Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage

Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19. The study prospectively involved 61 patients...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 18; no. 1; pp. 206 - 12
Main Authors Liu, Jingyuan, Liu, Yao, Xiang, Pan, Pu, Lin, Xiong, Haofeng, Li, Chuansheng, Zhang, Ming, Tan, Jianbo, Xu, Yanli, Song, Rui, Song, Meihua, Wang, Lin, Zhang, Wei, Han, Bing, Yang, Li, Wang, Xiaojing, Zhou, Guiqin, Zhang, Ting, Li, Ben, Wang, Yanbin, Chen, Zhihai, Wang, Xianbo
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.05.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19. The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness. The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged ≥ 50 and having an NLR < 3.13, and 50% (7/14) patients with age ≥ 50 and NLR ≥ 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process. We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged ≥ 50 and having an NLR ≥ 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.
AbstractList The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness. The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged [greater than or equai to] 50 and having an NLR < 3.13, and 50% (7/14) patients with age [greater than or equai to] 50 and NLR [greater than or equai to] 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process. We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged [greater than or equai to] 50 and having an NLR [greater than or equai to] 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.
Abstract Background Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19. Methods The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness. Results The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged ≥ 50 and having an NLR < 3.13, and 50% (7/14) patients with age ≥ 50 and NLR ≥ 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process. Conclusions We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged ≥ 50 and having an NLR ≥ 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.
Background Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19. Methods The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness. Results The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged ≥ 50 and having an NLR < 3.13, and 50% (7/14) patients with age ≥ 50 and NLR ≥ 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process. Conclusions We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged ≥ 50 and having an NLR ≥ 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.
Background Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19. Methods The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness. Results The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged [greater than or equai to] 50 and having an NLR < 3.13, and 50% (7/14) patients with age [greater than or equai to] 50 and NLR [greater than or equai to] 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process. Conclusions We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged [greater than or equai to] 50 and having an NLR [greater than or equai to] 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary. Keywords: COVID-19, 2019-nCoV, NLR, Model, Prognosis, SARS-CoV
Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19. The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness. The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged ≥ 50 and having an NLR < 3.13, and 50% (7/14) patients with age ≥ 50 and NLR ≥ 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process. We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged ≥ 50 and having an NLR ≥ 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.
Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19.BACKGROUNDPatients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The study aimed to screen the most useful predictive factor for critical illness caused by COVID-19.The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness.METHODSThe study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for critical illness was selected using LASSO regression analysis. A nomogram based on non-specific laboratory indicators was built to predict the probability of critical illness.The neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged ≥ 50 and having an NLR < 3.13, and 50% (7/14) patients with age ≥ 50 and NLR ≥ 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process.RESULTSThe neutrophil-to-lymphocyte ratio (NLR) was identified as an independent risk factor for critical illness in patients with COVID-19 infection. The NLR had an area under receiver operating characteristic of 0.849 (95% confidence interval [CI], 0.707 to 0.991) in the derivation cohort and 0.867 (95% CI 0.747 to 0.944) in the validation cohort, the calibration curves fitted well, and the decision and clinical impact curves showed that the NLR had high standardized net benefit. In addition, the incidence of critical illness was 9.1% (1/11) for patients aged ≥ 50 and having an NLR < 3.13, and 50% (7/14) patients with age ≥ 50 and NLR ≥ 3.13 were predicted to develop critical illness. Based on the risk stratification of NLR according to age, this study has developed a COVID-19 pneumonia management process.We found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged ≥ 50 and having an NLR ≥ 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.CONCLUSIONSWe found that NLR is a predictive factor for early-stage prediction of patients infected with COVID-19 who are likely to develop critical illness. Patients aged ≥ 50 and having an NLR ≥ 3.13 are predicted to develop critical illness, and they should thus have rapid access to an intensive care unit if necessary.
ArticleNumber 206
Audience Academic
Author Xu, Yanli
Song, Rui
Zhou, Guiqin
Zhang, Ting
Zhang, Wei
Li, Chuansheng
Yang, Li
Pu, Lin
Xiong, Haofeng
Xiang, Pan
Liu, Yao
Tan, Jianbo
Chen, Zhihai
Song, Meihua
Li, Ben
Liu, Jingyuan
Wang, Lin
Wang, Xiaojing
Wang, Yanbin
Wang, Xianbo
Zhang, Ming
Han, Bing
Author_xml – sequence: 1
  givenname: Jingyuan
  surname: Liu
  fullname: Liu, Jingyuan
– sequence: 2
  givenname: Yao
  surname: Liu
  fullname: Liu, Yao
– sequence: 3
  givenname: Pan
  surname: Xiang
  fullname: Xiang, Pan
– sequence: 4
  givenname: Lin
  surname: Pu
  fullname: Pu, Lin
– sequence: 5
  givenname: Haofeng
  surname: Xiong
  fullname: Xiong, Haofeng
– sequence: 6
  givenname: Chuansheng
  surname: Li
  fullname: Li, Chuansheng
– sequence: 7
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
– sequence: 8
  givenname: Jianbo
  surname: Tan
  fullname: Tan, Jianbo
– sequence: 9
  givenname: Yanli
  surname: Xu
  fullname: Xu, Yanli
– sequence: 10
  givenname: Rui
  surname: Song
  fullname: Song, Rui
– sequence: 11
  givenname: Meihua
  surname: Song
  fullname: Song, Meihua
– sequence: 12
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
– sequence: 13
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 14
  givenname: Bing
  surname: Han
  fullname: Han, Bing
– sequence: 15
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 16
  givenname: Xiaojing
  surname: Wang
  fullname: Wang, Xiaojing
– sequence: 17
  givenname: Guiqin
  surname: Zhou
  fullname: Zhou, Guiqin
– sequence: 18
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
– sequence: 19
  givenname: Ben
  surname: Li
  fullname: Li, Ben
– sequence: 20
  givenname: Yanbin
  surname: Wang
  fullname: Wang, Yanbin
– sequence: 21
  givenname: Zhihai
  surname: Chen
  fullname: Chen, Zhihai
– sequence: 22
  givenname: Xianbo
  orcidid: 0000-0002-3593-5741
  surname: Wang
  fullname: Wang, Xianbo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32434518$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rHCEUhoeS0ny0f6AXRehNbyb1a9S5KYTQj0Bob9prMXpm18Udp-qk7L-vk03TbChFRPE855VX39PmaIwjNM1rgs8JUeJ9JrQXssUU18kkb_Gz5oRw2bedkuLo0f64Oc15gzHlHe9fNMeMcsY7ok6a9BXmkuK09qEtsQ277bSOdlcAJVN8RFMC523JyCZfvDUB-RBGyBlNtQ5jrfzyZY0oJj2yMcXR3Po0Z-R8BpMB-RGVNSAwKexQLmYFL5vngwkZXt2vZ82PTx-_X35pr799vrq8uG5tJ1hpLeaD7UVHDHOkt1wQMFjJgXBGmRlAOSI4GGYUE9Q4gQXveS-BGk5drbOz5mqv66LZ6Cn5rUk7HY3XdwcxrbRJ1VMAjYeBdmaQ1AHjQtgby6XjnA7GERCWVa0Pe61pvtmCs9V4MuFA9LAy-rVexVst68cohavAu3uBFH_OkIve-mwhBDNCnLOmHHeMcdnJir59gm7inMb6VJUiXEnFe_KXWplqwI9DrPfaRVRfCCq5qFoLdf4Pqg4HW29rnAZfzw8a3jw2-uDwT2IqQPeATTHnBMMDQrBeYqn3sdQ1lvoulnpxr540WV-WfC2P5cP_Wn8DDgnnDQ
CitedBy_id crossref_primary_10_5937_scriptamed52_34641
crossref_primary_10_3389_fimmu_2020_01979
crossref_primary_10_1177_03946320231189993
crossref_primary_10_3389_fphar_2020_01327
crossref_primary_10_3390_pathogens10081056
crossref_primary_10_1016_j_mam_2021_100996
crossref_primary_10_61186_mlj_16_6_8
crossref_primary_10_1002_jmv_28067
crossref_primary_10_1016_j_jiac_2020_09_022
crossref_primary_10_7759_cureus_25197
crossref_primary_10_7759_cureus_10923
crossref_primary_10_61186_mlj_16_6_1
crossref_primary_10_1002_jcla_23604
crossref_primary_10_14710_jai_v0i0_47963
crossref_primary_10_1186_s12879_021_05856_8
crossref_primary_10_11149_jkaoh_2021_45_4_192
crossref_primary_10_1515_pteridines_2020_0021
crossref_primary_10_20960_revmedlab_00040
crossref_primary_10_3989_redc_2020_2_1663
crossref_primary_10_7759_cureus_31982
crossref_primary_10_3390_cells10061469
crossref_primary_10_3389_fmicb_2022_1003380
crossref_primary_10_1080_08830185_2020_1800688
crossref_primary_10_1016_j_isci_2020_101947
crossref_primary_10_36290_kar_2021_023
crossref_primary_10_2147_IJGM_S326666
crossref_primary_10_21886_2712_8156_2021_2_1_90_101
crossref_primary_10_3389_fpubh_2020_00461
crossref_primary_10_24293_ijcpml_v28i3_1998
crossref_primary_10_3389_fcimb_2022_988604
crossref_primary_10_36106_ijsr_7129135
crossref_primary_10_1007_s11908_021_00765_y
crossref_primary_10_1111_ger_12499
crossref_primary_10_3390_diagnostics14182102
crossref_primary_10_1186_s12967_022_03300_2
crossref_primary_10_17116_klinderma202120041100
crossref_primary_10_1007_s42399_021_01115_8
crossref_primary_10_3390_pathogens9060493
crossref_primary_10_3390_jcm11061538
crossref_primary_10_18535_ijsrm_v9i12_mp03
crossref_primary_10_1093_femsre_fuab035
crossref_primary_10_1007_s10723_024_09766_2
crossref_primary_10_3390_medicina58081040
crossref_primary_10_5858_arpa_2021_0368_SA
crossref_primary_10_1590_2175_8239_jbn_2021_0161
crossref_primary_10_1186_s12879_020_05540_3
crossref_primary_10_20473_jr_v9_I_2_2023_108_116
crossref_primary_10_7759_cureus_29760
crossref_primary_10_2147_IJGM_S417569
crossref_primary_10_1155_2022_4620037
crossref_primary_10_17827_aktd_1000224
crossref_primary_10_24293_ijcpml_v27i2_1738
crossref_primary_10_1097_SHK_0000000000001740
crossref_primary_10_3389_fmed_2021_656405
crossref_primary_10_1038_s41598_022_20724_4
crossref_primary_10_1186_s41479_022_00099_w
crossref_primary_10_30699_ijmm_17_2_202
crossref_primary_10_12688_f1000research_26723_2
crossref_primary_10_12688_f1000research_26723_1
crossref_primary_10_1186_s12245_022_00426_4
crossref_primary_10_56936_18290825_2022_16_2_25
crossref_primary_10_1080_10255842_2025_2475483
crossref_primary_10_54393_pjhs_v5i09_1455
crossref_primary_10_1111_aji_13594
crossref_primary_10_12677_ACM_2023_133655
crossref_primary_10_1038_s41392_021_00614_3
crossref_primary_10_3177_jnsv_67_249
crossref_primary_10_1016_j_crad_2023_11_001
crossref_primary_10_1007_s11255_021_02947_y
crossref_primary_10_1007_s00018_021_03808_8
crossref_primary_10_1155_2021_2571912
crossref_primary_10_19127_mbsjohs_1064479
