Transfer Learning Under High-Dimensional Generalized Linear Models

In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 118; no. 544; pp. 2684 - 2697
Main Authors Tian, Ye, Feng, Yang
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its l 1 / l 2 -estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and sources are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don't know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans , which is available on CRAN. Supplementary materials for this article are available online.
AbstractList In this work, we study the transfer learning problem under highdimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its ℓ1 / ℓ2-estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and source are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don't know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans, which is available on CRAN.In this work, we study the transfer learning problem under highdimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its ℓ1 / ℓ2-estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and source are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don't know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans, which is available on CRAN.
In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its l1/l2-estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and sources are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don’t know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans, which is available on CRAN. Supplementary materials for this article are available online.
In this work, we study the transfer learning problem under highdimensional generalized linear models (GLMs), which aim to improve the fit on data by borrowing information from useful data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its / -estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and source are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don't know which sources to transfer, an transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans, which is available on CRAN.
In this work, we study the transfer learning problem under highdimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its ℓ 1 / ℓ 2 -estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and source are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don’t know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans , which is available on CRAN.
In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose a transfer learning algorithm on GLM, and derive its l 1 / l 2 -estimation error bounds as well as a bound for a prediction error measure. The theoretical analysis shows that when the target and sources are sufficiently close to each other, these bounds could be improved over those of the classical penalized estimator using only target data under mild conditions. When we don't know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. We also propose an algorithm to construct confidence intervals of each coefficient component, and the corresponding theories are provided. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in a new R package glmtrans , which is available on CRAN. Supplementary materials for this article are available online.
Author Feng, Yang
Tian, Ye
Author_xml – sequence: 1
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  organization: Department of Statistics, Columbia University
– sequence: 2
  givenname: Yang
  orcidid: 0000-0001-7746-7598
  surname: Feng
  fullname: Feng, Yang
