Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions

•Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest volumetric productivity of 14.2L/L was found in SS-AD at CS:CM of 1:1.•VFA/TA value of 0.4 was a more important criterion than NH3-N or FA concentra...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 149; pp. 406 - 412
Main Authors Li, Yeqing, Zhang, Ruihong, Chen, Chang, Liu, Guangqing, He, Yanfeng, Liu, Xiaoying
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
TMY
Bd
AD
BMP
CM
TA
CS
EMY
VFA
SD
FA
VS
TS
Online AccessGet full text

Cover

Loading…
Abstract •Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest volumetric productivity of 14.2L/L was found in SS-AD at CS:CM of 1:1.•VFA/TA value of 0.4 was a more important criterion than NH3-N or FA concentration. Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.
AbstractList •Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest volumetric productivity of 14.2L/L was found in SS-AD at CS:CM of 1:1.•VFA/TA value of 0.4 was a more important criterion than NH3-N or FA concentration. Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.
Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2 Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.
Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.
Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.
Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.
Author Liu, Guangqing
Liu, Xiaoying
Li, Yeqing
Chen, Chang
Zhang, Ruihong
He, Yanfeng
Author_xml – sequence: 1
  givenname: Yeqing
  surname: Li
  fullname: Li, Yeqing
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 2
  givenname: Ruihong
  surname: Zhang
  fullname: Zhang, Ruihong
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 3
  givenname: Chang
  surname: Chen
  fullname: Chen, Chang
  email: chenchang@mail.buct.edu.cn
  organization: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 4
  givenname: Guangqing
  surname: Liu
  fullname: Liu, Guangqing
  email: gqliu@mail.buct.edu.cn
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 5
  givenname: Yanfeng
  surname: He
  fullname: He, Yanfeng
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 6
  givenname: Xiaoying
  surname: Liu
  fullname: Liu, Xiaoying
  organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27960063$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24135565$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFr1D5gsShWcZx7DgSB6CCFqkSFzhbjjPpeknsYidFHPnmOLtbkLgs0kj-93tPGr85Iyc-eCTkgsGaAZOvt-vWhTih3axLYHwNTS72hKyYqnlRNrU8IStoJBRKlNUpOUtpCwCc1eUzclpWjAshxYr8eu_CnUn0PoZutpMLnvYxjNSGonN3mHY3oc_n6GmawgNGanxH7cbZb-jpaPwckc6-2z0YjKF1lv7A6ZJucHRFCoPrLnea3TabmAmzn-_cYp6ek6e9GRK-OKzn5OvHD1-uborbz9efrt7dFlZIPhU9yFow1QEC5Baxaa1qAJhRgKWRaFTVt2hrphg3VmELEiojGiO4AmsYPyev9r651e9z7kyPLlkcBuMxzEmzWpaM142Ux1HBZF2JUsBxtGpAMGhq8R9opUpQXPCMXhzQuR2x0_fRjSb-1I-5ZeDlATDJmqGPxluX_nK5DQC5GMk9Z2NIKWL_B2Ggl0HSW_04SHoZJA1NruW33vwjtC4HlwObonHDcfnbvRxzog8Oo07WobfYuYh20l1wxyx-A9Hs59Y
CitedBy_id crossref_primary_10_1007_s11356_021_15287_2
crossref_primary_10_1016_j_biortech_2015_01_140
crossref_primary_10_1007_s12649_021_01564_1
crossref_primary_10_1016_j_biortech_2017_01_025
crossref_primary_10_3390_en16124675
crossref_primary_10_1016_j_biortech_2014_04_070
crossref_primary_10_1016_j_jenvman_2020_110481
crossref_primary_10_1007_s12649_017_0133_5
crossref_primary_10_1016_j_energy_2018_03_082
crossref_primary_10_1021_acs_energyfuels_0c01852
crossref_primary_10_1016_j_biortech_2014_03_023
crossref_primary_10_1016_j_biortech_2016_03_148
crossref_primary_10_1016_j_biteb_2018_11_004
crossref_primary_10_1111_1751_7915_12308
crossref_primary_10_1007_s12033_023_01015_3
crossref_primary_10_1016_j_anaerobe_2017_05_015
crossref_primary_10_1371_journal_pone_0262940
crossref_primary_10_1016_j_wasman_2020_07_003
crossref_primary_10_1038_s41598_018_32141_7
crossref_primary_10_1016_j_biortech_2021_126030
crossref_primary_10_1016_j_wasman_2019_04_013
crossref_primary_10_1016_j_resconrec_2024_107507
crossref_primary_10_1002_bbb_2282
crossref_primary_10_1016_j_jclepro_2020_121495
crossref_primary_10_1016_j_jenvman_2022_115264
crossref_primary_10_1016_j_wasman_2018_06_015