crossref_primary_10_1097_YIC_0000000000000506
crossref_primary_10_1002_jcla_23767
crossref_primary_10_1111_ijlh_13291
crossref_primary_10_2459_JCM_0000000000001398
crossref_primary_10_3389_fdmed_2021_674056
crossref_primary_10_3390_ijms24065708
crossref_primary_10_1016_j_celrep_2023_112613
crossref_primary_10_1097_SHK_0000000000001724
crossref_primary_10_4103_2452_2473_348434
crossref_primary_10_1186_s12985_023_02116_w
crossref_primary_10_1186_s12879_020_05128_x
crossref_primary_10_1007_s40121_023_00813_1
crossref_primary_10_2147_IDR_S355395
crossref_primary_10_1111_ggi_13974
crossref_primary_10_1016_j_obmed_2024_100538
crossref_primary_10_1177_20499361211034065
crossref_primary_10_1007_s00277_020_04366_y
crossref_primary_10_1016_j_arr_2020_101235
crossref_primary_10_3389_fonc_2023_1115293
crossref_primary_10_1002_jcla_23657
crossref_primary_10_1093_jn_nxab142
crossref_primary_10_1111_ped_14890
crossref_primary_10_15252_emmm_202013001
crossref_primary_10_3389_fcvm_2021_785738
crossref_primary_10_1016_j_ebiom_2024_105248
crossref_primary_10_3389_fcimb_2022_835750
crossref_primary_10_1080_14737159_2021_1915773
crossref_primary_10_3389_fimmu_2020_569760
crossref_primary_10_1111_all_14465
crossref_primary_10_1155_2021_8821697
crossref_primary_10_3390_jcm12020644
crossref_primary_10_1126_sciimmunol_abd6197
crossref_primary_10_3389_fmed_2021_608107
crossref_primary_10_1002_jbm4_10576
crossref_primary_10_3390_antibiotics11081053
crossref_primary_10_1371_journal_pone_0254073
crossref_primary_10_3390_diagnostics11040596
crossref_primary_10_1371_journal_pone_0249964
crossref_primary_10_3389_fpubh_2020_574915
crossref_primary_10_1038_s41423_023_00974_6
crossref_primary_10_54393_pbmj_v6i09_935
crossref_primary_10_1016_j_intimp_2020_107233
crossref_primary_10_1186_s40249_022_00946_4
crossref_primary_10_1155_2020_8894180
crossref_primary_10_3390_diagnostics11091687
crossref_primary_10_4103_aihb_aihb_44_22
crossref_primary_10_3390_jcm11010058
crossref_primary_10_1186_s12879_022_07059_1
crossref_primary_10_23736_S1825_859X_22_00143_8
crossref_primary_10_1016_j_cocis_2023_101711
crossref_primary_10_3389_fimmu_2021_680134
crossref_primary_10_1016_j_xcrm_2021_100317
crossref_primary_10_3390_cancers16172974
crossref_primary_10_35440_hutfd_1365963
crossref_primary_10_3390_cimb45090453
crossref_primary_10_7759_cureus_19887
crossref_primary_10_3389_fmed_2022_1000147
crossref_primary_10_23950_jcmk_12122
crossref_primary_10_47419_bjbabs_v3i03_143
crossref_primary_10_1016_j_htct_2022_05_007
crossref_primary_10_1080_16078454_2023_2199629
crossref_primary_10_1007_s12070_024_04921_3
crossref_primary_10_62073_bypc_v87i2_224
crossref_primary_10_7759_cureus_35399
crossref_primary_10_1007_s00011_024_01985_3
crossref_primary_10_5483_BMBRep_2022_55_1_152
crossref_primary_10_1002_ptr_7294
crossref_primary_10_1186_s12879_021_05840_2
crossref_primary_10_1038_s41591_021_01386_7
crossref_primary_10_1155_2023_9048749
crossref_primary_10_18410_jebmh_2021_368
crossref_primary_10_3389_fimmu_2020_577442
crossref_primary_10_1186_s12985_023_02057_4
crossref_primary_10_2147_IJGM_S375565
crossref_primary_10_1038_s41598_021_01943_7
crossref_primary_10_1016_j_biopha_2021_111272
crossref_primary_10_3390_ijms23158606
crossref_primary_10_1007_s00011_021_01465_y
crossref_primary_10_1177_10760296221111391
crossref_primary_10_4110_in_2021_21_e1
crossref_primary_10_3389_fcimb_2020_00318
crossref_primary_10_3390_jcm10143112
crossref_primary_10_4103_lungindia_lungindia_480_21
crossref_primary_10_1136_bmjopen_2020_041079
crossref_primary_10_1016_j_cmet_2020_08_013
crossref_primary_10_32322_jhsm_1052191
crossref_primary_10_1002_cam4_5426
crossref_primary_10_3389_fphar_2021_708302
crossref_primary_10_1182_bloodadvances_2022007798
crossref_primary_10_1093_gerona_glab035
crossref_primary_10_3390_antibiotics13010046
crossref_primary_10_7189_jogh_12_05041
crossref_primary_10_1007_s11655_021_3313_x
crossref_primary_10_3390_jcm11092460
crossref_primary_10_1002_jmv_27141
crossref_primary_10_2147_JIR_S456206
crossref_primary_10_1186_s13054_020_03374_8
crossref_primary_10_1016_j_csbj_2021_01_042
crossref_primary_10_26453_otjhs_1240858
crossref_primary_10_3389_fimmu_2023_1254206
crossref_primary_10_1016_j_berh_2021_101661
crossref_primary_10_3390_vaccines10081233
crossref_primary_10_3389_fimmu_2023_1048790
crossref_primary_10_1002_jmv_27275
crossref_primary_10_2147_IJGM_S317350
crossref_primary_10_51847_uPLeSEKMeQ
crossref_primary_10_1016_j_isci_2021_103530
crossref_primary_10_2174_0929867331666230717154101
crossref_primary_10_3389_fimmu_2021_631233
crossref_primary_10_1002_jmv_28000
crossref_primary_10_1002_jcp_30076
crossref_primary_10_12688_wellcomeopenres_16584_2
crossref_primary_10_12688_wellcomeopenres_16584_1
crossref_primary_10_3390_ijms251810054
crossref_primary_10_1126_scitranslmed_adk9149
crossref_primary_10_55665_troiamedj_1120090
crossref_primary_10_1146_annurev_immunol_083122_043545
crossref_primary_10_1177_1721727X231210425
crossref_primary_10_1016_j_biopha_2021_112015
crossref_primary_10_1183_13993003_01870_2021
crossref_primary_10_1016_j_ijmedinf_2021_104594
crossref_primary_10_1080_21505594_2021_1929800
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106611
crossref_primary_10_36106_gjra_9504399
crossref_primary_10_3389_fbioe_2022_867042
crossref_primary_10_1016_j_cels_2021_05_005
crossref_primary_10_3989_redc_2020_2_1691
crossref_primary_10_1016_j_transproceed_2022_04_014
crossref_primary_10_1038_s41586_020_2600_6
crossref_primary_10_1080_00365513_2020_1855470
crossref_primary_10_1002_jcla_23809
crossref_primary_10_1155_2020_6870512
crossref_primary_10_1165_rcmb_2024_0176TR
crossref_primary_10_3233_CH_231697
crossref_primary_10_15360_1813_9779_2021_3_50_64
crossref_primary_10_46310_tjim_1552501
crossref_primary_10_25259_AUJMSR_65_2022
crossref_primary_10_31965_infokes_Vol20_Iss2_1002
crossref_primary_10_3390_pathogens11111256
crossref_primary_10_1186_s13048_021_00772_6
crossref_primary_10_37881_1_616
crossref_primary_10_1007_s12192_021_01197_2
crossref_primary_10_1016_j_ajpath_2021_10_009
crossref_primary_10_1016_j_intimp_2021_108341
crossref_primary_10_5005_jp_journals_10006_2105
crossref_primary_10_1002_jcla_23935
crossref_primary_10_1016_j_prp_2022_153782
crossref_primary_10_1016_j_intimp_2020_107082
crossref_primary_10_3389_fcimb_2022_807332
crossref_primary_10_5937_jomb0_38533
crossref_primary_10_1016_j_ajem_2022_06_043
crossref_primary_10_3389_fimmu_2022_932251
crossref_primary_10_1186_s13054_020_03123_x
crossref_primary_10_7759_cureus_16554
crossref_primary_10_1099_jmm_0_001291
crossref_primary_10_1002_ped4_12282
crossref_primary_10_1155_2021_9987931
crossref_primary_10_4103_jmms_jmms_3_21
crossref_primary_10_1111_ijlh_13351
crossref_primary_10_1038_s41392_021_00731_z
crossref_primary_10_3390_diagnostics12020448
crossref_primary_10_1016_j_ajog_2020_10_032
crossref_primary_10_2147_IJGM_S320713
crossref_primary_10_3389_fimmu_2022_945583
crossref_primary_10_1111_ijlh_13354
crossref_primary_10_18087_cardio_2020_6_n1226
crossref_primary_10_1016_j_mayocp_2020_07_024
crossref_primary_10_1186_s12879_021_06495_9
crossref_primary_10_1038_s41419_020_03125_1
crossref_primary_10_1080_08830185_2021_2019727
crossref_primary_10_1186_s12985_023_01973_9
crossref_primary_10_1186_s13073_023_01208_0
crossref_primary_10_7759_cureus_27438
crossref_primary_10_1177_20587392211000890
crossref_primary_10_3389_fcimb_2022_1010683
crossref_primary_10_3390_v15010134
crossref_primary_10_61186_rabms_11_1_1
crossref_primary_10_1016_j_clim_2020_108630
crossref_primary_10_54005_geneltip_1544462
crossref_primary_10_3389_fphar_2021_763140
crossref_primary_10_1016_j_medj_2020_12_013
crossref_primary_10_3390_jcdd10020081
crossref_primary_10_18087_cardio_2020_9_n1338
crossref_primary_10_1038_s41598_021_97678_6
crossref_primary_10_1038_s41467_021_23848_9
crossref_primary_10_1016_j_phymed_2021_153784
crossref_primary_10_1093_ilar_ilab010
crossref_primary_10_1002_rmv_2356
crossref_primary_10_3390_jcm13133987
crossref_primary_10_26453_otjhs_876015
crossref_primary_10_12998_wjcc_v9_i13_2994
crossref_primary_10_1080_23744235_2022_2131902
crossref_primary_10_1177_15353702221108914
crossref_primary_10_1080_00365513_2020_1821396
crossref_primary_10_5937_jomb0_47588
crossref_primary_10_1038_s41392_024_02049_y
crossref_primary_10_3389_fimmu_2022_953195
crossref_primary_10_1016_j_intimp_2020_107065
crossref_primary_10_1186_s12967_023_04717_z
crossref_primary_10_1097_MBC_0000000000000993
crossref_primary_10_3389_fpubh_2022_880999
crossref_primary_10_1016_j_ajem_2020_08_089
crossref_primary_10_1007_s40121_023_00871_5
crossref_primary_10_3389_fimmu_2020_607583
crossref_primary_10_34019_1982_8047_2020_v46_32241
crossref_primary_10_1016_j_ijid_2022_06_035
crossref_primary_10_1128_CMR_00103_20
crossref_primary_10_3889_oamjms_2022_10886
crossref_primary_10_4103_jfmpc_jfmpc_2251_21
crossref_primary_10_7759_cureus_23696
crossref_primary_10_5005_jp_journals_11010_1080
crossref_primary_10_5005_jp_journals_10071_24135
crossref_primary_10_1016_j_anai_2020_12_014
crossref_primary_10_1016_j_ajem_2021_01_006
crossref_primary_10_3389_fmed_2021_671215
crossref_primary_10_3390_healthcare11152137
crossref_primary_10_3389_fmed_2021_696976
crossref_primary_10_1186_s12879_024_09675_5
crossref_primary_10_3892_mi_2023_112
crossref_primary_10_1186_s12967_020_02524_4
crossref_primary_10_1038_s41598_020_73136_7
crossref_primary_10_51523_2708_6011_2021_18_2_22
crossref_primary_10_1038_s41598_021_98086_6
crossref_primary_10_3389_fmed_2022_817549
crossref_primary_10_3390_life11101005
crossref_primary_10_18632_aging_103383
crossref_primary_10_1186_s12890_024_03144_0
crossref_primary_10_3390_cells10071817
crossref_primary_10_3389_fcimb_2021_751232
crossref_primary_10_12998_wjcc_v10_i3_840
crossref_primary_10_18231_j_ijpo_2021_065
crossref_primary_10_3390_biomedicines10010031
crossref_primary_10_1002_jmv_27315
crossref_primary_10_4236_ojpathology_2022_121002
crossref_primary_10_1007_s40618_021_01566_9
crossref_primary_10_1259_bjr_20230082
crossref_primary_10_1038_s41598_022_13179_0
crossref_primary_10_1016_j_intimp_2020_106980
crossref_primary_10_1111_1348_0421_12978
crossref_primary_10_12873_443wullur
crossref_primary_10_4103_mjdrdypu_mjdrdypu_874_21
crossref_primary_10_12688_f1000research_74758_2
crossref_primary_10_3389_fimmu_2022_1089064
crossref_primary_10_1177_08850666211045626
crossref_primary_10_1016_j_immuni_2020_05_002
crossref_primary_10_4103_jfmpc_jfmpc_1304_23
crossref_primary_10_3390_life11030182
crossref_primary_10_1371_journal_pone_0251048
crossref_primary_10_1038_s43587_021_00067_x
crossref_primary_10_3389_fcimb_2021_663884
crossref_primary_10_1080_08830185_2020_1840567
crossref_primary_10_1093_cid_ciaa1583
crossref_primary_10_1109_ACCESS_2021_3105321
crossref_primary_10_1016_j_clim_2021_108849
crossref_primary_10_1093_jleuko_qiae223
crossref_primary_10_12688_f1000research_74758_1
crossref_primary_10_2147_IDR_S398731
crossref_primary_10_4103_aian_AIAN_225_21
crossref_primary_10_3346_jkms_2021_36_e248
crossref_primary_10_1186_s12879_021_06478_w
crossref_primary_10_3389_fnut_2024_1371064
crossref_primary_10_1089_vim_2022_0125
crossref_primary_10_1021_acs_jproteome_0c00808
crossref_primary_10_1177_15910199221093896
crossref_primary_10_46310_tjim_1011041
crossref_primary_10_1016_j_jiph_2022_03_018
crossref_primary_10_1186_s13054_021_03672_9
crossref_primary_10_2174_1574888X17666220829123908
crossref_primary_10_25136_2409_8744_2020_6_34280
crossref_primary_10_3389_fpubh_2021_626697
crossref_primary_10_1038_s41598_021_01181_x
crossref_primary_10_2147_IDR_S261725
crossref_primary_10_3390_jpm11030195
crossref_primary_10_1038_s41598_023_31465_3
crossref_primary_10_1128_jvi_00389_22
crossref_primary_10_3390_jcm10184144
crossref_primary_10_3390_antiox9090784
crossref_primary_10_4103_ecdt_ecdt_20_21
crossref_primary_10_3390_pathogens12070944
crossref_primary_10_1371_journal_pone_0239172
crossref_primary_10_1038_s41467_020_18786_x
crossref_primary_10_1002_rmv_2296
crossref_primary_10_1038_s41598_020_74001_3
crossref_primary_10_7759_cureus_35228
crossref_primary_10_1002_jpen_2318
crossref_primary_10_1016_j_humimm_2022_08_004
crossref_primary_10_3390_biom12050604
crossref_primary_10_1007_s12250_020_00317_z
crossref_primary_10_1080_23744235_2020_1823469
crossref_primary_10_3390_vaccines9020102
crossref_primary_10_1002_cbf_3883
crossref_primary_10_1016_j_anpedi_2020_07_025
crossref_primary_10_29254_2077_4214_2022_2_1_164_225_239
crossref_primary_10_1016_j_ctrv_2020_102068
crossref_primary_10_3390_microorganisms12040737
crossref_primary_10_1631_jzus_B2300512
crossref_primary_10_1055_s_0044_1779444
crossref_primary_10_3389_fimmu_2021_655528
crossref_primary_10_36316_gcatr_02_0035
crossref_primary_10_1016_j_regg_2022_09_010
crossref_primary_10_1002_JLB_5HI0720_466R
crossref_primary_10_1089_jamp_2022_0043
crossref_primary_10_1097_RTI_0000000000000640
crossref_primary_10_7759_cureus_12690
crossref_primary_10_1016_j_diagmicrobio_2020_115169
crossref_primary_10_4103_jfmpc_jfmpc_617_21
crossref_primary_10_4110_in_2021_21_e16
crossref_primary_10_1007_s00011_021_01446_1
crossref_primary_10_3390_tropicalmed7020020
crossref_primary_10_1002_cti2_1271
crossref_primary_10_1016_j_addr_2020_12_011
crossref_primary_10_1186_s12873_021_00480_w
crossref_primary_10_3389_fonc_2020_575148
crossref_primary_10_3389_fimmu_2022_864387
crossref_primary_10_1007_s11739_023_03200_3
crossref_primary_10_1136_bmjph_2024_001291
crossref_primary_10_1093_trstmh_trad012
crossref_primary_10_1017_S0007114521000738
crossref_primary_10_3390_jcm11051247
crossref_primary_10_1016_j_ijantimicag_2020_106222
crossref_primary_10_3389_fimmu_2023_1180810
crossref_primary_10_1002_rmv_2195
crossref_primary_10_1111_cpr_12947
crossref_primary_10_23736_S0026_4806_20_06719_1
crossref_primary_10_1016_j_clim_2020_108591
crossref_primary_10_3390_ph14010015
crossref_primary_10_12688_f1000research_146814_1
crossref_primary_10_3389_fnut_2021_689296
crossref_primary_10_11150_kansenshogakuzasshi_95_21
crossref_primary_10_12688_f1000research_151333_2
crossref_primary_10_23950_jcmk_15702
crossref_primary_10_12688_f1000research_151333_1
crossref_primary_10_1017_S0950268821000674
crossref_primary_10_1371_journal_pone_0247275
crossref_primary_10_3389_fpubh_2023_1252358
crossref_primary_10_4103_ijcm_ijcm_1495_21
crossref_primary_10_1007_s12291_021_01012_w
crossref_primary_10_1155_2023_9576855
crossref_primary_10_3390_jcm10163657
crossref_primary_10_3390_ijms22179228
crossref_primary_10_1172_jci_insight_159573
crossref_primary_10_1097_MBC_0000000000001212
crossref_primary_10_2196_24018
crossref_primary_10_1080_10408363_2020_1774736
crossref_primary_10_1016_j_ijregi_2022_04_011
crossref_primary_10_4103_jfmpc_jfmpc_34_21
crossref_primary_10_3390_ijms22137017
crossref_primary_10_1080_15287394_2022_2040670
crossref_primary_10_1155_2021_9923518
crossref_primary_10_1007_s00011_021_01512_8
crossref_primary_10_18632_aging_103632
crossref_primary_10_7759_cureus_19585
crossref_primary_10_1016_j_ijid_2021_09_024
crossref_primary_10_1016_j_xcrm_2023_100935
crossref_primary_10_1093_discim_kyac004
crossref_primary_10_1016_j_jiph_2021_06_012
crossref_primary_10_13181_mji_cr_204707
crossref_primary_10_3390_medicina57101070
crossref_primary_10_1016_j_isci_2024_110275
crossref_primary_10_1186_s43168_021_00075_w
crossref_primary_10_26442_00403660_2023_6_202232
crossref_primary_10_4103_jomfp_jomfp_152_22
crossref_primary_10_3390_ijms252212199
crossref_primary_10_3389_fimmu_2020_573662
crossref_primary_10_3390_biomedicines10112786
crossref_primary_10_26559_mersinsbd_952298
crossref_primary_10_3892_br_2022_1517
crossref_primary_10_3389_fpubh_2022_1007205
crossref_primary_10_3389_fphar_2022_978979
crossref_primary_10_1038_s41598_021_85426_9
crossref_primary_10_1136_practneurol_2020_002678
crossref_primary_10_1007_s10238_021_00686_z
crossref_primary_10_1111_imm_13631
crossref_primary_10_1007_s11547_022_01487_4
crossref_primary_10_1186_s12890_021_01487_6
crossref_primary_10_17816_EID87621
crossref_primary_10_1038_s44319_024_00189_4
crossref_primary_10_1038_s41746_020_00343_x
crossref_primary_10_1016_j_ejim_2024_02_037
crossref_primary_10_1371_journal_pone_0251687
crossref_primary_10_3390_ijms24010205
crossref_primary_10_2217_bmm_2022_0056
crossref_primary_10_1002_aisy_202000277
crossref_primary_10_1016_j_clim_2021_108682
crossref_primary_10_1016_j_xcrm_2022_100779
crossref_primary_10_13005_bpj_2370
crossref_primary_10_3390_jcm10245815
crossref_primary_10_1002_jcla_23598
crossref_primary_10_1590_1806_9282_67_suppl1_20200630
crossref_primary_10_3390_diagnostics12082010
crossref_primary_10_2147_TCRM_S308961
crossref_primary_10_1007_s10072_023_06654_7
crossref_primary_10_1016_j_anpede_2020_07_005
crossref_primary_10_1038_s41598_023_30235_5
crossref_primary_10_2217_fvl_2020_0310
crossref_primary_10_2147_IDR_S342259
crossref_primary_10_1073_pnas_2109123118
crossref_primary_10_1155_2022_1156273
crossref_primary_10_1172_jci_insight_171659
crossref_primary_10_3727_036012921X16287835103471
crossref_primary_10_1080_17476348_2020_1793674
crossref_primary_10_3390_jcm10173891
crossref_primary_10_32322_jhsm_1106023
crossref_primary_10_3389_fmolb_2020_00157
crossref_primary_10_3389_fimmu_2022_879686
crossref_primary_10_1038_s41415_020_1747_8
crossref_primary_10_32322_jhsm_900462
crossref_primary_10_1055_s_0041_1732421
crossref_primary_10_1002_pbc_28843
crossref_primary_10_1172_jci_insight_147413
crossref_primary_10_1515_biol_2022_0502
crossref_primary_10_3389_fcvm_2022_822556
crossref_primary_10_3389_fimmu_2021_741061
crossref_primary_10_3892_mco_2024_2718
crossref_primary_10_3389_fimmu_2021_626235
crossref_primary_10_1172_jci_insight_155055
crossref_primary_10_1172_jci_insight_167042
crossref_primary_10_51847_Ur7AShqn7i
crossref_primary_10_3390_v13112318
crossref_primary_10_1007_s40121_022_00644_6
crossref_primary_10_1038_s41598_022_17567_4
crossref_primary_10_1002_emp2_12538
crossref_primary_10_1186_s12879_021_06104_9
crossref_primary_10_1038_s41746_021_00482_9
crossref_primary_10_36106_ijsr_7200107
crossref_primary_10_3389_fimmu_2021_659018
crossref_primary_10_3389_fragi_2024_1473632
crossref_primary_10_35366_100001
crossref_primary_10_2147_IDR_S263961
crossref_primary_10_1038_s41598_021_83831_8
crossref_primary_10_1097_MD_0000000000030650
crossref_primary_10_2174_1573398X18666220810093416
crossref_primary_10_4103_ejh_ejh_3_22
crossref_primary_10_3390_cells9061383
crossref_primary_10_5005_jp_journals_10071_23906
crossref_primary_10_36106_gjra_6700643
crossref_primary_10_1016_j_gaceta_2021_10_085
crossref_primary_10_1155_2023_7753631
crossref_primary_10_1016_j_jaim_2023_100860
crossref_primary_10_3390_diagnostics13142446
crossref_primary_10_1042_CS20220039
crossref_primary_10_2147_JIR_S301476
crossref_primary_10_1016_j_biosx_2022_100281
crossref_primary_10_1093_cid_ciaa963
crossref_primary_10_3389_fmed_2021_682843
crossref_primary_10_56512_AS_2023_1_e230606
crossref_primary_10_14710_dmj_v12i3_37911
crossref_primary_10_1172_JCI143648
crossref_primary_10_1080_1547691X_2021_1959677
crossref_primary_10_1093_jleuko_qiae138
crossref_primary_10_1002_cbin_11807
crossref_primary_10_1186_s12879_023_08258_0
crossref_primary_10_1016_j_heliyon_2023_e16482
crossref_primary_10_1016_j_livres_2020_08_001
crossref_primary_10_1093_oxfimm_iqad001
crossref_primary_10_3390_v15122434
crossref_primary_10_3390_children8060509
crossref_primary_10_1080_09537104_2020_1817360
crossref_primary_10_1136_jim_2021_001810
crossref_primary_10_1007_s10875_021_01142_z
crossref_primary_10_46239_ejbcs_1002024
Cites_doi 10.1183/13993003.00688-2020
10.1001/jama.1982.03320430047030
10.1016/j.antiviral.2016.11.006
10.3748/wjg.v25.i33.4970
10.1001/jamacardio.2020.1017
10.1007/s00408-018-0105-y
10.1128/JVI.01244-13
10.1177/0272989X06295361
10.1056/NEJMoa030747
10.1016/j.cca.2020.03.022
10.1111/jvh.12160
10.1016/j.medcli.2017.06.044
10.1016/S0140-6736(20)30211-7
10.1002/jmv.25819
10.1016/S0140-6736(03)13967-0
10.1016/j.annemergmed.2018.06.017
10.1056/NEJMoa1211721
10.1002/jmv.25871
10.1016/S0140-6736(20)30183-5
10.1038/s41418-020-0530-3
10.1002/jmv.25767
10.1056/NEJMoa2001191
10.1001/jama.2020.1585
10.3389/fmicb.2019.02752
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12967-020-02374-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 12
ExternalDocumentID oai_doaj_org_article_0ff25af72de3466cbc47d442fad1e6c3
PMC7237880
A627464751
32434518
10_1186_s12967_020_02374_0
Genre Historical Article
Journal Article
GeographicLocations China
Beijing China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7T5
7XB
8FK
AZQEC
COVID
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-c04fc9651a3d19c461ea087f14323afe8d164ea3a8362ad60649497e2a42dafe3
IEDL.DBID M48
ISSN 1479-5876
IngestDate Wed Aug 27 01:30:32 EDT 2025
Thu Aug 21 13:46:07 EDT 2025
Fri Jul 11 15:24:26 EDT 2025
Fri Jul 25 08:01:06 EDT 2025
Tue Jun 17 21:29:51 EDT 2025
Tue Jun 10 20:49:53 EDT 2025
Thu Jan 02 22:59:32 EST 2025
Thu Apr 24 23:00:12 EDT 2025
Tue Jul 01 03:51:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
Model
Prognosis
2019-nCoV
NLR
SARS-CoV
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-c04fc9651a3d19c461ea087f14323afe8d164ea3a8362ad60649497e2a42dafe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3593-5741
OpenAccessLink https://doaj.org/article/0ff25af72de3466cbc47d442fad1e6c3
PMID 32434518
PQID 2414878491
PQPubID 43076
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0ff25af72de3466cbc47d442fad1e6c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7237880
proquest_miscellaneous_2405334757
proquest_journals_2414878491
gale_infotracmisc_A627464751
gale_infotracacademiconefile_A627464751
pubmed_primary_32434518
crossref_primary_10_1186_s12967_020_02374_0
crossref_citationtrail_10_1186_s12967_020_02374_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-20
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of translational medicine
PublicationTitleAlternate J Transl Med
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References G Lippi (2374_CR18) 2020; 506
JM Leung (2374_CR19) 2020
N Chen (2374_CR20) 2020; 395
T Guo (2374_CR30) 2020
FA-O Lagunas-Rangel (2374_CR16) 2020
CA-OX Tan (2374_CR29) 2020
YL Ge (2374_CR26) 2019; 65
Y Chen (2374_CR9) 2019; 2019
T Kuiken (2374_CR1) 2003; 362
AM Zaki (2374_CR4) 2012; 367
Y Shi (2374_CR22) 2020; 27
XQ Chen (2374_CR24) 2019; 25
C Drosten (2374_CR2) 2003; 348
FE Harrell (2374_CR8) 1982; 247
A Ilg (2374_CR14) 2019; 74
H Liu (2374_CR28) 2014; 21
M Berhane (2374_CR23) 2019; 65
C Huang (2374_CR6) 2020; 395
H Liu (2374_CR7) 2014; 21
WJ Liu (2374_CR21) 2017; 137
ML Holshue (2374_CR5) 2020; 382
L Guo (2374_CR11) 2019; 10
DY Feng (2374_CR25) 2019; 25
HF Zhang (2374_CR27) 2019; 65
R Qu (2374_CR17) 2020
RJ de Groot (2374_CR3) 2013; 87
D Wang (2374_CR15) 2020; 323
M Brabrand (2374_CR13) 2018; 196
AJ Vickers (2374_CR10) 2006; 26
E Murillo-Zamora (2374_CR12) 2018; 150
References_xml – year: 2020
  ident: 2374_CR19
  publication-title: Eur Respir J.
  doi: 10.1183/13993003.00688-2020
– volume: 247
  start-page: 2543
  issue: 18
  year: 1982
  ident: 2374_CR8
  publication-title: JAMA.
  doi: 10.1001/jama.1982.03320430047030
– volume: 137
  start-page: 82
  year: 2017
  ident: 2374_CR21
  publication-title: Antivir Res
  doi: 10.1016/j.antiviral.2016.11.006
– volume: 25
  start-page: 4970
  issue: 33
  year: 2019
  ident: 2374_CR24
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v25.i33.4970
– year: 2020
  ident: 2374_CR30
  publication-title: JAMA.
  doi: 10.1001/jamacardio.2020.1017
– volume: 196
  start-page: 359
  issue: 3
  year: 2018
  ident: 2374_CR13
  publication-title: Lung
  doi: 10.1007/s00408-018-0105-y
– volume: 87
  start-page: 7790
  issue: 14
  year: 2013
  ident: 2374_CR3
  publication-title: J Virol
  doi: 10.1128/JVI.01244-13
– volume: 26
  start-page: 565
  issue: 6
  year: 2006
  ident: 2374_CR10
  publication-title: Med Decis Mak
  doi: 10.1177/0272989X06295361
– volume: 348
  start-page: 1967
  issue: 20
  year: 2003
  ident: 2374_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa030747
– volume: 506
  start-page: 145
  year: 2020
  ident: 2374_CR18
  publication-title: Clinica Chimica Acta.
  doi: 10.1016/j.cca.2020.03.022
– volume: 21
  start-page: 499
  issue: 7
  year: 2014
  ident: 2374_CR7
  publication-title: J Viral Hepat
  doi: 10.1111/jvh.12160
– volume: 150
  start-page: 99
  issue: 3
  year: 2018
  ident: 2374_CR12
  publication-title: Med Clin
  doi: 10.1016/j.medcli.2017.06.044
– volume: 395
  start-page: 507
  issue: 10223
  year: 2020
  ident: 2374_CR20
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(20)30211-7
– volume: 65
  start-page: 839
  issue: 5
  year: 2019
  ident: 2374_CR26
  publication-title: Clin Lab.
– year: 2020
  ident: 2374_CR16
  publication-title: J Med Virol
  doi: 10.1002/jmv.25819
– volume: 362
  start-page: 263
  issue: 9380
  year: 2003
  ident: 2374_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13967-0
– volume: 21
  start-page: 499
  issue: 7
  year: 2014
  ident: 2374_CR28
  publication-title: J Viral Hepatit
  doi: 10.1111/jvh.12160
– volume: 25
  start-page: 7660
  year: 2019
  ident: 2374_CR25
  publication-title: Med Sci Monit Int Med J Exp Clin Res
– volume: 74
  start-page: 60
  issue: 1
  year: 2019
  ident: 2374_CR14
  publication-title: Ann Emerg Med
  doi: 10.1016/j.annemergmed.2018.06.017
– volume: 65
  start-page: 1867
  issue: 10
  year: 2019
  ident: 2374_CR27
  publication-title: Clin Lab.
– volume: 367
  start-page: 1814
  issue: 19
  year: 2012
  ident: 2374_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211721
– year: 2020
  ident: 2374_CR29
  publication-title: J Med Virol.
  doi: 10.1002/jmv.25871
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 2374_CR6
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 27
  start-page: 1451
  issue: 5
  year: 2020
  ident: 2374_CR22
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-0530-3
– volume: 65
  start-page: 527
  issue: 4
  year: 2019
  ident: 2374_CR23
  publication-title: Ethiopia. Clin Lab.
– year: 2020
  ident: 2374_CR17
  publication-title: J Med Virol.
  doi: 10.1002/jmv.25767
– volume: 2019
  start-page: 8983704
  year: 2019
  ident: 2374_CR9
  publication-title: Biomed Res Int
– volume: 382
  start-page: 929
  issue: 10
  year: 2020
  ident: 2374_CR5
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa2001191
– volume: 323
  start-page: 1061
  issue: 11
  year: 2020
  ident: 2374_CR15
  publication-title: JAMA.
  doi: 10.1001/jama.2020.1585
– volume: 10
  start-page: 2752
  year: 2019
  ident: 2374_CR11
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02752
SSID ssj0024549
Score 2.6898112
Snippet Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory failure. The...
Background Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute respiratory...
The study prospectively involved 61 patients with COVID-19 infection as a derivation cohort, and 54 patients as a validation cohort. The predictive factor for...
Abstract Background Patients with critical illness due to infection with the 2019 coronavirus disease (COVID-19) show rapid disease progression to acute...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 206
SubjectTerms 2019-nCoV
Adolescent
Adult
Adult respiratory distress syndrome
Aged
Aged, 80 and over
Betacoronavirus - pathogenicity
Blood
Child
Child, Preschool
Cohort Studies
Comorbidity
Coronaviridae
Coronavirus infections
Coronavirus Infections - blood
Coronavirus Infections - diagnosis
Coronavirus Infections - pathology
Coronaviruses
COVID-19
Critical Illness
Development and progression
Disease Progression
Dyspnea
Etiology
Female
Fever
Health aspects
History, 21st Century
Humans
Illnesses
Infant
Infection
Infections
Influenza
Laboratories
Leukocyte Count
Lymphocytes
Lymphocytes - pathology
Male
Medical diagnosis
Medical research
Middle Aged
Neutrophils
Neutrophils - pathology
NLR
Nomograms
Pandemics
Patients
Pneumonia
Pneumonia, Viral - blood
Pneumonia, Viral - diagnosis
Pneumonia, Viral - pathology
Polymerase chain reaction
Prognosis
Prospective Studies
Regression analysis
Respiratory failure
Risk factors
SARS-CoV
SARS-CoV-2
Severity of Illness Index
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yB_EifltdJYLgQcq2aT7a4youi7B7cmFvIU0nbqG0j7ZP2P_eSZo-XhH04rUzLU1-k_lok98Q8lG5smiEYmkmDKRcFpBWAgHJGlErWQOYQDx_dS0vb_j3W3F71OrL7wlb6IGXiTvLnGPCOMUaKLiUtrZcNZwzZ5ocpA08nxjz1mJqZdnDsmc9IlPKswmjGjoEXyphjFI8zTZhKLD1_-mTj4LSdsPkUQS6eEIex9SRni-v_JQ8gP4ZeXgVf44_J-M17Odx2N21XToPaXePQA32fgYaUKa70avOE7WxvQFtu857OhrJVSfqv8pSDNYVtZ7ZwPxqx_1E408c2vYU00UKnhOZYlb5E16Qm4tvP75eprGlQmqFLObUZtzZSorcFE1eWS5zMFmpHGZNrDAOygbLJzCFKTGwmQarG89eo4AZzhqUFy_JST_08JpQfIYFVjtnreKA0DojakRcQSNrVkFC8nWGtY18477tRadD3VFKvaCiERUdUNFZQj4f7tktbBt_1f7igTtoeqbscAHtR0f70f-yn4R88rBrv57x9ayJxxJwkJ4ZS5_75kSSK5En5HSjievQbsWr4ejoByaN-RFWhCWvUPzhIPZ3-r1tPQx7rxPOQyuhEvJqsbPDkDDdLbjIy4SojQVuxryV9O1dYAlXzLcKyN78j0l6Sx6xsHgEetVTcjKPe3iHydhcvw_r7jfmljO3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ja9wwFBZtCqWX0r1O06JCoYdiYsta7FNJS0MoJKcG5iZkLcnAYE9tTyH_Pu9pNJOYQq7Wk7H86W1avkfIFxXqygnF8kIYn3NZ-bwRAEjhRKtk672JxPPnF_Lskv9eiEVacBvTscqdTYyG2vUW18iPwdNAbF3zpvy-_ptj1SjcXU0lNB6TJ0hdhke61OIu4eKQ_OwuytTyeATfBmYBEybwVIrnxcwZRc7-_y3zPdc0PzZ5zw-dviDPUwBJT7aIvySPfPeKPD1PW-SvyXDhN9PQr6-Xq3zq89UNwNXbm8nTiDVdDyg6jdSmIgd0uVqhvaOJYnWkuDZLwWU31CK_gfm3HDYjTVs5dNlRCBqpR2ZkCrHllX9DLk9__fl5lqfCCrkVsppyW_BgGylKU7mysVyW3hS1ChA7scoEXztIorypTA3uzTjIcZDDRnlmOHPQXr0lB13f-feEwjusZ20I1iruAeBgRAu4K-9kyxqfkXL3h7VNrONY_GKlY_ZRS71FRQMqOqKii4x82_dZbzk3HpT-gcDtJZEvOz7ohyud1E8XITBhgmLOV1xK21quHOcsGFd6aauMfEXYNWo1fJ416XICDBL5sfQJliiSXIkyI0czSdBGO2_eTRydrMGo7-ZuRj7vm7EnnnDrfL9BmXgrWgmVkXfbebYfEgS9FRdlnRE1m4GzMc9buuV15ApXDAsGFIcPf9YH8oxFtRBgNY_IwTRs_EcItqb2U9SoW6zkKhg
  priority: 102
  providerName: ProQuest
Title Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage
URI https://www.ncbi.nlm.nih.gov/pubmed/32434518
https://www.proquest.com/docview/2414878491
https://www.proquest.com/docview/2405334757
https://pubmed.ncbi.nlm.nih.gov/PMC7237880
https://doaj.org/article/0ff25af72de3466cbc47d442fad1e6c3
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddC2MvY9_z1gUNBnsY3mxZH_bDGM1oKYOEURYIexGyfG4Dxs4cpzT__U6Kk9Ws9MUPvrOxfL_T3cnW7wj5oMo0KYRiYSQMhFwmEGYCDRIVIlcyBzCeeH4ylecz_mMu5gdk1-6of4GrO0s7109q1lafb_5svqHDf_UOn8ovK4xZ6O6uEMIIpHiIJfwRRiblHHXC03_ce8KnwzFXWShwGthtornzHoNA5fn8_5-1b4Wt4S-Vt2LU2RPyuE8u6ckWDU_JAdTPyMNJ__n8OWmnsO7aZnm1qMKuCasNmrKxmw6oxwFdtk61W1HbN0Cgi6pycyHt6VdX1K3bUgznGbWO-8BcL9r1ivafeeiipphQUnCsyRTzzkt4QWZnp7--n4d904XQCpl0oY14aTMpYpMUcWa5jMFEqSoxr2KJKSEtsMACk5gUQ58psP5x_DYKmOGsQHnykhzWTQ2vCcV7WGB5WVqrOKDxSyNyxISCQuYsg4DEuzesbc9I7hpjVNpXJqnUW6totIr2VtFRQD7tr1lu-Tju1R47w-01HZe2P9G0l7p3TR2VJROmVKyAhEtpc8tVwTkrTRGDtElAPjqza4dBfDxr-o0LOEjHnaVPXPsiyZWIA3I80ERPtUPxDjh6B3SNOMWaMeUZit_vxe5K9_dbDc3a6fgd00qogLza4mw_JEyIEy7iNCBqgMDBmIeSenHlecQVc80Eojf3P_Vb8oh5txA4ox6Tw65dwztMxLp8RB6ouRqRo_Hp9OfFyC9njLzH4fFi_PsvF1YzXA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBAkYCcUBRE8eP5IBQC622tF0h1Eq9uY4zaVdaJUuSBe2f4jcyzibbRki99RpPojjzzSu2vyHkvcrjKBOK-YEw4HMZgZ8IVEiQiVTJFMC0xPPHEzk-5d_PxNkG-dufhXHbKnuf2DrqrLTuH_k2RhrMrWOehF_mv3zXNcqtrvYtNFawOITlHyzZ6s8H31C_Hxjb3zv5Ova7rgK-FTJqfBvw3CZShCbKwsRyGYIJYpVj4sAik0OcYQUBJjIx-naTYYLvCFwUMMNZhuMRPvcO2eQRljIjsrm7N_nx84rdD8ut_mhOLLdrjKboiFyJhrFRcT8YhL-2S8D_seBaMBxu1LwW-fYfkgddykp3Vhh7RDageEzuHneL8k9INYFFU5Xzy-nMb0p_tkSAlHbZAG3RReeVE21qaru2CnQ6mzkPSztS15q6v8EUk4SEWseoYH5Pq0VNu8UjOi0opqkUHBczxWz2Ap6S01v56M_IqCgLeEEoPsMCS_PcWsUBIZUbkSLSFGQyZQl4JOy_sLYdz7lrtzHTbb0TS73Sikat6FYrOvDIp_U98xXLx43Su05xa0nH0N1eKKsL3Rm8DvKcCZMrlkHEpbSp5SrjnOUmC0HayCMfndq18yP4etZ0xyFwko6RS--4pkiSKxF6ZGsgifZvh8M9cHTnf2p9ZS0eebcedne6PXUFlAsn057DVkJ55PkKZ-spYZodcRHGHlEDBA7mPBwpppctO7lirkVB8PLm13pL7o1Pjo_00cHk8BW5z1oTEeizt8ioqRbwGlO9Jn3T2Rcl57dt0v8AZM1oEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutrophil-to-lymphocyte+ratio+predicts+critical+illness+patients+with+2019+coronavirus+disease+in+the+early+stage&rft.jtitle=Journal+of+translational+medicine&rft.au=Liu%2C+Jingyuan&rft.au=Liu%2C+Yao&rft.au=Xiang%2C+Pan&rft.au=Pu%2C+Lin&rft.date=2020-05-20&rft.pub=BioMed+Central+Ltd&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12967-020-02374-0&rft.externalDocID=A627464751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon