Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions
•Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest volumetric productivity of 14.2L/L was found in SS-AD at CS:CM of 1:1.•VFA/TA value of 0.4 was a more important criterion than NH3-N or FA concentra...
Saved in:
Published in | Bioresource technology Vol. 149; pp. 406 - 412 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest volumetric productivity of 14.2L/L was found in SS-AD at CS:CM of 1:1.•VFA/TA value of 0.4 was a more important criterion than NH3-N or FA concentration.
Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions. |
---|---|
AbstractList | •Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest volumetric productivity of 14.2L/L was found in SS-AD at CS:CM of 1:1.•VFA/TA value of 0.4 was a more important criterion than NH3-N or FA concentration.
Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions. Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2 Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions. Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions. Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions. Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8mL/g VSadded was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2Lmethane/Lreactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions. |
Author | Liu, Guangqing Liu, Xiaoying Li, Yeqing Chen, Chang Zhang, Ruihong He, Yanfeng |
Author_xml | – sequence: 1 givenname: Yeqing surname: Li fullname: Li, Yeqing organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 2 givenname: Ruihong surname: Zhang fullname: Zhang, Ruihong organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 3 givenname: Chang surname: Chen fullname: Chen, Chang email: chenchang@mail.buct.edu.cn organization: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 4 givenname: Guangqing surname: Liu fullname: Liu, Guangqing email: gqliu@mail.buct.edu.cn organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 5 givenname: Yanfeng surname: He fullname: He, Yanfeng organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 6 givenname: Xiaoying surname: Liu fullname: Liu, Xiaoying organization: Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27960063$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24135565$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr1D5gsShWcZx7DgSB6CCFqkSFzhbjjPpeknsYidFHPnmOLtbkLgs0kj-93tPGr85Iyc-eCTkgsGaAZOvt-vWhTih3axLYHwNTS72hKyYqnlRNrU8IStoJBRKlNUpOUtpCwCc1eUzclpWjAshxYr8eu_CnUn0PoZutpMLnvYxjNSGonN3mHY3oc_n6GmawgNGanxH7cbZb-jpaPwckc6-2z0YjKF1lv7A6ZJucHRFCoPrLnea3TabmAmzn-_cYp6ek6e9GRK-OKzn5OvHD1-uborbz9efrt7dFlZIPhU9yFow1QEC5Baxaa1qAJhRgKWRaFTVt2hrphg3VmELEiojGiO4AmsYPyev9r651e9z7kyPLlkcBuMxzEmzWpaM142Ux1HBZF2JUsBxtGpAMGhq8R9opUpQXPCMXhzQuR2x0_fRjSb-1I-5ZeDlATDJmqGPxluX_nK5DQC5GMk9Z2NIKWL_B2Ggl0HSW_04SHoZJA1NruW33vwjtC4HlwObonHDcfnbvRxzog8Oo07WobfYuYh20l1wxyx-A9Hs59Y |
CitedBy_id | crossref_primary_10_1007_s11356_021_15287_2 crossref_primary_10_1016_j_biortech_2015_01_140 crossref_primary_10_1007_s12649_021_01564_1 crossref_primary_10_1016_j_biortech_2017_01_025 crossref_primary_10_3390_en16124675 crossref_primary_10_1016_j_biortech_2014_04_070 crossref_primary_10_1016_j_jenvman_2020_110481 crossref_primary_10_1007_s12649_017_0133_5 crossref_primary_10_1016_j_energy_2018_03_082 crossref_primary_10_1021_acs_energyfuels_0c01852 crossref_primary_10_1016_j_biortech_2014_03_023 crossref_primary_10_1016_j_biortech_2016_03_148 crossref_primary_10_1016_j_biteb_2018_11_004 crossref_primary_10_1111_1751_7915_12308 crossref_primary_10_1007_s12033_023_01015_3 crossref_primary_10_1016_j_anaerobe_2017_05_015 crossref_primary_10_1371_journal_pone_0262940 crossref_primary_10_1016_j_wasman_2020_07_003 crossref_primary_10_1038_s41598_018_32141_7 crossref_primary_10_1016_j_biortech_2021_126030 crossref_primary_10_1016_j_wasman_2019_04_013 crossref_primary_10_1016_j_resconrec_2024_107507 crossref_primary_10_1002_bbb_2282 crossref_primary_10_1016_j_jclepro_2020_121495 crossref_primary_10_1016_j_jenvman_2022_115264 crossref_primary_10_1016_j_wasman_2018_06_015 crossref_primary_10_1039_C6RA25798D crossref_primary_10_1016_j_rser_2019_01_026 crossref_primary_10_1007_s42853_019_00040_y crossref_primary_10_1016_j_chemosphere_2022_135955 crossref_primary_10_1016_j_ecmx_2020_100046 crossref_primary_10_1016_j_indcrop_2018_12_051 crossref_primary_10_3390_su17030892 crossref_primary_10_1016_j_biortech_2016_02_110 crossref_primary_10_3390_pr8101224 crossref_primary_10_1016_j_rser_2017_05_068 crossref_primary_10_1021_ef402562z crossref_primary_10_1016_j_rser_2021_110822 crossref_primary_10_1016_j_bej_2018_04_004 crossref_primary_10_1016_j_bej_2020_107873 crossref_primary_10_1007_s42853_019_00012_2 crossref_primary_10_1016_j_biortech_2017_11_083 crossref_primary_10_1016_j_biortech_2017_11_088 crossref_primary_10_1016_j_rser_2023_113187 crossref_primary_10_1007_s12649_019_00664_3 crossref_primary_10_1016_j_biortech_2015_02_036 crossref_primary_10_1016_j_jenvman_2024_121700 crossref_primary_10_1080_15567036_2018_1549157 crossref_primary_10_1016_j_apenergy_2020_116128 crossref_primary_10_15446_dyna_v85n206_68167 crossref_primary_10_1016_j_renene_2020_10_110 crossref_primary_10_1039_D2EW00873D crossref_primary_10_1016_j_watres_2021_117067 crossref_primary_10_1016_j_biortech_2020_122823 crossref_primary_10_1007_s12649_018_0377_8 crossref_primary_10_3390_en13143573 crossref_primary_10_1016_j_biortech_2018_08_061 crossref_primary_10_1016_j_biortech_2018_12_068 crossref_primary_10_1061__ASCE_EE_1943_7870_0002046 crossref_primary_10_3390_agriculture13081645 crossref_primary_10_1016_j_jbiosc_2017_12_001 crossref_primary_10_1016_j_fuel_2018_05_142 crossref_primary_10_1016_j_biortech_2017_08_047 crossref_primary_10_3390_agriculture13091689 crossref_primary_10_3390_en13153761 crossref_primary_10_1063_1_4996631 crossref_primary_10_1016_j_reffit_2016_08_001 crossref_primary_10_1016_j_biortech_2019_122364 crossref_primary_10_1016_j_biortech_2021_126587 crossref_primary_10_1039_C7RA08559A crossref_primary_10_1016_j_anaerobe_2017_04_016 crossref_primary_10_1016_j_ibiod_2016_10_058 crossref_primary_10_1016_j_biombioe_2023_106779 crossref_primary_10_55708_js0103018 crossref_primary_10_1016_j_renene_2017_11_023 crossref_primary_10_1002_sd_2937 crossref_primary_10_1186_s40538_018_0129_9 crossref_primary_10_1007_s12649_020_01116_z crossref_primary_10_1007_s12649_019_00661_6 crossref_primary_10_2139_ssrn_4067155 crossref_primary_10_1016_j_biortech_2015_01_050 crossref_primary_10_1016_j_biortech_2017_09_146 crossref_primary_10_1016_j_fuel_2023_128464 crossref_primary_10_1016_j_biortech_2020_124429 crossref_primary_10_1016_j_biortech_2016_01_111 crossref_primary_10_1016_j_rser_2023_113846 crossref_primary_10_1016_j_matpr_2023_11_138 crossref_primary_10_1016_j_renene_2022_11_055 crossref_primary_10_1016_j_jes_2023_04_031 crossref_primary_10_1016_j_energy_2020_117452 crossref_primary_10_1002_ep_13533 crossref_primary_10_1021_ef5005495 crossref_primary_10_1016_j_biombioe_2024_107241 crossref_primary_10_1016_j_enconman_2017_08_002 crossref_primary_10_1039_C9RA05556H crossref_primary_10_1016_j_jclepro_2022_134140 crossref_primary_10_1021_acs_energyfuels_7b02596 crossref_primary_10_1021_acsestengg_3c00079 crossref_primary_10_1007_s12155_024_10757_0 crossref_primary_10_1080_15567036_2019_1587084 crossref_primary_10_1016_j_fuel_2021_122466 crossref_primary_10_1016_j_jenvman_2023_119031 crossref_primary_10_1016_j_biortech_2019_02_122 crossref_primary_10_1016_j_jece_2022_107602 crossref_primary_10_1080_15567036_2019_1640315 crossref_primary_10_1007_s12010_020_03445_0 crossref_primary_10_3390_app10217825 crossref_primary_10_1007_s42452_020_3063_y crossref_primary_10_3390_environments8080080 crossref_primary_10_1016_j_enconman_2018_07_055 crossref_primary_10_1016_j_rser_2021_111167 crossref_primary_10_1039_C8RA05616A crossref_primary_10_1186_s13068_023_02412_1 crossref_primary_10_1007_s12649_017_9834_z crossref_primary_10_1016_j_biteb_2024_101835 crossref_primary_10_1016_j_rser_2024_114412 crossref_primary_10_1080_09593330_2016_1234001 crossref_primary_10_1016_j_enconman_2014_08_018 crossref_primary_10_1007_s11356_017_0751_2 crossref_primary_10_1016_j_biortech_2017_11_055 crossref_primary_10_1007_s42108_018_0003_2 crossref_primary_10_1016_j_jclepro_2019_118479 crossref_primary_10_1016_j_biteb_2022_101186 crossref_primary_10_1016_j_biortech_2022_127232 crossref_primary_10_1016_j_jenvman_2023_118404 crossref_primary_10_1016_j_biortech_2015_07_048 crossref_primary_10_1002_cben_202200057 crossref_primary_10_1016_j_biteb_2024_101862 crossref_primary_10_3390_en13184866 crossref_primary_10_1016_j_egypro_2015_11_575 crossref_primary_10_1080_10962247_2020_1729277 crossref_primary_10_1016_j_biortech_2020_123793 crossref_primary_10_1007_s13399_023_04813_6 crossref_primary_10_1016_j_apenergy_2015_08_045 crossref_primary_10_1016_j_biosystemseng_2017_05_002 crossref_primary_10_1016_j_enconman_2018_06_099 crossref_primary_10_1080_10934529_2015_1109395 crossref_primary_10_3389_fmicb_2025_1515931 crossref_primary_10_1016_j_envres_2024_118917 crossref_primary_10_1016_j_egyr_2023_03_097 crossref_primary_10_1016_j_rser_2019_109587 crossref_primary_10_1016_j_biortech_2017_07_159 crossref_primary_10_1016_j_wasman_2017_02_022 crossref_primary_10_1016_j_fuel_2018_03_125 crossref_primary_10_3390_pr10122662 crossref_primary_10_3390_fermentation8100537 crossref_primary_10_1088_1757_899X_458_1_012084 crossref_primary_10_15446_rev_colomb_biote_v18n2_53853 crossref_primary_10_1016_j_biortech_2020_124197 crossref_primary_10_1007_s10098_024_02941_9 crossref_primary_10_1016_j_jenvman_2019_109744 crossref_primary_10_1016_j_anaerobe_2017_03_017 crossref_primary_10_1016_j_biortech_2019_122588 crossref_primary_10_1007_s13399_019_00451_z crossref_primary_10_1016_j_rser_2018_08_038 crossref_primary_10_3390_en15134696 crossref_primary_10_3390_app12178884 crossref_primary_10_1016_j_jes_2016_05_005 crossref_primary_10_1007_s00449_016_1630_9 crossref_primary_10_1007_s12010_015_1919_1 crossref_primary_10_1016_j_egyr_2022_08_189 crossref_primary_10_1007_s13399_022_02580_4 crossref_primary_10_1016_j_wasman_2017_10_038 crossref_primary_10_3390_en16145442 crossref_primary_10_3390_ijerph16245023 crossref_primary_10_1016_j_biortech_2022_127360 crossref_primary_10_1016_j_cej_2015_03_067 crossref_primary_10_1016_j_rser_2024_115264 crossref_primary_10_1021_acs_energyfuels_8b00015 crossref_primary_10_1016_j_envpol_2023_122643 crossref_primary_10_1016_j_rser_2021_111884 crossref_primary_10_1016_j_rser_2022_112756 crossref_primary_10_1016_j_renene_2024_120427 crossref_primary_10_1007_s11356_021_15610_x crossref_primary_10_1186_s13068_019_1562_0 crossref_primary_10_1007_s12010_019_03035_9 crossref_primary_10_1016_j_jclepro_2024_142789 crossref_primary_10_1155_2016_2147513 crossref_primary_10_3390_en14030570 crossref_primary_10_1155_2016_8462928 crossref_primary_10_1016_j_energy_2019_07_051 crossref_primary_10_3390_en16093885 crossref_primary_10_1016_j_biortech_2014_01_054 crossref_primary_10_1016_j_biortech_2017_03_184 crossref_primary_10_1177_0734242X16644681 crossref_primary_10_1016_j_biortech_2016_07_082 crossref_primary_10_1016_j_jece_2023_109925 crossref_primary_10_1371_journal_pone_0182361 crossref_primary_10_1016_j_biortech_2017_09_095 crossref_primary_10_1016_j_wasman_2016_03_028 crossref_primary_10_1016_j_biombioe_2020_105602 crossref_primary_10_1016_j_biortech_2021_126625 crossref_primary_10_3389_fenrg_2018_00143 crossref_primary_10_1016_j_cej_2024_155705 crossref_primary_10_4236_jsbs_2016_64009 crossref_primary_10_1016_j_biombioe_2019_105322 crossref_primary_10_1007_s10163_017_0602_8 crossref_primary_10_1016_j_wasman_2019_04_046 crossref_primary_10_1007_s11356_019_04677_2 crossref_primary_10_1016_j_energy_2018_08_124 crossref_primary_10_1016_j_biortech_2018_10_050 crossref_primary_10_1051_e3sconf_202127201026 crossref_primary_10_3389_finmi_2024_1428686 crossref_primary_10_1016_j_biombioe_2019_105440 crossref_primary_10_1016_j_renene_2018_09_009 crossref_primary_10_1002_bmb_21399 crossref_primary_10_1016_j_wasman_2017_05_030 crossref_primary_10_1016_j_biortech_2014_09_103 crossref_primary_10_1016_j_biortech_2014_02_050 crossref_primary_10_3390_fermentation9070666 crossref_primary_10_1007_s13399_016_0199_5 crossref_primary_10_1007_s10163_020_01033_2 crossref_primary_10_1016_j_biombioe_2020_105872 crossref_primary_10_1016_j_chemosphere_2021_131356 crossref_primary_10_1016_j_enconman_2017_08_074 |
Cites_doi | 10.1016/j.biortech.2012.12.069 10.1016/j.biortech.2011.07.103 10.1016/j.biortech.2010.01.052 10.1016/j.biortech.2012.01.025 10.1016/j.rser.2010.07.042 10.1016/j.biortech.2004.01.011 10.1021/ie50507a033 10.1016/j.rser.2009.06.016 10.1016/j.wasman.2007.03.028 10.1007/s002530051071 10.1016/j.biortech.2010.10.035 10.1016/j.biortech.2008.02.044 10.1016/j.biortech.2012.04.102 10.1016/j.biortech.2012.09.081 10.1016/j.biortech.2006.10.024 10.1016/j.biortech.2006.12.043 10.1016/0961-9534(93)90010-2 10.1016/j.biortech.2010.07.021 10.1016/j.procbio.2005.01.025 10.1016/S0960-8524(02)00161-X 10.2166/wst.2008.521 10.1021/ef400117f 10.1016/j.biortech.2012.08.051 10.1016/j.biortech.2006.02.039 10.1016/j.biortech.2012.06.058 10.1002/bbb.229 10.1016/j.biortech.2012.09.032 10.1016/S0043-1354(97)00201-7 10.1007/s12010-013-0335-7 10.1016/j.biortech.2010.01.027 10.1016/j.biortech.2008.11.011 10.1016/0043-1354(67)90008-5 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD FR3 P64 7SU 7TB C1K KR7 |
DOI | 10.1016/j.biortech.2013.09.091 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE AGRICOLA Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 412 |
ExternalDocumentID | 24135565 27960063 10_1016_j_biortech_2013_09_091 S096085241301523X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 7QO 8FD FR3 P64 7SU 7TB C1K KR7 |
ID | FETCH-LOGICAL-c563t-f067518d0e00873e9bc89001a80e2a6ea84fbec71813ac8eb0604a59a5380ca13 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 18:18:25 EDT 2025 Thu Jul 10 23:12:43 EDT 2025 Fri Jul 11 09:34:17 EDT 2025 Tue Aug 05 10:10:26 EDT 2025 Mon Jul 21 06:02:35 EDT 2025 Wed Apr 02 07:27:35 EDT 2025 Tue Jul 01 02:06:19 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TMY Bd AD Chicken manure BMP Corn stover S/I ratio SS-AD CM Solid state digestion Process stability TA CS EMY VFA SD W-AD Weighted EMY NH3-N Biochemical methane potential FA HSS-AD VS TS Methane Monocotyledones Stability Zea mays Poultry manure Biochemistry Biogas Digestion Cereal crop Straw Solid state Gramineae Anaerobe Angiospermae Spermatophyta Corn by product volatile fatty acid theoretical methane yield weighted experimental methane yield volatile solid solid state anaerobic digestion experimental methane yield hemi-solid state anaerobic digestion anaerobic digestion substrate/inoculum ratio total solid NH-N biodegradability ammonia-nitrogen total alkalinity free ammonia B(d) wet anaerobic digestion standard deviation |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-f067518d0e00873e9bc89001a80e2a6ea84fbec71813ac8eb0604a59a5380ca13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24135565 |
PQID | 1448208353 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1762137966 proquest_miscellaneous_1516745250 proquest_miscellaneous_1490510975 proquest_miscellaneous_1448208353 pubmed_primary_24135565 pascalfrancis_primary_27960063 crossref_primary_10_1016_j_biortech_2013_09_091 crossref_citationtrail_10_1016_j_biortech_2013_09_091 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Kayhanian, Lindenauer, Hardy, Tchobanoglous (b0090) 1991; 32 Wang, Yang, Feng, Ren, Han (b0140) 2012; 120 El-Mashad, Zhang (b0040) 2010; 101 Li, Champagne, Anderson (b0100) 2011; 102 Mshandete, Kivaisi, Rubindamayugi, Mattiasson (b0120) 2004; 95 Siegert, Banks (b0130) 2005; 40 (b0005) 1998 Guendouz, Buffiere, Cacho, Carrere, Delgenes (b0065) 2008; 58 Zhang, Elmashad, Hartman, Wang, Liu, Choate, Gamble (b0165) 2007; 98 Gallert, Winter (b0060) 1997; 48 Brown, Shi, Li (b0015) 2012; 124 Fdez-Guelfo, Alvarez-Gallego, Sales Marquez, Romero Garcia (b0045) 2010; 101 Kafle, Kim, Sung (b0080) 2013; 127 Kaparajua, Serranoa, Thomsenb, Kongjana, Angelidaki (b0085) 2009; 100 Elbeshbishy, Nakhla, Hafez (b0035) 2012; 110 Zhang, Yang, Tian, Yang, Zhang, Zheng, Wang (b0160) 2009; 13 Vavilin, Fernandez, Palatsi, Flotats (b0135) 2008; 28 Labatut, Angenent, Scott (b0095) 2011; 102 Chynoweth, Turick, Owen, Jerger, Peck (b0030) 1993; 5 Hattingh, Thiel, Siebert (b0075) 1967; 1 Zhou, Elbeshbishy, Nakhla (b0170) 2013; 130 Romano, Zhang (b0125) 2008; 99 Li, Park, Zhu (b0105) 2011; 15 Xu, Li (b0155) 2012; 118 Li, Feng, Zhang, He, Liu, Xiao, Ma, Chen, Liu (b0110) 2013; 171 Hansen, Angelidaki, Ahring (b0070) 1998; 32 Ward, Hobbs, Holliman, Jones (b0145) 2008; 99 Forster-Carneiro, Perez, Romero (b0050) 2007; 98 Bolzonella, Innocenti, Pavan, Traverso, Cecchi (b0010) 2003; 86 Frigon, Guiot (b0055) 2010; 4 Li, Zhang, Liu, Chen, Xiao, Feng, He, Liu (b0115) 2013; 27 Brown, Li (b0020) 2013; 127 Wu, Yao, Zhu, Miller (b0150) 2010; 101 Buswell, Mueller (b0025) 1952; 44 Wang (10.1016/j.biortech.2013.09.091_b0140) 2012; 120 Xu (10.1016/j.biortech.2013.09.091_b0155) 2012; 118 Hattingh (10.1016/j.biortech.2013.09.091_b0075) 1967; 1 Li (10.1016/j.biortech.2013.09.091_b0110) 2013; 171 Frigon (10.1016/j.biortech.2013.09.091_b0055) 2010; 4 Brown (10.1016/j.biortech.2013.09.091_b0020) 2013; 127 El-Mashad (10.1016/j.biortech.2013.09.091_b0040) 2010; 101 Fdez-Guelfo (10.1016/j.biortech.2013.09.091_b0045) 2010; 101 Kayhanian (10.1016/j.biortech.2013.09.091_b0090) 1991; 32 Forster-Carneiro (10.1016/j.biortech.2013.09.091_b0050) 2007; 98 Mshandete (10.1016/j.biortech.2013.09.091_b0120) 2004; 95 Guendouz (10.1016/j.biortech.2013.09.091_b0065) 2008; 58 Bolzonella (10.1016/j.biortech.2013.09.091_b0010) 2003; 86 Hansen (10.1016/j.biortech.2013.09.091_b0070) 1998; 32 Zhang (10.1016/j.biortech.2013.09.091_b0165) 2007; 98 Li (10.1016/j.biortech.2013.09.091_b0115) 2013; 27 Ward (10.1016/j.biortech.2013.09.091_b0145) 2008; 99 Vavilin (10.1016/j.biortech.2013.09.091_b0135) 2008; 28 (10.1016/j.biortech.2013.09.091_b0005) 1998 Buswell (10.1016/j.biortech.2013.09.091_b0025) 1952; 44 Kafle (10.1016/j.biortech.2013.09.091_b0080) 2013; 127 Gallert (10.1016/j.biortech.2013.09.091_b0060) 1997; 48 Zhou (10.1016/j.biortech.2013.09.091_b0170) 2013; 130 Siegert (10.1016/j.biortech.2013.09.091_b0130) 2005; 40 Brown (10.1016/j.biortech.2013.09.091_b0015) 2012; 124 Chynoweth (10.1016/j.biortech.2013.09.091_b0030) 1993; 5 Labatut (10.1016/j.biortech.2013.09.091_b0095) 2011; 102 Wu (10.1016/j.biortech.2013.09.091_b0150) 2010; 101 Zhang (10.1016/j.biortech.2013.09.091_b0160) 2009; 13 Li (10.1016/j.biortech.2013.09.091_b0100) 2011; 102 Kaparajua (10.1016/j.biortech.2013.09.091_b0085) 2009; 100 Li (10.1016/j.biortech.2013.09.091_b0105) 2011; 15 Elbeshbishy (10.1016/j.biortech.2013.09.091_b0035) 2012; 110 Romano (10.1016/j.biortech.2013.09.091_b0125) 2008; 99 |
References_xml | – volume: 86 start-page: 123 year: 2003 end-page: 129 ident: b0010 article-title: Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase publication-title: Bioresour. Technol. – volume: 32 start-page: 5 year: 1998 end-page: 12 ident: b0070 article-title: Anaerobic digestion of swine manure: inhibition by ammonia publication-title: Water Res. – volume: 120 start-page: 78 year: 2012 end-page: 83 ident: b0140 article-title: Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw publication-title: Bioresour. Technol. – volume: 124 start-page: 379 year: 2012 end-page: 386 ident: b0015 article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production publication-title: Bioresour. Technol. – volume: 98 start-page: 3354 year: 2007 end-page: 3366 ident: b0050 article-title: Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes publication-title: Bioresour. Technol. – volume: 95 start-page: 19 year: 2004 end-page: 24 ident: b0120 article-title: Anaerobic batch co-digestion of sisal pulp and fish wastes publication-title: Bioresour. Technol. – volume: 102 start-page: 2255 year: 2011 end-page: 2264 ident: b0095 article-title: Biochemical methane potential and biodegradability of complex organic substrates publication-title: Bioresour. Technol. – volume: 127 start-page: 326 year: 2013 end-page: 336 ident: b0080 article-title: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics publication-title: Bioresour. Technol. – volume: 15 start-page: 821 year: 2011 end-page: 826 ident: b0105 article-title: Solid-state anaerobic digestion for methane production from organic waste publication-title: Renew. Sust. Energy Rev. – volume: 100 start-page: 2562 year: 2009 end-page: 2568 ident: b0085 article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept publication-title: Bioresour. Technol. – volume: 102 start-page: 9471 year: 2011 end-page: 9480 ident: b0100 article-title: Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions publication-title: Bioresour. Technol. – volume: 130 start-page: 710 year: 2013 end-page: 718 ident: b0170 article-title: Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids publication-title: Bioresour. Technol. – volume: 48 start-page: 405 year: 1997 end-page: 410 ident: b0060 article-title: Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production publication-title: Appl. Microbiol. Biotechnol. – volume: 27 start-page: 2085 year: 2013 end-page: 2091 ident: b0115 article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure publication-title: Energy Fuels – year: 1998 ident: b0005 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 171 start-page: 117 year: 2013 end-page: 127 ident: b0110 article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover publication-title: Appl. Biochem. Biotechnol. – volume: 32 start-page: 48 year: 1991 end-page: 53 ident: b0090 article-title: 2-stage process combines anaerobic and aerobic methods publication-title: Biocycle – volume: 4 start-page: 447 year: 2010 end-page: 458 ident: b0055 article-title: Biomethane production from starch and lignocellulosic crops: a comparative review publication-title: Biofuels Bioprod. Biorefin. – volume: 13 start-page: 2571 year: 2009 end-page: 2579 ident: b0160 article-title: Bioenergy industries development in China: dilemma and solution publication-title: Renew. Sust. Energy Rev. – volume: 101 start-page: 9031 year: 2010 end-page: 9039 ident: b0045 article-title: Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum publication-title: Bioresour. Technol. – volume: 5 start-page: 95 year: 1993 end-page: 111 ident: b0030 article-title: Biochemical methane potential of biomass and waste feedstocks publication-title: Biomass Bioenergy – volume: 40 start-page: 3412 year: 2005 end-page: 3418 ident: b0130 article-title: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors publication-title: Process Biochem. – volume: 28 start-page: 939 year: 2008 end-page: 951 ident: b0135 article-title: Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview publication-title: Waste Manage. – volume: 99 start-page: 631 year: 2008 end-page: 637 ident: b0125 article-title: Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor publication-title: Bioresour. Technol. – volume: 1 start-page: 185 year: 1967 end-page: 189 ident: b0075 article-title: Determination of protein content of anaerobic digesting sludge publication-title: Water Res. – volume: 58 start-page: 1757 year: 2008 end-page: 1763 ident: b0065 article-title: High-solids anaerobic digestion: comparison of three pilot scales publication-title: Water Sci. Technol. – volume: 99 start-page: 7928 year: 2008 end-page: 7940 ident: b0145 article-title: Optimisation of the anaerobic digestion of agricultural resources publication-title: Bioresour. Technol. – volume: 44 start-page: 550 year: 1952 end-page: 552 ident: b0025 article-title: Mechanism of methane fermentation publication-title: Ind. Eng. Chem. – volume: 110 start-page: 18 year: 2012 end-page: 25 ident: b0035 article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source publication-title: Bioresour. Technol. – volume: 98 start-page: 929 year: 2007 end-page: 935 ident: b0165 article-title: Characterization of food waste as feedstock for anaerobic digestion publication-title: Bioresour. Technol. – volume: 101 start-page: 4021 year: 2010 end-page: 4028 ident: b0040 article-title: Biogas production from co-digestion of daily manure and food waste publication-title: Bioresour. Technol. – volume: 101 start-page: 4042 year: 2010 end-page: 4047 ident: b0150 article-title: Biogas and CH publication-title: Bioresour. Technol. – volume: 118 start-page: 219 year: 2012 end-page: 226 ident: b0155 article-title: Solid-state co-digestion of expired dog food and corn stover for methane production publication-title: Bioresour. Technol. – volume: 127 start-page: 275 year: 2013 end-page: 280 ident: b0020 article-title: Solid state anaerobic co-digestion of yard waste and food waste for biogas production publication-title: Bioresour. Technol. – volume: 130 start-page: 710 year: 2013 ident: 10.1016/j.biortech.2013.09.091_b0170 article-title: Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.069 – volume: 102 start-page: 9471 year: 2011 ident: 10.1016/j.biortech.2013.09.091_b0100 article-title: Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.103 – volume: 101 start-page: 4042 year: 2010 ident: 10.1016/j.biortech.2013.09.091_b0150 article-title: Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.052 – volume: 110 start-page: 18 year: 2012 ident: 10.1016/j.biortech.2013.09.091_b0035 article-title: Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.025 – volume: 15 start-page: 821 year: 2011 ident: 10.1016/j.biortech.2013.09.091_b0105 article-title: Solid-state anaerobic digestion for methane production from organic waste publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2010.07.042 – volume: 95 start-page: 19 issue: 1 year: 2004 ident: 10.1016/j.biortech.2013.09.091_b0120 article-title: Anaerobic batch co-digestion of sisal pulp and fish wastes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2004.01.011 – volume: 44 start-page: 550 issue: 3 year: 1952 ident: 10.1016/j.biortech.2013.09.091_b0025 article-title: Mechanism of methane fermentation publication-title: Ind. Eng. Chem. doi: 10.1021/ie50507a033 – volume: 13 start-page: 2571 year: 2009 ident: 10.1016/j.biortech.2013.09.091_b0160 article-title: Bioenergy industries development in China: dilemma and solution publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2009.06.016 – volume: 28 start-page: 939 year: 2008 ident: 10.1016/j.biortech.2013.09.091_b0135 article-title: Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview publication-title: Waste Manage. doi: 10.1016/j.wasman.2007.03.028 – volume: 48 start-page: 405 year: 1997 ident: 10.1016/j.biortech.2013.09.091_b0060 article-title: Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051071 – volume: 102 start-page: 2255 year: 2011 ident: 10.1016/j.biortech.2013.09.091_b0095 article-title: Biochemical methane potential and biodegradability of complex organic substrates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.10.035 – volume: 99 start-page: 7928 year: 2008 ident: 10.1016/j.biortech.2013.09.091_b0145 article-title: Optimisation of the anaerobic digestion of agricultural resources publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.02.044 – volume: 118 start-page: 219 year: 2012 ident: 10.1016/j.biortech.2013.09.091_b0155 article-title: Solid-state co-digestion of expired dog food and corn stover for methane production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.102 – volume: 127 start-page: 275 year: 2013 ident: 10.1016/j.biortech.2013.09.091_b0020 article-title: Solid state anaerobic co-digestion of yard waste and food waste for biogas production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.081 – volume: 98 start-page: 3354 year: 2007 ident: 10.1016/j.biortech.2013.09.091_b0050 article-title: Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.10.024 – volume: 99 start-page: 631 year: 2008 ident: 10.1016/j.biortech.2013.09.091_b0125 article-title: Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.12.043 – volume: 5 start-page: 95 year: 1993 ident: 10.1016/j.biortech.2013.09.091_b0030 article-title: Biochemical methane potential of biomass and waste feedstocks publication-title: Biomass Bioenergy doi: 10.1016/0961-9534(93)90010-2 – volume: 101 start-page: 9031 year: 2010 ident: 10.1016/j.biortech.2013.09.091_b0045 article-title: Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.07.021 – volume: 40 start-page: 3412 issue: 11 year: 2005 ident: 10.1016/j.biortech.2013.09.091_b0130 article-title: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors publication-title: Process Biochem. doi: 10.1016/j.procbio.2005.01.025 – volume: 86 start-page: 123 year: 2003 ident: 10.1016/j.biortech.2013.09.091_b0010 article-title: Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(02)00161-X – volume: 32 start-page: 48 issue: 3 year: 1991 ident: 10.1016/j.biortech.2013.09.091_b0090 article-title: 2-stage process combines anaerobic and aerobic methods publication-title: Biocycle – year: 1998 ident: 10.1016/j.biortech.2013.09.091_b0005 – volume: 58 start-page: 1757 year: 2008 ident: 10.1016/j.biortech.2013.09.091_b0065 article-title: High-solids anaerobic digestion: comparison of three pilot scales publication-title: Water Sci. Technol. doi: 10.2166/wst.2008.521 – volume: 27 start-page: 2085 year: 2013 ident: 10.1016/j.biortech.2013.09.091_b0115 article-title: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure publication-title: Energy Fuels doi: 10.1021/ef400117f – volume: 124 start-page: 379 year: 2012 ident: 10.1016/j.biortech.2013.09.091_b0015 article-title: Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.051 – volume: 98 start-page: 929 year: 2007 ident: 10.1016/j.biortech.2013.09.091_b0165 article-title: Characterization of food waste as feedstock for anaerobic digestion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.02.039 – volume: 120 start-page: 78 year: 2012 ident: 10.1016/j.biortech.2013.09.091_b0140 article-title: Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.058 – volume: 4 start-page: 447 year: 2010 ident: 10.1016/j.biortech.2013.09.091_b0055 article-title: Biomethane production from starch and lignocellulosic crops: a comparative review publication-title: Biofuels Bioprod. Biorefin. doi: 10.1002/bbb.229 – volume: 127 start-page: 326 year: 2013 ident: 10.1016/j.biortech.2013.09.091_b0080 article-title: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.032 – volume: 32 start-page: 5 issue: 1 year: 1998 ident: 10.1016/j.biortech.2013.09.091_b0070 article-title: Anaerobic digestion of swine manure: inhibition by ammonia publication-title: Water Res. doi: 10.1016/S0043-1354(97)00201-7 – volume: 171 start-page: 117 year: 2013 ident: 10.1016/j.biortech.2013.09.091_b0110 article-title: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-013-0335-7 – volume: 101 start-page: 4021 year: 2010 ident: 10.1016/j.biortech.2013.09.091_b0040 article-title: Biogas production from co-digestion of daily manure and food waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.027 – volume: 100 start-page: 2562 issue: 9 year: 2009 ident: 10.1016/j.biortech.2013.09.091_b0085 article-title: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.11.011 – volume: 1 start-page: 185 year: 1967 ident: 10.1016/j.biortech.2013.09.091_b0075 article-title: Determination of protein content of anaerobic digesting sludge publication-title: Water Res. doi: 10.1016/0043-1354(67)90008-5 |
SSID | ssj0003172 |
Score | 2.5537415 |
Snippet | •Synergistic effects were found in CS:CM ratios of 3:1 and 1:1.•In W-AD and HSS-AD, highest methane yields were obtained at CS:CM ratio of 3:1.•Highest... Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 406 |
SubjectTerms | Agronomy. Soil science and plant productions anaerobic digestion Anaerobiosis analysis Animals Biochemical methane potential Biodegradation, Environmental Biofuel production Biofuels Biogas Biological and medical sciences biosynthesis Biotechnology Biotechnology - methods chemistry Chicken manure Chickens Corn Corn stover Energy Fatty Acids, Volatile Fatty Acids, Volatile - analysis Food industries Fundamental and applied biological sciences. Psychology General agronomy. Plant production Industrial applications and implications. Economical aspects Kinetics Manure Manure - analysis Methane Methane - biosynthesis methane production methods mixing Models, Theoretical nutrient balance poultry manure Process stability Solid state Solid state digestion Stability synergism Use and upgrading of agricultural and food by-products. Biotechnology Use of agricultural and forest wastes. Biomass use, bioconversion Waste Products Waste Products - analysis Water Water - chemistry Zea mays Zea mays - chemistry |
Title | Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions |
URI | https://dx.doi.org/10.1016/j.biortech.2013.09.091 https://www.ncbi.nlm.nih.gov/pubmed/24135565 https://www.proquest.com/docview/1448208353 https://www.proquest.com/docview/1490510975 https://www.proquest.com/docview/1516745250 https://www.proquest.com/docview/1762137966 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V5QCoQlBeoTRaJI7dxutX7GMatQogeoFKuVnr9bpyC3aUpOoNiX_ON2u7j0PTA1IOWXvXXu18uzPWzHxD9Blihdmah5JJb2UY-6VEayxVofOi9KABHbv-99N4dhZ-nUfzLZr2uTAcVtmd_e2Z7k7r7sqoW83RoqpGP9j4TiLnF4ISCuacwR6OGeWHf27DPKAfnScBnSX3vpMlfHGYVxzR6pwSKnB8p6l6SEHtLPQKy1a29S4eNkidYjp5SS86i1JM2km_oi1b79LzyfmyY9Wwu_R02pd1w507DISv6e9R1ZzrlVi0xK8QkuCEE2EaWTjXE19pSrSXtYCdCOALXReCK6hc2lr81pxoLDgTjW9oy7RORlzb9YHgd0pAuyoO3Bj3V7gMJjyPXeUM-Td0dnL8czqTXVUGaaI4WMuSvzFUUniW6ewCm-YmSaHsdOJZX8dWJ2EJYEDnqUCbxOZMz6OjVONo9YxWwVvarpvavicRh4mXK2VMnHOGrk0MnhuFyremjMe-N6CoF0VmOspyrpzxK-tj0y6yXoQZizDzUvzUgEY34xYtacejI9Je0tk9-GXQLI-OHd6Dxs0r_TFABxNwQJ96rGQQNntkdG2bqxW-u0JYYDCCN_ZhCjUPm2ZDn4iTSdhDvaEP1J4KMKV4QO9awN7OFJsogmn_4T-WYY-ecasN9flI2-vlld2HwbbOh25HDunJ5Mu32ek_MQJAiw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-x8sCmaWKwj26DGYlHvMZJnCaPpRoqX30BpL5ZjuOgMEiqtmjP-8935yQFHigPSH1oYl9i-c6-X3S-3wHso1oRtqYhJ9JbHkZ-zvGqz0Wm0yz30AM6dv3zcTS6Ck8mcrIGwzYXho5VNnt_vae73bq502tmszctit4Fge9YurgQOqFg8gbWiZ1KdmB9cHw6Gi83ZHSRLpiA_TkJPEoUvvmVFnSo1cUlROAoTxPxnI96P9VznLm8LnnxPCZ1vuloEz40oJIN6nF_hDVbbsG7wfWsIdawW7AxbCu7YcsjEsJt-HdYVNd6zqY19yvqiVHOCTMVz1z0ie5UOV7PSoZQEW2f6TJjVETljy3ZnaZcY0bJaNSgLTE7GfbXLg4YvZOjdRfZgZNxf5lLYsLnUbScrP4TXB39vhyOeFOYgRsZBQue02eGiDPPEqNdYJPUxAn6Ox171teR1XGYo22g2xOBNrFNiaFHy0Tj7uoZLYLP0Cmr0n4FFoWxlwphTJRSkq6NDT5XhsK3Jo_6vtcF2apCmYa1nIpn3Kr2eNqNalWoSIXKS_AnutBbyk1r3o4XJZJW0-qJBSp0Li_K7j4xjeUr_T4aHaLALuy1tqJQ2RSU0aWt7uf46RUiCEMcvLIPsah5uG5W9JGUT0JB6hV90POJAIcUdeFLbbAPI8V1JBHdf3vFNPyEjdHl-Zk6Ox6ffoe31FKf_PkBncXs3u4gfluku836_A8GdkM8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biogas+production+from+co-digestion+of+corn+stover+and+chicken+manure+under+anaerobic+wet%2C+hemi-solid%2C+and+solid+state+conditions&rft.jtitle=Bioresource+technology&rft.au=Li%2C+Yeqing&rft.au=Zhang%2C+Ruihong&rft.au=Chen%2C+Chang&rft.au=Liu%2C+Guangqing&rft.date=2013-12-01&rft.eissn=1873-2976&rft.volume=149&rft.spage=406&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.091&rft_id=info%3Apmid%2F24135565&rft.externalDocID=24135565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |