Efficiency of CO2 fixation by microalgae in a closed raceway pond
•A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by algae with continuous aeration in the pond.•A mode of intermittent aeration with CO2 fixation efficiency of 95% in the pond. Microalgae contai...
Saved in:
Published in | Bioresource technology Vol. 136; pp. 267 - 272 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by algae with continuous aeration in the pond.•A mode of intermittent aeration with CO2 fixation efficiency of 95% in the pond.
Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas–liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging. |
---|---|
AbstractList | Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas-liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging. Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas–liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging. Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas-liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging.Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas-liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging. •A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by algae with continuous aeration in the pond.•A mode of intermittent aeration with CO2 fixation efficiency of 95% in the pond. Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for microalgal large scale cultivation should be considered and the low CO2 fixation efficiency by microalgae will lead to much more expenditure of CO2. In this study, a closed raceway pond was constructed by covering a normal open raceway pond with a specially designed transparent cover, which directly touched the surface of microalgal culture media. This cover prevented supplied CO2 escaping into atmosphere and thus increased the retention time of CO2. The CO2 gas–liquid mass transfer and CO2 fixation efficiency by microalgae in the closed raceway pond were investigated, and the model of CO2 fixation by microalgae was developed. Through the model, the CO2 fixation efficiency increased to 95% under intermittent gas sparging. |
Author | Li, Shuwen Luo, Shengjun Guo, Rongbo |
Author_xml | – sequence: 1 givenname: Shuwen surname: Li fullname: Li, Shuwen organization: Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China – sequence: 2 givenname: Shengjun surname: Luo fullname: Luo, Shengjun email: luosj@qibebt.ac.cn organization: Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China – sequence: 3 givenname: Rongbo surname: Guo fullname: Guo, Rongbo email: guorb@qibebt.ac.cn organization: Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27397470$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23567690$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k1rGzEQBmBRUhon7V8IuhR6sTuSdqVd6KHBpB8QyKU9C-3sqJVZr1xp3db_vnLstNDLwsBcnndAmrliF2McibEbASsBQr_drLoQ00T4fSVBqBWUkvUzthCNUUvZGn3BFtBqWDa1rC7ZVc4bAFDCyBfsUqpaG93Cgt3eeR8w0IgHHj1fP0juw283hTjy7sC3AVN0wzdHPIzccRxipp4nh_TLHfgujv1L9ty7IdOrc79mXz_cfVl_Wt4_fPy8vr1fYq3VtPSqaRBbL2rsmwo8OsBGeeUJWyhN9Jpq0sZ5QOqlhB67ijx1rdYGdaeu2ZvT3F2KP_aUJ7sNGWkY3Ehxn63QlZRGNgLmaQ1Qnl-37TytlNASQKt5qipjGlNwoTdnuu-21NtdCluXDvbp3wt4fQYuoxt8ciOG_M8Z1ZrKHJ0-ubKGnBP5v0SAPR6C3dinQ7DHQ7BQStYl-O6_IIbpca1TcmGYj78_xals9GegZPPjkVAfEuFk-xjmRvwBtUbQ-w |
CitedBy_id | crossref_primary_10_1016_j_ijggc_2019_01_001 crossref_primary_10_5650_oleoscience_24_359 crossref_primary_10_1016_j_fuel_2023_128750 crossref_primary_10_1016_j_biortech_2019_121879 crossref_primary_10_1016_j_rser_2016_12_081 crossref_primary_10_1016_j_apenergy_2022_119808 crossref_primary_10_1016_j_jcou_2017_09_004 crossref_primary_10_1016_j_biortech_2013_06_122 crossref_primary_10_1002_bbb_1576 crossref_primary_10_3389_fbioe_2024_1387519 crossref_primary_10_1146_annurev_chembioeng_060816_101630 crossref_primary_10_1016_j_biortech_2023_129094 crossref_primary_10_3389_fbioe_2021_804608 crossref_primary_10_1016_j_rser_2018_04_086 crossref_primary_10_1016_j_biortech_2016_04_023 crossref_primary_10_1016_j_jcou_2021_101657 crossref_primary_10_1016_j_biortech_2015_04_085 crossref_primary_10_1016_j_watres_2015_08_021 crossref_primary_10_1016_j_biombioe_2024_107278 crossref_primary_10_3389_fsufs_2018_00059 crossref_primary_10_1016_j_biortech_2021_126358 crossref_primary_10_1016_j_jenvman_2019_06_085 crossref_primary_10_1016_j_rser_2018_08_009 crossref_primary_10_1016_j_algal_2015_03_018 crossref_primary_10_1016_j_algal_2018_09_009 crossref_primary_10_1002_bab_2486 crossref_primary_10_1002_ceat_201400790 crossref_primary_10_1371_journal_pone_0177703 crossref_primary_10_1016_j_algal_2017_10_009 crossref_primary_10_4028_www_scientific_net_AMR_1079_1080_558 crossref_primary_10_1016_j_bioeco_2024_100073 crossref_primary_10_1016_j_jechem_2022_04_008 crossref_primary_10_3389_fenrg_2014_00032 crossref_primary_10_1080_01496395_2021_1975134 crossref_primary_10_1007_s12649_019_00931_3 crossref_primary_10_1016_j_algal_2018_08_017 crossref_primary_10_1021_acssuschemeng_9b01839 crossref_primary_10_1007_s11814_015_0152_5 crossref_primary_10_1007_s11814_017_0300_1 crossref_primary_10_1016_j_biombioe_2024_107165 crossref_primary_10_1016_j_ccst_2022_100044 crossref_primary_10_1016_j_biotechadv_2019_107444 crossref_primary_10_1016_j_biteb_2023_101446 crossref_primary_10_1016_j_ijggc_2019_06_002 crossref_primary_10_1007_s00449_017_1770_6 crossref_primary_10_1016_j_biortech_2018_08_110 crossref_primary_10_3390_gases4040024 crossref_primary_10_1016_j_biortech_2015_04_050 crossref_primary_10_1016_j_biortech_2016_03_127 crossref_primary_10_1016_j_biortech_2020_123126 crossref_primary_10_1002_ep_12722 crossref_primary_10_1016_j_biortech_2016_03_007 crossref_primary_10_1016_j_apenergy_2015_06_055 crossref_primary_10_1016_j_energy_2017_03_143 crossref_primary_10_1016_j_jclepro_2018_01_125 crossref_primary_10_1016_j_rser_2015_06_033 crossref_primary_10_1016_j_biortech_2020_123253 crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_061 crossref_primary_10_3390_app142210512 crossref_primary_10_1007_s11157_016_9397_7 crossref_primary_10_1016_j_jece_2020_103960 crossref_primary_10_1016_j_biortech_2013_11_087 crossref_primary_10_1016_j_nexus_2021_100032 crossref_primary_10_1016_j_scitotenv_2020_144041 crossref_primary_10_1016_j_rser_2017_04_063 crossref_primary_10_2478_rtuect_2020_0067 crossref_primary_10_1016_j_biortech_2019_121781 crossref_primary_10_1016_j_jclepro_2020_120782 crossref_primary_10_3390_microbiolres14040142 crossref_primary_10_1007_s10811_015_0720_4 crossref_primary_10_1016_j_jclepro_2015_07_151 crossref_primary_10_1016_j_rser_2017_05_197 crossref_primary_10_1016_j_jclepro_2021_125975 crossref_primary_10_1016_j_biortech_2019_121947 crossref_primary_10_1016_j_algal_2018_03_015 crossref_primary_10_1016_j_aquaeng_2022_102269 crossref_primary_10_1016_j_egyr_2019_08_032 crossref_primary_10_1016_j_algal_2020_102056 crossref_primary_10_1016_j_biortech_2017_07_096 crossref_primary_10_1016_j_rser_2020_110579 crossref_primary_10_1016_j_biortech_2018_11_038 crossref_primary_10_1007_s11356_016_7158_3 crossref_primary_10_1080_09593330_2017_1364302 crossref_primary_10_2478_rtuect_2020_0050 crossref_primary_10_1016_j_ejbt_2014_12_003 crossref_primary_10_1016_j_aqrep_2025_102677 crossref_primary_10_1016_j_jclepro_2018_11_010 crossref_primary_10_1016_j_jcou_2022_102038 crossref_primary_10_1007_s13399_020_00878_9 crossref_primary_10_1007_s41660_022_00251_5 crossref_primary_10_1016_j_energy_2022_125726 crossref_primary_10_1016_j_jclepro_2019_117864 |
Cites_doi | 10.4028/www.scientific.net/AMR.599.137 10.1263/jbb.101.87 10.2172/5845166 10.1016/j.biortech.2007.08.013 10.1016/j.biortech.2011.12.146 10.1002/bit.260310409 10.1007/s11157-010-9214-7 10.1002/aic.690280302 10.1016/j.biortech.2010.06.048 10.1038/sj.jim.7000313 10.1016/S0168-1656(99)00079-6 10.1016/j.biortech.2010.11.029 10.1007/s12257-009-0119-7 10.1002/bit.260371007 10.1002/bit.22034 10.1016/j.biortech.2007.01.046 10.1007/s00253-008-1811-9 10.1016/j.jbiotec.2007.01.009 10.1002/bp060065r 10.1002/bit.10669 10.1016/j.seppur.2005.12.006 10.1016/j.rser.2009.07.020 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD F1W FR3 H95 H98 L.G M7N P64 7SU 7TB C1K KR7 |
DOI | 10.1016/j.biortech.2013.03.025 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE MEDLINE - Academic Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 272 |
ExternalDocumentID | 23567690 27397470 10_1016_j_biortech_2013_03_025 S0960852413003817 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD F1W FR3 H95 H98 L.G M7N P64 7SU 7TB C1K EFKBS KR7 |
ID | FETCH-LOGICAL-c563t-f388cc9f15cd840fca0c83f3fec90f3f1d6e5e67af0ced220dcb4efeb9667c6b3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Mon Jul 21 09:24:40 EDT 2025 Fri Jul 11 10:49:59 EDT 2025 Fri Jul 11 05:56:16 EDT 2025 Thu Jul 10 19:29:30 EDT 2025 Thu Apr 03 06:56:53 EDT 2025 Wed Apr 02 07:26:15 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 02:06:13 EDT 2025 Fri Feb 23 02:34:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model Fixation efficiency Microalgae Intermittent gas sparging Mass transfer coefficient Sprinkling Carbon dioxide Transfer coefficient Modeling Mass transfer Pond Fixation Intermittent Alga Microorganism |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-f388cc9f15cd840fca0c83f3fec90f3f1d6e5e67af0ced220dcb4efeb9667c6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23567690 |
PQID | 1347787200 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1642272810 proquest_miscellaneous_1500769599 proquest_miscellaneous_1431620063 proquest_miscellaneous_1347787200 pubmed_primary_23567690 pascalfrancis_primary_27397470 crossref_primary_10_1016_j_biortech_2013_03_025 crossref_citationtrail_10_1016_j_biortech_2013_03_025 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_03_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Keffer, Kleinheinz (b0055) 2002; 29 Weissman, J.C., Goebel, R.P., 1985. Production of Liquid Fuels and Chemicals by Microalgae. Solar Energy Research Institute, Golden, Co., SERI/STR-231-2649. Weissman, Goebel, Benemann (b0110) 1988; 31 Douskova, Doucha, Livansky, Machat, Novak, Umysova, Zachleder, Vitova (b0040) 2009; 82 Miron, Gomez, Camacho, Grima, Chisti (b0085) 1999; 70 Ugwu, Aoyagi, Uchiyama (b0105) 2008; 99 Becker (b0010) 1994 Mata, Martins, Caetano (b0075) 2010; 14 Putt, Singh, Chinnasamy, Das (b0090) 2011; 102 Carvalho, Meireles, Malcata (b0020) 2006; 22 Yun, Park (b0120) 2003; 83 Campbell, Beer, Batten (b0015) 2011; 102 Hodaifa, Martínez, Sánchez (b0050) 2010; 14 Cheng, Zhang, Chen, Gao (b0025) 2006; 50 Aiba (b0005) 1982; 23 Chiu, Kao, Chen, Kuan, Ong, Lin (b0030) 2008; 99 Spolaore, Joannis-Cassan, Duran, Isambert (b0100) 2006; 101 de Morais, Costa (b0035) 2007; 129 Fouchard, Pruvost, Degrenne, Titica, Legrand (b0045) 2009; 102 Shah, Kelkar, Godbole, Deckwer (b0095) 1982; 28 Laws, Berning (b0065) 1991; 37 Ketheesan, Nirmalakhandan (b0060) 2012; 108 Milledge (b0080) 2010; 10 Li, Luo, Guo (b0070) 2012; 599 Carvalho (10.1016/j.biortech.2013.03.025_b0020) 2006; 22 Cheng (10.1016/j.biortech.2013.03.025_b0025) 2006; 50 Douskova (10.1016/j.biortech.2013.03.025_b0040) 2009; 82 Ugwu (10.1016/j.biortech.2013.03.025_b0105) 2008; 99 Weissman (10.1016/j.biortech.2013.03.025_b0110) 1988; 31 Mata (10.1016/j.biortech.2013.03.025_b0075) 2010; 14 Yun (10.1016/j.biortech.2013.03.025_b0120) 2003; 83 Becker (10.1016/j.biortech.2013.03.025_b0010) 1994 de Morais (10.1016/j.biortech.2013.03.025_b0035) 2007; 129 Keffer (10.1016/j.biortech.2013.03.025_b0055) 2002; 29 Spolaore (10.1016/j.biortech.2013.03.025_b0100) 2006; 101 Aiba (10.1016/j.biortech.2013.03.025_b0005) 1982; 23 Fouchard (10.1016/j.biortech.2013.03.025_b0045) 2009; 102 Hodaifa (10.1016/j.biortech.2013.03.025_b0050) 2010; 14 Chiu (10.1016/j.biortech.2013.03.025_b0030) 2008; 99 Laws (10.1016/j.biortech.2013.03.025_b0065) 1991; 37 Li (10.1016/j.biortech.2013.03.025_b0070) 2012; 599 Miron (10.1016/j.biortech.2013.03.025_b0085) 1999; 70 Shah (10.1016/j.biortech.2013.03.025_b0095) 1982; 28 Ketheesan (10.1016/j.biortech.2013.03.025_b0060) 2012; 108 Campbell (10.1016/j.biortech.2013.03.025_b0015) 2011; 102 Putt (10.1016/j.biortech.2013.03.025_b0090) 2011; 102 10.1016/j.biortech.2013.03.025_b0115 Milledge (10.1016/j.biortech.2013.03.025_b0080) 2010; 10 |
References_xml | – volume: 129 start-page: 439 year: 2007 end-page: 445 ident: b0035 article-title: Biofixation of carbon dioxide by publication-title: J. Biotechnol. – volume: 108 start-page: 196 year: 2012 end-page: 202 ident: b0060 article-title: Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor publication-title: Bioresour. Technol. – volume: 14 start-page: 217 year: 2010 end-page: 232 ident: b0075 article-title: Microalgae for biodiesel production and other applications: a review publication-title: Renew. Sust. Energy Rev. – year: 1994 ident: b0010 article-title: Microalgae Biotechnology and Microbiology – volume: 102 start-page: 50 year: 2011 end-page: 56 ident: b0015 article-title: Life cycle assessment of biodiesel production from microalgae in ponds publication-title: Bioresour. Technol. – volume: 28 start-page: 353 year: 1982 end-page: 379 ident: b0095 article-title: Design parameters estimations for bubble column reactors publication-title: AIChE J. – volume: 14 start-page: 854 year: 2010 end-page: 860 ident: b0050 article-title: Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater publication-title: Biotechnol. Bioprocess Eng. – volume: 22 start-page: 1490 year: 2006 end-page: 1506 ident: b0020 article-title: Microalgal reactors: a review of enclosed system designs and performances publication-title: Biotechnol. Prog. – volume: 99 start-page: 3389 year: 2008 end-page: 3396 ident: b0030 article-title: Reduction of CO publication-title: Bioresour. Technol. – volume: 70 start-page: 249 year: 1999 end-page: 270 ident: b0085 article-title: Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae publication-title: J. Biotechnol. – volume: 102 start-page: 232 year: 2009 end-page: 245 ident: b0045 article-title: Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with publication-title: Biotechnol. Bioeng. – volume: 29 start-page: 275 year: 2002 end-page: 280 ident: b0055 article-title: Use of publication-title: J. Ind. Microbiol. Biotechnol. – volume: 31 start-page: 336 year: 1988 end-page: 344 ident: b0110 article-title: Photobioreactor design: mixing, carbon utilization, and oxygen accumulation publication-title: Biotechnol. Bioeng. – volume: 23 start-page: 85 year: 1982 end-page: 156 ident: b0005 article-title: Growth kinetics of photosynthetic microorganisms publication-title: Adv. Biochem. Eng. – volume: 82 start-page: 179 year: 2009 end-page: 185 ident: b0040 article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs publication-title: Appl. Microbiol. Biotechnol. – volume: 83 start-page: 303 year: 2003 end-page: 311 ident: b0120 article-title: Kinetic modeling of the light-dependent photosynthetic activity of the green microalga publication-title: Biotechnol. Bioeng. – volume: 50 start-page: 324 year: 2006 end-page: 329 ident: b0025 article-title: Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor publication-title: Sep. Purif. Technol. – volume: 10 start-page: 31 year: 2010 end-page: 41 ident: b0080 article-title: Commercial application of microalgae other than as biofuels: a brief review publication-title: Rev. Environ. Sci. Biotechnol. – volume: 102 start-page: 3240 year: 2011 end-page: 3245 ident: b0090 article-title: An efficient system for carbonation of high-rate algae pond water to enhance CO publication-title: Bioresour. Technol. – volume: 599 start-page: 137 year: 2012 end-page: 140 ident: b0070 article-title: Influence of carbon dioxide concentration on microalgal growth in a bubble bolumn photobioreactor publication-title: Adv. Mater. Res. – reference: Weissman, J.C., Goebel, R.P., 1985. Production of Liquid Fuels and Chemicals by Microalgae. Solar Energy Research Institute, Golden, Co., SERI/STR-231-2649. – volume: 37 start-page: 936 year: 1991 end-page: 947 ident: b0065 article-title: A study of the energetics and economics of microalgal mass culture with the marine chlorophyte publication-title: Biotechnol. Bioeng. – volume: 101 start-page: 87 year: 2006 end-page: 96 ident: b0100 article-title: Commercial applications of microalgae publication-title: J. Biosci. Bioeng. – volume: 99 start-page: 4021 year: 2008 end-page: 4028 ident: b0105 article-title: Photobioreactors for mass cultivation of algae publication-title: Bioresour. Technol. – volume: 599 start-page: 137 year: 2012 ident: 10.1016/j.biortech.2013.03.025_b0070 article-title: Influence of carbon dioxide concentration on microalgal growth in a bubble bolumn photobioreactor publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.599.137 – volume: 101 start-page: 87 year: 2006 ident: 10.1016/j.biortech.2013.03.025_b0100 article-title: Commercial applications of microalgae publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.101.87 – ident: 10.1016/j.biortech.2013.03.025_b0115 doi: 10.2172/5845166 – volume: 99 start-page: 3389 year: 2008 ident: 10.1016/j.biortech.2013.03.025_b0030 article-title: Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.08.013 – volume: 108 start-page: 196 year: 2012 ident: 10.1016/j.biortech.2013.03.025_b0060 article-title: Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.146 – volume: 31 start-page: 336 year: 1988 ident: 10.1016/j.biortech.2013.03.025_b0110 article-title: Photobioreactor design: mixing, carbon utilization, and oxygen accumulation publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260310409 – volume: 10 start-page: 31 year: 2010 ident: 10.1016/j.biortech.2013.03.025_b0080 article-title: Commercial application of microalgae other than as biofuels: a brief review publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-010-9214-7 – volume: 28 start-page: 353 year: 1982 ident: 10.1016/j.biortech.2013.03.025_b0095 article-title: Design parameters estimations for bubble column reactors publication-title: AIChE J. doi: 10.1002/aic.690280302 – volume: 102 start-page: 50 year: 2011 ident: 10.1016/j.biortech.2013.03.025_b0015 article-title: Life cycle assessment of biodiesel production from microalgae in ponds publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.048 – volume: 29 start-page: 275 year: 2002 ident: 10.1016/j.biortech.2013.03.025_b0055 article-title: Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1038/sj.jim.7000313 – volume: 70 start-page: 249 year: 1999 ident: 10.1016/j.biortech.2013.03.025_b0085 article-title: Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(99)00079-6 – volume: 102 start-page: 3240 year: 2011 ident: 10.1016/j.biortech.2013.03.025_b0090 article-title: An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.029 – volume: 14 start-page: 854 year: 2010 ident: 10.1016/j.biortech.2013.03.025_b0050 article-title: Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-009-0119-7 – volume: 37 start-page: 936 year: 1991 ident: 10.1016/j.biortech.2013.03.025_b0065 article-title: A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gases publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260371007 – volume: 102 start-page: 232 year: 2009 ident: 10.1016/j.biortech.2013.03.025_b0045 article-title: Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22034 – volume: 99 start-page: 4021 year: 2008 ident: 10.1016/j.biortech.2013.03.025_b0105 article-title: Photobioreactors for mass cultivation of algae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.01.046 – volume: 82 start-page: 179 year: 2009 ident: 10.1016/j.biortech.2013.03.025_b0040 article-title: Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1811-9 – volume: 129 start-page: 439 year: 2007 ident: 10.1016/j.biortech.2013.03.025_b0035 article-title: Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2007.01.009 – volume: 23 start-page: 85 year: 1982 ident: 10.1016/j.biortech.2013.03.025_b0005 article-title: Growth kinetics of photosynthetic microorganisms publication-title: Adv. Biochem. Eng. – year: 1994 ident: 10.1016/j.biortech.2013.03.025_b0010 – volume: 22 start-page: 1490 year: 2006 ident: 10.1016/j.biortech.2013.03.025_b0020 article-title: Microalgal reactors: a review of enclosed system designs and performances publication-title: Biotechnol. Prog. doi: 10.1002/bp060065r – volume: 83 start-page: 303 year: 2003 ident: 10.1016/j.biortech.2013.03.025_b0120 article-title: Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10669 – volume: 50 start-page: 324 year: 2006 ident: 10.1016/j.biortech.2013.03.025_b0025 article-title: Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2005.12.006 – volume: 14 start-page: 217 year: 2010 ident: 10.1016/j.biortech.2013.03.025_b0075 article-title: Microalgae for biodiesel production and other applications: a review publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2009.07.020 |
SSID | ssj0003172 |
Score | 2.4314764 |
Snippet | •A closed raceway pond and its equation of CO2 mass transfer.•CO2 dissolution efficiency in the closed raceway pond without algae.•CO2 fixation efficiency by... Microalgae contain about 50% of carbon, which means that a total of 1.83 ton of CO2 is needed to produce 1 ton of microalgae. The cost of CO2 supply for... Microalgae contain about 50% of carbon, which means that a total of 1.83ton of CO2 is needed to produce 1ton of microalgae. The cost of CO2 supply for... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 267 |
SubjectTerms | Biological and medical sciences Carbon Carbon capture and storage Carbon Cycle Carbon dioxide Carbon Dioxide - metabolism Chlorella vulgaris - metabolism Culture culture media Expenditures Fixation Fixation efficiency Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration Intermittent gas sparging Kinetics Mass transfer Mass transfer coefficient Microalgae Microalgae - metabolism Oxygen - metabolism Ponds Ponds - microbiology raceways Rheology |
Title | Efficiency of CO2 fixation by microalgae in a closed raceway pond |
URI | https://dx.doi.org/10.1016/j.biortech.2013.03.025 https://www.ncbi.nlm.nih.gov/pubmed/23567690 https://www.proquest.com/docview/1347787200 https://www.proquest.com/docview/1431620063 https://www.proquest.com/docview/1500769599 https://www.proquest.com/docview/1642272810 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9wwDDele9hGGVv3dW13eLDX9BLHTuLH42i5bax72Ap9M7Ejj5Q2Oe6u0L3sb6_kJP2A7fowCAQSmRjJkSVL-omxT6VU2mdQRdJKFUlIILJVJiOwFtB6ELYIXUu-nWTzU_nlTJ1tsdlQC0Nplb3u73R60Nb9k0nPzcmiric_yPguVIgLBZw5qmCXOa3ywz93aR64P4ZIAhJHRH2vSvj80NaU0RqCEkkawE6pZfbfN6idRblCtvmu38W_DdKwMR2_ZC96i5JPu0m_YlvQ7LLn01_LHlUDdtnT2dDWDd_cQyB8zaZHAUKC6i956_nsu-C-vg7S4vY3v6R0Par2AF43vOTuol1BxZeloyM3vmib6g07PT76OZtHfVeFyKksXUc-LQrntE8IFkDG3pWxK1KfenA6xltSZaAgy0sfowyEiCtnJXiw6BjlLrPpW7bdtA28Z9xZ4ZW3YDONJHlZakFJzZLK1NFJ9yOmBlYa10OOU-eLCzPklp2bQQSGRGBivIQascntuEUHuvHoCD1IyjxYPgZ3hkfHjh-I9vaTaNmRtxWP2MdB1gaFRRGVsoH2amWoDhc1HmqaDTQENkAHN-kGGkURUa203kCDnqLIRZHgt951C-5upqmiVOV47z_YsM-eidDqg5I5D9j2enkFH9DgWttx-KPG7Mn089f5yQ1TaCtz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORRUISiULo9iJDimmzh2NjlwWC2ttvTBgVbqzcTOGKUqyWp3K-iFP8UfZMZJ-pBge0CVIkVK7NiaccYznm9mGHuXS5W5BIpAGqkCCREEpkhkAMYAag_CpL5qycFhMj6Wn07UyRL73cXCEKyylf2NTPfSun3Sb6nZn5Rl_wsp36nyfiGfZ65FVu7BxQ-022Yfdj8ik98LsbN9NBoHbWmBwKokngcuTlNrMxdRbLwMnc1Dm8YudmCzEG9RkYCCZJC7ECciRFhYI8GBQetgYBMT43fvsfsSxQWVTdj6dYUrwQ3Zuy5wdgFN71pY8umWKQlC670gUeyzq1KN7r_viKuTfIZ8ck2BjX9rwH4n3HnMHrUqLB82VHrClqBaYw-H36ZtGg9YYyujro4cvrmW8vApG277nBUU8Mlrx0efBXflT788uLng3wkfSOElwMuK59ye1TMo-DS3dMbHJ3VVPGPHd0LrdbZc1RVsMG6NcMoZMEmGTQZ5nglCUUuKiwcTux5THSm1bXOcU6mNM92B2U51xwJNLNAhXkL1WP-y36TJ8nFrj6zjlL6xXjVuRbf23bzB2sshUZUk8y7ssbcdrzUyi1w4eQX1-UxT4C-KWBRtC9pQdgM6KYoXtFHkgs1Uli1og6apGIg0wrGeNwvuaqaxImx0-OI_yPCGrYyPDvb1_u7h3kv2QPg6I4QkfcWW59NzeI3a3txs-r-Ls693_Tv_AZlFalc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+of+CO2+fixation+by+microalgae+in+a+closed+raceway+pond&rft.jtitle=Bioresource+technology&rft.au=SHUWEN+LI&rft.au=SHENGJUN+LUO&rft.au=RONGBO+GUO&rft.date=2013-05-01&rft.pub=Elsevier&rft.issn=0960-8524&rft.volume=136&rft.spage=267&rft.epage=272&rft_id=info:doi/10.1016%2Fj.biortech.2013.03.025&rft.externalDBID=n%2Fa&rft.externalDocID=27397470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |