CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia
Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urge...
Saved in:
Published in | Journal of hematology and oncology Vol. 11; no. 1; pp. 7 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.01.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment.
We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells.
The CLL-1 CAR-T cells specifically lysed CLL-1
cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1
myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression.
CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. |
---|---|
AbstractList | Background Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. Methods We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. Results The CLL-1 CAR-T cells specifically lysed CLL-1.sup.+ cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1.sup.+ myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. Conclusions CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. Keywords: Acute myeloid leukemia, C-type lectin-like molecule-1, Chimeric antigen receptor, Immunotherapy, Leukemia stem cells Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment.BACKGROUNDAcute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment.We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells.METHODSWe tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells.The CLL-1 CAR-T cells specifically lysed CLL-1+ cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1+ myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression.RESULTSThe CLL-1 CAR-T cells specifically lysed CLL-1+ cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1+ myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression.CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.CONCLUSIONSCLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. Abstract Background Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. Methods We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. Results The CLL-1 CAR-T cells specifically lysed CLL-1+ cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1+ myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. Conclusions CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1.sup.+ cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1.sup.+ myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. |
ArticleNumber | 7 |
Audience | Academic |
Author | Chen, Gong Li, Wende Zhang, Xing Kang, Tiebang Yang, Han Xiao, Wei Wang, Jinghua Xu, Liping Zhou, Penghui Wang, Yang Lu, Yue Liao, Shuangye Liu, Nawei Zhang, Jianeng Wang, Weida Xia, Xiaojun Cai, Xiuyu Liu, Wenjian Wang, Liang Yang, Shuo Chen, Siyu |
Author_xml | – sequence: 1 givenname: Jinghua surname: Wang fullname: Wang, Jinghua – sequence: 2 givenname: Siyu surname: Chen fullname: Chen, Siyu – sequence: 3 givenname: Wei surname: Xiao fullname: Xiao, Wei – sequence: 4 givenname: Wende surname: Li fullname: Li, Wende – sequence: 5 givenname: Liang surname: Wang fullname: Wang, Liang – sequence: 6 givenname: Shuo surname: Yang fullname: Yang, Shuo – sequence: 7 givenname: Weida surname: Wang fullname: Wang, Weida – sequence: 8 givenname: Liping surname: Xu fullname: Xu, Liping – sequence: 9 givenname: Shuangye surname: Liao fullname: Liao, Shuangye – sequence: 10 givenname: Wenjian surname: Liu fullname: Liu, Wenjian – sequence: 11 givenname: Yang surname: Wang fullname: Wang, Yang – sequence: 12 givenname: Nawei surname: Liu fullname: Liu, Nawei – sequence: 13 givenname: Jianeng surname: Zhang fullname: Zhang, Jianeng – sequence: 14 givenname: Xiaojun surname: Xia fullname: Xia, Xiaojun – sequence: 15 givenname: Tiebang surname: Kang fullname: Kang, Tiebang – sequence: 16 givenname: Gong surname: Chen fullname: Chen, Gong – sequence: 17 givenname: Xiuyu surname: Cai fullname: Cai, Xiuyu – sequence: 18 givenname: Han surname: Yang fullname: Yang, Han – sequence: 19 givenname: Xing surname: Zhang fullname: Zhang, Xing – sequence: 20 givenname: Yue surname: Lu fullname: Lu, Yue – sequence: 21 givenname: Penghui surname: Zhou fullname: Zhou, Penghui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29316944$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Ul1rFDEUHaRiP_QH-CIBQXyZmjv5mrwIy-JHZUGQ-hzuZjK7qbOTNckU-u_NuK10RclDkptzDufenPPqZAyjq6qXQC8BWvkuAaNc1BRUTYVgtXhSnYESsm5V05w8Op9W5yndUCpBN_RZddpoBlJzflZ9WS6-1dfEumFIJGPcuOzHDVmuVjUQTARHgvt9DGi3JAeSo8NM0E7Zkd2dG4LvyOCmH27n8Xn1tMchuRf3-0X1_eOH6-XnevX109VysaqtkCzXrkOpmbbYtdh3DbcceiYdV-1aAdO8tWpdbGrbA285k4w1yKCTWgJwVe4X1dVBtwt4Y_bR7zDemYDe_C6EuDEYs7eDM2gpIlBcS6G5Za1ulUKh0dqmc7DGovX-oLWf1jvXWTfmiMOR6PHL6LdmE26NUBIaOpt5ey8Qw8_JpWx2Ps3TxNGFKRnQrRaKUgEF-voA3WCx5sc-FEU7w81CcMl0IyUvqMt_oMrqyoxt-f_el_oR4c0jwtbhkLcpDFP2YUzHwFePe_3T5EMYCkAdADaGlKLrjfUZZ51iwQ8GqJljZw6xMyV2Zo6dEYUJfzEfxP_P-QVDG9Wm |
CitedBy_id | crossref_primary_10_1051_e3sconf_202127103025 crossref_primary_10_3390_biomedicines12061194 crossref_primary_10_1186_s12935_025_03697_y crossref_primary_10_1016_j_ymthe_2024_07_028 crossref_primary_10_1038_s41375_022_01703_0 crossref_primary_10_1016_j_blre_2019_100596 crossref_primary_10_3389_fonc_2021_793274 crossref_primary_10_1007_s11684_020_0763_z crossref_primary_10_3324_haematol_2023_283817 crossref_primary_10_1016_j_omtm_2022_02_004 crossref_primary_10_3390_cancers14092098 crossref_primary_10_3389_fonc_2021_730899 crossref_primary_10_1080_2162402X_2020_1727078 crossref_primary_10_1177_1534735419876351 crossref_primary_10_1158_2326_6066_CIR_18_0748 crossref_primary_10_1158_2643_3230_BCD_20_0208 crossref_primary_10_1182_blood_2020006921 crossref_primary_10_1007_s40259_021_00477_8 crossref_primary_10_1016_j_trecan_2019_07_009 crossref_primary_10_1177_20406207241263489 crossref_primary_10_2217_imt_2019_0139 crossref_primary_10_1111_bjh_16104 crossref_primary_10_1002_ctm2_1043 crossref_primary_10_1177_2040620718774268 crossref_primary_10_1007_s11095_019_2654_z crossref_primary_10_1002_cnr2_1222 crossref_primary_10_1038_s41590_025_02096_9 crossref_primary_10_1158_1535_7163_MCT_20_1030 crossref_primary_10_3389_fimmu_2022_927153 crossref_primary_10_1097_BS9_0000000000000140 crossref_primary_10_3390_jcm8020200 crossref_primary_10_1007_s00277_024_05617_y crossref_primary_10_1186_s13045_018_0603_7 crossref_primary_10_1007_s12015_024_10786_4 crossref_primary_10_3390_cancers13071568 crossref_primary_10_3390_jcm13113202 crossref_primary_10_1097_MOP_0000000000000866 crossref_primary_10_1007_s00262_025_03998_1 crossref_primary_10_3390_cancers16010042 crossref_primary_10_56875_2589_0646_1062 crossref_primary_10_3389_fimmu_2024_1462697 crossref_primary_10_1111_cpr_13683 crossref_primary_10_3390_ijms231810529 crossref_primary_10_3389_fcell_2022_928140 crossref_primary_10_21320_2500_2139_2021_14_1_149_156 crossref_primary_10_3389_fonc_2019_00917 crossref_primary_10_3389_fonc_2020_599933 crossref_primary_10_1016_j_jconrel_2024_02_033 crossref_primary_10_1097_PPO_0000000000000512 crossref_primary_10_1186_s13045_019_0758_x crossref_primary_10_1016_j_jtct_2022_06_005 crossref_primary_10_1182_bloodadvances_2022007405 crossref_primary_10_1002_cam4_2053 crossref_primary_10_1038_s41408_021_00536_x crossref_primary_10_1186_s12967_024_05705_7 crossref_primary_10_1016_j_beha_2019_05_002 crossref_primary_10_1016_j_tranon_2024_102225 crossref_primary_10_1016_j_jcyt_2022_07_008 crossref_primary_10_1002_cti2_1207 crossref_primary_10_1111_bjh_17122 crossref_primary_10_1038_s41392_019_0070_9 crossref_primary_10_1186_s13045_019_0726_5 crossref_primary_10_1002_ajh_25750 crossref_primary_10_1016_j_blre_2018_10_003 crossref_primary_10_1080_10428194_2024_2414112 crossref_primary_10_3390_cancers14030497 crossref_primary_10_3389_fonc_2022_967754 crossref_primary_10_3390_ijms222212178 crossref_primary_10_3390_ijms24043996 crossref_primary_10_1080_10428194_2022_2064986 crossref_primary_10_3389_fonc_2020_00685 crossref_primary_10_1186_s13287_021_02420_8 crossref_primary_10_1038_s41392_023_01521_5 crossref_primary_10_1158_1078_0432_CCR_23_3044 crossref_primary_10_1002_JLB_5MR0620_063RR crossref_primary_10_1016_j_apsb_2020_12_015 crossref_primary_10_1016_j_beha_2021_101277 crossref_primary_10_1186_s12943_022_01561_5 crossref_primary_10_3390_ijms20061397 crossref_primary_10_1177_10732748241310937 crossref_primary_10_3390_ijms20174233 crossref_primary_10_1016_j_trecan_2024_06_001 crossref_primary_10_1136_bmj_2021_068956 crossref_primary_10_3390_cancers14051241 crossref_primary_10_1182_blood_2018_05_849059 crossref_primary_10_1182_blood_2024024063 crossref_primary_10_1002_adbi_202000172 crossref_primary_10_1080_21655979_2021_1915727 crossref_primary_10_29413_ABS_2018_3_4_11 crossref_primary_10_1016_j_jddst_2019_101457 crossref_primary_10_1155_2021_6643948 crossref_primary_10_1016_j_nano_2019_04_007 crossref_primary_10_1007_s40291_021_00550_6 crossref_primary_10_3389_fimmu_2021_670286 crossref_primary_10_1002_cam4_5916 crossref_primary_10_1038_s41467_025_56270_6 crossref_primary_10_3389_fimmu_2024_1491341 crossref_primary_10_1016_j_apsb_2020_06_012 crossref_primary_10_1097_MPH_0000000000002956 crossref_primary_10_1101_cshperspect_a036251 crossref_primary_10_3389_fimmu_2023_1145441 crossref_primary_10_1097_PPO_0000000000000609 crossref_primary_10_3390_cancers15112944 crossref_primary_10_1186_s13045_022_01308_1 crossref_primary_10_3389_fonc_2018_00444 crossref_primary_10_1007_s00277_023_05601_y crossref_primary_10_1097_CJI_0000000000000406 crossref_primary_10_1186_s12967_022_03797_7 crossref_primary_10_1007_s40272_021_00467_x crossref_primary_10_1038_s41419_021_04100_0 crossref_primary_10_1186_s40164_022_00318_6 crossref_primary_10_3389_fimmu_2024_1435635 crossref_primary_10_1016_j_colsurfb_2022_112609 crossref_primary_10_1111_bjh_15711 crossref_primary_10_3389_fonc_2021_790299 crossref_primary_10_3389_fimmu_2024_1389227 crossref_primary_10_3390_children7020014 crossref_primary_10_1016_j_leukres_2023_107388 crossref_primary_10_1182_blood_2023021705 crossref_primary_10_3390_cancers12123617 crossref_primary_10_3390_ijms22041944 crossref_primary_10_1111_jcmm_18369 crossref_primary_10_3389_fimmu_2022_937327 crossref_primary_10_1007_s11427_018_9411_4 crossref_primary_10_1111_ejh_13672 crossref_primary_10_1002_sctm_20_0147 crossref_primary_10_1186_s40364_019_0178_7 crossref_primary_10_1186_s40164_024_00592_6 crossref_primary_10_3390_cancers12010069 crossref_primary_10_1016_j_leukres_2020_106350 |
Cites_doi | 10.1016/j.cell.2009.05.045 10.1038/mt.2010.24 10.1126/scitranslmed.3005930 10.1016/j.stem.2010.11.014 10.1186/s13045-016-0256-3 10.1038/leu.2008.246 10.1182/blood-2009-07-235358 10.1074/jbc.M313127200 10.1182/blood-2011-04-348540 10.1016/j.ymthe.2017.05.024 10.1182/blood-2005-08-3264 10.1002/eji.200535628 10.1111/imr.12126 10.1186/s13045-017-0444-9 10.1073/pnas.86.24.10024 10.1016/j.stem.2009.04.018 10.1016/0092-8674(91)90314-O 10.1038/sj.leu.2404754 10.1038/nm0797-730 10.1002/anie.201405353 10.1186/s13045-016-0285-y 10.1111/bjh.13792 10.1182/blood-2004-11-4564 10.1186/s13045-017-0505-0 10.1126/scitranslmed.3000349 10.5732/cjc.014.10100 10.1056/NEJMoa1106152 10.1056/NEJMcibr1003522 10.5732/cjc.014.10123 10.1182/blood-2010-01-043737 10.1182/blood-2011-11-325050 10.1080/10428190701799035 10.1186/s40164-017-0070-9 10.1158/0008-5472.CAN-04-1659 10.1182/blood-2007-03-083048 10.1016/j.immuni.2013.07.002 10.1182/blood-2011-10-384388 10.1186/s13045-017-0423-1 10.1186/s13045-017-0463-6 10.1080/19420862.2015.1007811 10.3324/haematol.2009.009811 10.1182/blood-2005-03-1072 10.1038/nm1483 10.1182/blood-2004-03-0878 10.1097/CCO.0b013e328358f62d 10.1056/NEJMoa1215134 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. The Author(s) 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: The Author(s) 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1186/s13045-017-0553-5 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1756-8722 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_ac0aa10ab6594c389877a59acc2de1ba PMC5761206 A546392664 29316944 10_1186_s13045_017_0553_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 201607020038 – fundername: ; grantid: 2016ZT06S638 – fundername: ; grantid: 2016A020215086 – fundername: ; grantid: 81572806; 81530081; 31571395; 81773052; 30471976; 81272620 – fundername: ; grantid: 85000-52121100 – fundername: ; grantid: 2016YFA0500304; 2016YFA0500304 |
GroupedDBID | --- 0R~ 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IEA IHR IHW INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP ~8M NPM PMFND 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c563t-eda6939cad8afd24c41f36e478b713948c7b1929cf148436332a31d6961147363 |
IEDL.DBID | M48 |
ISSN | 1756-8722 |
IngestDate | Wed Aug 27 01:16:39 EDT 2025 Thu Aug 21 18:30:20 EDT 2025 Fri Jul 11 06:12:08 EDT 2025 Tue Jun 17 21:01:51 EDT 2025 Tue Jun 10 20:29:07 EDT 2025 Thu May 22 21:23:48 EDT 2025 Thu Apr 03 07:00:41 EDT 2025 Tue Jul 01 04:23:13 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | C-type lectin-like molecule-1 Chimeric antigen receptor Acute myeloid leukemia Immunotherapy Leukemia stem cells |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-eda6939cad8afd24c41f36e478b713948c7b1929cf148436332a31d6961147363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/ac0aa10ab6594c389877a59acc2de1ba |
PMID | 29316944 |
PQID | 1989570051 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac0aa10ab6594c389877a59acc2de1ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_5761206 proquest_miscellaneous_1989570051 gale_infotracmisc_A546392664 gale_infotracacademiconefile_A546392664 gale_healthsolutions_A546392664 pubmed_primary_29316944 crossref_citationtrail_10_1186_s13045_017_0553_5 crossref_primary_10_1186_s13045_017_0553_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-10 |
PublicationDateYYYYMMDD | 2018-01-10 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of hematology and oncology |
PublicationTitleAlternate | J Hematol Oncol |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | A Di Stasi (553_CR42) 2011; 365 L Jin (553_CR18) 2006; 12 RA Morgan (553_CR38) 2010; 18 H Dohner (553_CR4) 2010; 115 BA Irving (553_CR6) 1991; 64 B Jena (553_CR9) 2010; 116 H Lu (553_CR36) 2014; 53 A van Rhenen (553_CR34) 2007; 21 G Wei (553_CR16) 2017; 6 Y Nakazawa (553_CR24) 2016; 9 Y Saito (553_CR21) 2010; 2 G Goel (553_CR46) 2014; 33 M Kalos (553_CR7) 2013; 39 VR Wiersma (553_CR30) 2015; 7 A Frankel (553_CR37) 2008; 49 EJ Cheadle (553_CR44) 2014; 257 S Yu (553_CR8) 2017; 10 L Jin (553_CR19) 2009; 5 RJ Brentjens (553_CR15) 2013; 5 CH Chen (553_CR27) 2006; 107 RJ Brentjens (553_CR12) 2011; 118 N Misaghian (553_CR40) 2009; 23 D Bonnet (553_CR32) 1997; 3 A van Rhenen (553_CR33) 2007; 110 DC Taussig (553_CR25) 2005; 106 AD Guerrero (553_CR10) 2014; 33 AS Marshall (553_CR28) 2004; 279 Y Han (553_CR29) 2004; 104 X Zhao (553_CR35) 2010; 95 DG Song (553_CR39) 2016; 9 AB Bakker (553_CR26) 2004; 64 SA Grupp (553_CR14) 2013; 368 C Saygin (553_CR23) 2017; 10 RB Walter (553_CR17) 2012; 119 CJ Eaves (553_CR1) 2010; 362 Z Wang (553_CR11) 2017; 10 G Gross (553_CR5) 1989; 86 KC Straathof (553_CR41) 2005; 105 AS Marshall (553_CR31) 2006; 36 S Maude (553_CR45) 2016; 172 H Tashiro (553_CR43) 2017; 25 GJ Roboz (553_CR2) 2012; 24 FS Lichtenegger (553_CR3) 2017; 10 Y Kikushige (553_CR20) 2010; 7 JN Kochenderfer (553_CR13) 2012; 119 R Majeti (553_CR22) 2009; 138 |
References_xml | – volume: 138 start-page: 286 issue: 2 year: 2009 ident: 553_CR22 publication-title: Cell doi: 10.1016/j.cell.2009.05.045 – volume: 18 start-page: 843 issue: 4 year: 2010 ident: 553_CR38 publication-title: Mol Ther doi: 10.1038/mt.2010.24 – volume: 5 start-page: 177ra38 issue: 177 year: 2013 ident: 553_CR15 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3005930 – volume: 7 start-page: 708 issue: 6 year: 2010 ident: 553_CR20 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.11.014 – volume: 9 start-page: 27 year: 2016 ident: 553_CR24 publication-title: J Hematol Oncol doi: 10.1186/s13045-016-0256-3 – volume: 23 start-page: 25 issue: 1 year: 2009 ident: 553_CR40 publication-title: Leukemia doi: 10.1038/leu.2008.246 – volume: 115 start-page: 453 issue: 3 year: 2010 ident: 553_CR4 publication-title: Blood doi: 10.1182/blood-2009-07-235358 – volume: 279 start-page: 14792 issue: 15 year: 2004 ident: 553_CR28 publication-title: J Biol Chem doi: 10.1074/jbc.M313127200 – volume: 118 start-page: 4817 issue: 18 year: 2011 ident: 553_CR12 publication-title: Blood doi: 10.1182/blood-2011-04-348540 – volume: 25 start-page: 2202 issue: 9 year: 2017 ident: 553_CR43 publication-title: Mol Ther doi: 10.1016/j.ymthe.2017.05.024 – volume: 107 start-page: 1459 issue: 4 year: 2006 ident: 553_CR27 publication-title: Blood doi: 10.1182/blood-2005-08-3264 – volume: 36 start-page: 2159 issue: 8 year: 2006 ident: 553_CR31 publication-title: Eur J Immunol doi: 10.1002/eji.200535628 – volume: 257 start-page: 91 issue: 1 year: 2014 ident: 553_CR44 publication-title: Immunol Rev doi: 10.1111/imr.12126 – volume: 10 start-page: 78 issue: 1 year: 2017 ident: 553_CR8 publication-title: J Hematol Oncol doi: 10.1186/s13045-017-0444-9 – volume: 86 start-page: 10024 issue: 24 year: 1989 ident: 553_CR5 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.86.24.10024 – volume: 5 start-page: 31 issue: 1 year: 2009 ident: 553_CR19 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.04.018 – volume: 64 start-page: 891 issue: 5 year: 1991 ident: 553_CR6 publication-title: Cell doi: 10.1016/0092-8674(91)90314-O – volume: 21 start-page: 1700 issue: 8 year: 2007 ident: 553_CR34 publication-title: Leukemia doi: 10.1038/sj.leu.2404754 – volume: 3 start-page: 730 issue: 7 year: 1997 ident: 553_CR32 publication-title: Nat Med doi: 10.1038/nm0797-730 – volume: 53 start-page: 9841 issue: 37 year: 2014 ident: 553_CR36 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201405353 – volume: 9 start-page: 56 issue: 1 year: 2016 ident: 553_CR39 publication-title: J Hematol Oncol doi: 10.1186/s13045-016-0285-y – volume: 172 start-page: 11 issue: 1 year: 2016 ident: 553_CR45 publication-title: Br J Haematol doi: 10.1111/bjh.13792 – volume: 105 start-page: 4247 issue: 11 year: 2005 ident: 553_CR41 publication-title: Blood doi: 10.1182/blood-2004-11-4564 – volume: 10 start-page: 142 issue: 1 year: 2017 ident: 553_CR3 publication-title: J Hematol Oncol doi: 10.1186/s13045-017-0505-0 – volume: 2 start-page: 17ra9 issue: 17 year: 2010 ident: 553_CR21 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000349 – volume: 33 start-page: 421 issue: 9 year: 2014 ident: 553_CR10 publication-title: Chin J Cancer. doi: 10.5732/cjc.014.10100 – volume: 365 start-page: 1673 issue: 18 year: 2011 ident: 553_CR42 publication-title: N Engl J Med doi: 10.1056/NEJMoa1106152 – volume: 362 start-page: 2326 issue: 24 year: 2010 ident: 553_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMcibr1003522 – volume: 33 start-page: 445 issue: 9 year: 2014 ident: 553_CR46 publication-title: Chin J Cancer doi: 10.5732/cjc.014.10123 – volume: 116 start-page: 1035 issue: 7 year: 2010 ident: 553_CR9 publication-title: Blood doi: 10.1182/blood-2010-01-043737 – volume: 119 start-page: 6198 issue: 26 year: 2012 ident: 553_CR17 publication-title: Blood doi: 10.1182/blood-2011-11-325050 – volume: 49 start-page: 543 issue: 3 year: 2008 ident: 553_CR37 publication-title: Leuk Lymphoma doi: 10.1080/10428190701799035 – volume: 6 start-page: 10 year: 2017 ident: 553_CR16 publication-title: Exp Hematol Oncol doi: 10.1186/s40164-017-0070-9 – volume: 64 start-page: 8443 issue: 22 year: 2004 ident: 553_CR26 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1659 – volume: 110 start-page: 2659 issue: 7 year: 2007 ident: 553_CR33 publication-title: Blood doi: 10.1182/blood-2007-03-083048 – volume: 39 start-page: 49 issue: 1 year: 2013 ident: 553_CR7 publication-title: Immunity doi: 10.1016/j.immuni.2013.07.002 – volume: 119 start-page: 2709 issue: 12 year: 2012 ident: 553_CR13 publication-title: Blood doi: 10.1182/blood-2011-10-384388 – volume: 10 start-page: 53 issue: 1 year: 2017 ident: 553_CR11 publication-title: J Hematol Oncol doi: 10.1186/s13045-017-0423-1 – volume: 10 start-page: 93 issue: 1 year: 2017 ident: 553_CR23 publication-title: J Hematol Oncol doi: 10.1186/s13045-017-0463-6 – volume: 7 start-page: 321 issue: 2 year: 2015 ident: 553_CR30 publication-title: MAbs doi: 10.1080/19420862.2015.1007811 – volume: 95 start-page: 71 issue: 1 year: 2010 ident: 553_CR35 publication-title: Haematologica doi: 10.3324/haematol.2009.009811 – volume: 106 start-page: 4086 issue: 13 year: 2005 ident: 553_CR25 publication-title: Blood doi: 10.1182/blood-2005-03-1072 – volume: 12 start-page: 1167 issue: 10 year: 2006 ident: 553_CR18 publication-title: Nat Med doi: 10.1038/nm1483 – volume: 104 start-page: 2858 issue: 9 year: 2004 ident: 553_CR29 publication-title: Blood doi: 10.1182/blood-2004-03-0878 – volume: 24 start-page: 711 issue: 6 year: 2012 ident: 553_CR2 publication-title: Curr Opin Oncol doi: 10.1097/CCO.0b013e328358f62d – volume: 368 start-page: 1509 issue: 16 year: 2013 ident: 553_CR14 publication-title: N Engl J Med doi: 10.1056/NEJMoa1215134 |
SSID | ssj0061920 |
Score | 2.512956 |
Snippet | Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected... Background Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in... Abstract Background Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7 |
SubjectTerms | Acute myelocytic leukemia Acute myeloid leukemia C-type lectin-like molecule-1 Care and treatment Chimeric antigen receptor Genetic aspects Health aspects Immunotherapy Leukemia stem cells Physiological aspects T cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlh9JLaZt-bJsmKhQKBRHLlmTruF0aQkh6KAnkJkayTJduvKHrPfTfd8aylzWB9tKjrRHITzOaGWv0xNjHmNcNpv9RZI3NhcKYQxBLuPDG56bC5VEFOjt89c2c36iLW327d9UX1YQleuAE3CmEDEBm4I22KqB7rcoStIUQ8jpK34dG6PPGZCqtwZQVjHuYsjKnG0kbgoJW5EzrQuiJF-rJ-h8uyXs-aVovueeAzp6xp0PkyOdpxM_Zo9i-YI-vhr3xQ3axmH8X15z-xG94KvBGt8QXl5dCcthwaPlIIM67Ne8rzDmEbRf53e-4Wi9rvorbn_FuCS_ZzdnX68W5GG5KEEGbohOxBmMLG6CuoKlzFZRsChNVWXlMQq2qQukREhsazH5UYYoih0LWxhpMh0p8fsUO2nUb3zBuENSyNjk0XmETWC99FZUhmhy0VTlj2YicCwONON1msXJ9OlEZl8B2CLYjsJ2esc-7LveJQ-Nvwl9oOnaCRH_dv0ClcINSuH8pxYyd0GS6dJZ0Z8RuTuT_FmMSNWOfegkyYxx-gOE0AoJAhFgTyaOJJJpfmDR_GBXGURPVrLVxvd04qkaj2wM0YvY6KdDuqzDIksYq7F1OVGvy2dOWdvmjZ__GBFGiNb39Hzi9Y08wAKRqRnTHR-yg-7WN7zHI6vxxb09_AEBCICk priority: 102 providerName: Directory of Open Access Journals |
Title | CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29316944 https://www.proquest.com/docview/1989570051 https://pubmed.ncbi.nlm.nih.gov/PMC5761206 https://doaj.org/article/ac0aa10ab6594c389877a59acc2de1ba |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBf9gL2NfS-jyzQYDAbaIluSrYcx3NBSQlNG10DehCzLXVhqb7ED63-_O9sxNSt9ConOQT7fT3dnnX5HyAcfZDmk_55Nch0wATEHQ5Zwlqo0UDEsj8Lh2eH5hTpbiNlSLvfIrr1Vp8Dq3tQO-0ktNuvPf__cfgPAf20AH6svFcftPobr7UTKkMl9cgiOKUKczkW_qYCpQns-UipYBIKg2-S89y8Gbqph8_9_zb7jtIYFlXc81OkT8rgLLWnS2sJTsueLZ-TRvNs8f05m0-SSXVF8VV_RtgIc_Badnp8zTm1FbUF3DOO0LmlTgk6t29ae3tz6dbnK6Npvf_mblX1BFqcnV9Mz1rVSYE6qsGY-s0qH2tkstnkWCCd4HiovojiFLFWL2EUpqEe7HNIjEaowDGzIM6UV5EsRfH9JDoqy8K8JVZ6nUaYCm6cChqxOeRp7oZBHB8DMR2Sy05xxHc84trtYmybfiJVplW1A2QaVbeSIfOov-d2SbDwkfIyPoxdEfuzmh3JzbTq4Gesm1vKJTZXUwkFQFkeRldo6F2Qwfzsi7_BhmvawaY9yk2B3AA1BixiRj40EWh5M39nuuAIoARmzBpJHA0nApxsMv98ZjMEhLGorfLmtDJarYXsBCTp71RpQf1cQhXGlBVwdDUxrcNvDkWL1s6EHhwySA9zePDytI3JQb7b-LYRUdTom-9EyGpPDJJn9mMHn8cnF98tx84Ji3IDoH9YGHhY |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAR-T+cells+targeting+CLL-1+as+an+approach+to+treat+acute+myeloid+leukemia&rft.jtitle=Journal+of+hematology+and+oncology&rft.au=Wang%2C+Jinghua&rft.au=Chen%2C+Siyu&rft.au=Xiao%2C+Wei&rft.au=Li%2C+Wende&rft.date=2018-01-10&rft.pub=BioMed+Central+Ltd&rft.issn=1756-8722&rft.eissn=1756-8722&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs13045-017-0553-5&rft.externalDocID=A546392664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-8722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-8722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-8722&client=summon |