crossref_primary_10_1039_C6RA25798D
crossref_primary_10_1016_j_rser_2019_01_026
crossref_primary_10_1007_s42853_019_00040_y
crossref_primary_10_1016_j_chemosphere_2022_135955
crossref_primary_10_1016_j_ecmx_2020_100046
crossref_primary_10_1016_j_indcrop_2018_12_051
crossref_primary_10_3390_su17030892
crossref_primary_10_1016_j_biortech_2016_02_110
crossref_primary_10_3390_pr8101224
crossref_primary_10_1016_j_rser_2017_05_068
crossref_primary_10_1021_ef402562z
crossref_primary_10_1016_j_rser_2021_110822
crossref_primary_10_1016_j_bej_2018_04_004
crossref_primary_10_1016_j_bej_2020_107873
crossref_primary_10_1007_s42853_019_00012_2
crossref_primary_10_1016_j_biortech_2017_11_083
crossref_primary_10_1016_j_biortech_2017_11_088
crossref_primary_10_1016_j_rser_2023_113187
crossref_primary_10_1007_s12649_019_00664_3
crossref_primary_10_1016_j_biortech_2015_02_036
crossref_primary_10_1016_j_jenvman_2024_121700
crossref_primary_10_1080_15567036_2018_1549157
crossref_primary_10_1016_j_apenergy_2020_116128
crossref_primary_10_15446_dyna_v85n206_68167
crossref_primary_10_1016_j_renene_2020_10_110
crossref_primary_10_1039_D2EW00873D
crossref_primary_10_1016_j_watres_2021_117067
crossref_primary_10_1016_j_biortech_2020_122823
crossref_primary_10_1007_s12649_018_0377_8
crossref_primary_10_3390_en13143573
crossref_primary_10_1016_j_biortech_2018_08_061
crossref_primary_10_1016_j_biortech_2018_12_068
crossref_primary_10_1061__ASCE_EE_1943_7870_0002046
crossref_primary_10_3390_agriculture13081645
crossref_primary_10_1016_j_jbiosc_2017_12_001
crossref_primary_10_1016_j_fuel_2018_05_142
crossref_primary_10_1016_j_biortech_2017_08_047
crossref_primary_10_3390_agriculture13091689
crossref_primary_10_3390_en13153761
crossref_primary_10_1063_1_4996631
crossref_primary_10_1016_j_reffit_2016_08_001
crossref_primary_10_1016_j_biortech_2019_122364
crossref_primary_10_1016_j_biortech_2021_126587
crossref_primary_10_1039_C7RA08559A
crossref_primary_10_1016_j_anaerobe_2017_04_016
crossref_primary_10_1016_j_ibiod_2016_10_058
crossref_primary_10_1016_j_biombioe_2023_106779
crossref_primary_10_55708_js0103018
crossref_primary_10_1016_j_renene_2017_11_023
crossref_primary_10_1002_sd_2937
crossref_primary_10_1186_s40538_018_0129_9
crossref_primary_10_1007_s12649_020_01116_z
crossref_primary_10_1007_s12649_019_00661_6
crossref_primary_10_2139_ssrn_4067155
crossref_primary_10_1016_j_biortech_2015_01_050
crossref_primary_10_1016_j_biortech_2017_09_146
crossref_primary_10_1016_j_fuel_2023_128464
crossref_primary_10_1016_j_biortech_2020_124429
crossref_primary_10_1016_j_biortech_2016_01_111
crossref_primary_10_1016_j_rser_2023_113846
crossref_primary_10_1016_j_matpr_2023_11_138
crossref_primary_10_1016_j_renene_2022_11_055
crossref_primary_10_1016_j_jes_2023_04_031
crossref_primary_10_1016_j_energy_2020_117452
crossref_primary_10_1002_ep_13533
crossref_primary_10_1021_ef5005495
crossref_primary_10_1016_j_biombioe_2024_107241
crossref_primary_10_1016_j_enconman_2017_08_002
crossref_primary_10_1039_C9RA05556H
crossref_primary_10_1016_j_jclepro_2022_134140
crossref_primary_10_1021_acs_energyfuels_7b02596
crossref_primary_10_1021_acsestengg_3c00079
crossref_primary_10_1007_s12155_024_10757_0
crossref_primary_10_1080_15567036_2019_1587084
crossref_primary_10_1016_j_fuel_2021_122466
crossref_primary_10_1016_j_jenvman_2023_119031
crossref_primary_10_1016_j_biortech_2019_02_122
crossref_primary_10_1016_j_jece_2022_107602
crossref_primary_10_1080_15567036_2019_1640315
crossref_primary_10_1007_s12010_020_03445_0
crossref_primary_10_3390_app10217825
crossref_primary_10_1007_s42452_020_3063_y
crossref_primary_10_3390_environments8080080
crossref_primary_10_1016_j_enconman_2018_07_055
crossref_primary_10_1016_j_rser_2021_111167
crossref_primary_10_1039_C8RA05616A
crossref_primary_10_1186_s13068_023_02412_1
crossref_primary_10_1007_s12649_017_9834_z
crossref_primary_10_1016_j_biteb_2024_101835
crossref_primary_10_1016_j_rser_2024_114412
crossref_primary_10_1080_09593330_2016_1234001
crossref_primary_10_1016_j_enconman_2014_08_018
crossref_primary_10_1007_s11356_017_0751_2
crossref_primary_10_1016_j_biortech_2017_11_055
crossref_primary_10_1007_s42108_018_0003_2
crossref_primary_10_1016_j_jclepro_2019_118479
crossref_primary_10_1016_j_biteb_2022_101186
crossref_primary_10_1016_j_biortech_2022_127232
crossref_primary_10_1016_j_jenvman_2023_118404
crossref_primary_10_1016_j_biortech_2015_07_048
crossref_primary_10_1002_cben_202200057
crossref_primary_10_1016_j_biteb_2024_101862
crossref_primary_10_3390_en13184866
crossref_primary_10_1016_j_egypro_2015_11_575
crossref_primary_10_1080_10962247_2020_1729277
crossref_primary_10_1016_j_biortech_2020_123793
crossref_primary_10_1007_s13399_023_04813_6
crossref_primary_10_1016_j_apenergy_2015_08_045
crossref_primary_10_1016_j_biosystemseng_2017_05_002
crossref_primary_10_1016_j_enconman_2018_06_099
crossref_primary_10_1080_10934529_2015_1109395
crossref_primary_10_3389_fmicb_2025_1515931
crossref_primary_10_1016_j_envres_2024_118917
crossref_primary_10_1016_j_egyr_2023_03_097
crossref_primary_10_1016_j_rser_2019_109587
crossref_primary_10_1016_j_biortech_2017_07_159
crossref_primary_10_1016_j_wasman_2017_02_022
crossref_primary_10_1016_j_fuel_2018_03_125
crossref_primary_10_3390_pr10122662
crossref_primary_10_3390_fermentation8100537
crossref_primary_10_1088_1757_899X_458_1_012084
crossref_primary_10_15446_rev_colomb_biote_v18n2_53853
crossref_primary_10_1016_j_biortech_2020_124197
crossref_primary_10_1007_s10098_024_02941_9
crossref_primary_10_1016_j_jenvman_2019_109744
crossref_primary_10_1016_j_anaerobe_2017_03_017
crossref_primary_10_1016_j_biortech_2019_122588
crossref_primary_10_1007_s13399_019_00451_z
crossref_primary_10_1016_j_rser_2018_08_038
crossref_primary_10_3390_en15134696
crossref_primary_10_3390_app12178884
crossref_primary_10_1016_j_jes_2016_05_005
crossref_primary_10_1007_s00449_016_1630_9
crossref_primary_10_1007_s12010_015_1919_1
crossref_primary_10_1016_j_egyr_2022_08_189
crossref_primary_10_1007_s13399_022_02580_4
crossref_primary_10_1016_j_wasman_2017_10_038
crossref_primary_10_3390_en16145442
crossref_primary_10_3390_ijerph16245023
crossref_primary_10_1016_j_biortech_2022_127360
crossref_primary_10_1016_j_cej_2015_03_067
crossref_primary_10_1016_j_rser_2024_115264
crossref_primary_10_1021_acs_energyfuels_8b00015
crossref_primary_10_1016_j_envpol_2023_122643
crossref_primary_10_1016_j_rser_2021_111884
crossref_primary_10_1016_j_rser_2022_112756
crossref_primary_10_1016_j_renene_2024_120427
crossref_primary_10_1007_s11356_021_15610_x
crossref_primary_10_1186_s13068_019_1562_0
crossref_primary_10_1007_s12010_019_03035_9
crossref_primary_10_1016_j_jclepro_2024_142789
crossref_primary_10_1155_2016_2147513
crossref_primary_10_3390_en14030570
crossref_primary_10_1155_2016_8462928
crossref_primary_10_1016_j_energy_2019_07_051
crossref_primary_10_3390_en16093885
crossref_primary_10_1016_j_biortech_2014_01_054
crossref_primary_10_1016_j_biortech_2017_03_184
crossref_primary_10_1177_0734242X16644681
crossref_primary_10_1016_j_biortech_2016_07_082
crossref_primary_10_1016_j_jece_2023_109925
crossref_primary_10_1371_journal_pone_0182361
crossref_primary_10_1016_j_biortech_2017_09_095
crossref_primary_10_1016_j_wasman_2016_03_028
crossref_primary_10_1016_j_biombioe_2020_105602
crossref_primary_10_1016_j_biortech_2021_126625
crossref_primary_10_3389_fenrg_2018_00143
crossref_primary_10_1016_j_cej_2024_155705
crossref_primary_10_4236_jsbs_2016_64009
crossref_primary_10_1016_j_biombioe_2019_105322
crossref_primary_10_1007_s10163_017_0602_8
crossref_primary_10_1016_j_wasman_2019_04_046
crossref_primary_10_1007_s11356_019_04677_2
crossref_primary_10_1016_j_energy_2018_08_124
crossref_primary_10_1016_j_biortech_2018_10_050
crossref_primary_10_1051_e3sconf_202127201026
crossref_primary_10_3389_finmi_2024_1428686
crossref_primary_10_1016_j_biombioe_2019_105440
crossref_primary_10_1016_j_renene_2018_09_009
crossref_primary_10_1002_bmb_21399
crossref_primary_10_1016_j_wasman_2017_05_030
crossref_primary_10_1016_j_biortech_2014_09_103
crossref_primary_10_1016_j_biortech_2014_02_050
crossref_primary_10_3390_fermentation9070666
crossref_primary_10_1007_s13399_016_0199_5
crossref_primary_10_1007_s10163_020_01033_2
crossref_primary_10_1016_j_biombioe_2020_105872
crossref_primary_10_1016_j_chemosphere_2021_131356
crossref_primary_10_1016_j_enconman_2017_08_074
Cites_doi 10.1016/j.biortech.2012.12.069
10.1016/j.biortech.2011.07.103
10.1016/j.biortech.2010.01.052
10.1016/j.biortech.2012.01.025
10.1016/j.rser.2010.07.042
10.1016/j.biortech.2004.01.011
10.1021/ie50507a033
10.1016/j.rser.2009.06.016
10.1016/j.wasman.2007.03.028
10.1007/s002530051071
10.1016/j.biortech.2010.10.035
10.1016/j.biortech.2008.02.044
10.1016/j.biortech.2012.04.102
10.1016/j.biortech.2012.09.081
10.1016/j.biortech.2006.10.024
10.1016/j.biortech.2006.12.043
10.1016/0961-9534(93)90010-2
10.1016/j.biortech.2010.07.021
10.1016/j.procbio.2005.01.025
10.1016/S0960-8524(02)00161-X
10.2166/wst.2008.521
10.1021/ef400117f
10.1016/j.biortech.2012.08.051
10.1016/j.biortech.2006.02.039
10.1016/j.biortech.2012.06.058
10.1002/bbb.229
10.1016/j.biortech.2012.09.032
10.1016/S0043-1354(97)00201-7
10.1007/s12010-013-0335-7
10.1016/j.biortech.2010.01.027
10.1016/j.biortech.2008.11.011
10.1016/0043-1354(67)90008-5
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
FR3
P64
7SU
7TB
C1K
KR7
DOI 10.1016/j.biortech.2013.09.091
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
MEDLINE
AGRICOLA
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 412
ExternalDocumentID 24135565
27960063
10_1016_j_biortech_2013_09_091
S096085241301523X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
7QO
8FD
FR3
P64
7SU
7TB
C1K
KR7
ID FETCH-LOGICAL-c563t-f067518d0e00873e9bc89001a80e2a6ea84fbec71813ac8eb0604a59a5380ca13
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Jul 10 18:18:25 EDT 2025
Thu Jul 10 23:12:43 EDT 2025
Fri Jul 11 09:34:17 EDT 2025
Tue Aug 05 10:10:26 EDT 2025
Mon Jul 21 06:02:35 EDT 2025
Wed Apr 02 07:27:35 EDT 2025
Tue Jul 01 02:06:19 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TMY
Bd
AD
Chicken manure
BMP
Corn stover
S/I ratio
SS-AD
CM
Solid state digestion
Process stability
TA
CS
EMY
VFA
SD
W-AD
Weighted EMY
NH3-N
Biochemical methane potential
FA
HSS-AD
VS
TS
Methane
Monocotyledones
Stability
Zea mays
Poultry manure
Biochemistry
Biogas
Digestion
Cereal crop
Straw
Solid state
Gramineae
Anaerobe
Angiospermae
Spermatophyta
Corn by product
volatile fatty acid
theoretical methane yield
weighted experimental methane yield
volatile solid
solid state anaerobic digestion
experimental methane yield
hemi-solid state anaerobic digestion
anaerobic digestion
substrate/inoculum ratio
total solid
NH-N
biodegradability
ammonia-nitrogen
total alkalinity
free ammonia
B(d)
wet anaerobic digestion
standard deviation
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-f067518d0e00873e9bc89001a80e2a6ea84fbec71813ac8eb0604a59a5380ca13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24135565
PQID 1448208353
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1762137966
proquest_miscellaneous_1516745250
proquest_miscellaneous_1490510975
proquest_miscellaneous_1448208353
pubmed_primary_24135565
pascalfrancis_primary_27960063
crossref_primary_10_1016_j_biortech_2013_09_091
crossref_citationtrail_10_1016_j_biortech_2013_09_091
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Kayhanian, Lindenauer, Hardy, Tchobanoglous (b0090) 1991; 32
Wang, Yang, Feng, Ren, Han (b0140) 2012; 120
El-Mashad, Zhang (b0040) 2010; 101
Li, Champagne, Anderson (b0100) 2011; 102
Mshandete, Kivaisi, Rubindamayugi, Mattiasson (b0120) 2004; 95
Siegert, Banks (b0130) 2005; 40
(b0005) 1998
Guendouz, Buffiere, Cacho, Carrere, Delgenes (b0065) 2008; 58
Zhang, Elmashad, Hartman, Wang, Liu, Choate, Gamble (b0165) 2007; 98
Gallert, Winter (b0060) 1997; 48
Brown, Shi, Li (b0015) 2012; 124
Fdez-Guelfo, Alvarez-Gallego, Sales Marquez, Romero Garcia (b0045) 2010; 101
Kafle, Kim, Sung (b0080) 2013; 127
Kaparajua, Serranoa, Thomsenb, Kongjana, Angelidaki (b0085) 2009; 100
Elbeshbishy, Nakhla, Hafez (b0035) 2012; 110
Zhang, Yang, Tian, Yang, Zhang, Zheng, Wang (b0160) 2009; 13
Vavilin, Fernandez, Palatsi, Flotats (b0135) 2008; 28
Labatut, Angenent, Scott (b0095) 2011; 102
Chynoweth, Turick, Owen, Jerger, Peck (b0030) 1993; 5
Hattingh, Thiel, Siebert (b0075) 1967; 1
Zhou, Elbeshbishy, Nakhla (b0170) 2013; 130
Romano, Zhang (b0125) 2008; 99
Li, Park, Zhu (b0105) 2011; 15
Xu, Li (b0155) 2012; 118
Li, Feng, Zhang, He, Liu, Xiao, Ma, Chen, Liu (b0110) 2013; 171
Hansen, Angelidaki, Ahring (b0070) 1998; 32
Ward, Hobbs, Holliman, Jones (b0145) 2008; 99
Forster-Carneiro, Perez, Romero (b0050) 2007; 98
Bolzonella, Innocenti, Pavan, Traverso, Cecchi (b0010) 2003; 86
Frigon, Guiot (b0055) 2010; 4
Li, Zhang, Liu, Chen, Xiao, Feng, He, Liu (b0115) 2013; 27
Brown, Li (b0020) 2013; 127
Wu, Yao, Zhu, Miller (b0150) 2010; 101
Buswell, Mueller (b0025) 1952; 44
Wang (10.1016/j.biortech.2013.09.091_b0140) 2012; 120
Xu (10.1016/j.biortech.2013.09.091_b0155) 2012; 118
Hattingh (10.1016/j.biortech.2013.09.091_b0075) 1967; 1
Li (10.1016/j.biortech.2013.09.091_b0110) 2013; 171
Frigon (10.1016/j.biortech.2013.09.091_b0055) 2010; 4
Brown (10.1016/j.biortech.2013.09.091_b0020) 2013; 127
El-Mashad (10.1016/j.biortech.2013.09.091_b0040) 2010; 101
Fdez-Guelfo (10.1016/j.biortech.2013.09.091_b0045) 2010; 101
Kayhanian (10.1016/j.biortech.2013.09.091_b0090) 1991; 32
Forster-Carneiro (10.1016/j.biortech.2013.09.091_b0050) 2007; 98
Mshandete (10.1016/j.biortech.2013.09.091_b0120) 2004; 95
Guendouz (10.1016/j.biortech.2013.09.091_b0065) 2008; 58
Bolzonella (10.1016/j.biortech.2013.09.091_b0010) 2003; 86
Hansen (10.1016/j.biortech.2013.09.091_b0070) 1998; 32
Zhang (10.1016/j.biortech.2013.09.091_b0165) 2007; 98
Li (10.1016/j.biortech.2013.09.091_b0115) 2013; 27
Ward (10.1016/j.biortech.2013.09.091_b0145) 2008; 99
Vavilin (10.1016/j.biortech.2013.09.091_b0135) 2008; 28
(10.1016/j.biortech.2013.09.091_b0005) 1998
Buswell (10.1016/j.biortech.2013.09.091_b0025) 1952; 44
Kafle (10.1016/j.biortech.2013.09.091_b0080) 2013; 127
Gallert (10.1016/j.biortech.2013.09.091_b0060) 1997; 48
Zhou (10.1016/j.biortech.2013.09.091_b0170) 2013; 130
Siegert (10.1016/j.biortech.2013.09.091_b0130) 2005; 40
Brown (10.1016/j.biortech.2013.09.091_b0015) 2012; 124
Chynoweth (10.1016/j.biortech.2013.09.091_b0030) 1993; 5
Labatut (10.1016/j.biortech.2013.09.091_b0095) 2011; 102
Wu (10.1016/j.biortech.2013.09.091_b0150) 2010; 101
Zhang (10.1016/j.biortech.2013.09.091_b0160) 2009; 13
Li (10.1016/j.biortech.2013.09.091_b0100) 2011; 102
Kaparajua (10.1016/j.biortech.2013.09.091_b0085) 2009; 100
Li (10.1016/j.biortech.2013.09.091_b0105) 2011; 15
Elbeshbishy (10.1016/j.biortech.2013.09.091_b0035) 2012; 110
Romano (10.1016/j.biortech.2013.09.091_b0125) 2008; 99
References_xml – volume: 86
  start-page: 123
  year: 2003
  end-page: 129
  ident: b0010
  article-title: Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase
  publication-title: Bioresour. Technol.
– volume: 32
  start-page: 5
  year: 1998
  end-page: 12
  ident: b0070
  article-title: Anaerobic digestion of swine manure: inhibition by ammonia
  publication-title: Water Res.
– volume: 120
  start-page: 78
  year: 2012
  end-page: 83
  ident: b0140
  article-title: Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw
  publication-title: Bioresour. Technol.
– volume: 124
  start-page: 379
  year: 2012
  end-page: 386
  ident: b0015
  article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production
  publication-title: Bioresour. Technol.
– volume: 98
  start-page: 3354
  year: 2007
  end-page: 3366
  ident: b0050
  article-title: Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes
  publication-title: Bioresour. Technol.
– volume: 95
  start-page: 19
  year: 2004
  end-page: 24
  ident: b0120
  article-title: Anaerobic batch co-digestion of sisal pulp and fish wastes
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 2255
  year: 2011
  end-page: 2264
  ident: b0095
  article-title: Biochemical methane potential and biodegradability of complex organic substrates
  publication-title: Bioresour. Technol.
– volume: 127
  start-page: 326
  year: 2013
  end-page: 336
  ident: b0080
  article-title: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics
  publication-title: Bioresour. Technol.
– volume: 15
  start-page: 821
  year: 2011
  end-page: 826
  ident: b0105
  article-title: Solid-state anaerobic digestion for methane production from organic waste
  publication-title: Renew. Sust. Energy Rev.
– volume: 100
  start-page: 2562
  year: 2009
  end-page: 2568
  ident: b0085
  article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 9471
  year: 2011
  end-page: 9480
  ident: b0100
  article-title: Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions
  publication-title: Bioresour. Technol.
– volume: 130
  start-page: 710
  year: 2013
  end-page: 718
  ident: b0170
  article-title: Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids
  publication-title: Bioresour. Technol.
– volume: 48
  start-page: 405
  year: 1997
  end-page: 410
  ident: b0060
  article-title: Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 27
  start-page: 2085
  year: 2013
  end-page: 2091
  ident: b0115
  article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure
  publication-title: Energy Fuels
– year: 1998
  ident: b0005
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 171
  start-page: 117
  year: 2013
  end-page: 127
  ident: b0110
  article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover
  publication-title: Appl. Biochem. Biotechnol.
– volume: 32
  start-page: 48
  year: 1991
  end-page: 53
  ident: b0090
  article-title: 2-stage process combines anaerobic and aerobic methods
  publication-title: Biocycle
– volume: 4
  start-page: 447
  year: 2010
  end-page: 458
  ident: b0055
  article-title: Biomethane production from starch and lignocellulosic crops: a comparative review
  publication-title: Biofuels Bioprod. Biorefin.
– volume: 13
  start-page: 2571
  year: 2009
  end-page: 2579
  ident: b0160
  article-title: Bioenergy industries development in China: dilemma and solution
  publication-title: Renew. Sust. Energy Rev.
– volume: 101
  start-page: 9031
  year: 2010
  end-page: 9039
  ident: b0045
  article-title: Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 95
  year: 1993
  end-page: 111
  ident: b0030
  article-title: Biochemical methane potential of biomass and waste feedstocks
  publication-title: Biomass Bioenergy
– volume: 40
  start-page: 3412
  year: 2005
  end-page: 3418
  ident: b0130
  article-title: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors
  publication-title: Process Biochem.
– volume: 28
  start-page: 939
  year: 2008
  end-page: 951
  ident: b0135
  article-title: Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview
  publication-title: Waste Manage.
– volume: 99
  start-page: 631
  year: 2008
  end-page: 637
  ident: b0125
  article-title: Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 185
  year: 1967
  end-page: 189
  ident: b0075
  article-title: Determination of protein content of anaerobic digesting sludge
  publication-title: Water Res.
– volume: 58
  start-page: 1757
  year: 2008
  end-page: 1763
  ident: b0065
  article-title: High-solids anaerobic digestion: comparison of three pilot scales
  publication-title: Water Sci. Technol.
– volume: 99
  start-page: 7928
  year: 2008
  end-page: 7940
  ident: b0145
  article-title: Optimisation of the anaerobic digestion of agricultural resources
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 550
  year: 1952
  end-page: 552
  ident: b0025
  article-title: Mechanism of methane fermentation
  publication-title: Ind. Eng. Chem.
– volume: 110
  start-page: 18
  year: 2012
  end-page: 25
  ident: b0035
  article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source
  publication-title: Bioresour. Technol.
– volume: 98
  start-page: 929
  year: 2007
  end-page: 935
  ident: b0165
  article-title: Characterization of food waste as feedstock for anaerobic digestion
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 4021
  year: 2010
  end-page: 4028
  ident: b0040
  article-title: Biogas production from co-digestion of daily manure and food waste
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 4042
  year: 2010
  end-page: 4047
  ident: b0150
  article-title: Biogas and CH
  publication-title: Bioresour. Technol.
– volume: 118
  start-page: 219
  year: 2012
  end-page: 226
  ident: b0155
  article-title: Solid-state co-digestion of expired dog food and corn stover for methane production
  publication-title: Bioresour. Technol.
– volume: 127
  start-page: 275
  year: 2013
  end-page: 280
  ident: b0020
  article-title: Solid state anaerobic co-digestion of yard waste and food waste for biogas production
  publication-title: Bioresour. Technol.
– volume: 130
  start-page: 710
  year: 2013
  ident: 10.1016/j.biortech.2013.09.091_b0170
  article-title: Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.069
– volume: 102
  start-page: 9471
  year: 2011
  ident: 10.1016/j.biortech.2013.09.091_b0100
  article-title: Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.07.103
– volume: 101
  start-page: 4042
  year: 2010
  ident: 10.1016/j.biortech.2013.09.091_b0150
  article-title: Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.052
– volume: 110
  start-page: 18
  year: 2012
  ident: 10.1016/j.biortech.2013.09.091_b0035
  article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.025
– volume: 15
  start-page: 821
  year: 2011
  ident: 10.1016/j.biortech.2013.09.091_b0105
  article-title: Solid-state anaerobic digestion for methane production from organic waste
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2010.07.042
– volume: 95
  start-page: 19
  issue: 1
  year: 2004
  ident: 10.1016/j.biortech.2013.09.091_b0120
  article-title: Anaerobic batch co-digestion of sisal pulp and fish wastes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2004.01.011
– volume: 44
  start-page: 550
  issue: 3
  year: 1952
  ident: 10.1016/j.biortech.2013.09.091_b0025
  article-title: Mechanism of methane fermentation
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50507a033
– volume: 13
  start-page: 2571
  year: 2009
  ident: 10.1016/j.biortech.2013.09.091_b0160
  article-title: Bioenergy industries development in China: dilemma and solution
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2009.06.016
– volume: 28
  start-page: 939
  year: 2008
  ident: 10.1016/j.biortech.2013.09.091_b0135
  article-title: Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2007.03.028
– volume: 48
  start-page: 405
  year: 1997
  ident: 10.1016/j.biortech.2013.09.091_b0060
  article-title: Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051071
– volume: 102
  start-page: 2255
  year: 2011
  ident: 10.1016/j.biortech.2013.09.091_b0095
  article-title: Biochemical methane potential and biodegradability of complex organic substrates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.10.035
– volume: 99
  start-page: 7928
  year: 2008
  ident: 10.1016/j.biortech.2013.09.091_b0145
  article-title: Optimisation of the anaerobic digestion of agricultural resources
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.02.044
– volume: 118
  start-page: 219
  year: 2012
  ident: 10.1016/j.biortech.2013.09.091_b0155
  article-title: Solid-state co-digestion of expired dog food and corn stover for methane production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.102
– volume: 127
  start-page: 275
  year: 2013
  ident: 10.1016/j.biortech.2013.09.091_b0020
  article-title: Solid state anaerobic co-digestion of yard waste and food waste for biogas production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.081
– volume: 98
  start-page: 3354
  year: 2007
  ident: 10.1016/j.biortech.2013.09.091_b0050
  article-title: Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.10.024
– volume: 99
  start-page: 631
  year: 2008
  ident: 10.1016/j.biortech.2013.09.091_b0125
  article-title: Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.12.043
– volume: 5
  start-page: 95
  year: 1993
  ident: 10.1016/j.biortech.2013.09.091_b0030
  article-title: Biochemical methane potential of biomass and waste feedstocks
  publication-title: Biomass Bioenergy
  doi: 10.1016/0961-9534(93)90010-2
– volume: 101
  start-page: 9031
  year: 2010
  ident: 10.1016/j.biortech.2013.09.091_b0045
  article-title: Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.07.021
– volume: 40
  start-page: 3412
  issue: 11
  year: 2005
  ident: 10.1016/j.biortech.2013.09.091_b0130
  article-title: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2005.01.025
– volume: 86
  start-page: 123
  year: 2003
  ident: 10.1016/j.biortech.2013.09.091_b0010
  article-title: Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(02)00161-X
– volume: 32
  start-page: 48
  issue: 3
  year: 1991
  ident: 10.1016/j.biortech.2013.09.091_b0090
  article-title: 2-stage process combines anaerobic and aerobic methods
  publication-title: Biocycle
– year: 1998
  ident: 10.1016/j.biortech.2013.09.091_b0005
– volume: 58
  start-page: 1757
  year: 2008
  ident: 10.1016/j.biortech.2013.09.091_b0065
  article-title: High-solids anaerobic digestion: comparison of three pilot scales
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2008.521
– volume: 27
  start-page: 2085
  year: 2013
  ident: 10.1016/j.biortech.2013.09.091_b0115
  article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure
  publication-title: Energy Fuels
  doi: 10.1021/ef400117f
– volume: 124
  start-page: 379
  year: 2012
  ident: 10.1016/j.biortech.2013.09.091_b0015
  article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.08.051
– volume: 98
  start-page: 929
  year: 2007
  ident: 10.1016/j.biortech.2013.09.091_b0165
  article-title: Characterization of food waste as feedstock for anaerobic digestion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.02.039
– volume: 120
  start-page: 78
  year: 2012
  ident: 10.1016/j.biortech.2013.09.091_b0140
  article-title: Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.058
– volume: 4
  start-page: 447
  year: 2010
  ident: 10.1016/j.biortech.2013.09.091_b0055
  article-title: Biomethane production from starch and lignocellulosic crops: a comparative review
  publication-title: Biofuels Bioprod. Biorefin.
  doi: 10.1002/bbb.229
– volume: 127
  start-page: 326
  year: 2013
  ident: 10.1016/j.biortech.2013.09.091_b0080
  article-title: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.032
– volume: 32
  start-page: 5
  issue: 1
  year: 1998
  ident: 10.1016/j.biortech.2013.09.091_b0070
  article-title: Anaerobic digestion of swine manure: inhibition by ammonia
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00201-7
– volume: 171
  start-page: 117
  year: 2013
  ident: 10.1016/j.biortech.2013.09.091_b0110
  article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-013-0335-7
– volume: 101
  start-page: 4021
  year: 2010
  ident: 10.1016/j.biortech.2013.09.091_b0040
  article-title: Biogas production from co-digestion of daily manure and food waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.027
– volume: 100
  start-page: 2562
  issue: 9
  year: 2009
  ident: 10.1016/j.biortech.2013.09.091_b0085
  article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.11.011
– volume: 1
  start-page: 185
  year: 1967
  ident: 10.1016/j.biortech.2013.09.091_b0075
  article-title: Determination of protein content of anaerobic digesting sludge
  publication-title: Water Res.
  doi: 10.1016/0043-1354(67)90008-5
SSID ssj0003172
Score 2.5537415
Snippet •Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest...
Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 406
SubjectTerms Agronomy. Soil science and plant productions
anaerobic digestion
Anaerobiosis
analysis
Animals
Biochemical methane potential
Biodegradation, Environmental
Biofuel production
Biofuels
Biogas
Biological and medical sciences
biosynthesis
Biotechnology
Biotechnology - methods
chemistry
Chicken manure
Chickens
Corn
Corn stover
Energy
Fatty Acids, Volatile
Fatty Acids, Volatile - analysis
Food industries
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Industrial applications and implications. Economical aspects
Kinetics
Manure
Manure - analysis
Methane
Methane - biosynthesis
methane production
methods
mixing
Models, Theoretical
nutrient balance
poultry manure
Process stability
Solid state
Solid state digestion
Stability
synergism
Use and upgrading of agricultural and food by-products. Biotechnology
Use of agricultural and forest wastes. Biomass use, bioconversion
Waste Products
Waste Products - analysis
Water
Water - chemistry
Zea mays
Zea mays - chemistry
Title Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions
URI https://dx.doi.org/10.1016/j.biortech.2013.09.091
https://www.ncbi.nlm.nih.gov/pubmed/24135565
https://www.proquest.com/docview/1448208353
https://www.proquest.com/docview/1490510975
https://www.proquest.com/docview/1516745250
https://www.proquest.com/docview/1762137966
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V5QCoQlBeoTRaJI7dxutX7GMatQogeoFKuVnr9bpyC3aUpOoNiX_ON2u7j0PTA1IOWXvXXu18uzPWzHxD9Blihdmah5JJb2UY-6VEayxVofOi9KABHbv-99N4dhZ-nUfzLZr2uTAcVtmd_e2Z7k7r7sqoW83RoqpGP9j4TiLnF4ISCuacwR6OGeWHf27DPKAfnScBnSX3vpMlfHGYVxzR6pwSKnB8p6l6SEHtLPQKy1a29S4eNkidYjp5SS86i1JM2km_oi1b79LzyfmyY9Wwu_R02pd1w507DISv6e9R1ZzrlVi0xK8QkuCEE2EaWTjXE19pSrSXtYCdCOALXReCK6hc2lr81pxoLDgTjW9oy7RORlzb9YHgd0pAuyoO3Bj3V7gMJjyPXeUM-Td0dnL8czqTXVUGaaI4WMuSvzFUUniW6ewCm-YmSaHsdOJZX8dWJ2EJYEDnqUCbxOZMz6OjVONo9YxWwVvarpvavicRh4mXK2VMnHOGrk0MnhuFyremjMe-N6CoF0VmOspyrpzxK-tj0y6yXoQZizDzUvzUgEY34xYtacejI9Je0tk9-GXQLI-OHd6Dxs0r_TFABxNwQJ96rGQQNntkdG2bqxW-u0JYYDCCN_ZhCjUPm2ZDn4iTSdhDvaEP1J4KMKV4QO9awN7OFJsogmn_4T-WYY-ecasN9flI2-vlld2HwbbOh25HDunJ5Mu32ek_MQJAiw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-x8sCmaWKwj26DGYlHvMZJnCaPpRoqX30BpL5ZjuOgMEiqtmjP-8935yQFHigPSH1oYl9i-c6-X3S-3wHso1oRtqYhJ9JbHkZ-zvGqz0Wm0yz30AM6dv3zcTS6Ck8mcrIGwzYXho5VNnt_vae73bq502tmszctit4Fge9YurgQOqFg8gbWiZ1KdmB9cHw6Gi83ZHSRLpiA_TkJPEoUvvmVFnSo1cUlROAoTxPxnI96P9VznLm8LnnxPCZ1vuloEz40oJIN6nF_hDVbbsG7wfWsIdawW7AxbCu7YcsjEsJt-HdYVNd6zqY19yvqiVHOCTMVz1z0ie5UOV7PSoZQEW2f6TJjVETljy3ZnaZcY0bJaNSgLTE7GfbXLg4YvZOjdRfZgZNxf5lLYsLnUbScrP4TXB39vhyOeFOYgRsZBQue02eGiDPPEqNdYJPUxAn6Ox171teR1XGYo22g2xOBNrFNiaFHy0Tj7uoZLYLP0Cmr0n4FFoWxlwphTJRSkq6NDT5XhsK3Jo_6vtcF2apCmYa1nIpn3Kr2eNqNalWoSIXKS_AnutBbyk1r3o4XJZJW0-qJBSp0Li_K7j4xjeUr_T4aHaLALuy1tqJQ2RSU0aWt7uf46RUiCEMcvLIPsah5uG5W9JGUT0JB6hV90POJAIcUdeFLbbAPI8V1JBHdf3vFNPyEjdHl-Zk6Ox6ffoe31FKf_PkBncXs3u4gfluku836_A8GdkM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biogas+production+from+co-digestion+of+corn+stover+and+chicken+manure+under+anaerobic+wet%2C+hemi-solid%2C+and+solid+state+conditions&rft.jtitle=Bioresource+technology&rft.au=Li%2C+Yeqing&rft.au=Zhang%2C+Ruihong&rft.au=Chen%2C+Chang&rft.au=Liu%2C+Guangqing&rft.date=2013-12-01&rft.eissn=1873-2976&rft.volume=149&rft.spage=406&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.091&rft_id=info%3Apmid%2F24135565&rft.externalDocID=24135565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon