Classification of Heart Sounds Using Chaogram Transform and Deep Convolutional Neural Network Transfer Learning

Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. Thi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 24; p. 9569
Main Authors Harimi, Ali, Majd, Yahya, Gharahbagh, Abdorreza Alavi, Hajihashemi, Vahid, Esmaileyan, Zeynab, Machado, José J. M., Tavares, João Manuel R. S.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22249569

Cover

Abstract Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.
AbstractList Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning-among others-mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning-among others-mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.
Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the InceptionV3 model, which achieved a score of 88.06%.
Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields of telemedicine, digital signal processing, and machine learning—among others—mainly to identify cardiac pathology as quickly as possible. This article proposes chaogram as a new transform to convert heart sound signals to colour images. In the proposed approach, the output image is, therefore, the projection of the reconstructed phase space representation of the phonocardiogram (PCG) signal on three coordinate planes. This has two major benefits: (1) it makes possible to apply deep convolutional neural networks to heart sounds and (2) it is also possible to employ a transfer learning scheme by converting a heart sound signal to an image. The performance of the proposed approach was verified on the PhysioNet dataset. Due to the imbalanced data on this dataset, it is common to assess the results quality using the average of sensitivity and specificity, which is known as score, instead of accuracy. In this study, the best results were achieved using the I n c e p t i o n V 3 model, which achieved a score of 88.06%.
Audience Academic
Author Gharahbagh, Abdorreza Alavi
Harimi, Ali
Hajihashemi, Vahid
Esmaileyan, Zeynab
Machado, José J. M.
Majd, Yahya
Tavares, João Manuel R. S.
AuthorAffiliation 1 Department of Electrical Engineering, Shahrood Branch, Islamic Azad University, Shahrood 43189-36199, Iran
2 School of Surveying and Built Environment, Toowoomba Campus, University of Southern Queensland (USQ), Darling Heights, QLD 4350, Australia
3 Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
4 Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
AuthorAffiliation_xml – name: 3 Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
– name: 1 Department of Electrical Engineering, Shahrood Branch, Islamic Azad University, Shahrood 43189-36199, Iran
– name: 2 School of Surveying and Built Environment, Toowoomba Campus, University of Southern Queensland (USQ), Darling Heights, QLD 4350, Australia
– name: 4 Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-3926-3097
  surname: Harimi
  fullname: Harimi, Ali
– sequence: 2
  givenname: Yahya
  orcidid: 0000-0003-4028-8750
  surname: Majd
  fullname: Majd, Yahya
– sequence: 3
  givenname: Abdorreza Alavi
  orcidid: 0000-0003-0863-1977
  surname: Gharahbagh
  fullname: Gharahbagh, Abdorreza Alavi
– sequence: 4
  givenname: Vahid
  orcidid: 0000-0002-0842-8250
  surname: Hajihashemi
  fullname: Hajihashemi, Vahid
– sequence: 5
  givenname: Zeynab
  orcidid: 0000-0002-7415-4171
  surname: Esmaileyan
  fullname: Esmaileyan, Zeynab
– sequence: 6
  givenname: José J. M.
  orcidid: 0000-0002-1094-0114
  surname: Machado
  fullname: Machado, José J. M.
– sequence: 7
  givenname: João Manuel R. S.
  orcidid: 0000-0001-7603-6526
  surname: Tavares
  fullname: Tavares, João Manuel R. S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36559937$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAYhSNURC-w4AVQJDawmNb32Bukari00ggWtGvLdv5MPSR2sZMi3h7PpaVTkBe2nO__rBOd4-ogxABV9RqjU0oVOsuEEKa4UM-qI8wIm0lC0MGj82F1nPMKIUIplS-qQyo4V4o2R1Wc9yZn33lnRh9DHbv6Akwa6-9xCm2ur7MPy3p-Y-IymaG-SibkLqahNqGtPwLc1vMY7mI_radNX3-FKW228VdMP3Y8pHpRpKGoXlbPO9NneLXbT6rrz5-u5hezxbcvl_PzxcxxQceZFYZZi3EjLcIgwWBMrbCYi44aKphiUnHrGg5KohY4ctBKSl3DMLekRfSkutx622hW-jb5waTfOhqvNxcxLXVJ6V0PWtnGKYSVc1ayhgljuFRUCms6BIxDcX3Yum4nO0DrIIwl4550_0vwN3oZ77RqJJGcFMG7nSDFnxPkUQ8-O-h7EyBOWZOGS4wQJ6ygb5-gqzil8mc3lChCoshfamlKAB-6WN51a6k-Lwk4ZVKIQp3-hyqrhcG7UqHOl_u9gTePgz4kvK9LAc62gEsx5wSddn7cFKeYfa8x0utC6odClon3Tybupf-yfwCNJ958
CitedBy_id crossref_primary_10_1080_09540091_2025_2449943
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1111_exsy_13791
crossref_primary_10_1109_ACCESS_2024_3465540
crossref_primary_10_1016_j_eswa_2025_126839
crossref_primary_10_1142_S0219519423500987
crossref_primary_10_1016_j_bspc_2023_105288
crossref_primary_10_3390_s23198168
Cites_doi 10.3390/s21092984
10.1016/j.apacoust.2021.108152
10.1016/j.specom.2022.02.007
10.1109/ICCECE54139.2022.9712657
10.1109/CVPR.2016.308
10.1109/TCDS.2020.2965166
10.3390/s22041535
10.1016/j.dsp.2013.06.011
10.22452/mjcs.vol29no4.2
10.1016/j.neunet.2020.06.015
10.1016/j.bspc.2020.102211
10.1145/3065386
10.3390/ai3010011
10.1016/j.bspc.2019.101788
10.1088/1361-6579/aab297
10.1088/0967-3334/37/12/2181
10.1016/j.bspc.2022.104075
10.1109/TNNLS.2020.3008938
10.22489/CinC.2018.072
10.1088/1361-6579/aa7623
10.1109/AICAS51828.2021.9458577
10.1109/ACCESS.2020.3020806
10.1007/s10044-020-00921-5
10.1016/j.jksuci.2021.12.019
10.1109/LSENS.2020.3039366
10.1007/s00034-022-02130-3
10.1007/s10462-020-09875-w
10.3390/mi10120885
10.1109/DeSE.2019.00066
10.1109/CVPR.2016.90
10.3390/s20133757
10.3390/e21050472
10.1007/978-3-030-93420-0_38
10.3390/e23060667
10.1016/j.bspc.2019.101684
10.1016/j.smhl.2021.100194
10.1016/j.bbe.2020.12.007
10.1109/ACCESS.2021.3139850
10.1109/ICFSP.2018.8552074
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22249569
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9b7c9019ccb84746aa589386baf0e45e
PMC9782852
A746534866
36559937
10_3390_s22249569
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c563t-b6a4bb1178b01e8ea113b6b156f3a36494895bc75e980de50ced833c7415b2d03
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:16 EDT 2025
Thu Aug 21 18:40:33 EDT 2025
Thu Sep 04 23:01:18 EDT 2025
Fri Jul 25 20:41:21 EDT 2025
Thu Jul 03 03:20:40 EDT 2025
Tue Jul 01 05:45:11 EDT 2025
Wed Feb 19 02:24:59 EST 2025
Tue Jul 01 01:19:35 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords deep learning
signal to image transform
biomedical signal
phonocardiogram
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-b6a4bb1178b01e8ea113b6b156f3a36494895bc75e980de50ced833c7415b2d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0842-8250
0000-0003-3926-3097
0000-0001-7603-6526
0000-0002-7415-4171
0000-0003-4028-8750
0000-0002-1094-0114
0000-0003-0863-1977
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22249569
PMID 36559937
PQID 2756782292
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9b7c9019ccb84746aa589386baf0e45e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9782852
proquest_miscellaneous_2758100524
proquest_journals_2756782292
gale_infotracmisc_A746534866
gale_infotracacademiconefile_A746534866
pubmed_primary_36559937
crossref_citationtrail_10_3390_s22249569
crossref_primary_10_3390_s22249569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Harimi (ref_30) 2016; 29
Shekofteh (ref_29) 2013; 23
Khare (ref_21) 2020; 32
ref_14
Krizhevsky (ref_31) 2017; 60
ref_36
ref_13
Sawant (ref_10) 2021; 41
ref_12
ref_34
ref_33
Chen (ref_8) 2020; 57
Zeng (ref_11) 2021; 54
ref_32
ref_18
ref_38
ref_37
Deperlioglu (ref_16) 2021; 64
Huang (ref_25) 2022; 3
Liu (ref_39) 2016; 37
Milani (ref_40) 2016; 21
Li (ref_20) 2021; 70
Zheng (ref_35) 2020; 13
Chowdhury (ref_4) 2020; 8
Zhong (ref_41) 2018; 39
ref_43
ref_42
Lopac (ref_22) 2021; 10
ref_1
Abduh (ref_3) 2020; 57
Ismail (ref_24) 2023; 79
Bakhshi (ref_19) 2022; 139
ref_2
Avanzato (ref_15) 2020; 4
Deng (ref_5) 2020; 130
Klumpp (ref_23) 2021; 24
ref_27
ref_26
Whitaker (ref_28) 2017; 38
ref_9
Krupa (ref_44) 2022; 34
ref_7
ref_6
Er (ref_17) 2021; 180
References_xml – ident: ref_26
  doi: 10.3390/s21092984
– volume: 34
  start-page: 7200
  year: 2022
  ident: ref_44
  article-title: An IoMT enabled deep learning framework for automatic detection of fetal QRS: A solution to remote prenatal care
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– ident: ref_32
– volume: 180
  start-page: 108152
  year: 2021
  ident: ref_17
  article-title: Heart sounds classification using convolutional neural network with 1D-local binary pattern and 1D-local ternary pattern features
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108152
– volume: 139
  start-page: 62
  year: 2022
  ident: ref_19
  article-title: CyTex: Transforming speech to textured images for speech emotion recognition
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2022.02.007
– ident: ref_2
  doi: 10.1109/ICCECE54139.2022.9712657
– ident: ref_33
  doi: 10.1109/CVPR.2016.308
– volume: 13
  start-page: 607
  year: 2020
  ident: ref_35
  article-title: Improving the generalization ability of deep neural networks for cross-domain visual recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2965166
– ident: ref_37
– ident: ref_6
  doi: 10.3390/s22041535
– volume: 23
  start-page: 1923
  year: 2013
  ident: ref_29
  article-title: Autoregressive modeling of speech trajectory transformed to the reconstructed phase space for ASR purposes
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.06.011
– volume: 29
  start-page: 262
  year: 2016
  ident: ref_30
  article-title: Recognition of emotion using reconstructed phase space of speech
  publication-title: Malays. J. Comput. Sci.
  doi: 10.22452/mjcs.vol29no4.2
– volume: 130
  start-page: 22
  year: 2020
  ident: ref_5
  article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.06.015
– volume: 64
  start-page: 102211
  year: 2021
  ident: ref_16
  article-title: Heart sound classification with signal instant energy and stacked autoencoder network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102211
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_31
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 3
  start-page: 180
  year: 2022
  ident: ref_25
  article-title: Weight-Quantized SqueezeNet for Resource-Constrained Robot Vacuums for Indoor Obstacle Classification
  publication-title: AI
  doi: 10.3390/ai3010011
– volume: 57
  start-page: 101788
  year: 2020
  ident: ref_3
  article-title: Classification of heart sounds using fractional fourier transform based mel-frequency spectral coefficients and traditional classifiers
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101788
– volume: 39
  start-page: 045004
  year: 2018
  ident: ref_41
  article-title: A deep learning approach for fetal QRS complex detection
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aab297
– volume: 37
  start-page: 2181
  year: 2016
  ident: ref_39
  article-title: An open access database for the evaluation of heart sound algorithms
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2181
– volume: 79
  start-page: 104075
  year: 2023
  ident: ref_24
  article-title: PCG classification through spectrogram using transfer learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104075
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_20
  article-title: Heart sounds classification based on feature fusion using lightweight neural networks
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 32
  start-page: 2901
  year: 2020
  ident: ref_21
  article-title: Time–frequency representation and convolutional neural network-based emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3008938
– ident: ref_18
  doi: 10.22489/CinC.2018.072
– volume: 38
  start-page: 1701
  year: 2017
  ident: ref_28
  article-title: Combining sparse coding and time-domain features for heart sound classification
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa7623
– ident: ref_36
  doi: 10.1109/AICAS51828.2021.9458577
– volume: 8
  start-page: 160882
  year: 2020
  ident: ref_4
  article-title: Time-frequency analysis, denoising, compression, segmentation, and classification of PCG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3020806
– volume: 24
  start-page: 423
  year: 2021
  ident: ref_23
  article-title: Multi-channel spectrograms for speech processing applications using deep learning methods
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-020-00921-5
– ident: ref_7
  doi: 10.1016/j.jksuci.2021.12.019
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_15
  article-title: Heart sound multiclass analysis based on raw data and convolutional neural network
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.3039366
– ident: ref_27
  doi: 10.1007/s00034-022-02130-3
– volume: 54
  start-page: 1613
  year: 2021
  ident: ref_11
  article-title: A new approach for the detection of abnormal heart sound signals using TQWT, VMD and neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09875-w
– ident: ref_1
  doi: 10.3390/mi10120885
– ident: ref_13
  doi: 10.1109/DeSE.2019.00066
– ident: ref_34
  doi: 10.1109/CVPR.2016.90
– ident: ref_43
  doi: 10.3390/s20133757
– ident: ref_38
– ident: ref_9
  doi: 10.3390/e21050472
– ident: ref_12
  doi: 10.1007/978-3-030-93420-0_38
– ident: ref_14
  doi: 10.3390/e23060667
– volume: 57
  start-page: 101684
  year: 2020
  ident: ref_8
  article-title: Classification of heart sounds using discrete time-frequency energy feature based on S transform and the wavelet threshold denoising
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101684
– volume: 21
  start-page: 100194
  year: 2016
  ident: ref_40
  article-title: Abnormal heart sound classification using phonocardiography signals
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2021.100194
– volume: 41
  start-page: 111
  year: 2021
  ident: ref_10
  article-title: Automated detection of abnormal heart sound signals using Fano-factor constrained tunable quality wavelet transform
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.12.007
– volume: 10
  start-page: 2408
  year: 2021
  ident: ref_22
  article-title: Detection of Non-Stationary GW Signals in High Noise From Cohen’s Class of Time–Frequency Representations Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3139850
– ident: ref_42
  doi: 10.1109/ICFSP.2018.8552074
SSID ssj0023338
Score 2.4426925
Snippet Heart sounds convey important information regarding potential heart diseases. Currently, heart sound classification attracts many researchers from the fields...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9569
SubjectTerms Algorithms
Analysis
Auscultation
biomedical signal
Cardiovascular disease
Classification
deep learning
Digital signal processors
Electrocardiography
Heart
Heart Diseases
Heart Sounds
Humans
Machine Learning
Neural networks
Neural Networks, Computer
Noise
Performance evaluation
phonocardiogram
Signal processing
Signal Processing, Computer-Assisted
signal to image transform
Sound
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Ni9UwEMCD7EkPoutX112JIuilbNM0X8f16fIQ9OIu7C3kq64g7bLvrX-_M2leeUXBi6dCM6VNMsnMlMlvCHmbQmuUibxmUfC6UyHWzri-RlZU04PP0Us8nPzlq1xfdp-vxNVeqS_MCZvwwNPAnRqvAtgsE4KHjbSTzgkwsVp61zepEwl338Y0u2CqhFocIq-JI8QhqD_dgBXESMAsrE-G9P-5Fe_ZomWe5J7hOX9EHhaPkZ5NX_qY3EvDIXmwxxF8QsZc2hKTfvI407Gna9DgLf2GRZM2NOcF0NW1y7lY9GLnrFI3RPoxpRu6GodfRQnhXUjsyJecIl7k0y0tMNbvT8nl-aeL1boulRTqICTf1l66znvGlPYNSzo5xriXHmK3njsuERFjhA9KJKObmEQTUtScB3Q3fBsb_owcDOOQXhBqWC-FV22SBmIx3jqeYmTKca2Dgycr8n43wjYUzDhWu_hpIdzAybDzZFTkzSx6M7E1_ib0AadpFkAcdr4BSmKLkth_KUlF3uEkW1y08DHBlbMH0CXEX9kzhZi5TktZkeOFJCy2sGzeqYkti31jkaCPjpZpK_J6bsYnMYFtSONdltEM_8F3FXk-adXcJS4R-8ZVRdRC3xZ9XrYMP64zCtwoJBC2R_9jkF6S-y2e7ci5OsfkYHt7l07A49r6V3lx_QZtrio-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucCh4k2gIIOQ4BI1juPXCZWFZYUEF1qpt8ivtJVQst3d8vvxeL1hIxCnSPFYsT0znhln_A3A2-BqLbVnJfWclY10vjTadCViRVVd9Dk6gZeTv30Xi7Pm6zk_zwdu65xWudsT00btB4dn5McIU47WTNcfltclVo3Cv6u5hMZtuEOjpUE5V_MvY8DFYvy1RRNiMbQ_XkdbiPGAntigBNX_94a8Z5Gm2ZJ75md-Hw6z30hOtox-ALdC_xDu7aEJPoIhFbjE1J-02mToyCLK8Yb8wNJJa5KyA8js0qSMLHK6c1mJ6T35FMKSzIb-VxbF-C3E7UiPlCie6cOKZEjWi8dwNv98OluUuZ5C6bhgm9IK01hLqVS2okEFQymzwsYIrmOGCQSK0dw6yYNWlQ-8csErxhw6Hbb2FXsCB_3Qh2dANO0Et7IOQseIjNWGBe-pNEwpZ2LPAt7vVrh1GWwca178bGPQgcxoR2YU8GYkXW4RNv5F9BHZNBIgKHZ6Mawu2qxjrbbSRfdGO2ejzW2EMTx6Y0pY01Wh4aGAd8jkFlU3DsaZfAMhTglBsNoTiWBzjRKigKMJZVQ5N23eiUmbVX7d_hHQAl6PzdgT09j6MNwkGkXxJL4p4OlWqsYpMYHgb0wWICfyNpnztKW_ukyA4FoiDmH9_P_DegF3a7y7kXJxjuBgs7oJL6NHtbGvktr8BsZRIZI
  priority: 102
  providerName: ProQuest
Title Classification of Heart Sounds Using Chaogram Transform and Deep Convolutional Neural Network Transfer Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/36559937
https://www.proquest.com/docview/2756782292
https://www.proquest.com/docview/2758100524
https://pubmed.ncbi.nlm.nih.gov/PMC9782852
https://doaj.org/article/9b7c9019ccb84746aa589386baf0e45e
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4t1AWRmEBJdAEid-HBBqly4rpFYIutLeIttxWqQqKbtbBP-eGW822ogeuSRSPFFizzjzjTP-BuC1d5mWuuJxWhU8zqWrYqNNHRNXVFIj5qgFbU4-PRPTWf5lXsx3YFNjsxvA5a2hHdWTmi2u3v3--ecjTvgPFHFiyP5-iT6OcL7ehX10SIJisNO8_5mQcQzD1qRCQ_GBKwqM_f9-l7cc0zBpcssLTe7DvQ4-sqO1vh_Ajm8ewt0tUsFH0IY6l5QBFAadtTWbojmv2HeqoLRkIUmAjS9NSMxi5xvkykxTsU_eX7Nx2_zqLBKfRfQd4RTyxTt5v2AdM-vFY5hNTs7H07grqxC7QvBVbIXJrU1TqWySeuVNmnIrLAZyNTdcEF-MLqyThdcqqXyROF8pzh1hD5tVCX8Ce03b-ANgOq1FYWXmhcbAjGeG-6pKpeFKOYN3RvB2M8Kl6zjHqfTFVYmxBymj7JURwate9HpNtHGb0DGpqRcgbuxwoV1clN1UK7WVDlGOds6i682FMQWCMiWsqROfFz6CN6TkkmwKX8aZbiMCdom4sMojSZxzuRIigsOBJM48N2zemEm5MdyS6PQJdeksgpd9M91J2WyNb2-CjEppQT6P4OnaqvoucUEccFxGIAf2NujzsKX5cRl4wbUkOsLs2f8YpOdwJ6ONHiFx5xD2Vosb_wLh18qOYFfOJR7V5PMI9o9Pzr5-G4WljFGYdn8BE4E0eQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1iRM7PiBUtlRb-riwlfbm-pUWCSXL7hbEn-I34nGS7UYgbj1FiieJ7ZnxzDjjbwBeO5MJLiyNU1vQOOfGxkqoKkasqKTyPkfF8HDy0TEbn-Sfp8V0A373Z2EwrbJfE8NCbRuDe-TbCFOO1kxkH2bfY6wahX9X-xIarVgcuF8_fci2eL-_6_n7Jsv2Pk1G47irKhCbgtFlrJnKtU5TXuokdaVTaUo10z6OqaiiDOFSRKENL5woE-uKxDhbUmrQ9OrMJtS_9xpcz3Fn3OsPn14GeNTHey16EaUi2V5424vxhxjYvFAa4G8DsGYBh9mZa-Zu7w7c7vxUstMK1l3YcPU9uLWGXngfmlBQE1ONAndJU5Gxn6Al-YKlmhYkZCOQ0bkKGWBk0rvIRNWW7Do3I6Om_tGJvv8W4oSES0hM7-jdnHQQsGcP4ORKZvohbNZN7R4DEWnFCs0zx4SPAGmmqLM25YqWpVH-yQje9TMsTQdujjU2vkkf5CAz5IoZEbxakc5aRI9_EX1ENq0IEIQ73GjmZ7LTaSk0N96dEsZob-NzplThvb-SaVUlLi9cBG-RyRKXCt8Zo7oTD35ICLoldziC2-UlYxFsDSi9ipthcy8msltiFvJSISJ4uWrGJzFtrnbNRaApU9z5zyN41ErVakiUIdgc5RHwgbwNxjxsqb-eBwBywRH3MHvy_269gBvjydGhPNw_PngKNzM8NxLygLZgczm_cM-8N7fUz4MKETi9ap39A7X_Xb0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NISF4QPwmMMAgELxETeLEjh8QGi1Vx2BCYpP6FmzH2SZNSWk7EP8afx13btI1AvG2p0r1pY19d7675PN3AC-dTZRUJQ_jMuNhKm0ZaqWrkLiiogpzjkrQ4eTPB2JylH6cZtMt-N2dhSFYZbcn-o26bCw9Ix8QTTlFM5UMqhYW8WU0fjf7HlIHKXrT2rXTWJnIvvv1E8u3xdu9Eer6VZKMPxwOJ2HbYSC0meDL0AidGhPHMjdR7HKn45gbYbCmqbjmgqhTVGaszJzKo9JlkXVlzrmlMGySMuL4u1fgquSYVaEvyelFscex9lsxGXGuosEC4zDVIqoX_3ybgL-DwUY07CM1N0Lf-BbcbHNWtrsystuw5eo7cGODyfAuNL65JsGOvKZZU7EJLtCSfaW2TQvmkQlseKI9Gowdduky03XJRs7N2LCpf7RugP9FnCH-w4PUW3k3Zy0d7PE9OLqUlb4P23VTu4fAVFyJzMjECYXVIE80d2UZS83z3Gq8MoA33QoXtiU6p34bZwUWPKSMYq2MAF6sRWcrdo9_Cb0nNa0FiJDbf9HMj4vWvwtlpMXUSllrMN6nQusMM8FcGF1FLs1cAK9JyQVtG3gzVrenH3BKRMBV7EoiuktzIQLY6Umiu9v-cGcmRbvdLIoL5wjg-XqYriQIXe2acy-Tx_QWIA3gwcqq1lPigojnuAxA9uytN-f-SH164snIlSQOxOTR_2_rGVxDby0-7R3sP4brCR0h8ZCgHdhezs_dE0zsluap9yAG3y7bZf8AFURh_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Heart+Sounds+Using+Chaogram+Transform+and+Deep+Convolutional+Neural+Network+Transfer+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ali+Harimi&rft.au=Yahya+Majd&rft.au=Abdorreza+Alavi+Gharahbagh&rft.au=Vahid+Hajihashemi&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft.spage=9569&rft_id=info:doi/10.3390%2Fs22249569&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9b7c9019ccb84746aa589386baf0e45e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon