
U Uslu (456_CR40) 2007; 14
PD Schloss (456_CR21) 2009; 75
JR Cole (456_CR25) 2008; 37
J-Y Zimmer (456_CR41) 2008; 162
A Jumpponen (456_CR55) 2010; 102
References_xml – volume: 102
  start-page: 1027
  year: 2010
  ident: 456_CR55
  publication-title: Mycologia
  doi: 10.3852/09-316
  contributor:
    fullname: A Jumpponen
– start-page: 277
  volume-title: Nematode Behaviour
  year: 2004
  ident: 456_CR60
  doi: 10.1079/9780851998183.0277
  contributor:
    fullname: P Timper
– volume: 23
  start-page: 205
  year: 1988
  ident: 456_CR48
  publication-title: Eur J Protistol
  doi: 10.1016/S0932-4739(88)80037-3
  contributor:
    fullname: BJ Finlay
– volume: 41 Database iss
  start-page: D597
  year: 2013
  ident: 456_CR26
  publication-title: Nucleic Acids Res
  contributor:
    fullname: L Guillou
– volume: 115
  start-page: 381
  year: 2011
  ident: 456_CR57
  publication-title: Fungal Biol
  doi: 10.1016/j.funbio.2011.02.004
  contributor:
    fullname: TM Porter
– volume: 66
  start-page: 4
  year: 2019
  ident: 456_CR27
  publication-title: J Eukaryot Microbiol
  doi: 10.1111/jeu.12691
  contributor:
    fullname: SM Adl
– volume: 73
  start-page: 5261
  year: 2007
  ident: 456_CR24
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00062-07
  contributor:
    fullname: Q Wang
– ident: 456_CR31
– ident: 456_CR3
  doi: 10.21423/bovine-vol1983no18p45-49
– volume: 4
  year: 2016
  ident: 456_CR23
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
  contributor:
    fullname: T Rognes
– volume: 36
  start-page: 382
  year: 1999
  ident: 456_CR13
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/36.3.382
  contributor:
    fullname: TJ Lysyk
– ident: 456_CR61
  doi: 10.1016/B978-0-12-409548-9.09403-3
– volume: 14
  start-page: 293
  year: 1994
  ident: 456_CR49
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.1994.tb00115.x
  contributor:
    fullname: BE Guhl
– volume: 12
  start-page: 367
  year: 2019
  ident: 456_CR9
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-019-3626-1
  contributor:
    fullname: D Erram
– volume: 81
  start-page: 1161
  year: 2003
  ident: 456_CR47
  publication-title: Can J Zool
  doi: 10.1139/z03-110
  contributor:
    fullname: SG Field
– ident: 456_CR1
  doi: 10.1016/B978-0-12-814043-7.00013-3
– volume: 54
  start-page: 9556
  year: 2020
  ident: 456_CR29
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c02531
  contributor:
    fullname: B-AT Nguyen
– volume: 8
  start-page: 606
  year: 2017
  ident: 456_CR50
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00606
  contributor:
    fullname: X Chen
– volume: 33
  start-page: 420
  year: 2019
  ident: 456_CR34
  publication-title: Med Vet Entomol
  doi: 10.1111/mve.12379
  contributor:
    fullname: TWR Möhlmann
– volume: 42
  start-page: 302
  year: 2010
  ident: 456_CR37
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.11.008
  contributor:
    fullname: K Jangid
– volume: 129
  start-page: 154
  year: 2020
  ident: 456_CR43
  publication-title: ResVet Sci
  contributor:
    fullname: C Barceló
– volume: 37
  start-page: D141
  issue: suppl1
  year: 2008
  ident: 456_CR25
  publication-title: Nucleic Acids Res
  contributor:
    fullname: JR Cole
– volume: 9
  start-page: 32
  year: 1972
  ident: 456_CR10
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/9.1.32
  contributor:
    fullname: FV Battle
– volume: 42 Database iss
  start-page: D643
  year: 2014
  ident: 456_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1209
  contributor:
    fullname: P Yilmaz
– volume: 10
  start-page: 5029
  year: 2019
  ident: 456_CR62
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13036-1
  contributor:
    fullname: JS Johnson
– ident: 456_CR7
– volume: 37
  start-page: 58
  year: 2000
  ident: 456_CR11
  publication-title: J Med Entomol
  doi: 10.1603/0022-2585-37.1.58
  contributor:
    fullname: ET Schmidtmann
– volume: 75
  start-page: 5111
  year: 2009
  ident: 456_CR44
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00335-09
  contributor:
    fullname: CL Lauber
– volume: 162
  start-page: 131
  year: 2008
  ident: 456_CR41
  publication-title: Vet Rec
  doi: 10.1136/vr.162.4.131
  contributor:
    fullname: J-Y Zimmer
– ident: 456_CR30
– volume: 58
  start-page: 450
  year: 2021
  ident: 456_CR35
  publication-title: J Med Entomol
  contributor:
    fullname: BL McGregor
– volume: 29
  start-page: 232
  year: 1992
  ident: 456_CR12
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/29.2.232
  contributor:
    fullname: ET Schmidtmann
– volume: 57
  start-page: 25
  year: 2020
  ident: 456_CR15
  publication-title: J Med Entomol
  doi: 10.1093/jme/tjz154
  contributor:
    fullname: D Erram
– volume: 40
  start-page: 187
  year: 2015
  ident: 456_CR42
  publication-title: J Vec Ecol.
  doi: 10.1111/jvec.12150
  contributor:
    fullname: RS Pfannenstiel
– volume: 10
  year: 2015
  ident: 456_CR63
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0131498
  contributor:
    fullname: S Wu
– volume: 75
  start-page: 7537
  year: 2009
  ident: 456_CR21
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01541-09
  contributor:
    fullname: PD Schloss
– volume: 93
  start-page: 233
  year: 2001
  ident: 456_CR52
  publication-title: Mycologia
  doi: 10.1080/00275514.2001.12063153
  contributor:
    fullname: AH Eom
– volume: 24
  start-page: 56
  year: 2010
  ident: 456_CR56
  publication-title: Fungal Biol Rev
  doi: 10.1016/j.fbr.2010.03.004
  contributor:
    fullname: FH Gleason
– volume: 212
  start-page: 820
  year: 1998
  ident: 456_CR6
  publication-title: J Am Vet Med Assoc
  doi: 10.2460/javma.1998.212.06.820
  contributor:
    fullname: AM Hayek
– volume: 12
  start-page: 686
  year: 2009
  ident: 456_CR33
  publication-title: Ecosyst
  doi: 10.1007/s10021-009-9252-6
  contributor:
    fullname: RA Golluscio
– volume: 7
  start-page: 15348
  year: 2017
  ident: 456_CR54
  publication-title: Antarctica Sci Rep
  doi: 10.1038/s41598-017-15598-w
  contributor:
    fullname: K Rojas-Jimenez
– volume: 41
  year: 2013
  ident: 456_CR19
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks808
  contributor:
    fullname: A Klindworth
– volume: 7
  start-page: 1032
  year: 2016
  ident: 456_CR45
  publication-title: Front Microbiol
  contributor:
    fullname: K Zhang
– volume: 37
  start-page: 199
  year: 2003
  ident: 456_CR59
  publication-title: Biol Fert Soils
  doi: 10.1007/s00374-003-0586-5
  contributor:
    fullname: GW Yeates
– volume: 27
  start-page: 441
  year: 2013
  ident: 456_CR8
  publication-title: Med Vet Entomol
  doi: 10.1111/mve.12006
  contributor:
    fullname: LE Harrup
– volume: 10
  start-page: 6519
  year: 2020
  ident: 456_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63561-z
  contributor:
    fullname: J Choi
– volume: 342
  start-page: 621
  year: 2013
  ident: 456_CR38
  publication-title: Science
  doi: 10.1126/science.1243768
  contributor:
    fullname: N Fierer
– volume: 10
  start-page: 240
  year: 2019
  ident: 456_CR28
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.00240
  contributor:
    fullname: G Schulz
– volume: 22
  start-page: 4
  year: 1985
  ident: 456_CR18
  publication-title: Contrib Am Entomol Inst
  contributor:
    fullname: WW Wirth
– volume: 186
  start-page: 370
  year: 1985
  ident: 456_CR5
  publication-title: J Am Vet Med Assoc
  contributor:
    fullname: WJ Goodger
– volume: 51
  start-page: 176
  year: 1987
  ident: 456_CR32
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1987.03615995005100010037x
  contributor:
    fullname: A Bauer
– volume: 114
  start-page: 271
  year: 1995
  ident: 456_CR46
  publication-title: Invertebr Biol
  doi: 10.2307/3226836
  contributor:
    fullname: RE Clopton
– volume: 121
  start-page: 231
  year: 2018
  ident: 456_CR39
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.03.023
  contributor:
    fullname: CM Carson
– volume: 32
  start-page: 1821
  year: 2021
  ident: 456_CR51
  publication-title: Land Degrad Dev
  doi: 10.1002/ldr.3835
  contributor:
    fullname: H Zhang
– volume: 2273
  start-page: 1
  year: 2009
  ident: 456_CR17
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.2273.1.1
  contributor:
    fullname: A Borkent
– volume: 169
  start-page: 178
  year: 2010
  ident: 456_CR36
  publication-title: Vet Parasitol
  doi: 10.1016/j.vetpar.2009.12.007
  contributor:
    fullname: U Uslu
– volume: 7
  start-page: 65
  year: 2020
  ident: 456_CR2
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2020.00065
  contributor:
    fullname: J Gethmann
– volume: 21
  start-page: 346
  year: 2021
  ident: 456_CR14
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-021-02418-5
  contributor:
    fullname: S Neupane
– volume: 21
  start-page: 130
  year: 1977
  ident: 456_CR16
  publication-title: Entomol Exp Appl
  doi: 10.1111/j.1570-7458.1977.tb02666.x
  contributor:
    fullname: MD Parker
– volume: 3
  start-page: 29
  year: 1984
  ident: 456_CR4
  publication-title: Prev Vet Med
  doi: 10.1016/0167-5877(84)90022-9
  contributor:
    fullname: FJ Alderink
– volume: 13
  start-page: 1433
  year: 2011
  ident: 456_CR53
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2011.02444.x
  contributor:
    fullname: S Monchy
– volume: 9
  start-page: 12783
  year: 2019
  ident: 456_CR64
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49290-y
  contributor:
    fullname: Y Hirakata
– volume: 28
  start-page: 528
  year: 2019
  ident: 456_CR58
  publication-title: Mol Ecol
  doi: 10.1111/mec.14919
  contributor:
    fullname: L Zinger
– volume: 14
  start-page: 173
  year: 2007
  ident: 456_CR40
  publication-title: Parasite
  doi: 10.1051/parasite/2007142173
  contributor:
    fullname: U Uslu
SSID ssj0002315655
Score 2.2850075
Snippet Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic...
Abstract Background Biting midges ( Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in...
Background Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and...
BackgroundBiting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and...
BACKGROUNDBiting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and...
Abstract Background Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 5
SubjectTerms Acidobacteria
Actinobacteria
Apicomplexa
Bacteria
Bacteroidetes
Biting
Buffalo
Chironomidae
Chloroflexi
Dairy cattle
Domestic animals
Firmicutes
Fungi
Genetic testing
Grazing
Habitat utilization
Habitats
Laboratories
Metazoa
Microbial activity
Nematoda
Nematodes
Organic matter
Plastics
Potential midge larval habitat
Proteobacteria
Protists
Relative abundance
rRNA gene
Soil
Soil microbiology
Soil microorganisms
Soil properties
Species richness
Vectors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp0IpfddpUhQo9FBMbNkaS8ckJCyF5tRAbkKy5MRl1xuymz_RX90ZyV7W9NBLr3rY0jw0IzHzDWNfvPSyk53KoQaX19AFPAedyCulgKIUZNdRNvKPa1jc1N9v5e1eqS-KCUvwwIlwp9BaGSpt0ay4WrigpQbtW6vB4-nrEth2ofcuU78iiAveS6ScsmQUnG5qgoLLKXg9ujG5mlmiCNj_97G8Z5fmMZN7RujqFXs5eo_8LK36NXsWhjfsRXp64ymj6C37vbCOMsc4Pa9yO3hOmRz87pGQpO84lWJYhYH3U3kSjj4g36z7JV_1EZYJ_-CncI04v01ZJIS9yunhth_4w3pLcUY4FP9Fn11R4hdfUqmhJb9PK9i8YzdXlz8vFvlYciFvJVTbvGsCkrYIoJQNpQxt4dClcr5uhOvKiEfoAwgdrPKV14AsQRNocVol0Vtz1Xt2MKyH8JHxDpsDWj5PFpBgBlvh6qaQrlW6kMpn7NtEfvOQkDVMvJEoMIlZBpllIrOMytg5cWg3klCxYwPKihllxfxLVjL2lfhrSHeRia0dUxBwwYSCZc4avLCDFmWdsaPZSNS5dt49SYgZdX5jRAME5qagzNjJrptmUhzbENZPcYxCUogGx3xIArXbUgXoDUKBW21mojbb87xn6O8jIrhWEhlRHP4PIn1izwXqDz0zlfqIHWwfn8IxOl5b9znq2B8qQi1t
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDfb9WUwSvedtRseDPYwQnNJrNhPox0tx2BljBX6ZuKPXAN3ye1y_Sf6V09yklvDYK-xndiRZMmy9BNjH51wohKVjCEHE-dQedwHTRpnUgJFKYiqomzk71ewuM6_3YibweHWDWGV454YNmrXWvKRn6YFEFSWhPmXze-YqkbR7epQQuMxO0jxpJDM2MH5xdWPn3svC1ovaLGIMVtGwmmXEyRcTEHswZyJ5UQjBeD-f7fnB_ppGjv5QBldHrHDwYrkZz3Zn7FHvnnOnvYuON5nFr1g94vSUAYZJzcrLxvHKaODL7eEKL3kVJJh7Rtej2VKONqCvGvrFV_XAZ4Jv-DGsI0w3vbZJITBysmBWzd80-4o3gi74rfotWtKAOMrKjm04rf9DLqX7Pry4tfXRTyUXoitgGwXV4W3pUo8SFn6ufA2MWhaGZcXqanmAZfQeUiVL6XLnAKT04VmicMygVabyV6xWdM2_g3jFT72qAEdaUKCG7SpyYtEGCtVIqSL2Ofx9-tNj7Chw8lEgu6JpZFYOhBLy4idE4X2PQkdOzxot0s9CJsGWwqfqRJNEZyY8UooUA4XBA41toGIfSL6apJhJKIth1QEnDChYemzAg_uoJClInYy6YmyZ6fNI4foQfY7_ZdTI_Zh30wjKZ6t8e1d6CPxV6QF9nndM9R-SRmgVQgJLrWYsNpkzdOWpr4NyOBKCiRE8vb_0zpmT1KUDHIkzdUJm-22d_4dmlY7836Qnz_fAiYd
  priority: 102
  providerName: ProQuest
Title Habitat type and host grazing regimen influence the soil microbial diversity and communities within potential biting midge larval habitats
URI https://www.ncbi.nlm.nih.gov/pubmed/36658608
https://www.proquest.com/docview/2766812861
https://search.proquest.com/docview/2768239271
https://pubmed.ncbi.nlm.nih.gov/PMC9854200
https://doaj.org/article/6ca5e39a853b42be95969dca96d303b6
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_a7mUwxr7nrQsaDPYw3MQfkqXHtrSEQUsZK-RNWB9OXRInJOk_sb96d7IdYva2V-tkS7473-l89zuAb447XvFKxiIXJs5F5fE7aNI4k1JQlgKvKqpGvrkV0_v854zPjoD3tTAhad-a-qxZLM-a-iHkVq6XdtzniY3vbi6V5Dlyd3wMxyigB0f0x4DfgkcSzvsCGSnG25xQ4GLKWw8eTExN-jKBtldQV8kDexRg-__9OB9Yp2Hm5IEpun4FLzsfkp23a30NR755Ay_aABxr64rewp9paah-jFGQlZWNY1TPweYbwpOeM2rIsPQNq_smJQw9QbZd1Qu2rAM4Ez7B9UkbYb5ta0kIgZVR-LZu2Hq1o2wjJMVn0W2XVP7FFtRwaMEe2hVs38H99dXvy2ncNV6ILRfZLq4Kb0s18ULK0ifc24lBx8q4vEhNlQRUQudFqnwpXeaUMDn9zixxWsbRZzPZezhpVo3_CKzCyx7tnyM7SGCDNjV5MeHGSjXh0kXwo3_9et3ia-hwLpFCt3zTyDcd-KZlBBfEoT0lYWOHC6vNXHcSooUtuc9UiY4ILsx4xZVQDjckHNprIyL4TvzVpMHIRFt2hQi4YMLC0ucFHtuFSpM8gtMBJWqeHQ73EqI7zd_qtBAE6SZFEsHX_TDNpGy2xq-eAo3EV5EWSPOhFaj9lnq5jKAYiNpgz8MRVJOAC96pxaf_nvkZnqeoPxRhStQpnOw2T_4L-lw7M0JNmxUjeHZxdXv3axQiF6Ogd38Bsa8xJA
link.rule.ids 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,43322,43817,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHEBCiGcJFDASEgcUNZvEE_uECqJaoO2plfZmxY9sI-0my2b7J_jVzDjJ0giJa2wndsbj-TKZ-YaxD044UYlKxpCDiXOoPJ6DJo0zKYGiFERVUTby-QXMr_IfC7EYHG7dEFY5nonhoHatJR_5cVoAUWVJmH3e_IqpahT9XR1KaNxl94iHiyoYFIti72NB7IJ4RYy5MhKOu5wI4WIKYQ9gJpYTexRo-_89nG9Zp2nk5C1TdPqYPRowJD_phf6E3fHNU_awd8DxPq_oGfs9Lw3lj3FysvKycZzyOfhyS3zSS04FGda-4fVYpIQjEuRdW6_4ug7kTPgENwZthPG2zyUhBlZO7tu64Zt2R9FG2BWfRbddU_oXX1HBoRW_7mfQPWdXp98uv87jofBCbAVku7gqvC1V4kHK0s-Et4lBYGVcXqSmmgVWQuchVb6ULnMKTE6_M0sclgnEbCZ7wQ6atvEvGa_wskf758gOEtmgTU1eJMJYqRIhXcQ-ja9fb3p-DR2-SyToXlgahaWDsLSM2BeS0L4ncWOHC-12qQdV02BL4TNVIhDBiRmvhALlcEHg0F4biNhHkq8mDUYh2nJIRMAJExeWPinwsx1UOssjdjTpiZpnp83jDtGD5nf67z6N2Pt9M42kaLbGtzehj8RXkRbY57DfUPslZYCYEBJcajHZapM1T1ua-jrwgispUBDJq_9P6x27P788P9Nn3y9-vmYPUtQScinN1BE72G1v_BsEWTvzNmjSH_QsJ6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSAgJTXyOwAAjIfGAsrRJfLEfx6AqH5v2wKS9WfFHuqA2rdrun-Cv3p2TVI144zU-x3buznd27n7H2EcnnKhEJWPIwcQ5VB73QZPGmZRAUQqiqigb-fwCplf5j2txvVfqKwTtW1OfNPPFSVPfhNjK1cImfZxYcnl-pqTIkbvJylXJffYAdXYEewf1PwHFBQ8mQvRpMhKSTU5YcDFFrwc_JqZSfRmgBQaqLblnlQJ4_79b9J6NGsZP7hmkyRN22HmS_LSd8VN2zzfP2OP2Go632UXP2d9paSiLjNNVKy8bxymrg8_WhCo941SWYeEbXvelSjj6g3yzrOd8UQeIJhzB9aEbob9tM0oIh5XTJW7d8NVySzFHSIpj0WsXlATG51R2aM5v2hlsXrCrybffZ9O4K78QWwHZNq4Kb0s18iBl6cfC25FB98q4vEhNNQ7YhM5DqnwpXeYUmJx-apbYLRPouZnsJTtolo1_xXiFjz1aQUfWkCAHbWryYiSMlWokpIvY5_7z61WLsqHD6USCbvmmkW868E3LiH0hDu0oCSE7PFiuZ7qTEw22FD5TJbojODHjlVCgHC4IHFptAxH7RPzVpMfIRFt26Qg4YULE0qcFHt5BpeM8YscDStQ_O2zuJUR3-r_RaQEE7CZhHLEPu2bqSTFtjV_eBhqJnyItkOaoFajdknq5jFgxELXBmoctqCwBHbxTjtf_3fM9e3j5daJ_fb_4-YY9SlGV6MpprI7ZwXZ969-iE7Y174K63QFG1DIX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Habitat+type+and+host+grazing+regimen+influence+the+soil+microbial+diversity+and+communities+within+potential+biting+midge+larval+habitats&rft.jtitle=Environmental+microbiome&rft.au=Neupane%2C+Saraswoti&rft.au=Davis%2C+Travis&rft.au=Nayduch%2C+Dana&rft.au=McGregor%2C+Bethany+L&rft.date=2023-01-19&rft.pub=BioMed+Central&rft.eissn=2524-6372&rft.volume=18&rft.spage=1&rft_id=info:doi/10.1186%2Fs40793-022-00456-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-6372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-6372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-6372&client=summon