  organization: Department of Biostatistics, School of Global Public Health, New York University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38562655$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFjwCKxIVLiseOY0cc-FOgRVrEpZW4WY4z2bpy7NbOgsqnx6vdRdADkIMjy795nnnPR-QgxICEPAV6AlTRlxRaBo3oThhlrCwSmFQPyAIElzWTzdcDstgw9QY6JEc5X9PySaUekUOuRMtaIRbk3UUyIY-YqiWaFFxYVZdhKNtzt7qq37sJQ3YxGF-dYcBkvPuBQ7V0odDV5zigz4_Jw9H4jE92_2Ny-fHDxel5vfxy9un07bK2ouVzja0Faxh0Uvaq50MjGUjO2hEAGO9tz0bTMy6hwxEUb6WwtG-oaKxCIVHwY_J6q3uz7iccLIa59KNvkptMutPROP3nSXBXehW_aaCdYi2XReHFTiHF2zXmWU8uW_TeBIzrrDltaNMUY9h_oByAA2NdQZ_fQ6_jOhXLsmZdMRykkFCoZ793_6vtfRQFeLUFbIo5Jxy1dbOZi_llGOfLFHoTvN4HrzfB613wpVrcq95f8K-6N9s6F8aYJvM9Jj_o2dz5mMbyNKwrs_5d4id0wMH-
CitedBy_id crossref_primary_10_1002_sta4_70041
crossref_primary_10_1038_s41598_023_48903_x
crossref_primary_10_1111_sjos_12723
crossref_primary_10_1167_tvst_12_12_2
crossref_primary_10_1002_cjs_11813
crossref_primary_10_1080_00949655_2024_2338223
crossref_primary_10_1080_02331888_2024_2361861
crossref_primary_10_1002_sta4_70004
crossref_primary_10_1093_bib_bbad232
crossref_primary_10_1007_s10109_024_00455_y
crossref_primary_10_1080_01621459_2024_2403788
crossref_primary_10_1080_01621459_2024_2393463
crossref_primary_10_1126_science_adi6000
crossref_primary_10_12677_AAM_2022_119718
crossref_primary_10_1016_j_csda_2024_107975
crossref_primary_10_1016_j_csda_2023_107899
crossref_primary_10_1007_s11749_023_00870_1
crossref_primary_10_1093_biomtc_ujae144
crossref_primary_10_1080_01621459_2024_2439622
crossref_primary_10_1007_s11121_025_01781_3
crossref_primary_10_1186_s12859_025_06056_w
crossref_primary_10_1080_01621459_2023_2184373
crossref_primary_10_1007_s00362_025_01662_5
crossref_primary_10_1080_00401706_2024_2315952
crossref_primary_10_1080_01621459_2024_2356291
crossref_primary_10_3390_axioms13080517
crossref_primary_10_1002_sta4_582
crossref_primary_10_1214_23_AOAS1747
crossref_primary_10_1214_24_AOS2362
crossref_primary_10_1007_s11749_023_00880_z
crossref_primary_10_1093_bioinformatics_btad680
crossref_primary_10_1002_sim_10290
crossref_primary_10_1093_biomtc_ujae096
crossref_primary_10_1002_sam_11680
crossref_primary_10_2139_ssrn_4787816
Cites_doi 10.1214/009053606000000281
10.1214/14-AOS1221
10.1111/j.2517-6161.1996.tb02080.x
10.1007/978-1-4899-3242-6
10.1093/biomet/asw065
10.1111/j.1467-9868.2005.00532.x
10.1214/15-EJS1027
10.1287/mnsc.2020.3729
10.1214/21-AOS2102
10.1109/ICDM.2018.00077
10.4018/978-1-60566-766-9.ch011
10.1186/s40537-016-0043-6
10.1016/j.csda.2016.02.015
10.1109/TKDE.2009.191
10.1214/20-AOS1949
10.1214/13-AOS1096
ContentType Journal Article
Copyright 2022 American Statistical Association 2022
2022 American Statistical Association
Copyright_xml – notice: 2022 American Statistical Association 2022
– notice: 2022 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
DOI 10.1080/01621459.2022.2071278
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
International Bibliography of the Social Sciences (IBSS)
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 2697
ExternalDocumentID PMC10982637
38562655
10_1080_01621459_2022_2071278
2071278
Genre Research Article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health: NIH
  grantid: 1R21AG074205-01
– fundername: NIA NIH HHS
  grantid: R21 AG074205
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
.-4
.GJ
07G
1OL
2AX
3R3
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8P6
8R4
8R5
AAFWJ
AAIKQ
AAKBW
ABBHK
ABEFU
ABJCF
ABPQH
ABRLO
ABUWG
ABXSQ
ABYAD
ACAGQ
ACGEE
ACTWD
ACUBG
ADBBV
ADODI
ADULT
AELPN
AEUMN
AEUPB
AFKRA
AFQQW
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
EJD
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TFMCV
TOXWX
UB9
UKHRP
UQL
VH1
VOH
VXZ
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
TASJS
7X8
7S9
L.6
5PM
ADXHL
ID FETCH-LOGICAL-c563t-e6c1ca21977b8b3d47217326f11123bcb2fab23719ef183675c0b4054c8e57e53
ISSN 0162-1459
1537-274X
IngestDate Thu Aug 21 18:34:58 EDT 2025
Wed Jul 02 04:32:55 EDT 2025
Mon Jul 21 11:42:13 EDT 2025
Sat Aug 23 12:36:09 EDT 2025
Wed Feb 19 02:07:32 EST 2025
Tue Jul 01 02:39:34 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Wed Dec 25 09:02:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 544
Keywords transfer learning
high-dimensional inference
sparsity
Lasso
Generalized linear models
negative transfer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c563t-e6c1ca21977b8b3d47217326f11123bcb2fab23719ef183675c0b4054c8e57e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7746-7598
OpenAccessLink https://figshare.com/articles/journal_contribution/Transfer_Learning_under_High-dimensional_Generalized_Linear_Models/19678366
PMID 38562655
PQID 2907817571
PQPubID 41715
PageCount 14
ParticipantIDs proquest_miscellaneous_3040442652
proquest_journals_2907817571
crossref_primary_10_1080_01621459_2022_2071278
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10982637
crossref_citationtrail_10_1080_01621459_2022_2071278
proquest_miscellaneous_3031131229
pubmed_primary_38562655
informaworld_taylorfrancis_310_1080_01621459_2022_2071278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-02
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_6_1
Zheng C. (e_1_3_3_24_1) 2019
Hajiramezanali E. (e_1_3_3_7_1) 2018
e_1_3_3_18_1
Li S. (e_1_3_3_11_1) 2021
Negahban S. (e_1_3_3_14_1) 2009
e_1_3_3_17_1
e_1_3_3_19_1
Hanneke S. (e_1_3_3_8_1) 2020
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_3_1
Hanneke S. (e_1_3_3_9_1) 2020
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_12_1
e_1_3_3_23_1
e_1_3_3_4_1
Li S. (e_1_3_3_10_1) 2020
e_1_3_3_22_1
References_xml – year: 2020
  ident: e_1_3_3_9_1
  article-title: On the Value of Target Data in Transfer Learning
  publication-title: arXiv preprint arXiv:2002.04747
– ident: e_1_3_3_13_1
  doi: 10.1214/009053606000000281
– start-page: 1348
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: e_1_3_3_14_1
– ident: e_1_3_3_20_1
  doi: 10.1214/14-AOS1221
– year: 2020
  ident: e_1_3_3_10_1
  article-title: Transfer Learning in Large-Scale Gaussian Graphical Models with False Discovery Rate Control
  publication-title: arXiv preprint arXiv:2010.11037
– ident: e_1_3_3_18_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– year: 2019
  ident: e_1_3_3_24_1
  article-title: On Data Enriched Logistic Regression
  publication-title: arXiv preprint arXiv:1911.06380
– start-page: 31
  volume-title: Advances in Neural Information Processing Systems 31 (NIPS 2018)
  year: 2018
  ident: e_1_3_3_7_1
– ident: e_1_3_3_12_1
  doi: 10.1007/978-1-4899-3242-6
– ident: e_1_3_3_15_1
  doi: 10.1093/biomet/asw065
– year: 2021
  ident: e_1_3_3_11_1
  article-title: “Transfer Learning for High-Dimensional Linear Regression: Prediction, Estimation and Minimax Optimality
  publication-title: Journal of the Royal Statistical Society, Series B
– ident: e_1_3_3_23_1
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: e_1_3_3_5_1
  doi: 10.1214/15-EJS1027
– ident: e_1_3_3_2_1
  doi: 10.1287/mnsc.2020.3729
– ident: e_1_3_3_17_1
  doi: 10.1214/21-AOS2102
– ident: e_1_3_3_21_1
  doi: 10.1109/ICDM.2018.00077
– ident: e_1_3_3_19_1
  doi: 10.4018/978-1-60566-766-9.ch011
– ident: e_1_3_3_22_1
  doi: 10.1186/s40537-016-0043-6
– ident: e_1_3_3_6_1
  doi: 10.1016/j.csda.2016.02.015
– year: 2020
  ident: e_1_3_3_8_1
  article-title: A no-free-lunch Theorem for Multitask Learning
  publication-title: arXiv preprint arXiv:2006.15785
– ident: e_1_3_3_16_1
  doi: 10.1109/TKDE.2009.191
– ident: e_1_3_3_4_1
  doi: 10.1214/20-AOS1949
– ident: e_1_3_3_3_1
  doi: 10.1214/13-AOS1096
SSID ssj0000788
Score 2.611162
Snippet In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by...
In this work, we study the transfer learning problem under highdimensional generalized linear models (GLMs), which aim to improve the fit on data by borrowing...
In this work, we study the transfer learning problem under highdimensional generalized linear models (GLMs), which aim to improve the fit on target data by...
In this work, we study the transfer learning problem under highdimensional generalized linear models (GLMs), which aim to improve the fit on target data by...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2684
SubjectTerms Algorithms
Americans
artificial intelligence
confidence interval
Error analysis
Generalized linear models
High-dimensional inference
Lasso
Learning
Linear analysis
linear models
Machine learning
Negative transfer
prediction
Sparsity
Statistical models
Statistics
Transfer learning
Title Transfer Learning Under High-Dimensional Generalized Linear Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2022.2071278
https://www.ncbi.nlm.nih.gov/pubmed/38562655
https://www.proquest.com/docview/2907817571
https://www.proquest.com/docview/3031131229
https://www.proquest.com/docview/3040442652
https://pubmed.ncbi.nlm.nih.gov/PMC10982637
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkdBeqvJOW1CQuKaKX3FyBASqkOipldpTFDsOVIK02k0v_fWMX9lk2VLgEq3iZHbX33g8Y3u-AXini4aXVamzinU641KoTOUFDjyNcRhHD14au6P79aQ4PuNfzsV5LDQesksGdaRvt-aV_A-qeA9xtVmy_4DsKBRv4GfEF6-IMF7_DmPndZplZEn95qraLt3hjay1vP2ecyOSS1_eonuJ0acj77ElcFZ3-KaTfBNX4XdwdM5b0HQHeP0a6sWoIthHzoBcNGFaDKsK1J9Pmy00ImCEB7buaCnXptJuRnM-tXyFL_X2m0kOZxhRnhWHETm1-W-SUF-6ZwLT9U-HEyvRJys8ee8GF3ZsegiPKIYF1q6x_GQ980pXZ3T87TFjy3Kpb_v-BTyOEmduyYy0dlvosXmCduKSnO7BbsArfe8V4wk8MP1TWIxwrZ7Bh6ghadSQ1GlIuqkh6URDUq8hqdeQ53D2-dPpx-MsVM3ItCjYkJlCE93gRCSlKhVrOcb4Ep30Dmc1ypRWtGsUZZJUpkN7jgGjzhW67VyXRkgj2AvY6a968wrSpkX3UVHR0lZzUaJUQVreGcZMoRgvEuCx02odKOVtZZMfNYnMs6Hba9vtdej2BI7G1649p8p9L1RTROrBLWZ1vvJMze559zDCV4ehu6ppZTmupJAkgbdjMxpWu1vW9ObqBsXidEcYobT60zM85-jjCprAS68R4z-KmpVAOdOV8QFL7D5v6S-_O4J3klcY9TO5f6fQA1isR-0h7AzLG_MaveNBvXFD4hc0c67f
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ReiiXPugrLW2DxDXb-J0c-0LbFvYEEjcrdhxAoFBB9sKv70ycLLuIlgNneyzZHo-_sWe-AdjxupJFWfisFI3PpFEuc7nGg-fRD5OI4E2gH939mZ4eyl9H6mgpF4bCKsmHbiJRRG-r6XDTY_QYEvcZYQoRbFOeCadkKsO4KR7BY1VqQ7ou8tmNNTZ97UkSyUhmzOL51zAr99MKe-ldGPR2KOXS3bT7DPw4qxiScjaZd27ir28RPj5s2s_h6QBd0y9R117AWmg3YYPQaiR7fglf-5uvCZfpQNt6nPZ1lVKKJsm-UyGBSAKSDmzXp9ehTtEdxt4pVWU7v3oFh7s_Dr5Ns6FIQ-aVFl0WtGe-QrtnjCucqCW6lAYxYYNGlAvnHW8qx4VhZWjQfKB_4nOHKFH6IigTlHgN6-1FG95CWtWIVhxXNa-9VAWOqlgtmyBE0E5InYAct8b6gcGcCmmcWzYSnQ4rZGmF7LBCCUwWYn8ihcd9AuXyvtuufztpYqETK-6R3RqVxA7W4MrykiiVjDIsge1FM55j-pyp2nAxx2HRujLBOC__10fmEiGV4gm8iXq3mJEoEMlqpRIoVjRy0YF4xFdb2tOTnk-c5SU6mcK8e8C8P8GT6cH-nt37Ofv9HjawKYY88i1Y7y7n4QNCt8597M_mX67BMqM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVAvvB8pBYLENUviZ3IEyqq8VhyoxM2KHRsqqrTqZi_99Z2JnaVbAT30bI8l2zPjb5KZbwBeO9WKuqld0fDgCqGlLWyp0PAcxmECEbz29Ef360LtH4hPP-SUTbhMaZUUQ4dIFDH6ajLuky5MGXFvEKUQvzaVmTCqpdIV0_VNuKWo0JKqOMrFH2esx9aTJFKQzFTE869lNp6nDfLSv0HQy5mUF56m-V2w06ZiRsrv2WqwM3d2ie_xWru-B3cScM3fRk27Dzd8_wC2CatGqueH8G5894I_zRNp68987KqUUy5JsUdtBCIFSJ64rg_PfJdjMIyzc-rJdrR8BAfzD9_f7xepRUPhpOJD4ZWrXIteT2tbW94JDCg1IsKALpRx6ywLrWVcV40P6DwwOnGlRYwoXO2l9pI_hq3-uPdPIW87xCqWyY51TsgaV5VVJ4Ln3CvLhcpATDdjXOIvpzYaR6aaaE7TCRk6IZNOKIPZWuwkEnhcJdBcvHYzjF9OQmxzYvgVsruTjpjkC5aGNUSopKWuMni1HkYrpl8zbe-PV7gs-taKV4w1_5sjSoGASrIMnkS1W--I14hjlZQZ1BsKuZ5ALOKbI_3hr5FNvCobDDG53rnGvl_C7W97c_Pl4-LzM9jGkZjvyHZhazhd-eeI2wb7YrTMc7EvMUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+Learning+under+High-dimensional+Generalized+Linear+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Tian%2C+Ye&rft.au=Feng%2C+Yang&rft.date=2023-10-02&rft.issn=0162-1459&rft.volume=118&rft.issue=544&rft.spage=2684&rft_id=info:doi/10.1080%2F01621459.2022.2071278&rft_id=info%3Apmid%2F38562655&rft.externalDocID=38562655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon