Classification of Heart Sounds Using Chaogram Transform and Deep Convolutional Neural Network Transfer Learning
Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. Thi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 24; p. 9569 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22249569 |
Cover
Abstract | Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%. |
---|---|
AbstractList | Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning-among others-mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning-among others-mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%. Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%. Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the I n c e p t i o n V 3 model, which achieved a score of 88.06%. |
Audience | Academic |
Author | Gharahbagh, Abdorreza Alavi Harimi, Ali Hajihashemi, Vahid Esmaileyan, Zeynab Machado, José J. M. Majd, Yahya Tavares, João Manuel R. S. |
AuthorAffiliation | 1 Department of Electrical Engineering, Shahrood Branch, Islamic Azad University, Shahrood 43189-36199, Iran 2 School of Surveying and Built Environment, Toowoomba Campus, University of Southern Queensland (USQ), Darling Heights, QLD 4350, Australia 3 Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal 4 Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal |
AuthorAffiliation_xml | – name: 3 Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal – name: 1 Department of Electrical Engineering, Shahrood Branch, Islamic Azad University, Shahrood 43189-36199, Iran – name: 2 School of Surveying and Built Environment, Toowoomba Campus, University of Southern Queensland (USQ), Darling Heights, QLD 4350, Australia – name: 4 Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0003-3926-3097 surname: Harimi fullname: Harimi, Ali – sequence: 2 givenname: Yahya orcidid: 0000-0003-4028-8750 surname: Majd fullname: Majd, Yahya – sequence: 3 givenname: Abdorreza Alavi orcidid: 0000-0003-0863-1977 surname: Gharahbagh fullname: Gharahbagh, Abdorreza Alavi – sequence: 4 givenname: Vahid orcidid: 0000-0002-0842-8250 surname: Hajihashemi fullname: Hajihashemi, Vahid – sequence: 5 givenname: Zeynab orcidid: 0000-0002-7415-4171 surname: Esmaileyan fullname: Esmaileyan, Zeynab – sequence: 6 givenname: José J. M. orcidid: 0000-0002-1094-0114 surname: Machado fullname: Machado, José J. M. – sequence: 7 givenname: João Manuel R. S. orcidid: 0000-0001-7603-6526 surname: Tavares fullname: Tavares, João Manuel R. S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36559937$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu1DAYhSNURC-w4AVQJDawmNb32Bukari00ggWtGvLdv5MPSR2sZMi3h7PpaVTkBe2nO__rBOd4-ogxABV9RqjU0oVOsuEEKa4UM-qI8wIm0lC0MGj82F1nPMKIUIplS-qQyo4V4o2R1Wc9yZn33lnRh9DHbv6Akwa6-9xCm2ur7MPy3p-Y-IymaG-SibkLqahNqGtPwLc1vMY7mI_radNX3-FKW228VdMP3Y8pHpRpKGoXlbPO9NneLXbT6rrz5-u5hezxbcvl_PzxcxxQceZFYZZi3EjLcIgwWBMrbCYi44aKphiUnHrGg5KohY4ctBKSl3DMLekRfSkutx622hW-jb5waTfOhqvNxcxLXVJ6V0PWtnGKYSVc1ayhgljuFRUCms6BIxDcX3Yum4nO0DrIIwl4550_0vwN3oZ77RqJJGcFMG7nSDFnxPkUQ8-O-h7EyBOWZOGS4wQJ6ygb5-gqzil8mc3lChCoshfamlKAB-6WN51a6k-Lwk4ZVKIQp3-hyqrhcG7UqHOl_u9gTePgz4kvK9LAc62gEsx5wSddn7cFKeYfa8x0utC6odClon3Tybupf-yfwCNJ958 |
CitedBy_id | crossref_primary_10_1080_09540091_2025_2449943 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1111_exsy_13791 crossref_primary_10_1109_ACCESS_2024_3465540 crossref_primary_10_1016_j_eswa_2025_126839 crossref_primary_10_1142_S0219519423500987 crossref_primary_10_1016_j_bspc_2023_105288 crossref_primary_10_3390_s23198168 |
Cites_doi | 10.3390/s21092984 10.1016/j.apacoust.2021.108152 10.1016/j.specom.2022.02.007 10.1109/ICCECE54139.2022.9712657 10.1109/CVPR.2016.308 10.1109/TCDS.2020.2965166 10.3390/s22041535 10.1016/j.dsp.2013.06.011 10.22452/mjcs.vol29no4.2 10.1016/j.neunet.2020.06.015 10.1016/j.bspc.2020.102211 10.1145/3065386 10.3390/ai3010011 10.1016/j.bspc.2019.101788 10.1088/1361-6579/aab297 10.1088/0967-3334/37/12/2181 10.1016/j.bspc.2022.104075 10.1109/TNNLS.2020.3008938 10.22489/CinC.2018.072 10.1088/1361-6579/aa7623 10.1109/AICAS51828.2021.9458577 10.1109/ACCESS.2020.3020806 10.1007/s10044-020-00921-5 10.1016/j.jksuci.2021.12.019 10.1109/LSENS.2020.3039366 10.1007/s00034-022-02130-3 10.1007/s10462-020-09875-w 10.3390/mi10120885 10.1109/DeSE.2019.00066 10.1109/CVPR.2016.90 10.3390/s20133757 10.3390/e21050472 10.1007/978-3-030-93420-0_38 10.3390/e23060667 10.1016/j.bspc.2019.101684 10.1016/j.smhl.2021.100194 10.1016/j.bbe.2020.12.007 10.1109/ACCESS.2021.3139850 10.1109/ICFSP.2018.8552074 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22249569 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_9b7c9019ccb84746aa589386baf0e45e PMC9782852 A746534866 36559937 10_3390_s22249569 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c563t-b6a4bb1178b01e8ea113b6b156f3a36494895bc75e980de50ced833c7415b2d03 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:16 EDT 2025 Thu Aug 21 18:40:33 EDT 2025 Thu Sep 04 23:01:18 EDT 2025 Fri Jul 25 20:41:21 EDT 2025 Thu Jul 03 03:20:40 EDT 2025 Tue Jul 01 05:45:11 EDT 2025 Wed Feb 19 02:24:59 EST 2025 Tue Jul 01 01:19:35 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | deep learning signal to image transform biomedical signal phonocardiogram |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-b6a4bb1178b01e8ea113b6b156f3a36494895bc75e980de50ced833c7415b2d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0842-8250 0000-0003-3926-3097 0000-0001-7603-6526 0000-0002-7415-4171 0000-0003-4028-8750 0000-0002-1094-0114 0000-0003-0863-1977 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22249569 |
PMID | 36559937 |
PQID | 2756782292 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b7c9019ccb84746aa589386baf0e45e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9782852 proquest_miscellaneous_2758100524 proquest_journals_2756782292 gale_infotracmisc_A746534866 gale_infotracacademiconefile_A746534866 pubmed_primary_36559937 crossref_citationtrail_10_3390_s22249569 crossref_primary_10_3390_s22249569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Harimi (ref_30) 2016; 29 Shekofteh (ref_29) 2013; 23 Khare (ref_21) 2020; 32 ref_14 Krizhevsky (ref_31) 2017; 60 ref_36 ref_13 Sawant (ref_10) 2021; 41 ref_12 ref_34 ref_33 Chen (ref_8) 2020; 57 Zeng (ref_11) 2021; 54 ref_32 ref_18 ref_38 ref_37 Deperlioglu (ref_16) 2021; 64 Huang (ref_25) 2022; 3 Liu (ref_39) 2016; 37 Milani (ref_40) 2016; 21 Li (ref_20) 2021; 70 Zheng (ref_35) 2020; 13 Chowdhury (ref_4) 2020; 8 Zhong (ref_41) 2018; 39 ref_43 ref_42 Lopac (ref_22) 2021; 10 ref_1 Abduh (ref_3) 2020; 57 Ismail (ref_24) 2023; 79 Bakhshi (ref_19) 2022; 139 ref_2 Avanzato (ref_15) 2020; 4 Deng (ref_5) 2020; 130 Klumpp (ref_23) 2021; 24 ref_27 ref_26 Whitaker (ref_28) 2017; 38 ref_9 Krupa (ref_44) 2022; 34 ref_7 ref_6 Er (ref_17) 2021; 180 |
References_xml | – ident: ref_26 doi: 10.3390/s21092984 – volume: 34 start-page: 7200 year: 2022 ident: ref_44 article-title: An IoMT enabled deep learning framework for automatic detection of fetal QRS: A solution to remote prenatal care publication-title: J. King Saud Univ.-Comput. Inf. Sci. – ident: ref_32 – volume: 180 start-page: 108152 year: 2021 ident: ref_17 article-title: Heart sounds classification using convolutional neural network with 1D-local binary pattern and 1D-local ternary pattern features publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108152 – volume: 139 start-page: 62 year: 2022 ident: ref_19 article-title: CyTex: Transforming speech to textured images for speech emotion recognition publication-title: Speech Commun. doi: 10.1016/j.specom.2022.02.007 – ident: ref_2 doi: 10.1109/ICCECE54139.2022.9712657 – ident: ref_33 doi: 10.1109/CVPR.2016.308 – volume: 13 start-page: 607 year: 2020 ident: ref_35 article-title: Improving the generalization ability of deep neural networks for cross-domain visual recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2965166 – ident: ref_37 – ident: ref_6 doi: 10.3390/s22041535 – volume: 23 start-page: 1923 year: 2013 ident: ref_29 article-title: Autoregressive modeling of speech trajectory transformed to the reconstructed phase space for ASR purposes publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.06.011 – volume: 29 start-page: 262 year: 2016 ident: ref_30 article-title: Recognition of emotion using reconstructed phase space of speech publication-title: Malays. J. Comput. Sci. doi: 10.22452/mjcs.vol29no4.2 – volume: 130 start-page: 22 year: 2020 ident: ref_5 article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.06.015 – volume: 64 start-page: 102211 year: 2021 ident: ref_16 article-title: Heart sound classification with signal instant energy and stacked autoencoder network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102211 – volume: 60 start-page: 84 year: 2017 ident: ref_31 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 3 start-page: 180 year: 2022 ident: ref_25 article-title: Weight-Quantized SqueezeNet for Resource-Constrained Robot Vacuums for Indoor Obstacle Classification publication-title: AI doi: 10.3390/ai3010011 – volume: 57 start-page: 101788 year: 2020 ident: ref_3 article-title: Classification of heart sounds using fractional fourier transform based mel-frequency spectral coefficients and traditional classifiers publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101788 – volume: 39 start-page: 045004 year: 2018 ident: ref_41 article-title: A deep learning approach for fetal QRS complex detection publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aab297 – volume: 37 start-page: 2181 year: 2016 ident: ref_39 article-title: An open access database for the evaluation of heart sound algorithms publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/12/2181 – volume: 79 start-page: 104075 year: 2023 ident: ref_24 article-title: PCG classification through spectrogram using transfer learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104075 – volume: 70 start-page: 1 year: 2021 ident: ref_20 article-title: Heart sounds classification based on feature fusion using lightweight neural networks publication-title: IEEE Trans. Instrum. Meas. – volume: 32 start-page: 2901 year: 2020 ident: ref_21 article-title: Time–frequency representation and convolutional neural network-based emotion recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3008938 – ident: ref_18 doi: 10.22489/CinC.2018.072 – volume: 38 start-page: 1701 year: 2017 ident: ref_28 article-title: Combining sparse coding and time-domain features for heart sound classification publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa7623 – ident: ref_36 doi: 10.1109/AICAS51828.2021.9458577 – volume: 8 start-page: 160882 year: 2020 ident: ref_4 article-title: Time-frequency analysis, denoising, compression, segmentation, and classification of PCG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3020806 – volume: 24 start-page: 423 year: 2021 ident: ref_23 article-title: Multi-channel spectrograms for speech processing applications using deep learning methods publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-020-00921-5 – ident: ref_7 doi: 10.1016/j.jksuci.2021.12.019 – volume: 4 start-page: 1 year: 2020 ident: ref_15 article-title: Heart sound multiclass analysis based on raw data and convolutional neural network publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.3039366 – ident: ref_27 doi: 10.1007/s00034-022-02130-3 – volume: 54 start-page: 1613 year: 2021 ident: ref_11 article-title: A new approach for the detection of abnormal heart sound signals using TQWT, VMD and neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09875-w – ident: ref_1 doi: 10.3390/mi10120885 – ident: ref_13 doi: 10.1109/DeSE.2019.00066 – ident: ref_34 doi: 10.1109/CVPR.2016.90 – ident: ref_43 doi: 10.3390/s20133757 – ident: ref_38 – ident: ref_9 doi: 10.3390/e21050472 – ident: ref_12 doi: 10.1007/978-3-030-93420-0_38 – ident: ref_14 doi: 10.3390/e23060667 – volume: 57 start-page: 101684 year: 2020 ident: ref_8 article-title: Classification of heart sounds using discrete time-frequency energy feature based on S transform and the wavelet threshold denoising publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101684 – volume: 21 start-page: 100194 year: 2016 ident: ref_40 article-title: Abnormal heart sound classification using phonocardiography signals publication-title: Smart Health doi: 10.1016/j.smhl.2021.100194 – volume: 41 start-page: 111 year: 2021 ident: ref_10 article-title: Automated detection of abnormal heart sound signals using Fano-factor constrained tunable quality wavelet transform publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.12.007 – volume: 10 start-page: 2408 year: 2021 ident: ref_22 article-title: Detection of Non-Stationary GW Signals in High Noise From Cohen’s Class of Time–Frequency Representations Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3139850 – ident: ref_42 doi: 10.1109/ICFSP.2018.8552074 |
SSID | ssj0023338 |
Score | 2.4426925 |
Snippet | Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9569 |
SubjectTerms | Algorithms Analysis Auscultation biomedical signal Cardiovascular disease Classification deep learning Digital signal processors Electrocardiography Heart Heart Diseases Heart Sounds Humans Machine Learning Neural networks Neural Networks, Computer Noise Performance evaluation phonocardiogram Signal processing Signal Processing, Computer-Assisted signal to image transform Sound Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Ni9UwEMCD7EkPoutX112JIuilbNM0X8f16fIQ9OIu7C3kq64g7bLvrX-_M2leeUXBi6dCM6VNMsnMlMlvCHmbQmuUibxmUfC6UyHWzri-RlZU04PP0Us8nPzlq1xfdp-vxNVeqS_MCZvwwNPAnRqvAtgsE4KHjbSTzgkwsVp61zepEwl338Y0u2CqhFocIq-JI8QhqD_dgBXESMAsrE-G9P-5Fe_ZomWe5J7hOX9EHhaPkZ5NX_qY3EvDIXmwxxF8QsZc2hKTfvI407Gna9DgLf2GRZM2NOcF0NW1y7lY9GLnrFI3RPoxpRu6GodfRQnhXUjsyJecIl7k0y0tMNbvT8nl-aeL1boulRTqICTf1l66znvGlPYNSzo5xriXHmK3njsuERFjhA9KJKObmEQTUtScB3Q3fBsb_owcDOOQXhBqWC-FV22SBmIx3jqeYmTKca2Dgycr8n43wjYUzDhWu_hpIdzAybDzZFTkzSx6M7E1_ib0AadpFkAcdr4BSmKLkth_KUlF3uEkW1y08DHBlbMH0CXEX9kzhZi5TktZkeOFJCy2sGzeqYkti31jkaCPjpZpK_J6bsYnMYFtSONdltEM_8F3FXk-adXcJS4R-8ZVRdRC3xZ9XrYMP64zCtwoJBC2R_9jkF6S-y2e7ci5OsfkYHt7l07A49r6V3lx_QZtrio- priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucCh4k2gIIOQ4BI1juPXCZWFZYUEF1qpt8ivtJVQst3d8vvxeL1hIxCnSPFYsT0znhln_A3A2-BqLbVnJfWclY10vjTadCViRVVd9Dk6gZeTv30Xi7Pm6zk_zwdu65xWudsT00btB4dn5McIU47WTNcfltclVo3Cv6u5hMZtuEOjpUE5V_MvY8DFYvy1RRNiMbQ_XkdbiPGAntigBNX_94a8Z5Gm2ZJ75md-Hw6z30hOtox-ALdC_xDu7aEJPoIhFbjE1J-02mToyCLK8Yb8wNJJa5KyA8js0qSMLHK6c1mJ6T35FMKSzIb-VxbF-C3E7UiPlCie6cOKZEjWi8dwNv98OluUuZ5C6bhgm9IK01hLqVS2okEFQymzwsYIrmOGCQSK0dw6yYNWlQ-8csErxhw6Hbb2FXsCB_3Qh2dANO0Et7IOQseIjNWGBe-pNEwpZ2LPAt7vVrh1GWwca178bGPQgcxoR2YU8GYkXW4RNv5F9BHZNBIgKHZ6Mawu2qxjrbbSRfdGO2ejzW2EMTx6Y0pY01Wh4aGAd8jkFlU3DsaZfAMhTglBsNoTiWBzjRKigKMJZVQ5N23eiUmbVX7d_hHQAl6PzdgT09j6MNwkGkXxJL4p4OlWqsYpMYHgb0wWICfyNpnztKW_ukyA4FoiDmH9_P_DegF3a7y7kXJxjuBgs7oJL6NHtbGvktr8BsZRIZI priority: 102 providerName: ProQuest |
Title | Classification of Heart Sounds Using Chaogram Transform and Deep Convolutional Neural Network Transfer Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36559937 https://www.proquest.com/docview/2756782292 https://www.proquest.com/docview/2758100524 https://pubmed.ncbi.nlm.nih.gov/PMC9782852 https://doaj.org/article/9b7c9019ccb84746aa589386baf0e45e |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4t1AWRmEBJdAEid-HBBqly4rpFYIutLeIttxWqQqKbtbBP-eGW822ogeuSRSPFFizzjzjTP-BuC1d5mWuuJxWhU8zqWrYqNNHRNXVFIj5qgFbU4-PRPTWf5lXsx3YFNjsxvA5a2hHdWTmi2u3v3--ecjTvgPFHFiyP5-iT6OcL7ehX10SIJisNO8_5mQcQzD1qRCQ_GBKwqM_f9-l7cc0zBpcssLTe7DvQ4-sqO1vh_Ajm8ewt0tUsFH0IY6l5QBFAadtTWbojmv2HeqoLRkIUmAjS9NSMxi5xvkykxTsU_eX7Nx2_zqLBKfRfQd4RTyxTt5v2AdM-vFY5hNTs7H07grqxC7QvBVbIXJrU1TqWySeuVNmnIrLAZyNTdcEF-MLqyThdcqqXyROF8pzh1hD5tVCX8Ce03b-ANgOq1FYWXmhcbAjGeG-6pKpeFKOYN3RvB2M8Kl6zjHqfTFVYmxBymj7JURwate9HpNtHGb0DGpqRcgbuxwoV1clN1UK7WVDlGOds6i682FMQWCMiWsqROfFz6CN6TkkmwKX8aZbiMCdom4sMojSZxzuRIigsOBJM48N2zemEm5MdyS6PQJdeksgpd9M91J2WyNb2-CjEppQT6P4OnaqvoucUEccFxGIAf2NujzsKX5cRl4wbUkOsLs2f8YpOdwJ6ONHiFx5xD2Vosb_wLh18qOYFfOJR7V5PMI9o9Pzr5-G4WljFGYdn8BE4E0eQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1iRM7PiBUtlRb-riwlfbm-pUWCSXL7hbEn-I34nGS7UYgbj1FiieJ7ZnxzDjjbwBeO5MJLiyNU1vQOOfGxkqoKkasqKTyPkfF8HDy0TEbn-Sfp8V0A373Z2EwrbJfE8NCbRuDe-TbCFOO1kxkH2bfY6wahX9X-xIarVgcuF8_fci2eL-_6_n7Jsv2Pk1G47irKhCbgtFlrJnKtU5TXuokdaVTaUo10z6OqaiiDOFSRKENL5woE-uKxDhbUmrQ9OrMJtS_9xpcz3Fn3OsPn14GeNTHey16EaUi2V5424vxhxjYvFAa4G8DsGYBh9mZa-Zu7w7c7vxUstMK1l3YcPU9uLWGXngfmlBQE1ONAndJU5Gxn6Al-YKlmhYkZCOQ0bkKGWBk0rvIRNWW7Do3I6Om_tGJvv8W4oSES0hM7-jdnHQQsGcP4ORKZvohbNZN7R4DEWnFCs0zx4SPAGmmqLM25YqWpVH-yQje9TMsTQdujjU2vkkf5CAz5IoZEbxakc5aRI9_EX1ENq0IEIQ73GjmZ7LTaSk0N96dEsZob-NzplThvb-SaVUlLi9cBG-RyRKXCt8Zo7oTD35ICLoldziC2-UlYxFsDSi9ipthcy8msltiFvJSISJ4uWrGJzFtrnbNRaApU9z5zyN41ErVakiUIdgc5RHwgbwNxjxsqb-eBwBywRH3MHvy_269gBvjydGhPNw_PngKNzM8NxLygLZgczm_cM-8N7fUz4MKETi9ap39A7X_Xb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NISF4QPwmMMAgELxETeLEjh8QGi1Vx2BCYpP6FmzH2SZNSWk7EP8afx13btI1AvG2p0r1pY19d7675PN3AC-dTZRUJQ_jMuNhKm0ZaqWrkLiiogpzjkrQ4eTPB2JylH6cZtMt-N2dhSFYZbcn-o26bCw9Ix8QTTlFM5UMqhYW8WU0fjf7HlIHKXrT2rXTWJnIvvv1E8u3xdu9Eer6VZKMPxwOJ2HbYSC0meDL0AidGhPHMjdR7HKn45gbYbCmqbjmgqhTVGaszJzKo9JlkXVlzrmlMGySMuL4u1fgquSYVaEvyelFscex9lsxGXGuosEC4zDVIqoX_3ybgL-DwUY07CM1N0Lf-BbcbHNWtrsystuw5eo7cGODyfAuNL65JsGOvKZZU7EJLtCSfaW2TQvmkQlseKI9Gowdduky03XJRs7N2LCpf7RugP9FnCH-w4PUW3k3Zy0d7PE9OLqUlb4P23VTu4fAVFyJzMjECYXVIE80d2UZS83z3Gq8MoA33QoXtiU6p34bZwUWPKSMYq2MAF6sRWcrdo9_Cb0nNa0FiJDbf9HMj4vWvwtlpMXUSllrMN6nQusMM8FcGF1FLs1cAK9JyQVtG3gzVrenH3BKRMBV7EoiuktzIQLY6Umiu9v-cGcmRbvdLIoL5wjg-XqYriQIXe2acy-Tx_QWIA3gwcqq1lPigojnuAxA9uytN-f-SH164snIlSQOxOTR_2_rGVxDby0-7R3sP4brCR0h8ZCgHdhezs_dE0zsluap9yAG3y7bZf8AFURh_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Heart+Sounds+Using+Chaogram+Transform+and+Deep+Convolutional+Neural+Network+Transfer+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ali+Harimi&rft.au=Yahya+Majd&rft.au=Abdorreza+Alavi+Gharahbagh&rft.au=Vahid+Hajihashemi&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft.spage=9569&rft_id=info:doi/10.3390%2Fs22249569&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9b7c9019ccb84746aa589386baf0e45e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |