A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain

Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architecture...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's research & therapy Vol. 11; no. 1; pp. 71 - 16
Main Authors Del-Aguila, Jorge L., Li, Zeran, Dube, Umber, Mihindukulasuriya, Kathie A., Budde, John P., Fernandez, Maria Victoria, Ibanez, Laura, Bradley, Joseph, Wang, Fengxian, Bergmann, Kristy, Davenport, Richard, Morris, John C., Holtzman, David M., Perrin, Richard J., Benitez, Bruno A., Dougherty, Joseph, Cruchaga, Carlos, Harari, Oscar
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 09.08.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution. We generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses. We identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles. We propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available.
AbstractList Abstract Background Alzheimer’s disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution. Methods We generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses. Results We identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles. Conclusion We propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available.
Background Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution. Methods We generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses. Results We identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles. Conclusion We propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available. Keywords: PSEN1, Single-nuclei RNA-seq, Alzheimer's disease, Web-based brain molecular atlas
Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution. We generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses. We identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles. We propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available.
Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution.BACKGROUNDAlzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution.We generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses.METHODSWe generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses.We identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles.RESULTSWe identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles.We propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available.CONCLUSIONWe propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available.
Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution. We generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses. We identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles. We propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available.
ArticleNumber 71
Audience Academic
Author Del-Aguila, Jorge L.
Bergmann, Kristy
Budde, John P.
Fernandez, Maria Victoria
Wang, Fengxian
Davenport, Richard
Dube, Umber
Perrin, Richard J.
Ibanez, Laura
Bradley, Joseph
Holtzman, David M.
Morris, John C.
Benitez, Bruno A.
Cruchaga, Carlos
Harari, Oscar
Dougherty, Joseph
Li, Zeran
Mihindukulasuriya, Kathie A.
Author_xml – sequence: 1
  givenname: Jorge L.
  surname: Del-Aguila
  fullname: Del-Aguila, Jorge L.
– sequence: 2
  givenname: Zeran
  surname: Li
  fullname: Li, Zeran
– sequence: 3
  givenname: Umber
  surname: Dube
  fullname: Dube, Umber
– sequence: 4
  givenname: Kathie A.
  surname: Mihindukulasuriya
  fullname: Mihindukulasuriya, Kathie A.
– sequence: 5
  givenname: John P.
  surname: Budde
  fullname: Budde, John P.
– sequence: 6
  givenname: Maria Victoria
  surname: Fernandez
  fullname: Fernandez, Maria Victoria
– sequence: 7
  givenname: Laura
  surname: Ibanez
  fullname: Ibanez, Laura
– sequence: 8
  givenname: Joseph
  surname: Bradley
  fullname: Bradley, Joseph
– sequence: 9
  givenname: Fengxian
  surname: Wang
  fullname: Wang, Fengxian
– sequence: 10
  givenname: Kristy
  surname: Bergmann
  fullname: Bergmann, Kristy
– sequence: 11
  givenname: Richard
  surname: Davenport
  fullname: Davenport, Richard
– sequence: 12
  givenname: John C.
  surname: Morris
  fullname: Morris, John C.
– sequence: 13
  givenname: David M.
  surname: Holtzman
  fullname: Holtzman, David M.
– sequence: 14
  givenname: Richard J.
  surname: Perrin
  fullname: Perrin, Richard J.
– sequence: 15
  givenname: Bruno A.
  surname: Benitez
  fullname: Benitez, Bruno A.
– sequence: 16
  givenname: Joseph
  surname: Dougherty
  fullname: Dougherty, Joseph
– sequence: 17
  givenname: Carlos
  surname: Cruchaga
  fullname: Cruchaga, Carlos
– sequence: 18
  givenname: Oscar
  orcidid: 0000-0002-2635-6975
  surname: Harari
  fullname: Harari, Oscar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31399126$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUDVKx7eoP8EUGBPFlau4kk48XYalfhaog9Tlkkju7KbNJncxI--_NurXsikgeEs495-Te5JySo5giEvIc6BmAEm8yMNBtTUHXtG14ffuInIBsVa1Bs6O98zE5zfmaUiEaxZ-QYwZMa2jECblaVjnE1YB1nN2Aofr2pSD4Y8boCl7lafZ3Veqrzxg9DsHGykZf5Zs0Wh9ctXxXhVhNa6zW86YUu9GG-JQ87u2Q8dn9viDfP7y_Ov9UX379eHG-vKxdK9hUo-eMUQ-AvPNMdYx7UBK86ngLtHWqQRSNZ5JxSZvGoRa8kVwjk7pwkS3Ixc7XJ3ttbsawseOdSTaY30AaV8aOUyhzGQfWt1JpTnvGO9crpa1FbqFFyhyF4vV253Uzdxv0DuM02uHA9LASw9qs0k8jhNIgZTF4fW8wpvJ8eTKbkB0Og42Y5myaRoLigpfvWJCXO-rKltZC7FNxdFu6WbZaCEpVu-3o7B-ssjxugitJ6EPBDwSv9gRrtMO0zmmYp5BiPiS-2J_1Ycg_sSgE2BHcmHIesX-gADXb6Jld9EyJntlGz9wWjfxL48Jkt3eXtsPwH-UvFj7aJA
CitedBy_id crossref_primary_10_1093_brain_awac080
crossref_primary_10_1007_s10571_021_01159_3
crossref_primary_10_1186_s13073_021_00878_y
crossref_primary_10_1002_advs_202410098
crossref_primary_10_1097_MD_0000000000040551
crossref_primary_10_2967_jnumed_121_263200
crossref_primary_10_1186_s41232_023_00277_3
crossref_primary_10_3390_bioengineering8110166
crossref_primary_10_1016_j_arr_2021_101444
crossref_primary_10_1038_s41593_022_01222_2
crossref_primary_10_3389_fnagi_2021_690372
crossref_primary_10_1016_j_neuron_2023_01_016
crossref_primary_10_3389_fncel_2021_772011
crossref_primary_10_1016_j_molmed_2020_09_001
crossref_primary_10_1002_glia_24633
crossref_primary_10_1002_adhm_202304180
crossref_primary_10_1002_ctd2_95
crossref_primary_10_1084_jem_20202717
crossref_primary_10_1186_s40478_022_01342_7
crossref_primary_10_1007_s12264_022_01013_6
crossref_primary_10_1007_s11427_023_2360_3
crossref_primary_10_3389_fimmu_2023_1271466
crossref_primary_10_1080_09168451_2020_1714420
crossref_primary_10_1111_acel_13606
crossref_primary_10_1038_s41598_020_76784_x
crossref_primary_10_1007_s11011_025_01538_5
crossref_primary_10_1126_scitranslmed_aax3519
crossref_primary_10_1038_s41586_021_03489_0
crossref_primary_10_1016_j_it_2020_07_005
crossref_primary_10_1016_j_tins_2021_12_004
crossref_primary_10_1016_j_it_2020_07_006
crossref_primary_10_1016_j_isci_2020_101556
crossref_primary_10_1016_j_cell_2023_10_005
crossref_primary_10_1038_s41467_023_37437_5
crossref_primary_10_1111_jnc_16002
crossref_primary_10_1038_s41586_022_04587_3
crossref_primary_10_3389_fncel_2023_1208122
crossref_primary_10_1038_s41593_023_01356_x
crossref_primary_10_3389_fcell_2022_884748
crossref_primary_10_1101_gr_278253_123
crossref_primary_10_3390_cells12071051
crossref_primary_10_4049_jimmunol_2300007
crossref_primary_10_1186_s13024_021_00476_x
crossref_primary_10_1186_s40478_022_01328_5
crossref_primary_10_3389_fnmol_2021_651355
crossref_primary_10_1038_s41380_024_02456_1
crossref_primary_10_1016_j_pharmthera_2024_108606
crossref_primary_10_1016_j_celrep_2023_112196
crossref_primary_10_1016_j_neubiorev_2021_12_023
crossref_primary_10_1016_j_neuron_2021_07_004
crossref_primary_10_3389_fphar_2021_766082
crossref_primary_10_1038_s41577_023_00907_4
crossref_primary_10_26508_lsa_202403080
crossref_primary_10_1016_j_molmed_2023_01_002
crossref_primary_10_1002_alz_12012
crossref_primary_10_14336_AD_2023_0505
crossref_primary_10_3389_fncel_2022_1025012
crossref_primary_10_3390_genes12081247
crossref_primary_10_1038_s41582_021_00578_6
crossref_primary_10_1038_s41582_023_00809_y
crossref_primary_10_1007_s10439_020_02507_y
crossref_primary_10_1016_j_cell_2020_06_038
crossref_primary_10_1371_journal_ppat_1009665
crossref_primary_10_3389_fnsyn_2021_773590
crossref_primary_10_26508_lsa_202000874
crossref_primary_10_1038_s41593_021_00886_6
crossref_primary_10_1080_15476286_2020_1870362
crossref_primary_10_1093_hmg_ddaa038
crossref_primary_10_1016_j_celrep_2020_107843
crossref_primary_10_1007_s11427_023_2473_x
crossref_primary_10_1016_j_pneurobio_2021_102173
crossref_primary_10_1186_s40478_020_01083_5
crossref_primary_10_1002_alz_12389
crossref_primary_10_1016_j_neuron_2023_05_006
crossref_primary_10_1016_j_neuron_2022_06_021
crossref_primary_10_1093_braincomms_fcaa112
crossref_primary_10_1016_j_ibmb_2023_104043
crossref_primary_10_1016_j_psc_2025_01_002
crossref_primary_10_1080_19768354_2022_2110937
crossref_primary_10_1016_j_cell_2023_01_002
crossref_primary_10_1016_j_celrep_2020_108189
crossref_primary_10_1038_s41597_024_03485_9
crossref_primary_10_1002_cpmo_66
crossref_primary_10_1038_s41588_021_00894_z
crossref_primary_10_1038_s41467_022_34412_4
crossref_primary_10_1002_adfm_201909146
crossref_primary_10_1111_nan_12642
crossref_primary_10_1186_s13024_025_00798_0
crossref_primary_10_1016_j_neuron_2022_03_008
crossref_primary_10_1038_s41598_024_71888_0
crossref_primary_10_1016_j_xcrm_2023_101175
crossref_primary_10_1146_annurev_immunol_101921_035222
crossref_primary_10_1038_s41593_024_01600_y
crossref_primary_10_3390_ijms25063090
crossref_primary_10_1016_j_ajhg_2021_12_014
crossref_primary_10_1016_j_isci_2020_101769
crossref_primary_10_1038_s41467_024_48926_6
crossref_primary_10_1016_j_isci_2021_102357
crossref_primary_10_3390_biom13020313
crossref_primary_10_1016_j_semcdb_2023_06_005
crossref_primary_10_1186_s13578_023_01120_5
Cites_doi 10.1038/nmeth.4402
10.1038/s41467-018-03405-7
10.1038/ncomms14049
10.1038/nbt.4096
10.1038/nrn2459
10.1038/s41586-018-0654-5
10.1186/s13073-018-0551-4
10.1146/annurev-cellbio-100109-104117
10.1016/j.molmed.2005.02.009
10.1016/j.cell.2018.07.028
10.1371/journal.pone.0209648
10.1038/nn.2207
10.1093/bioinformatics/btv088
10.1016/j.molcel.2017.11.017
10.1152/physrev.2001.81.2.741
10.1002/glia.22683
10.1016/j.ejphar.2004.02.046
10.1126/science.aaf1204
10.1126/science.aao4827
10.1016/j.celrep.2017.03.004
10.1093/nar/gkw430
10.1038/nature10110
10.1126/science.aad6469
10.1038/s41467-018-02926-5
10.1038/s41598-018-27293-5
10.1016/j.celrep.2017.12.066
10.1126/science.aat8464
10.18637/jss.v0.32.i06
10.1016/j.neubiorev.2011.06.009
10.1073/pnas.1319700110
10.3233/JAD-122299
10.1038/s41593-018-0216-z
10.1039/C5IB00191A
10.1038/nn.3898
10.1038/nbt.4038
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: The Author(s). 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/s13195-019-0524-x
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1758-9193
EndPage 16
ExternalDocumentID oai_doaj_org_article_c1ad578940f34bcf889aae4a15e03c01
PMC6689177
A596600851
31399126
10_1186_s13195_019_0524_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG057777
– fundername: NIH HHS
  grantid: R01AG057777
– fundername: NIA NIH HHS
  grantid: P50 AG005681
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: P01 AG026276
– fundername: ;
  grantid: R01AG057777
GroupedDBID ---
0R~
23M
2WC
53G
5VS
6J9
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACIHN
ACJQM
ACUHS
ADBBV
ADUKV
AEAQA
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
HZ~
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M1P
M~E
O5R
O5S
O9-
OK1
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
-56
-5G
-BR
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c563t-ed4330d11e4bd38b34d1871d8b45105c82ee62d37347022ce9642749e37934de3
IEDL.DBID DOA
ISSN 1758-9193
IngestDate Wed Aug 27 01:31:19 EDT 2025
Thu Aug 21 14:32:52 EDT 2025
Fri Jul 11 01:25:26 EDT 2025
Tue Jun 17 20:51:30 EDT 2025
Tue Jun 10 20:24:50 EDT 2025
Thu May 22 21:21:02 EDT 2025
Thu Jan 02 22:58:15 EST 2025
Thu Apr 24 22:49:46 EDT 2025
Tue Jul 01 02:38:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Single-nuclei RNA-seq
Web-based brain molecular atlas
PSEN1
Alzheimer’s disease
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-ed4330d11e4bd38b34d1871d8b45105c82ee62d37347022ce9642749e37934de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2635-6975
OpenAccessLink https://doaj.org/article/c1ad578940f34bcf889aae4a15e03c01
PMID 31399126
PQID 2271846419
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_c1ad578940f34bcf889aae4a15e03c01
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6689177
proquest_miscellaneous_2271846419
gale_infotracmisc_A596600851
gale_infotracacademiconefile_A596600851
gale_healthsolutions_A596600851
pubmed_primary_31399126
crossref_primary_10_1186_s13195_019_0524_x
crossref_citationtrail_10_1186_s13195_019_0524_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-09
PublicationDateYYYYMMDD 2019-08-09
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-09
  day: 09
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Alzheimer's research & therapy
PublicationTitleAlternate Alzheimers Res Ther
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References I Voineagu (524_CR27) 2011; 474
Daifeng Wang (524_CR28) 2018; 362
BA Friedman (524_CR38) 2018; 22
E Bruner (524_CR29) 2013; 35
WV Li (524_CR20) 2018; 9
Z Li (524_CR4) 2018; 10
X Qiu (524_CR7) 2017; 14
AE Jaffe (524_CR24) 2015; 18
Z Ji (524_CR22) 2016; 44
DJ Selkoe (524_CR3) 2001; 81
MC Oldham (524_CR26) 2008; 11
B De Strooper (524_CR2) 2010; 26
524_CR6
AT McKenzie (524_CR18) 2018; 8
MJ Gandal (524_CR23) 2018; 359
TE Bakken (524_CR33) 2018; 13
A Butler (524_CR36) 2018; 36
BB Lake (524_CR5) 2016; 352
Heather C. Rice (524_CR19) 2019; 363
C Xu (524_CR13) 2015; 31
B Tasic (524_CR16) 2018; 563
RV Grindberg (524_CR9) 2013; 110
KW Kelley (524_CR25) 2018; 21
R Chen (524_CR14) 2017; 18
524_CR17
HI Jacobs (524_CR31) 2012; 36
P Hu (524_CR15) 2017; 68
CE Shannon (524_CR21) 1997; 14
BB Lake (524_CR34) 2018; 36
524_CR12
M Olah (524_CR39) 2018; 9
R Cabeza (524_CR30) 2008; 9
S Herculano-Houzel (524_CR37) 2014; 62
Arpiar Saunders (524_CR11) 2018; 174
FM LaFerla (524_CR1) 2005; 11
524_CR10
J Lindeboom (524_CR32) 2004; 490
J Wang (524_CR35) 2015; 7
GX Zheng (524_CR8) 2017; 8
References_xml – volume: 14
  start-page: 979
  issue: 10
  year: 2017
  ident: 524_CR7
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4402
– volume: 9
  start-page: 997
  issue: 1
  year: 2018
  ident: 524_CR20
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03405-7
– volume: 8
  year: 2017
  ident: 524_CR8
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 36
  start-page: 411
  issue: 5
  year: 2018
  ident: 524_CR36
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 9
  start-page: 613
  issue: 8
  year: 2008
  ident: 524_CR30
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2459
– volume: 563
  start-page: 72
  issue: 7729
  year: 2018
  ident: 524_CR16
  publication-title: Nature.
  doi: 10.1038/s41586-018-0654-5
– volume: 10
  start-page: 43
  issue: 1
  year: 2018
  ident: 524_CR4
  publication-title: Genome Med
  doi: 10.1186/s13073-018-0551-4
– volume: 26
  start-page: 235
  year: 2010
  ident: 524_CR2
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-100109-104117
– volume: 11
  start-page: 170
  issue: 4
  year: 2005
  ident: 524_CR1
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2005.02.009
– volume: 174
  start-page: 1015-1030.e16
  issue: 4
  year: 2018
  ident: 524_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.028
– volume: 13
  issue: 12
  year: 2018
  ident: 524_CR33
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0209648
– volume: 11
  start-page: 1271
  issue: 11
  year: 2008
  ident: 524_CR26
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2207
– volume: 31
  start-page: 1974
  issue: 12
  year: 2015
  ident: 524_CR13
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv088
– volume: 68
  start-page: 1006
  issue: 5
  year: 2017
  ident: 524_CR15
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.11.017
– volume: 14
  start-page: 306
  issue: 4
  year: 1997
  ident: 524_CR21
  publication-title: MD Comput
– volume: 81
  start-page: 741
  issue: 2
  year: 2001
  ident: 524_CR3
  publication-title: Physiol Rev
  doi: 10.1152/physrev.2001.81.2.741
– ident: 524_CR17
– volume: 62
  start-page: 1377
  issue: 9
  year: 2014
  ident: 524_CR37
  publication-title: Glia.
  doi: 10.1002/glia.22683
– volume: 490
  start-page: 83
  issue: 1–3
  year: 2004
  ident: 524_CR32
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2004.02.046
– volume: 352
  start-page: 1586
  issue: 6293
  year: 2016
  ident: 524_CR5
  publication-title: Science.
  doi: 10.1126/science.aaf1204
– volume: 363
  start-page: eaao4827
  issue: 6423
  year: 2019
  ident: 524_CR19
  publication-title: Science
  doi: 10.1126/science.aao4827
– ident: 524_CR6
– volume: 18
  start-page: 3227
  issue: 13
  year: 2017
  ident: 524_CR14
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.03.004
– volume: 44
  start-page: e117
  issue: 13
  year: 2016
  ident: 524_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw430
– volume: 474
  start-page: 380
  issue: 7351
  year: 2011
  ident: 524_CR27
  publication-title: Nature.
  doi: 10.1038/nature10110
– volume: 359
  start-page: 693
  issue: 6376
  year: 2018
  ident: 524_CR23
  publication-title: Science.
  doi: 10.1126/science.aad6469
– volume: 9
  start-page: 539
  issue: 1
  year: 2018
  ident: 524_CR39
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-02926-5
– volume: 8
  start-page: 8868
  issue: 1
  year: 2018
  ident: 524_CR18
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27293-5
– volume: 22
  start-page: 832
  issue: 3
  year: 2018
  ident: 524_CR38
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.12.066
– volume: 362
  start-page: eaat8464
  issue: 6420
  year: 2018
  ident: 524_CR28
  publication-title: Science
  doi: 10.1126/science.aat8464
– ident: 524_CR12
  doi: 10.18637/jss.v0.32.i06
– volume: 36
  start-page: 297
  issue: 1
  year: 2012
  ident: 524_CR31
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2011.06.009
– volume: 110
  start-page: 19802
  issue: 49
  year: 2013
  ident: 524_CR9
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1319700110
– volume: 35
  start-page: 227
  issue: 2
  year: 2013
  ident: 524_CR29
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-122299
– volume: 21
  start-page: 1171
  issue: 9
  year: 2018
  ident: 524_CR25
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-018-0216-z
– volume: 7
  start-page: 1466
  issue: 11
  year: 2015
  ident: 524_CR35
  publication-title: Integr Biol (Camb)
  doi: 10.1039/C5IB00191A
– volume: 18
  start-page: 154
  issue: 1
  year: 2015
  ident: 524_CR24
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3898
– volume: 36
  start-page: 70
  issue: 1
  year: 2018
  ident: 524_CR34
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4038
– ident: 524_CR10
SSID ssj0066284
Score 2.5207655
Snippet Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting...
Background Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily...
Abstract Background Alzheimer’s disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 71
SubjectTerms Advertising executives
Alzheimer's disease
Banking industry
Banks (Finance)
Best practices
Biochemistry
Brain
Care and treatment
Death
Gene expression
Gene mutation
Genes
Genetic aspects
Genetic research
Genetics
Nervous system diseases
Neurons
PSEN1
RNA
RNA sequencing
Single-nuclei RNA-seq
Tissue donation
Web-based brain molecular atlas
Title A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain
URI https://www.ncbi.nlm.nih.gov/pubmed/31399126
https://www.proquest.com/docview/2271846419
https://pubmed.ncbi.nlm.nih.gov/PMC6689177
https://doaj.org/article/c1ad578940f34bcf889aae4a15e03c01
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDDdb-7KXsbFuy9beXBgMBqHxR2zn8XprKYUeo7Rwb8axHXZQcmW9Qv_8SnbuuDDYXvYYWwFHlizJkX4i5Ctvmeqk9yWPSpSSua5sJVYBV6rVXtSmSyBJV3N1cSsvF_Vip9UX5oRleODMuBPPXACpamTVCdn6zpjGuSgdq2MlfK7cApu3CabyGawUnLrDP0xm1MkDE9iTsMKCnZrL8mlkhRJY_59H8o5NGudL7hig8zfk9eA50mle8VvyIvbvyM2UYrB_F8segYmX9HoOIzk9GsZpQo-lq45e4VU3XmlQ1weKsawLS0-nP-iyp-AE0tSsj7bYMeKA3J6f3cwuyqFRQulrJdZlDFKIKjAWZRuEaYUMDAKhYFqJ_pM3PEbFg9BCarDZPjYQdWjZRAHaKUMU78lev-rjR0KFq7qGK3C5g5LRgTU3vtMxYhdN2ApTkGrDOOsHFHFsZnFnUzRhlM28tsBri7y2TwX5vn3lPkNo_I34FHdjS4jo12kAZMIOMmH_JRMF-YJ7aXMp6VaH7bRGLFJ0MgvyLVGgFsPyvRuKEYAJiIc1ojwcUYL2-dH08UZeLE5hylofV48PlnMw-1JJ1hTkQ5af7VcJ8LsbxlVB9EiyRp89numXvxL4t1IGImz96X_w6TN5xZNOYAbMIdlb_36MR-BjrdsJeakXekL2T8_mP6_haaZmk6Riz7NzJLk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-nuclei+RNA+sequencing+study+of+Mendelian+and+sporadic+AD+in+the+human+brain&rft.jtitle=Alzheimer%27s+research+%26+therapy&rft.au=Del-Aguila%2C+Jorge+L.&rft.au=Li%2C+Zeran&rft.au=Dube%2C+Umber&rft.au=Mihindukulasuriya%2C+Kathie+A.&rft.date=2019-08-09&rft.pub=BioMed+Central&rft.eissn=1758-9193&rft.volume=11&rft_id=info:doi/10.1186%2Fs13195-019-0524-x&rft_id=info%3Apmid%2F31399126&rft.externalDocID=PMC6689177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-9193&client=summon