Efficiency of CO2 fixation by microalgae in a closed raceway pond

•A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by algae with continuous aeration in the pond.•A mode of intermittent aeration with CO2 fixation efficiency of 95% in the pond. Microalgae contai...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 136; pp. 267 - 272
Main Authors Li, Shuwen, Luo, Shengjun, Guo, Rongbo
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by algae with continuous aeration in the pond.•A mode of intermittent aeration with CO2 fixation efficiency of 95% in the pond. Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas–liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging.
AbstractList Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas-liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging.
Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas–liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging.
Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas-liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging.Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas-liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging.
•A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by algae with continuous aeration in the pond.•A mode of intermittent aeration with CO2 fixation efficiency of 95% in the pond. Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas–liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging.
Author Li, Shuwen
Luo, Shengjun
Guo, Rongbo
Author_xml – sequence: 1
  givenname: Shuwen
  surname: Li
  fullname: Li, Shuwen
  organization: Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
– sequence: 2
  givenname: Shengjun
  surname: Luo
  fullname: Luo, Shengjun
  email: luosj@qibebt.ac.cn
  organization: Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
– sequence: 3
  givenname: Rongbo
  surname: Guo
  fullname: Guo, Rongbo
  email: guorb@qibebt.ac.cn
  organization: Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27397470$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23567690$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1rGzEQBmBRUhon7V8IuhR6sTuSdqVd6KHBpB8QyKU9C-3sqJVZr1xp3db_vnLstNDLwsBcnndAmrliF2McibEbASsBQr_drLoQ00T4fSVBqBWUkvUzthCNUUvZGn3BFtBqWDa1rC7ZVc4bAFDCyBfsUqpaG93Cgt3eeR8w0IgHHj1fP0juw283hTjy7sC3AVN0wzdHPIzccRxipp4nh_TLHfgujv1L9ty7IdOrc79mXz_cfVl_Wt4_fPy8vr1fYq3VtPSqaRBbL2rsmwo8OsBGeeUJWyhN9Jpq0sZ5QOqlhB67ijx1rdYGdaeu2ZvT3F2KP_aUJ7sNGWkY3Ehxn63QlZRGNgLmaQ1Qnl-37TytlNASQKt5qipjGlNwoTdnuu-21NtdCluXDvbp3wt4fQYuoxt8ciOG_M8Z1ZrKHJ0-ubKGnBP5v0SAPR6C3dinQ7DHQ7BQStYl-O6_IIbpca1TcmGYj78_xals9GegZPPjkVAfEuFk-xjmRvwBtUbQ-w
CitedBy_id crossref_primary_10_1016_j_ijggc_2019_01_001
crossref_primary_10_5650_oleoscience_24_359
crossref_primary_10_1016_j_fuel_2023_128750
crossref_primary_10_1016_j_biortech_2019_121879
crossref_primary_10_1016_j_rser_2016_12_081
crossref_primary_10_1016_j_apenergy_2022_119808
crossref_primary_10_1016_j_jcou_2017_09_004
crossref_primary_10_1016_j_biortech_2013_06_122
crossref_primary_10_1002_bbb_1576
crossref_primary_10_3389_fbioe_2024_1387519
crossref_primary_10_1146_annurev_chembioeng_060816_101630
crossref_primary_10_1016_j_biortech_2023_129094
crossref_primary_10_3389_fbioe_2021_804608
crossref_primary_10_1016_j_rser_2018_04_086
crossref_primary_10_1016_j_biortech_2016_04_023
crossref_primary_10_1016_j_jcou_2021_101657
crossref_primary_10_1016_j_biortech_2015_04_085
crossref_primary_10_1016_j_watres_2015_08_021
crossref_primary_10_1016_j_biombioe_2024_107278
crossref_primary_10_3389_fsufs_2018_00059
crossref_primary_10_1016_j_biortech_2021_126358
crossref_primary_10_1016_j_jenvman_2019_06_085
crossref_primary_10_1016_j_rser_2018_08_009
crossref_primary_10_1016_j_algal_2015_03_018
crossref_primary_10_1016_j_algal_2018_09_009
crossref_primary_10_1002_bab_2486
crossref_primary_10_1002_ceat_201400790
crossref_primary_10_1371_journal_pone_0177703
crossref_primary_10_1016_j_algal_2017_10_009
crossref_primary_10_4028_www_scientific_net_AMR_1079_1080_558
crossref_primary_10_1016_j_bioeco_2024_100073
crossref_primary_10_1016_j_jechem_2022_04_008
crossref_primary_10_3389_fenrg_2014_00032
crossref_primary_10_1080_01496395_2021_1975134
crossref_primary_10_1007_s12649_019_00931_3
crossref_primary_10_1016_j_algal_2018_08_017
crossref_primary_10_1021_acssuschemeng_9b01839
crossref_primary_10_1007_s11814_015_0152_5
crossref_primary_10_1007_s11814_017_0300_1
crossref_primary_10_1016_j_biombioe_2024_107165
crossref_primary_10_1016_j_ccst_2022_100044
crossref_primary_10_1016_j_biotechadv_2019_107444
crossref_primary_10_1016_j_biteb_2023_101446
crossref_primary_10_1016_j_ijggc_2019_06_002
crossref_primary_10_1007_s00449_017_1770_6
crossref_primary_10_1016_j_biortech_2018_08_110
crossref_primary_10_3390_gases4040024
crossref_primary_10_1016_j_biortech_2015_04_050
crossref_primary_10_1016_j_biortech_2016_03_127
crossref_primary_10_1016_j_biortech_2020_123126
crossref_primary_10_1002_ep_12722
crossref_primary_10_1016_j_biortech_2016_03_007
crossref_primary_10_1016_j_apenergy_2015_06_055
crossref_primary_10_1016_j_energy_2017_03_143
crossref_primary_10_1016_j_jclepro_2018_01_125
crossref_primary_10_1016_j_rser_2015_06_033
crossref_primary_10_1016_j_biortech_2020_123253
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_061
crossref_primary_10_3390_app142210512
crossref_primary_10_1007_s11157_016_9397_7
crossref_primary_10_1016_j_jece_2020_103960
crossref_primary_10_1016_j_biortech_2013_11_087
crossref_primary_10_1016_j_nexus_2021_100032
crossref_primary_10_1016_j_scitotenv_2020_144041
crossref_primary_10_1016_j_rser_2017_04_063
crossref_primary_10_2478_rtuect_2020_0067
crossref_primary_10_1016_j_biortech_2019_121781
crossref_primary_10_1016_j_jclepro_2020_120782
crossref_primary_10_3390_microbiolres14040142
crossref_primary_10_1007_s10811_015_0720_4
crossref_primary_10_1016_j_jclepro_2015_07_151
crossref_primary_10_1016_j_rser_2017_05_197
crossref_primary_10_1016_j_jclepro_2021_125975
crossref_primary_10_1016_j_biortech_2019_121947
crossref_primary_10_1016_j_algal_2018_03_015
crossref_primary_10_1016_j_aquaeng_2022_102269
crossref_primary_10_1016_j_egyr_2019_08_032
crossref_primary_10_1016_j_algal_2020_102056
crossref_primary_10_1016_j_biortech_2017_07_096
crossref_primary_10_1016_j_rser_2020_110579
crossref_primary_10_1016_j_biortech_2018_11_038
crossref_primary_10_1007_s11356_016_7158_3
crossref_primary_10_1080_09593330_2017_1364302
crossref_primary_10_2478_rtuect_2020_0050
crossref_primary_10_1016_j_ejbt_2014_12_003
crossref_primary_10_1016_j_aqrep_2025_102677
crossref_primary_10_1016_j_jclepro_2018_11_010
crossref_primary_10_1016_j_jcou_2022_102038
crossref_primary_10_1007_s13399_020_00878_9
crossref_primary_10_1007_s41660_022_00251_5
crossref_primary_10_1016_j_energy_2022_125726
crossref_primary_10_1016_j_jclepro_2019_117864
Cites_doi 10.4028/www.scientific.net/AMR.599.137
10.1263/jbb.101.87
10.2172/5845166
10.1016/j.biortech.2007.08.013
10.1016/j.biortech.2011.12.146
10.1002/bit.260310409
10.1007/s11157-010-9214-7
10.1002/aic.690280302
10.1016/j.biortech.2010.06.048
10.1038/sj.jim.7000313
10.1016/S0168-1656(99)00079-6
10.1016/j.biortech.2010.11.029
10.1007/s12257-009-0119-7
10.1002/bit.260371007
10.1002/bit.22034
10.1016/j.biortech.2007.01.046
10.1007/s00253-008-1811-9
10.1016/j.jbiotec.2007.01.009
10.1002/bp060065r
10.1002/bit.10669
10.1016/j.seppur.2005.12.006
10.1016/j.rser.2009.07.020
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
C1K
KR7
DOI 10.1016/j.biortech.2013.03.025
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE
MEDLINE - Academic
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 272
ExternalDocumentID 23567690
27397470
10_1016_j_biortech_2013_03_025
S0960852413003817
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
C1K
EFKBS
KR7
ID FETCH-LOGICAL-c563t-f388cc9f15cd840fca0c83f3fec90f3f1d6e5e67af0ced220dcb4efeb9667c6b3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Mon Jul 21 09:24:40 EDT 2025
Fri Jul 11 10:49:59 EDT 2025
Fri Jul 11 05:56:16 EDT 2025
Thu Jul 10 19:29:30 EDT 2025
Thu Apr 03 06:56:53 EDT 2025
Wed Apr 02 07:26:15 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Tue Jul 01 02:06:13 EDT 2025
Fri Feb 23 02:34:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Model
Fixation efficiency
Microalgae
Intermittent gas sparging
Mass transfer coefficient
Sprinkling
Carbon dioxide
Transfer coefficient
Modeling
Mass transfer
Pond
Fixation
Intermittent
Alga
Microorganism
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-f388cc9f15cd840fca0c83f3fec90f3f1d6e5e67af0ced220dcb4efeb9667c6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23567690
PQID 1347787200
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1642272810
proquest_miscellaneous_1500769599
proquest_miscellaneous_1431620063
proquest_miscellaneous_1347787200
pubmed_primary_23567690
pascalfrancis_primary_27397470
crossref_primary_10_1016_j_biortech_2013_03_025
crossref_citationtrail_10_1016_j_biortech_2013_03_025
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_03_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Keffer, Kleinheinz (b0055) 2002; 29
Weissman, J.C., Goebel, R.P., 1985. Production of Liquid Fuels and Chemicals by Microalgae. Solar Energy Research Institute, Golden, Co., SERI/STR-231-2649.
Weissman, Goebel, Benemann (b0110) 1988; 31
Douskova, Doucha, Livansky, Machat, Novak, Umysova, Zachleder, Vitova (b0040) 2009; 82
Miron, Gomez, Camacho, Grima, Chisti (b0085) 1999; 70
Ugwu, Aoyagi, Uchiyama (b0105) 2008; 99
Becker (b0010) 1994
Mata, Martins, Caetano (b0075) 2010; 14
Putt, Singh, Chinnasamy, Das (b0090) 2011; 102
Carvalho, Meireles, Malcata (b0020) 2006; 22
Yun, Park (b0120) 2003; 83
Campbell, Beer, Batten (b0015) 2011; 102
Hodaifa, Martínez, Sánchez (b0050) 2010; 14
Cheng, Zhang, Chen, Gao (b0025) 2006; 50
Aiba (b0005) 1982; 23
Chiu, Kao, Chen, Kuan, Ong, Lin (b0030) 2008; 99
Spolaore, Joannis-Cassan, Duran, Isambert (b0100) 2006; 101
de Morais, Costa (b0035) 2007; 129
Fouchard, Pruvost, Degrenne, Titica, Legrand (b0045) 2009; 102
Shah, Kelkar, Godbole, Deckwer (b0095) 1982; 28
Laws, Berning (b0065) 1991; 37
Ketheesan, Nirmalakhandan (b0060) 2012; 108
Milledge (b0080) 2010; 10
Li, Luo, Guo (b0070) 2012; 599
Carvalho (10.1016/j.biortech.2013.03.025_b0020) 2006; 22
Cheng (10.1016/j.biortech.2013.03.025_b0025) 2006; 50
Douskova (10.1016/j.biortech.2013.03.025_b0040) 2009; 82
Ugwu (10.1016/j.biortech.2013.03.025_b0105) 2008; 99
Weissman (10.1016/j.biortech.2013.03.025_b0110) 1988; 31
Mata (10.1016/j.biortech.2013.03.025_b0075) 2010; 14
Yun (10.1016/j.biortech.2013.03.025_b0120) 2003; 83
Becker (10.1016/j.biortech.2013.03.025_b0010) 1994
de Morais (10.1016/j.biortech.2013.03.025_b0035) 2007; 129
Keffer (10.1016/j.biortech.2013.03.025_b0055) 2002; 29
Spolaore (10.1016/j.biortech.2013.03.025_b0100) 2006; 101
Aiba (10.1016/j.biortech.2013.03.025_b0005) 1982; 23
Fouchard (10.1016/j.biortech.2013.03.025_b0045) 2009; 102
Hodaifa (10.1016/j.biortech.2013.03.025_b0050) 2010; 14
Chiu (10.1016/j.biortech.2013.03.025_b0030) 2008; 99
Laws (10.1016/j.biortech.2013.03.025_b0065) 1991; 37
Li (10.1016/j.biortech.2013.03.025_b0070) 2012; 599
Miron (10.1016/j.biortech.2013.03.025_b0085) 1999; 70
Shah (10.1016/j.biortech.2013.03.025_b0095) 1982; 28
Ketheesan (10.1016/j.biortech.2013.03.025_b0060) 2012; 108
Campbell (10.1016/j.biortech.2013.03.025_b0015) 2011; 102
Putt (10.1016/j.biortech.2013.03.025_b0090) 2011; 102
10.1016/j.biortech.2013.03.025_b0115
Milledge (10.1016/j.biortech.2013.03.025_b0080) 2010; 10
References_xml – volume: 129
  start-page: 439
  year: 2007
  end-page: 445
  ident: b0035
  article-title: Biofixation of carbon dioxide by
  publication-title: J. Biotechnol.
– volume: 108
  start-page: 196
  year: 2012
  end-page: 202
  ident: b0060
  article-title: Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor
  publication-title: Bioresour. Technol.
– volume: 14
  start-page: 217
  year: 2010
  end-page: 232
  ident: b0075
  article-title: Microalgae for biodiesel production and other applications: a review
  publication-title: Renew. Sust. Energy Rev.
– year: 1994
  ident: b0010
  article-title: Microalgae Biotechnology and Microbiology
– volume: 102
  start-page: 50
  year: 2011
  end-page: 56
  ident: b0015
  article-title: Life cycle assessment of biodiesel production from microalgae in ponds
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 353
  year: 1982
  end-page: 379
  ident: b0095
  article-title: Design parameters estimations for bubble column reactors
  publication-title: AIChE J.
– volume: 14
  start-page: 854
  year: 2010
  end-page: 860
  ident: b0050
  article-title: Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater
  publication-title: Biotechnol. Bioprocess Eng.
– volume: 22
  start-page: 1490
  year: 2006
  end-page: 1506
  ident: b0020
  article-title: Microalgal reactors: a review of enclosed system designs and performances
  publication-title: Biotechnol. Prog.
– volume: 99
  start-page: 3389
  year: 2008
  end-page: 3396
  ident: b0030
  article-title: Reduction of CO
  publication-title: Bioresour. Technol.
– volume: 70
  start-page: 249
  year: 1999
  end-page: 270
  ident: b0085
  article-title: Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae
  publication-title: J. Biotechnol.
– volume: 102
  start-page: 232
  year: 2009
  end-page: 245
  ident: b0045
  article-title: Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with
  publication-title: Biotechnol. Bioeng.
– volume: 29
  start-page: 275
  year: 2002
  end-page: 280
  ident: b0055
  article-title: Use of
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 31
  start-page: 336
  year: 1988
  end-page: 344
  ident: b0110
  article-title: Photobioreactor design: mixing, carbon utilization, and oxygen accumulation
  publication-title: Biotechnol. Bioeng.
– volume: 23
  start-page: 85
  year: 1982
  end-page: 156
  ident: b0005
  article-title: Growth kinetics of photosynthetic microorganisms
  publication-title: Adv. Biochem. Eng.
– volume: 82
  start-page: 179
  year: 2009
  end-page: 185
  ident: b0040
  article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 83
  start-page: 303
  year: 2003
  end-page: 311
  ident: b0120
  article-title: Kinetic modeling of the light-dependent photosynthetic activity of the green microalga
  publication-title: Biotechnol. Bioeng.
– volume: 50
  start-page: 324
  year: 2006
  end-page: 329
  ident: b0025
  article-title: Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor
  publication-title: Sep. Purif. Technol.
– volume: 10
  start-page: 31
  year: 2010
  end-page: 41
  ident: b0080
  article-title: Commercial application of microalgae other than as biofuels: a brief review
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 102
  start-page: 3240
  year: 2011
  end-page: 3245
  ident: b0090
  article-title: An efficient system for carbonation of high-rate algae pond water to enhance CO
  publication-title: Bioresour. Technol.
– volume: 599
  start-page: 137
  year: 2012
  end-page: 140
  ident: b0070
  article-title: Influence of carbon dioxide concentration on microalgal growth in a bubble bolumn photobioreactor
  publication-title: Adv. Mater. Res.
– reference: Weissman, J.C., Goebel, R.P., 1985. Production of Liquid Fuels and Chemicals by Microalgae. Solar Energy Research Institute, Golden, Co., SERI/STR-231-2649.
– volume: 37
  start-page: 936
  year: 1991
  end-page: 947
  ident: b0065
  article-title: A study of the energetics and economics of microalgal mass culture with the marine chlorophyte
  publication-title: Biotechnol. Bioeng.
– volume: 101
  start-page: 87
  year: 2006
  end-page: 96
  ident: b0100
  article-title: Commercial applications of microalgae
  publication-title: J. Biosci. Bioeng.
– volume: 99
  start-page: 4021
  year: 2008
  end-page: 4028
  ident: b0105
  article-title: Photobioreactors for mass cultivation of algae
  publication-title: Bioresour. Technol.
– volume: 599
  start-page: 137
  year: 2012
  ident: 10.1016/j.biortech.2013.03.025_b0070
  article-title: Influence of carbon dioxide concentration on microalgal growth in a bubble bolumn photobioreactor
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.599.137
– volume: 101
  start-page: 87
  year: 2006
  ident: 10.1016/j.biortech.2013.03.025_b0100
  article-title: Commercial applications of microalgae
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.101.87
– ident: 10.1016/j.biortech.2013.03.025_b0115
  doi: 10.2172/5845166
– volume: 99
  start-page: 3389
  year: 2008
  ident: 10.1016/j.biortech.2013.03.025_b0030
  article-title: Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.08.013
– volume: 108
  start-page: 196
  year: 2012
  ident: 10.1016/j.biortech.2013.03.025_b0060
  article-title: Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.12.146
– volume: 31
  start-page: 336
  year: 1988
  ident: 10.1016/j.biortech.2013.03.025_b0110
  article-title: Photobioreactor design: mixing, carbon utilization, and oxygen accumulation
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260310409
– volume: 10
  start-page: 31
  year: 2010
  ident: 10.1016/j.biortech.2013.03.025_b0080
  article-title: Commercial application of microalgae other than as biofuels: a brief review
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-010-9214-7
– volume: 28
  start-page: 353
  year: 1982
  ident: 10.1016/j.biortech.2013.03.025_b0095
  article-title: Design parameters estimations for bubble column reactors
  publication-title: AIChE J.
  doi: 10.1002/aic.690280302
– volume: 102
  start-page: 50
  year: 2011
  ident: 10.1016/j.biortech.2013.03.025_b0015
  article-title: Life cycle assessment of biodiesel production from microalgae in ponds
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.048
– volume: 29
  start-page: 275
  year: 2002
  ident: 10.1016/j.biortech.2013.03.025_b0055
  article-title: Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1038/sj.jim.7000313
– volume: 70
  start-page: 249
  year: 1999
  ident: 10.1016/j.biortech.2013.03.025_b0085
  article-title: Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae
  publication-title: J. Biotechnol.
  doi: 10.1016/S0168-1656(99)00079-6
– volume: 102
  start-page: 3240
  year: 2011
  ident: 10.1016/j.biortech.2013.03.025_b0090
  article-title: An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.029
– volume: 14
  start-page: 854
  year: 2010
  ident: 10.1016/j.biortech.2013.03.025_b0050
  article-title: Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-009-0119-7
– volume: 37
  start-page: 936
  year: 1991
  ident: 10.1016/j.biortech.2013.03.025_b0065
  article-title: A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gases
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260371007
– volume: 102
  start-page: 232
  year: 2009
  ident: 10.1016/j.biortech.2013.03.025_b0045
  article-title: Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22034
– volume: 99
  start-page: 4021
  year: 2008
  ident: 10.1016/j.biortech.2013.03.025_b0105
  article-title: Photobioreactors for mass cultivation of algae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.01.046
– volume: 82
  start-page: 179
  year: 2009
  ident: 10.1016/j.biortech.2013.03.025_b0040
  article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1811-9
– volume: 129
  start-page: 439
  year: 2007
  ident: 10.1016/j.biortech.2013.03.025_b0035
  article-title: Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2007.01.009
– volume: 23
  start-page: 85
  year: 1982
  ident: 10.1016/j.biortech.2013.03.025_b0005
  article-title: Growth kinetics of photosynthetic microorganisms
  publication-title: Adv. Biochem. Eng.
– year: 1994
  ident: 10.1016/j.biortech.2013.03.025_b0010
– volume: 22
  start-page: 1490
  year: 2006
  ident: 10.1016/j.biortech.2013.03.025_b0020
  article-title: Microalgal reactors: a review of enclosed system designs and performances
  publication-title: Biotechnol. Prog.
  doi: 10.1002/bp060065r
– volume: 83
  start-page: 303
  year: 2003
  ident: 10.1016/j.biortech.2013.03.025_b0120
  article-title: Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10669
– volume: 50
  start-page: 324
  year: 2006
  ident: 10.1016/j.biortech.2013.03.025_b0025
  article-title: Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2005.12.006
– volume: 14
  start-page: 217
  year: 2010
  ident: 10.1016/j.biortech.2013.03.025_b0075
  article-title: Microalgae for biodiesel production and other applications: a review
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2009.07.020
SSID ssj0003172
Score 2.4314764
Snippet •A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by...
Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for...
Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 267
SubjectTerms Biological and medical sciences
Carbon
Carbon capture and storage
Carbon Cycle
Carbon dioxide
Carbon Dioxide - metabolism
Chlorella vulgaris - metabolism
Culture
culture media
Expenditures
Fixation
Fixation efficiency
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Intermittent gas sparging
Kinetics
Mass transfer
Mass transfer coefficient
Microalgae
Microalgae - metabolism
Oxygen - metabolism
Ponds
Ponds - microbiology
raceways
Rheology
Title Efficiency of CO2 fixation by microalgae in a closed raceway pond
URI https://dx.doi.org/10.1016/j.biortech.2013.03.025
https://www.ncbi.nlm.nih.gov/pubmed/23567690
https://www.proquest.com/docview/1347787200
https://www.proquest.com/docview/1431620063
https://www.proquest.com/docview/1500769599
https://www.proquest.com/docview/1642272810
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9wwDDele9hGGVv3dW13eLDX9BLHTuLH42i5bax72Ap9M7Ejj5Q2Oe6u0L3sb6_kJP2A7fowCAQSmRjJkSVL-omxT6VU2mdQRdJKFUlIILJVJiOwFtB6ELYIXUu-nWTzU_nlTJ1tsdlQC0Nplb3u73R60Nb9k0nPzcmiric_yPguVIgLBZw5qmCXOa3ywz93aR64P4ZIAhJHRH2vSvj80NaU0RqCEkkawE6pZfbfN6idRblCtvmu38W_DdKwMR2_ZC96i5JPu0m_YlvQ7LLn01_LHlUDdtnT2dDWDd_cQyB8zaZHAUKC6i956_nsu-C-vg7S4vY3v6R0Par2AF43vOTuol1BxZeloyM3vmib6g07PT76OZtHfVeFyKksXUc-LQrntE8IFkDG3pWxK1KfenA6xltSZaAgy0sfowyEiCtnJXiw6BjlLrPpW7bdtA28Z9xZ4ZW3YDONJHlZakFJzZLK1NFJ9yOmBlYa10OOU-eLCzPklp2bQQSGRGBivIQascntuEUHuvHoCD1IyjxYPgZ3hkfHjh-I9vaTaNmRtxWP2MdB1gaFRRGVsoH2amWoDhc1HmqaDTQENkAHN-kGGkURUa203kCDnqLIRZHgt951C-5upqmiVOV47z_YsM-eidDqg5I5D9j2enkFH9DgWttx-KPG7Mn089f5yQ1TaCtz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORRUISiULo9iJDimmzh2NjlwWC2ttvTBgVbqzcTOGKUqyWp3K-iFP8UfZMZJ-pBge0CVIkVK7NiaccYznm9mGHuXS5W5BIpAGqkCCREEpkhkAMYAag_CpL5qycFhMj6Wn07UyRL73cXCEKyylf2NTPfSun3Sb6nZn5Rl_wsp36nyfiGfZ65FVu7BxQ-022Yfdj8ik98LsbN9NBoHbWmBwKokngcuTlNrMxdRbLwMnc1Dm8YudmCzEG9RkYCCZJC7ECciRFhYI8GBQetgYBMT43fvsfsSxQWVTdj6dYUrwQ3Zuy5wdgFN71pY8umWKQlC670gUeyzq1KN7r_viKuTfIZ8ck2BjX9rwH4n3HnMHrUqLB82VHrClqBaYw-H36ZtGg9YYyujro4cvrmW8vApG277nBUU8Mlrx0efBXflT788uLng3wkfSOElwMuK59ye1TMo-DS3dMbHJ3VVPGPHd0LrdbZc1RVsMG6NcMoZMEmGTQZ5nglCUUuKiwcTux5THSm1bXOcU6mNM92B2U51xwJNLNAhXkL1WP-y36TJ8nFrj6zjlL6xXjVuRbf23bzB2sshUZUk8y7ssbcdrzUyi1w4eQX1-UxT4C-KWBRtC9pQdgM6KYoXtFHkgs1Uli1og6apGIg0wrGeNwvuaqaxImx0-OI_yPCGrYyPDvb1_u7h3kv2QPg6I4QkfcWW59NzeI3a3txs-r-Ls693_Tv_AZlFalc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+of+CO2+fixation+by+microalgae+in+a+closed+raceway+pond&rft.jtitle=Bioresource+technology&rft.au=SHUWEN+LI&rft.au=SHENGJUN+LUO&rft.au=RONGBO+GUO&rft.date=2013-05-01&rft.pub=Elsevier&rft.issn=0960-8524&rft.volume=136&rft.spage=267&rft.epage=272&rft_id=info:doi/10.1016%2Fj.biortech.2013.03.025&rft.externalDBID=n%2Fa&rft.externalDocID=27397470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon