The significance of mosquito saliva in arbovirus transmission and pathogenesis in the vertebrate host
Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and...
Saved in:
Published in | One health Vol. 16; p. 100506 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-7714 2352-7714 |
DOI | 10.1016/j.onehlt.2023.100506 |
Cover
Loading…
Abstract | Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and saliva into the skin of the host. The presence of mosquito saliva in the host skin during arbovirus transmission contributes to high viral titers in the skin, enhanced viremia, and rapid dissemination of the virus to target organs. This enhanced phenotype effectuated by the presence of mosquito saliva in the skin can be partly ascribed to a polarization of the local immune balance towards a Th2 response, an increased permeability of the dermal endothelium, and the influx of virus-susceptible immune cells to the bite site. However, the complete identification and characterization of immunomodulatory salivary proteins from different mosquito species and the mechanisms by which these salivary proteins exert their effects synergistically or antagonistically remains to be further explored. Moreover, the effect of new virus-vector combinations on the outcome of arbovirus infection in a new host is limited. Here, we review the immunomodulatory effects of mosquito saliva in the skin and the proposed mechanisms by which mosquito saliva enhances arbovirus pathogenesis in the vertebrate host, and discuss potential differences between Aedes and Culex mosquito species, the main vectors for medically important arboviruses. Gaining more insight into the effect of mosquito saliva in the vector-virus-host triad aids in predicting the potential transmission risk and disease severity of emerging vector-borne diseases. |
---|---|
AbstractList | Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and saliva into the skin of the host. The presence of mosquito saliva in the host skin during arbovirus transmission contributes to high viral titers in the skin, enhanced viremia, and rapid dissemination of the virus to target organs. This enhanced phenotype effectuated by the presence of mosquito saliva in the skin can be partly ascribed to a polarization of the local immune balance towards a Th2 response, an increased permeability of the dermal endothelium, and the influx of virus-susceptible immune cells to the bite site. However, the complete identification and characterization of immunomodulatory salivary proteins from different mosquito species and the mechanisms by which these salivary proteins exert their effects synergistically or antagonistically remains to be further explored. Moreover, the effect of new virus-vector combinations on the outcome of arbovirus infection in a new host is limited. Here, we review the immunomodulatory effects of mosquito saliva in the skin and the proposed mechanisms by which mosquito saliva enhances arbovirus pathogenesis in the vertebrate host, and discuss potential differences between
Aedes
and
Culex
mosquito species, the main vectors for medically important arboviruses. Gaining more insight into the effect of mosquito saliva in the vector-virus-host triad aids in predicting the potential transmission risk and disease severity of emerging vector-borne diseases. Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and saliva into the skin of the host. The presence of mosquito saliva in the host skin during arbovirus transmission contributes to high viral titers in the skin, enhanced viremia, and rapid dissemination of the virus to target organs. This enhanced phenotype effectuated by the presence of mosquito saliva in the skin can be partly ascribed to a polarization of the local immune balance towards a Th2 response, an increased permeability of the dermal endothelium, and the influx of virus-susceptible immune cells to the bite site. However, the complete identification and characterization of immunomodulatory salivary proteins from different mosquito species and the mechanisms by which these salivary proteins exert their effects synergistically or antagonistically remains to be further explored. Moreover, the effect of new virus-vector combinations on the outcome of arbovirus infection in a new host is limited. Here, we review the immunomodulatory effects of mosquito saliva in the skin and the proposed mechanisms by which mosquito saliva enhances arbovirus pathogenesis in the vertebrate host, and discuss potential differences between and mosquito species, the main vectors for medically important arboviruses. Gaining more insight into the effect of mosquito saliva in the vector-virus-host triad aids in predicting the potential transmission risk and disease severity of emerging vector-borne diseases. Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and saliva into the skin of the host. The presence of mosquito saliva in the host skin during arbovirus transmission contributes to high viral titers in the skin, enhanced viremia, and rapid dissemination of the virus to target organs. This enhanced phenotype effectuated by the presence of mosquito saliva in the skin can be partly ascribed to a polarization of the local immune balance towards a Th2 response, an increased permeability of the dermal endothelium, and the influx of virus-susceptible immune cells to the bite site. However, the complete identification and characterization of immunomodulatory salivary proteins from different mosquito species and the mechanisms by which these salivary proteins exert their effects synergistically or antagonistically remains to be further explored. Moreover, the effect of new virus-vector combinations on the outcome of arbovirus infection in a new host is limited. Here, we review the immunomodulatory effects of mosquito saliva in the skin and the proposed mechanisms by which mosquito saliva enhances arbovirus pathogenesis in the vertebrate host, and discuss potential differences between Aedes and Culex mosquito species, the main vectors for medically important arboviruses. Gaining more insight into the effect of mosquito saliva in the vector-virus-host triad aids in predicting the potential transmission risk and disease severity of emerging vector-borne diseases. Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and saliva into the skin of the host. The presence of mosquito saliva in the host skin during arbovirus transmission contributes to high viral titers in the skin, enhanced viremia, and rapid dissemination of the virus to target organs. This enhanced phenotype effectuated by the presence of mosquito saliva in the skin can be partly ascribed to a polarization of the local immune balance towards a Th2 response, an increased permeability of the dermal endothelium, and the influx of virus-susceptible immune cells to the bite site. However, the complete identification and characterization of immunomodulatory salivary proteins from different mosquito species and the mechanisms by which these salivary proteins exert their effects synergistically or antagonistically remains to be further explored. Moreover, the effect of new virus-vector combinations on the outcome of arbovirus infection in a new host is limited. Here, we review the immunomodulatory effects of mosquito saliva in the skin and the proposed mechanisms by which mosquito saliva enhances arbovirus pathogenesis in the vertebrate host, and discuss potential differences between Aedes and Culex mosquito species, the main vectors for medically important arboviruses. Gaining more insight into the effect of mosquito saliva in the vector-virus-host triad aids in predicting the potential transmission risk and disease severity of emerging vector-borne diseases.Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as arbovirus infections emerge in these new areas. During probing and feeding on the vertebrate host, a mosquito can inject both arbovirus and saliva into the skin of the host. The presence of mosquito saliva in the host skin during arbovirus transmission contributes to high viral titers in the skin, enhanced viremia, and rapid dissemination of the virus to target organs. This enhanced phenotype effectuated by the presence of mosquito saliva in the skin can be partly ascribed to a polarization of the local immune balance towards a Th2 response, an increased permeability of the dermal endothelium, and the influx of virus-susceptible immune cells to the bite site. However, the complete identification and characterization of immunomodulatory salivary proteins from different mosquito species and the mechanisms by which these salivary proteins exert their effects synergistically or antagonistically remains to be further explored. Moreover, the effect of new virus-vector combinations on the outcome of arbovirus infection in a new host is limited. Here, we review the immunomodulatory effects of mosquito saliva in the skin and the proposed mechanisms by which mosquito saliva enhances arbovirus pathogenesis in the vertebrate host, and discuss potential differences between Aedes and Culex mosquito species, the main vectors for medically important arboviruses. Gaining more insight into the effect of mosquito saliva in the vector-virus-host triad aids in predicting the potential transmission risk and disease severity of emerging vector-borne diseases. |
ArticleNumber | 100506 |
Author | Rockx, Barry Koenraadt, Constantianus J.M. Visser, Imke Koopmans, Marion P.G. |
Author_xml | – sequence: 1 givenname: Imke surname: Visser fullname: Visser, Imke organization: Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands – sequence: 2 givenname: Constantianus J.M. surname: Koenraadt fullname: Koenraadt, Constantianus J.M. organization: Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands – sequence: 3 givenname: Marion P.G. surname: Koopmans fullname: Koopmans, Marion P.G. organization: Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands – sequence: 4 givenname: Barry surname: Rockx fullname: Rockx, Barry email: b.rockx@erasmusmc.nl organization: Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37363242$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQtVARLUv_AUI5ctmtP5MsBxCqgFaqxKWcrYk92XiVtbe2NxL_Hm9TqpYDcLI9fu9p3sx7TU588EjIW0ZXjLL6Yrsq72HMK065KCWqaP2CnHGh-LJpmDx5cj8l5yltKaVM8VZx9YqcikbUgkt-RvB2wCq5jXe9M-ANVqGvdiHdHVwOVYLRTVA5X0HswuTiIVU5gk87l5ILpexttYc8hA16TC4dobkoThgzdhEyVkNI-Q152cOY8PzhXJAfX7_cXl4tb75_u778fLM0qhZ5CY1tjOka1lPeI8cWuLIgoF0rY6A2QiqUvQXa18WwMh0KbrFWaGgvaU3FglzPujbAVu-j20H8qQM4fV8IcaMhZmdG1NRKwQQwCaaT2Ki1tawx2HdrpFaxo9anWWt_6HZoDfrifHwm-vzHu0FvwqQZ5W1Li6EFef-gEMPdAVPWZWwGxxE8hkPSvBWSM6na9n-glLO1FOsCffe0r8eGfu-0AOQMMDGkFLF_hDCqj-nRZRL36dHH9Og5PYX24Q-acRly2XJx58Z_kT_OZCzbnRxGnYzDEifrIppcxu_-LvALhJbk7Q |
CitedBy_id | crossref_primary_10_1093_oxfimm_iqae003 crossref_primary_10_1002_rmv_2571 crossref_primary_10_1016_j_isci_2024_111198 crossref_primary_10_1016_j_onehlt_2023_100635 crossref_primary_10_3390_v15081685 crossref_primary_10_1038_s44298_024_00070_0 crossref_primary_10_3390_pathogens13010052 |
Cites_doi | 10.1128/JVI.02692-10 10.1038/s41541-019-0120-x 10.1186/1756-3305-2-34 10.1002/pmic.200900626 10.1128/jvi.70.7.4761-4766.1996 10.1182/blood-2011-02-338244 10.1016/j.jid.2017.10.018 10.1371/journal.pntd.0008191 10.1128/JVI.02235-13 10.1038/nri1785 10.1093/jmedent/23.6.581 10.4049/jimmunol.176.7.4141 10.4269/ajtmh.1992.47.190 10.1159/000076787 10.1128/JVI.00489-06 10.1186/1756-3305-4-187 10.3390/pathogens9040266 10.1111/mve.12133 10.1089/vbz.2009.0005 10.1128/JVI.00354-15 10.1172/jci.insight.133653 10.1046/j.1523-1747.2000.00904.x 10.1046/j.1365-2915.2000.00227.x 10.1128/JVI.74.2.914-922.2000 10.1146/annurev-med-050715-105122 10.1128/JVI.02280-15 10.1556/AMicr.51.2004.3.8 10.1111/1523-1747.ep12470172 10.1371/journal.pntd.0006733 10.1111/j.0141-9838.2004.00712.x 10.1073/pnas.2114309119 10.4049/jimmunol.174.7.3932 10.3390/ijms22094972 10.2807/ese.15.45.19710-en 10.1016/j.virol.2014.06.023 10.2987/8756-971X(2006)22[149:CAAOOF]2.0.CO;2 10.1016/j.ibmb.2010.08.002 10.1038/sj.jid.5700107 10.1371/journal.ppat.1004548 10.3389/fcimb.2018.00387 10.1111/j.0959-9673.2005.00445.x 10.1038/ni.2680 10.4049/jimmunol.181.4.2694 10.1126/scitranslmed.aax2421 10.1098/rspb.2011.1282 10.1016/S0162-3109(99)00058-2 10.3109/07853899409147906 10.1016/j.vaccine.2017.04.082 10.1016/j.jid.2017.05.028 10.1016/j.immuni.2008.08.013 10.1016/0140-6736(91)92168-2 10.1016/S1081-1206(10)62426-X 10.3201/eid1708.050841 10.1007/BF01314622 10.1647/2014-034 10.1016/j.meegid.2017.08.032 10.2807/1560-7917.ES.2020.25.40.2001704 10.1016/j.meegid.2016.02.033 10.1371/journal.pone.0011704 10.1016/j.immuni.2006.04.017 10.1038/s41590-018-0063-9 10.1371/journal.ppat.0030201 10.3390/biom10101372 10.4269/ajtmh.1994.51.690 10.1128/JVI.01112-10 10.1080/09537100500460234 10.1038/s41564-019-0385-x 10.1084/jem.20091527 10.1002/(SICI)1097-0215(19990730)82:3<385::AID-IJC12>3.0.CO;2-5 10.1038/nrmicro1006 10.1038/sj.jid.5700530 10.3201/eid0807.020094 10.1111/j.1365-2915.2004.00498.x 10.1098/rsif.2012.0138 10.1128/JVI.00918-08 10.1371/journal.pntd.0001420 10.1093/jmedent/43.3.623 10.1146/annurev.ento.48.060402.102812 10.1098/rstb.2014.0135 10.3390/pathogens9090699 10.1371/journal.pntd.0002237 10.1128/JVI.00534-12 10.1186/s13071-020-04077-3 10.1186/1743-422X-10-127 10.4269/ajtmh.1996.54.338 10.3382/ps.0431035 10.1016/j.jid.2018.07.038 10.1186/s13071-022-05198-7 10.1046/j.1365-2567.1997.00360.x 10.1098/rspb.2010.2469 10.1371/journal.ppat.0030132 10.1242/jeb.204.11.2001 10.1371/journal.ppat.1004541 10.1038/77553 10.1038/nri2622 10.1111/imb.12055 10.1016/S0065-3527(03)60008-4 10.1093/jmedent/32.4.563 10.1016/j.pt.2017.04.003 10.1128/JVI.00274-06 10.3376/1081-1710(2006)31[292:AOTPFS]2.0.CO;2 10.1159/000023955 10.7554/eLife.08347 10.1016/j.actatropica.2020.105441 10.1089/vbz.2008.0038 10.1172/JCI115884 10.1146/annurev-ento-120811-153618 10.1016/j.trstmh.2008.07.025 10.1371/journal.pntd.0001935 10.1074/jbc.M510359200 10.1371/journal.ppat.1005676 10.4049/jimmunol.1600846 10.1371/journal.pone.0012137 10.1111/j.1365-3024.2009.01096.x 10.2217/fvl.14.6 10.1111/mec.13762 10.1128/JVI.01218-13 10.1046/j.1365-3024.1999.00199.x 10.1371/journal.ppat.1002631 10.1038/s41467-020-16010-4 10.1186/1471-2164-11-51 10.1128/JVI.00395-19 10.1111/j.0105-2896.2004.00204.x 10.1093/infdis/jiy179 10.1016/j.immuni.2016.06.002 10.4269/ajtmh.2005.72.325 10.1186/1743-422X-5-33 10.1371/journal.pmed.0030263 10.1038/nri3070 10.1046/j.0022-202x.2001.01454.x 10.3390/v14020221 10.1111/imm.13096 10.1371/journal.pone.0001171 10.1371/journal.pntd.0004941 10.1016/j.micinf.2009.05.005 10.1086/657416 10.1089/vim.2006.19.74 10.1371/journal.pone.0050464 10.1093/jmedent/35.3.261 10.1038/s41467-020-16665-z 10.1073/pnas.92.3.694 10.1046/j.1523-1747.2003.12245.x 10.1084/jem.161.3.526 10.1093/jmedent/17.1.1 10.1146/annurev.en.32.010187.002335 10.1016/j.virol.2014.07.019 10.1016/j.meegid.2011.06.009 |
ContentType | Journal Article |
Copyright | 2023 The Authors 2023 The Authors. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: 2023 The Authors. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.onehlt.2023.100506 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2352-7714 |
ExternalDocumentID | oai_doaj_org_article_0d4313a14acb4e759dd17cefb9e0d510 PMC10288056 37363242 10_1016_j_onehlt_2023_100506 S2352771423000265 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ 0SF 1P~ 457 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFRHN AFTJW AGHFR AITUG AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE IXB KQ8 M~E NCXOZ O9- OK1 ROL RPM SSZ Z5R AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c563t-a7d7ccb71f02fe2e8a25da3a895cca6c345e4fda0f60505cbe32de65ec0f40603 |
IEDL.DBID | IXB |
ISSN | 2352-7714 |
IngestDate | Wed Aug 27 01:26:18 EDT 2025 Thu Aug 21 18:36:46 EDT 2025 Thu Jul 10 17:32:17 EDT 2025 Fri Jul 11 09:56:08 EDT 2025 Thu Jan 02 22:52:56 EST 2025 Thu Apr 24 23:08:45 EDT 2025 Tue Jul 01 00:52:04 EDT 2025 Tue Dec 03 03:44:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mosquito saliva Arbovirus Pathogenesis Transmission |
Language | English |
License | This is an open access article under the CC BY license. 2023 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-a7d7ccb71f02fe2e8a25da3a895cca6c345e4fda0f60505cbe32de65ec0f40603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352771423000265 |
PMID | 37363242 |
PQID | 2830219439 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d4313a14acb4e759dd17cefb9e0d510 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10288056 proquest_miscellaneous_2834214588 proquest_miscellaneous_2830219439 pubmed_primary_37363242 crossref_primary_10_1016_j_onehlt_2023_100506 crossref_citationtrail_10_1016_j_onehlt_2023_100506 elsevier_sciencedirect_doi_10_1016_j_onehlt_2023_100506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | One health |
PublicationTitleAlternate | One Health |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Byrne, Halliday, Johnston, King (bb0410) 2001; 117 Verhulst. (bb0750) 2013; 58 Romagnani (bb0625) 2000; 85 Demeure (bb0505) 2005; 174 Schuffenecker (bb0145) 2006; 3 Bustos-Arriaga (bb0270) 2011; 5 Ribeiro (bb0475) 2000; 14 Cross, Cupp, Enriquez (bb0555) 1994; 51 McCracken (bb0705) 2020; 14 Nishibu (bb0425) 2006; 126 Johnston, Halliday, King (bb0440) 2000; 114 Daffis (bb0350) 2008; 82 Uraki, Hastings, Brackney, Armstrong, Fikrig (bb0610) 2019; 4 Frost, Naudé, Oelofsen, Jacobson (bb0770) 1999; 45 Wood, Jackson, Elias, Grunfeld, Feingold (bb0385) 1992; 90 Grimstad, Ross, Craig (bb0780) 1980; 17 Kraemer (bb0035) 2015; 4 Schaffner (bb0710) 2011; 29 Cerny (bb0285) 2014; 10 Boppana, Thangamani, Adler, Wikel (bb0620) 2009; 31 Tsetsarkin, Vanlandingham, McGee, Higgs (bb0140) 2007; 3 Sbrana (bb0735) 2005; 72 Wasserman, Singh, Champagne (bb0640) 2004; 26 Scholte (bb0045) 2010; 15 Schneider (bb0675) 2007; 2 Fortuna (bb0120) 2015; 29 Paupy (bb0215) 2010; 10 Bigland (bb0755) 1964; 43 Medlock, Avenell, Barrass, Leach (bb0090) 2006; 31 Hendy (bb0130) 2020; 206 Schneider (bb0190) 2006; 19 Agarwal (bb0155) 2016; 40 Wu (bb0290) 2000; 6 Garcia (bb0390) 2018; 8 Styer (bb0220) 2007; 3 Thangamani, Wikel (bb0635) 2009; 2 Nestle, Meglio, Qin, Nickoloff (bb0380) 2009; 910 Sardelis, Turell, O’Guinn, Andre, Roberts (bb0125) 2002; 18 Romi, Severini, Toma (bb0095) 2006; 22 Smith (bb0680) 2006; 12 Nagata, Nishiyama (bb0570) 2021; 22 Takumi (bb0100) 2009; 9 Uraki (bb0615) 2019; 4 Turell, Tammariello, Spielman (bb0690) 1995; 32 Champagne, Smartt, Ribeiro, James (bb0660) 1995; 92 Osorio, Godsey, Defoliart, Yuill (bb0740) 1996; 54 Bennett (bb0055) 2016; 25 Bai (bb0455) 2010; 202 Martin-Martin (bb0500) 2020; 11 Pingen (bb0515) 2016; 44 Conway (bb0720) 2016; 10 Troupin (bb0305) 2016; 197 Ribeiro, Mans, Arcà (bb0495) 2010; 40 Schmid (bb0520) 2016; 12 McCracken (bb0595) 2014; 468–470 Barker (bb0225) 1991; 337 Hastings (bb0585) 2019; 93 Cumberbatch, Dearman, Kimber (bb0415) 1997; 92 Reagan, Machain-Williams, Wang, Blair (bb0600) 2012; 6 Campbell (bb0015) 2015; 370 Bryden (bb0470) 2020; 12 Kalali (bb0330) 2008; 181 Schuler, Steinman (bb0405) 1985; 161 Caminade (bb0080) 2012; 9 Kim, Seong, Son, Shin (bb0250) 2019; 139 Peng, Simons (bb0565) 2004; 133 Pingen, Schmid, Harris, McKimmie (bb0150) 2017; 33 Heath, Carbone (bb0315) 2013; 14 Ibáñez-Justicia (bb0030) 2020; 13 Hamel (bb0240) 2015; 89 Reperant, Osterhaus (bb0040) 2017; 35 Iwamura, Guzman-Holst, Murray (bb0075) 2020; 11 Jin (bb0590) 2018; 194 Ribeiro, Charlab, Valenzuela (bb0670) 2001; 204 Gould, Higgs (bb0025) 2009; 103 Schmaier (bb0765) 2011; 118 Moser, Lim, Styer, Kramer, Bernard (bb0185) 2016; 90 Wasinpiyamongkol (bb0630) 2010; 10 Ong, Lum, Ng (bb0460) 2014; 9 Briant, Desprès, Choumet, Missé (bb0325) 2014; 464–465 Pivarcsi, Kemény, Dobozy (bb0230) 2004; 51 Shi, Pamer (bb0580) 2011; 11 De Lamballerie (bb0020) 2008; 5 Kubo, Nagao, Yokouchi, Sasaki, Amagai (bb0395) 2009; 206 Pappas, Pappas, Grossman (bb0695) 1986; 23 Le Coupanec (bb0175) 2013; 7 Manning, Morens, Kamhawi, Valenzuela, Memoli (bb0795) 2018; 218 Henrique (bb0575) 2019; 158 Vilibic-Cavlek (bb0115) 2020; 9 Choumet (bb0235) 2012; 7 Ribeiro (bb0485) 1987; 32 McCracken, Christofferson, Chisenhall, Mores (bb0180) 2014; 88 Lebre (bb0335) 2007; 127 Styer (bb0195) 2011; 85 Bos (bb0310) 1987; 88 Samuel (bb0360) 2006; 80 Pereira-Dos-Santos, Roiz, Lourenço-De-Oliveira, Paupy (bb0135) 2020; 9 Tesla (bb0205) 2018; 12 Scorza (bb0320) 2017; 137 Allenspach, Lemos, Porrett, Turka, Laufer (bb0435) 2008; 29 Brown (bb0065) 2014; 68 Cumberbatch, Kimber (bb0420) 1992; 75 Albrecht (bb0465) 1968; 43 Lim, Behr, Chadwick, Shi, Bernard (bb0255) 2011; 85 Strindberg (bb0760) 2015; 29 Paupy, Delatte, Bagny, Corbel, Fontenille (bb0070) 2009; 11 Cox, Mota, Sukupolvi-Petty, Diamond, Rico-Hesse (bb0165) 2012; 86 Chen, Simons, Peng (bb0540) 1998; 116 Martin-Martin (bb0650) 2020; 10 Lefteri (bb0525) 2022; 119 Wanasen, Nussenzveig, Champagne, Soong, Higgs (bb0700) 2004; 18 WHO (bb0005) 2020 Lord, Rutledge, Tabachnick (bb0200) 2006; 43 MacDonald, Johnston (bb0300) 2000; 74 Gloria-Soria, Brackney, Armstrong (bb0790) 2022; 15 Duangkhae (bb0260) 2018; 138 Sun (bb0605) 2020; 11 Conway (bb0645) 2014; 88 Simpson (bb0745) 2012; 279 Limon-Flores (bb0265) 2005; 86 Quarmby, Kumar, Kumar (bb0445) 1999; 82 Reunala, Brummer-Korvenkontio, Palosuo (bb0560) 1994; 26 Valenzuela-Leon (bb0725) 2022; 14 Sim, Ramirez, Dimopoulos (bb0785) 2012; 8 Christofferson, McCracken, Johnson, Chisenhall, Mores (bb0160) 2013; 10 Zeidner, Higgs, Happ, Beaty, Miller (bb0535) 1999; 21 Nathan (bb0450) 2006; 63 Yamamoto (bb0480) 2013; 22 Chambers, Diamond (bb0345) 2003; 60 Thangamani (bb0530) 2010; 5 Fontaine (bb0715) 2011; 4 Turell, Spielman (bb0685) 1992; 47 Wichit (bb0275) 2017; 55 Calvo (bb0490) 2010; 11 Schneider (bb0545) 2010; 5 Depinay, Hacini, Beghdadi, Peronet, Mécheri (bb0550) 2006; 176 Calvo, Mans, Andersen, Ribeiro (bb0655) 2006; 281 Brown (bb0060) 2011; 278 Allan (bb0430) 2006; 25 Sun, Mcnicol, James, Peng (bb0665) 2006; 17 Lebre (bb0340) 2003; 120 Pestka, Krause, Walter (bb0355) 2004; 202 Schmid, Harris (bb0280) 2014; 10 Xiang (bb0775) 2022; 119 Weaver, Charlier, Vasilakis, Lecuit (bb0050) 2018; 69 Kurane, Janus, Ennis (bb0375) 1992; 124 Edwards, Higgs, Beaty (bb0170) 1998; 35 Shrestha (bb0370) 2006; 80 Ribeiro, Francischetti (bb0510) 2003; 48 Weaver, Barrett (bb0010) 2004; 2 Samuel (bb0365) 2005; 79 Castanha (bb0295) 2020; 5 Surasombatpattana (bb0245) 2011; 11 Hawley (bb0085) 1988; 1 Weissenböck (bb0110) 2002; 8 Johnston, Halliday, King (bb0400) 1996; 70 Sikkema (bb0105) 2020; 25 (bb0210) 2014 Brown (10.1016/j.onehlt.2023.100506_bb0060) 2011; 278 Pingen (10.1016/j.onehlt.2023.100506_bb0150) 2017; 33 (10.1016/j.onehlt.2023.100506_bb0210) 2014 Tesla (10.1016/j.onehlt.2023.100506_bb0205) 2018; 12 Fortuna (10.1016/j.onehlt.2023.100506_bb0120) 2015; 29 Sbrana (10.1016/j.onehlt.2023.100506_bb0735) 2005; 72 Lord (10.1016/j.onehlt.2023.100506_bb0200) 2006; 43 Calvo (10.1016/j.onehlt.2023.100506_bb0490) 2010; 11 McCracken (10.1016/j.onehlt.2023.100506_bb0595) 2014; 468–470 Schaffner (10.1016/j.onehlt.2023.100506_bb0710) 2011; 29 Calvo (10.1016/j.onehlt.2023.100506_bb0655) 2006; 281 Smith (10.1016/j.onehlt.2023.100506_bb0680) 2006; 12 Caminade (10.1016/j.onehlt.2023.100506_bb0080) 2012; 9 Romagnani (10.1016/j.onehlt.2023.100506_bb0625) 2000; 85 Le Coupanec (10.1016/j.onehlt.2023.100506_bb0175) 2013; 7 Castanha (10.1016/j.onehlt.2023.100506_bb0295) 2020; 5 Ong (10.1016/j.onehlt.2023.100506_bb0460) 2014; 9 Martin-Martin (10.1016/j.onehlt.2023.100506_bb0500) 2020; 11 Ribeiro (10.1016/j.onehlt.2023.100506_bb0670) 2001; 204 Kraemer (10.1016/j.onehlt.2023.100506_bb0035) 2015; 4 Medlock (10.1016/j.onehlt.2023.100506_bb0090) 2006; 31 Gould (10.1016/j.onehlt.2023.100506_bb0025) 2009; 103 Hawley (10.1016/j.onehlt.2023.100506_bb0085) 1988; 1 Pappas (10.1016/j.onehlt.2023.100506_bb0695) 1986; 23 Edwards (10.1016/j.onehlt.2023.100506_bb0170) 1998; 35 Briant (10.1016/j.onehlt.2023.100506_bb0325) 2014; 464–465 Schneider (10.1016/j.onehlt.2023.100506_bb0675) 2007; 2 Wood (10.1016/j.onehlt.2023.100506_bb0385) 1992; 90 Pestka (10.1016/j.onehlt.2023.100506_bb0355) 2004; 202 Thangamani (10.1016/j.onehlt.2023.100506_bb0635) 2009; 2 Conway (10.1016/j.onehlt.2023.100506_bb0720) 2016; 10 MacDonald (10.1016/j.onehlt.2023.100506_bb0300) 2000; 74 Lebre (10.1016/j.onehlt.2023.100506_bb0340) 2003; 120 Schmaier (10.1016/j.onehlt.2023.100506_bb0765) 2011; 118 Johnston (10.1016/j.onehlt.2023.100506_bb0440) 2000; 114 Schneider (10.1016/j.onehlt.2023.100506_bb0190) 2006; 19 Ribeiro (10.1016/j.onehlt.2023.100506_bb0510) 2003; 48 Hastings (10.1016/j.onehlt.2023.100506_bb0585) 2019; 93 Wanasen (10.1016/j.onehlt.2023.100506_bb0700) 2004; 18 Vilibic-Cavlek (10.1016/j.onehlt.2023.100506_bb0115) 2020; 9 Heath (10.1016/j.onehlt.2023.100506_bb0315) 2013; 14 Verhulst. (10.1016/j.onehlt.2023.100506_bb0750) 2013; 58 Frost (10.1016/j.onehlt.2023.100506_bb0770) 1999; 45 Nestle (10.1016/j.onehlt.2023.100506_bb0380) 2009; 910 Demeure (10.1016/j.onehlt.2023.100506_bb0505) 2005; 174 McCracken (10.1016/j.onehlt.2023.100506_bb0705) 2020; 14 Quarmby (10.1016/j.onehlt.2023.100506_bb0445) 1999; 82 Wasserman (10.1016/j.onehlt.2023.100506_bb0640) 2004; 26 Osorio (10.1016/j.onehlt.2023.100506_bb0740) 1996; 54 Styer (10.1016/j.onehlt.2023.100506_bb0220) 2007; 3 Ribeiro (10.1016/j.onehlt.2023.100506_bb0475) 2000; 14 Turell (10.1016/j.onehlt.2023.100506_bb0690) 1995; 32 Paupy (10.1016/j.onehlt.2023.100506_bb0215) 2010; 10 De Lamballerie (10.1016/j.onehlt.2023.100506_bb0020) 2008; 5 Shi (10.1016/j.onehlt.2023.100506_bb0580) 2011; 11 Simpson (10.1016/j.onehlt.2023.100506_bb0745) 2012; 279 Sim (10.1016/j.onehlt.2023.100506_bb0785) 2012; 8 Sardelis (10.1016/j.onehlt.2023.100506_bb0125) 2002; 18 Fontaine (10.1016/j.onehlt.2023.100506_bb0715) 2011; 4 Kim (10.1016/j.onehlt.2023.100506_bb0250) 2019; 139 Wasinpiyamongkol (10.1016/j.onehlt.2023.100506_bb0630) 2010; 10 Martin-Martin (10.1016/j.onehlt.2023.100506_bb0650) 2020; 10 Ibáñez-Justicia (10.1016/j.onehlt.2023.100506_bb0030) 2020; 13 Weissenböck (10.1016/j.onehlt.2023.100506_bb0110) 2002; 8 Boppana (10.1016/j.onehlt.2023.100506_bb0620) 2009; 31 Hamel (10.1016/j.onehlt.2023.100506_bb0240) 2015; 89 Lebre (10.1016/j.onehlt.2023.100506_bb0335) 2007; 127 McCracken (10.1016/j.onehlt.2023.100506_bb0180) 2014; 88 Weaver (10.1016/j.onehlt.2023.100506_bb0010) 2004; 2 Jin (10.1016/j.onehlt.2023.100506_bb0590) 2018; 194 Pereira-Dos-Santos (10.1016/j.onehlt.2023.100506_bb0135) 2020; 9 Chen (10.1016/j.onehlt.2023.100506_bb0540) 1998; 116 Moser (10.1016/j.onehlt.2023.100506_bb0185) 2016; 90 Samuel (10.1016/j.onehlt.2023.100506_bb0365) 2005; 79 Garcia (10.1016/j.onehlt.2023.100506_bb0390) 2018; 8 WHO (10.1016/j.onehlt.2023.100506_bb0005) Yamamoto (10.1016/j.onehlt.2023.100506_bb0480) 2013; 22 Reperant (10.1016/j.onehlt.2023.100506_bb0040) 2017; 35 Brown (10.1016/j.onehlt.2023.100506_bb0065) 2014; 68 Kurane (10.1016/j.onehlt.2023.100506_bb0375) 1992; 124 Christofferson (10.1016/j.onehlt.2023.100506_bb0160) 2013; 10 Thangamani (10.1016/j.onehlt.2023.100506_bb0530) 2010; 5 Schmid (10.1016/j.onehlt.2023.100506_bb0520) 2016; 12 Iwamura (10.1016/j.onehlt.2023.100506_bb0075) 2020; 11 Ribeiro (10.1016/j.onehlt.2023.100506_bb0495) 2010; 40 Xiang (10.1016/j.onehlt.2023.100506_bb0775) 2022; 119 Samuel (10.1016/j.onehlt.2023.100506_bb0360) 2006; 80 Surasombatpattana (10.1016/j.onehlt.2023.100506_bb0245) 2011; 11 Strindberg (10.1016/j.onehlt.2023.100506_bb0760) 2015; 29 Sun (10.1016/j.onehlt.2023.100506_bb0665) 2006; 17 Schneider (10.1016/j.onehlt.2023.100506_bb0545) 2010; 5 Scholte (10.1016/j.onehlt.2023.100506_bb0045) 2010; 15 Agarwal (10.1016/j.onehlt.2023.100506_bb0155) 2016; 40 Zeidner (10.1016/j.onehlt.2023.100506_bb0535) 1999; 21 Scorza (10.1016/j.onehlt.2023.100506_bb0320) 2017; 137 Bos (10.1016/j.onehlt.2023.100506_bb0310) 1987; 88 Hendy (10.1016/j.onehlt.2023.100506_bb0130) 2020; 206 Cumberbatch (10.1016/j.onehlt.2023.100506_bb0420) 1992; 75 Wu (10.1016/j.onehlt.2023.100506_bb0290) 2000; 6 Schuffenecker (10.1016/j.onehlt.2023.100506_bb0145) 2006; 3 Chambers (10.1016/j.onehlt.2023.100506_bb0345) 2003; 60 Barker (10.1016/j.onehlt.2023.100506_bb0225) 1991; 337 Nagata (10.1016/j.onehlt.2023.100506_bb0570) 2021; 22 Ribeiro (10.1016/j.onehlt.2023.100506_bb0485) 1987; 32 Limon-Flores (10.1016/j.onehlt.2023.100506_bb0265) 2005; 86 Valenzuela-Leon (10.1016/j.onehlt.2023.100506_bb0725) 2022; 14 Wichit (10.1016/j.onehlt.2023.100506_bb0275) 2017; 55 Paupy (10.1016/j.onehlt.2023.100506_bb0070) 2009; 11 Henrique (10.1016/j.onehlt.2023.100506_bb0575) 2019; 158 Bryden (10.1016/j.onehlt.2023.100506_bb0470) 2020; 12 Troupin (10.1016/j.onehlt.2023.100506_bb0305) 2016; 197 Tsetsarkin (10.1016/j.onehlt.2023.100506_bb0140) 2007; 3 Lefteri (10.1016/j.onehlt.2023.100506_bb0525) 2022; 119 Reagan (10.1016/j.onehlt.2023.100506_bb0600) 2012; 6 Schuler (10.1016/j.onehlt.2023.100506_bb0405) 1985; 161 Romi (10.1016/j.onehlt.2023.100506_bb0095) 2006; 22 Sun (10.1016/j.onehlt.2023.100506_bb0605) 2020; 11 Kalali (10.1016/j.onehlt.2023.100506_bb0330) 2008; 181 Daffis (10.1016/j.onehlt.2023.100506_bb0350) 2008; 82 Bigland (10.1016/j.onehlt.2023.100506_bb0755) 1964; 43 Styer (10.1016/j.onehlt.2023.100506_bb0195) 2011; 85 Grimstad (10.1016/j.onehlt.2023.100506_bb0780) 1980; 17 Bai (10.1016/j.onehlt.2023.100506_bb0455) 2010; 202 Depinay (10.1016/j.onehlt.2023.100506_bb0550) 2006; 176 Choumet (10.1016/j.onehlt.2023.100506_bb0235) 2012; 7 Kubo (10.1016/j.onehlt.2023.100506_bb0395) 2009; 206 Campbell (10.1016/j.onehlt.2023.100506_bb0015) 2015; 370 Bustos-Arriaga (10.1016/j.onehlt.2023.100506_bb0270) 2011; 5 Albrecht (10.1016/j.onehlt.2023.100506_bb0465) 1968; 43 Cross (10.1016/j.onehlt.2023.100506_bb0555) 1994; 51 Peng (10.1016/j.onehlt.2023.100506_bb0565) 2004; 133 Schmid (10.1016/j.onehlt.2023.100506_bb0280) 2014; 10 Conway (10.1016/j.onehlt.2023.100506_bb0645) 2014; 88 Manning (10.1016/j.onehlt.2023.100506_bb0795) 2018; 218 Byrne (10.1016/j.onehlt.2023.100506_bb0410) 2001; 117 Pingen (10.1016/j.onehlt.2023.100506_bb0515) 2016; 44 Weaver (10.1016/j.onehlt.2023.100506_bb0050) 2018; 69 Lim (10.1016/j.onehlt.2023.100506_bb0255) 2011; 85 Reunala (10.1016/j.onehlt.2023.100506_bb0560) 1994; 26 Takumi (10.1016/j.onehlt.2023.100506_bb0100) 2009; 9 Duangkhae (10.1016/j.onehlt.2023.100506_bb0260) 2018; 138 Bennett (10.1016/j.onehlt.2023.100506_bb0055) 2016; 25 Shrestha (10.1016/j.onehlt.2023.100506_bb0370) 2006; 80 Uraki (10.1016/j.onehlt.2023.100506_bb0610) 2019; 4 Cox (10.1016/j.onehlt.2023.100506_bb0165) 2012; 86 Allan (10.1016/j.onehlt.2023.100506_bb0430) 2006; 25 Cumberbatch (10.1016/j.onehlt.2023.100506_bb0415) 1997; 92 Nishibu (10.1016/j.onehlt.2023.100506_bb0425) 2006; 126 Johnston (10.1016/j.onehlt.2023.100506_bb0400) 1996; 70 Allenspach (10.1016/j.onehlt.2023.100506_bb0435) 2008; 29 Gloria-Soria (10.1016/j.onehlt.2023.100506_bb0790) 2022; 15 Sikkema (10.1016/j.onehlt.2023.100506_bb0105) 2020; 25 Cerny (10.1016/j.onehlt.2023.100506_bb0285) 2014; 10 Pivarcsi (10.1016/j.onehlt.2023.100506_bb0230) 2004; 51 Champagne (10.1016/j.onehlt.2023.100506_bb0660) 1995; 92 Nathan (10.1016/j.onehlt.2023.100506_bb0450) 2006; 63 Uraki (10.1016/j.onehlt.2023.100506_bb0615) 2019; 4 Turell (10.1016/j.onehlt.2023.100506_bb0685) 1992; 47 |
References_xml | – volume: 6 year: 2012 ident: bb0600 article-title: Immunization of mice with recombinant mosquito salivary protein D7 enhances mortality from subsequent West Nile virus infection via mosquito bite publication-title: PLoS Negl. Trop. Dis. – volume: 86 start-page: 7637 year: 2012 end-page: 7649 ident: bb0165 article-title: Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice publication-title: J. Virol. – volume: 90 start-page: 292 year: 2016 end-page: 299 ident: bb0185 article-title: Parameters of mosquito-enhanced West Nile virus infection publication-title: J. Virol. – volume: 194 start-page: 342 year: 2018 end-page: 353 ident: bb0590 article-title: Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-β receptor publication-title: Nat. Immunol. – volume: 11 start-page: 2130 year: 2020 ident: bb0075 article-title: Accelerating invasion potential of disease vector Aedes aegypti under climate change publication-title: Nat. Commun. – volume: 35 start-page: 261 year: 1998 end-page: 265 ident: bb0170 article-title: Mosquito feeding-induced enhancement of Cache Valley virus (Bunyaviridae) infection in mice publication-title: J. Med. Entomol. – volume: 12 year: 2018 ident: bb0205 article-title: Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti publication-title: PLoS Negl. Trop. Dis. – volume: 40 start-page: 767 year: 2010 end-page: 784 ident: bb0495 article-title: An insight into the sialome of blood-feeding Nematocera publication-title: Insect Biochem. Mol. Biol. – volume: 137 start-page: 2149 year: 2017 end-page: 2156 ident: bb0320 article-title: Differential activation of human keratinocytes by Leishmania species causing localized or disseminated disease publication-title: J. Invest. Dermatol. – volume: 85 start-page: 9 year: 2000 end-page: 21 ident: bb0625 article-title: T-cell subsets (Th1 versus Th2) publication-title: Ann. Allergy Asthma Immunol. – volume: 88 start-page: 1881 year: 2014 end-page: 1889 ident: bb0180 article-title: Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing publication-title: J. Virol. – volume: 29 start-page: 795 year: 2008 end-page: 806 ident: bb0435 article-title: Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells publication-title: Immunity – volume: 202 start-page: 8 year: 2004 end-page: 32 ident: bb0355 article-title: Interferons, interferon-like cytokines, and their receptors publication-title: Immunol. Rev. – volume: 12 year: 2020 ident: bb0470 article-title: Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site publication-title: Sci. Transl. Med. – volume: 63 start-page: 173 year: 2006 end-page: 182 ident: bb0450 article-title: Neutrophils and immunity: challenges and opportunities publication-title: Nat. Rev. Immunol. – volume: 218 start-page: 7 year: 2018 end-page: 15 ident: bb0795 article-title: Mosquito saliva: the Hope for a universal arbovirus vaccine? publication-title: J. Infect. Dis. – volume: 204 start-page: 2001 year: 2001 end-page: 2010 ident: bb0670 article-title: The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti publication-title: J. Exp. Biol. – volume: 43 start-page: 623 year: 2006 ident: bb0200 article-title: Relationships between host viremia and vector susceptibility for arboviruses publication-title: J. Med. Entomol. – volume: 197 start-page: 4382 year: 2016 end-page: 4391 ident: bb0305 article-title: A role for human skin mast cells in dengue virus infection and systemic spread publication-title: J. Immunol. – volume: 18 start-page: 191 year: 2004 end-page: 199 ident: bb0700 article-title: Differential modulation of murine host immune response by salivary gland extracts from the mosquitoes Aedes aegypti and Culex quinquefasciatus publication-title: Med. Vet. Entomol. – volume: 6 start-page: 816 year: 2000 end-page: 820 ident: bb0290 article-title: Human skin Langerhans cells are targets of dengue virus infection publication-title: Nat. Med. – volume: 82 start-page: 8465 year: 2008 end-page: 8475 ident: bb0350 article-title: Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection publication-title: J. Virol. – volume: 176 start-page: 4141 year: 2006 end-page: 4146 ident: bb0550 article-title: Mast cell-dependent Down-regulation of antigen-specific immune responses by mosquito bites publication-title: J. Immunol. – volume: 26 start-page: 301 year: 1994 end-page: 306 ident: bb0560 article-title: Are we really allergic to mosquito bites? publication-title: Ann. Med. – volume: 35 start-page: 4470 year: 2017 end-page: 4474 ident: bb0040 article-title: AIDS, avian flu, SARS, MERS, Ebola, Zika… what next? publication-title: Vaccine – volume: 5 year: 2020 ident: bb0295 article-title: Reciprocal immune enhancement of dengue and Zika virus infection in human skin publication-title: JCI Insight – volume: 74 start-page: 914 year: 2000 end-page: 922 ident: bb0300 article-title: Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis publication-title: J. Virol. – volume: 4 start-page: 1 year: 2011 end-page: 17 ident: bb0715 article-title: Implication of haematophagous arthropod salivary proteins in host-vector interactions publication-title: Parasit. Vectors – year: 2020 ident: bb0005 article-title: Vector-borne diseases – volume: 13 start-page: 217 year: 2020 ident: bb0030 article-title: Habitat suitability modelling to assess the introductions of Aedes albopictus (Diptera: Culicidae) in the Netherlands publication-title: Parasit. Vectors – volume: 82 start-page: 385 year: 1999 end-page: 395 ident: bb0445 article-title: Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions publication-title: Int. J. Cancer – volume: 11 start-page: 2911 year: 2020 ident: bb0500 article-title: ADP binding by the Culex quinquefasciatus mosquito D7 salivary protein enhances blood feeding on mammals publication-title: Nat. Commun. – volume: 8 start-page: 652 year: 2002 end-page: 656 ident: bb0110 article-title: Emergence of Usutu virus, an African mosquito-borne Flavivirus of the Japanese encephalitis virus group, Central Europe publication-title: Emerg. Infect. Dis. – volume: 12 start-page: 1190 year: 2006 ident: bb0680 article-title: Venezuelan equine encephalitis virus transmission and effect on pathogenesis publication-title: Emerg. Infect. Dis. – volume: 29 start-page: 141 year: 2011 end-page: 142 ident: bb0710 article-title: Vector competence of Aedes japonicus for chikungunya and dengue viruses publication-title: J. Eur. Mosq. Control Assoc. – volume: 5 year: 2011 ident: bb0270 article-title: Activation of the innate immune response against DENV in Normal non-transformed human fibroblasts publication-title: PLoS Negl. Trop. Dis. – volume: 206 start-page: 2937 year: 2009 end-page: 2946 ident: bb0395 article-title: External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers publication-title: J. Exp. Med. – volume: 5 year: 2010 ident: bb0545 article-title: Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection publication-title: PLoS One – volume: 206 year: 2020 ident: bb0130 article-title: Into the woods: changes in mosquito community composition and presence of key vectors at increasing distances from the urban edge in urban forest parks in Manaus, Brazil publication-title: Acta Trop. – volume: 86 start-page: 323 year: 2005 end-page: 334 ident: bb0265 article-title: Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells publication-title: Int. J. Exp. Pathol. – volume: 40 start-page: 126 year: 2016 end-page: 135 ident: bb0155 article-title: Mosquito saliva induced cutaneous events augment chikungunya virus replication and disease progression publication-title: Infect. Genet. Evol. – volume: 4 start-page: 1 year: 2019 end-page: 4 ident: bb0610 article-title: AgBR1 antibodies delay lethal Aedes aegypti-borne West Nile virus infection in mice publication-title: npj Vaccines – volume: 2 year: 2007 ident: bb0675 article-title: Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection publication-title: PLoS One – volume: 25 start-page: 1 year: 2020 end-page: 6 ident: bb0105 article-title: Detection of west nile virus in a common whitethroat (curruca communis) and culex mosquitoes in the Netherlands, 2020 publication-title: Eurosurveillance – volume: 29 start-page: 282 year: 2015 end-page: 289 ident: bb0760 article-title: Thromboelastography in selected avian species publication-title: J. Avian Med. Surg. – volume: 139 start-page: 391 year: 2019 end-page: 399 ident: bb0250 article-title: Insights into ZIKV-mediated innate immune responses in human dermal fibroblasts and epidermal keratinocytes publication-title: J. Invest. Dermatol. – volume: 279 start-page: 925 year: 2012 end-page: 933 ident: bb0745 article-title: Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system publication-title: Proc. R. Soc. B Biol. Sci. – volume: 138 start-page: 618 year: 2018 end-page: 626 ident: bb0260 article-title: Interplay between keratinocytes and myeloid cells drives dengue virus spread in human skin publication-title: J. Invest. Dermatol. – volume: 79 start-page: 13350 year: 2005 end-page: 13361 ident: bb0365 article-title: Virology, M. D.-J. of & 2005, undefined. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival publication-title: Am Soc Microbiol – volume: 44 start-page: 1455 year: 2016 end-page: 1469 ident: bb0515 article-title: Host inflammatory response to mosquito bites enhances the severity of arbovirus infection publication-title: Immunity – volume: 3 start-page: 1058 year: 2006 end-page: 1070 ident: bb0145 article-title: Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak publication-title: PLoS Med. – volume: 92 start-page: 694 year: 1995 end-page: 698 ident: bb0660 article-title: The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5′-nucleotidase family publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 278 start-page: 2446 year: 2011 end-page: 2454 ident: bb0060 article-title: Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases publication-title: Proc. R. Soc. B Biol. Sci. – volume: 90 start-page: 482 year: 1992 end-page: 487 ident: bb0385 article-title: Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice publication-title: J. Clin. Invest. – volume: 89 start-page: 8880 year: 2015 end-page: 8896 ident: bb0240 article-title: Biology of Zika virus infection in human skin cells publication-title: J. Virol. – volume: 80 start-page: 7009 year: 2006 end-page: 7019 ident: bb0360 article-title: PKR and RNase L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons publication-title: J. Virol. – volume: 92 start-page: 388 year: 1997 end-page: 395 ident: bb0415 article-title: Langerhans cells require signals from both tumour necrosis factor- α and interleukin-1β for migration publication-title: Immunology – volume: 127 start-page: 331 year: 2007 end-page: 341 ident: bb0335 article-title: Human keratinocytes express functional toll-like receptor 3, 4, 5, and 9 publication-title: J. Invest. Dermatol. – volume: 181 start-page: 2694 year: 2008 end-page: 2704 ident: bb0330 article-title: Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling publication-title: J. Immunol. – volume: 119 year: 2022 ident: bb0775 article-title: Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 1895 year: 2007 end-page: 1906 ident: bb0140 article-title: A single mutation in chikungunya virus affects vector specificity and epidemic potential publication-title: PLoS Pathog. – volume: 11 start-page: 1664 year: 2011 end-page: 1673 ident: bb0245 article-title: Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses publication-title: Infect. Genet. Evol. – volume: 10 year: 2016 ident: bb0720 article-title: Aedes aegypti D7 saliva protein inhibits dengue virus infection publication-title: PLoS Negl. Trop. Dis. – volume: 10 year: 2014 ident: bb0285 article-title: Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection publication-title: PLoS Pathog. – volume: 14 year: 2020 ident: bb0705 article-title: Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques publication-title: PLoS Negl. Trop. Dis. – volume: 60 start-page: 273 year: 2003 end-page: 342 ident: bb0345 article-title: Pathogenesis of flavivirus encephalitis publication-title: Adv. Virus Res. – volume: 75 start-page: 257 year: 1992 end-page: 263 ident: bb0420 article-title: Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration publication-title: Immunology – volume: 58 start-page: 433 year: 2013 end-page: 453 ident: bb0750 article-title: Host Preferences of Blood-Feeding Mosquitoes publication-title: Annu. Rev. Entomol. – volume: 15 start-page: 19710 year: 2010 ident: bb0045 article-title: Introduction and control of three invasive mosquito species in the Netherlands, July-October 2010 publication-title: Eurosurveillance – volume: 29 start-page: 430 year: 2015 end-page: 433 ident: bb0120 article-title: Evaluation of vector competence for West Nile virus in Italian Stegomyia albopicta (=Aedes albopictus) mosquitoes publication-title: Med. Vet. Entomol. – volume: 43 start-page: 44 year: 1968 end-page: 91 ident: bb0465 article-title: Pathogenesis of neurotropic arbovirus infections publication-title: Curr. Top. Microbiol. Immunol. – volume: 26 start-page: 295 year: 2004 end-page: 306 ident: bb0640 article-title: Saliva of the yellow fever mosquito, Aedes aegypti, modulates murine lymphocyte function publication-title: Parasite Immunol. – volume: 51 start-page: 303 year: 2004 end-page: 310 ident: bb0230 article-title: Innate immune functions of the keratinocytes: a review publication-title: Acta Microbiol. Immunol. Hung. – volume: 48 start-page: 73 year: 2003 end-page: 88 ident: bb0510 article-title: Role of arthropod saliva in blood feeding: Sialome and post-Sialome perspectives publication-title: Annu. Rev. Entomol. – volume: 12 year: 2016 ident: bb0520 article-title: Mosquito saliva increases endothelial permeability in the skin, immune cell migration, and dengue pathogenesis during antibody-dependent enhancement publication-title: PLoS Pathog. – volume: 118 start-page: 3661 year: 2011 end-page: 3669 ident: bb0765 article-title: Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease publication-title: Blood – volume: 93 year: 2019 ident: bb0585 article-title: Aedes aegypti NeSt1 protein enhances Zika virus pathogenesis by activating neutrophils publication-title: J. Virol. – volume: 68 year: 2014 ident: bb0065 article-title: Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito publication-title: Evolution (N. Y). – volume: 281 start-page: 1935 year: 2006 end-page: 1942 ident: bb0655 article-title: Function and evolution of a mosquito salivary protein family publication-title: J. Biol. Chem. – volume: 14 start-page: 978 year: 2013 end-page: 985 ident: bb0315 article-title: The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells publication-title: Nat. Immunol. – volume: 3 start-page: 1262 year: 2007 end-page: 1270 ident: bb0220 article-title: Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts publication-title: PLoS Pathog. – volume: 5 start-page: 1 year: 2008 end-page: 4 ident: bb0020 article-title: Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? publication-title: Virol. J. – volume: 43 start-page: 1035 year: 1964 end-page: 1039 ident: bb0755 article-title: Blood clotting times of five avian species publication-title: Poult. Sci. – volume: 32 start-page: 563 year: 1995 end-page: 568 ident: bb0690 article-title: Nonvascular delivery of St. Louis encephalitis and Venezuelan equine encephalitis viruses by infected mosquitoes (Diptera: Culicidae) feeding on a vertebrate host publication-title: J. Med. Entomol. – volume: 45 start-page: 75 year: 1999 end-page: 81 ident: bb0770 article-title: Comparative blood coagulation studies in the ostrich publication-title: Immunopharmacology – volume: 9 start-page: 191 year: 2009 end-page: 196 ident: bb0100 article-title: Introduction, scenarios for establishment and seasonal activity of aedes albopictus in the Netherlands publication-title: Vector-Borne Zoonotic Dis. – volume: 54 start-page: 338 year: 1996 end-page: 342 ident: bb0740 article-title: La Crosse viremias in white-tailed deer and chipmunks exposed by injection or mosquito bite publication-title: Am. J. Trop. Med. Hyg. – volume: 70 year: 1996 ident: bb0400 article-title: Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? publication-title: J. Virol. – volume: 17 start-page: 1 year: 1980 end-page: 7 ident: bb0780 article-title: Aedes Triseriatus (Diptera: Culicidae) and La Crosse virus: II. Modification of mosquito feeding behavior by virus infection publication-title: J. Med. Entomol. – volume: 88 start-page: 164 year: 2014 end-page: 175 ident: bb0645 article-title: Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host publication-title: J. Virol. – volume: 202 start-page: 1804 year: 2010 end-page: 1812 ident: bb0455 article-title: A paradoxical role for neutrophils in the pathogenesis of West Nile virus publication-title: J. Infect. Dis. – volume: 85 start-page: 1517 year: 2011 end-page: 1527 ident: bb0195 article-title: Mosquito saliva causes enhancement of West Nile virus infection in mice publication-title: J. Virol. – volume: 17 start-page: 178 year: 2006 end-page: 184 ident: bb0665 article-title: Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor publication-title: Platelets – volume: 9 start-page: 266 year: 2020 ident: bb0135 article-title: A Systematic Review: Is publication-title: Pathog – volume: 25 start-page: 4337 year: 2016 end-page: 4354 ident: bb0055 article-title: Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization? publication-title: Mol. Ecol. – volume: 158 start-page: 47 year: 2019 end-page: 59 ident: bb0575 article-title: Evaluation of inflammatory skin infiltrate following Aedes aegypti bites in sensitized and non-sensitized mice reveals saliva-dependent and immune-dependent phenotypes publication-title: Immunology – volume: 10 start-page: 127 year: 2013 ident: bb0160 article-title: Development of a transmission model for dengue virus publication-title: Virol. J. – volume: 370 start-page: 20140135 year: 2015 ident: bb0015 article-title: Climate change influences on global distributions of dengue and chikungunya virus vectors publication-title: Philos. Trans. R. Soc. B Biol. Sci. – volume: 25 start-page: 153 year: 2006 end-page: 162 ident: bb0430 article-title: Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming publication-title: Immunity – volume: 80 start-page: 5338 year: 2006 end-page: 5348 ident: bb0370 article-title: Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection publication-title: J. Virol. – volume: 31 start-page: 287 year: 2009 end-page: 295 ident: bb0620 article-title: SAAG-4 is a novel mosquito salivary protein that programmes host CD4 + T cells to express IL-4 publication-title: Parasite Immunol. – volume: 2 start-page: 1 year: 2009 end-page: 8 ident: bb0635 article-title: Differential expression of Aedes aegypti salivary transcriptome upon blood feeding publication-title: Parasit. Vectors – volume: 31 start-page: 292 year: 2006 end-page: 304 ident: bb0090 article-title: Analysis of the potential for survival and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom publication-title: J. Vector Ecol. – volume: 10 start-page: 259 year: 2010 end-page: 266 ident: bb0215 article-title: Comparative Role of Aedes albopictus and Aedes aegypti in the Emergence of Dengue and Chikungunya in Central Africa publication-title: Vector Borne Zoonotic Dis. – volume: 69 start-page: 395 year: 2018 end-page: 408 ident: bb0050 article-title: Zika, chikungunya, and other emerging vector-borne viral diseases publication-title: Annu. Rev. Med. – volume: 9 start-page: 313 year: 2014 end-page: 330 ident: bb0460 article-title: The fine line between protection and pathology in neurotropic flavivirus and alphavirus infections publication-title: Futur. Virol. – volume: 5 year: 2010 ident: bb0530 article-title: Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus publication-title: PLoS One – volume: 47 start-page: 190 year: 1992 end-page: 194 ident: bb0685 article-title: Nonvascular delivery of Rift Valley fever virus by infected mosquitoes publication-title: Am. J. Trop. Med. Hyg. – volume: 7 year: 2012 ident: bb0235 article-title: Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice publication-title: PLoS One – volume: 32 year: 1987 ident: bb0485 article-title: Role of saliva in blood-feeding by arthropods publication-title: Annu. Rev. Entomol. – volume: 11 year: 2020 ident: bb0605 article-title: A mosquito salivary protein promotes flavivirus transmission by activation of autophagy publication-title: Nat. Commun. – volume: 23 start-page: 581 year: 1986 end-page: 587 ident: bb0695 article-title: Hemodynamics of human skin during mosquito (Diptera: Culicidae) blood feeding publication-title: J. Med. Entomol. – volume: 21 start-page: 35 year: 1999 end-page: 44 ident: bb0535 article-title: Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: an effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice publication-title: Parasite Immunol. – volume: 11 start-page: 1177 year: 2009 end-page: 1185 ident: bb0070 article-title: Aedes albopictus, an arbovirus vector: from the darkness to the light publication-title: Microbes Infect. – volume: 22 year: 2021 ident: bb0570 article-title: IL-10 in mast cell-mediated immune responses: anti-inflammatory and proinflammatory roles publication-title: Int. J. Mol. Sci. – volume: 22 start-page: 685 year: 2013 end-page: 693 ident: bb0480 article-title: Visualization and live imaging analysis of a mosquito saliva protein in host animal skin using a transgenic mosquito with a secreted luciferase reporter system publication-title: Insect Mol. Biol. – volume: 10 year: 2014 ident: bb0280 article-title: Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication publication-title: PLoS Pathog. – volume: 10 start-page: 1 year: 2020 end-page: 17 ident: bb0650 article-title: Aedes albopictus d7 salivary protein prevents host hemostasis and inflammation publication-title: Biomolecules – volume: 133 start-page: 198 year: 2004 end-page: 209 ident: bb0565 article-title: Mosquito allergy: immune mechanisms and recombinant salivary allergens publication-title: Int. Arch. Allergy Immunol. – volume: 14 start-page: 221 year: 2022 ident: bb0725 article-title: Multiple Salivary Proteins from publication-title: Viruses – volume: 117 start-page: 702 year: 2001 end-page: 709 ident: bb0410 article-title: Interleukin-1β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice publication-title: J. Invest. Dermatol. – volume: 8 start-page: 387 year: 2018 ident: bb0390 article-title: Innate immune response of primary human keratinocytes to West Nile virus infection and its modulation by mosquito saliva publication-title: Front. Cell. Infect. Microbiol. – volume: 11 start-page: 762 year: 2011 ident: bb0580 article-title: Monocyte recruitment during infection and inflammation publication-title: Nat. Rev. Immunol. – volume: 468–470 start-page: 133 year: 2014 end-page: 139 ident: bb0595 article-title: Aedes aegypti salivary protein ‘aegyptin’ co-inoculation modulates dengue virus infection in the vertebrate host publication-title: Virology – volume: 9 start-page: 1 year: 2020 end-page: 19 ident: bb0115 article-title: Epidemiology of usutu virus: the european scenario publication-title: Pathogens – year: 2014 ident: bb0210 publication-title: A global brief on vector-borne diseases – volume: 119 year: 2022 ident: bb0525 article-title: Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage publication-title: Proc. Natl. Acad. Sci. – volume: 33 start-page: 645 year: 2017 end-page: 657 ident: bb0150 article-title: Mosquito biting modulates skin response to virus infection publication-title: Trends Parasitol. – volume: 22 start-page: 149 year: 2006 end-page: 151 ident: bb0095 article-title: Cold acclimation and overwintering of female Aedes albopictus in Roma publication-title: J. Am. Mosq. Control Assoc. – volume: 1 start-page: 1 year: 1988 end-page: 39 ident: bb0085 article-title: The biology of Aedes albopictus publication-title: J. Am. Mosq. Control Assoc. Suppl. – volume: 51 start-page: 690 year: 1994 end-page: 696 ident: bb0555 article-title: Differential modulation of murine cellular immune responses by salivary gland extract of Aedes aegypti publication-title: Am. J. Trop. Med. Hyg. – volume: 10 start-page: 1906 year: 2010 end-page: 1916 ident: bb0630 article-title: Blood-feeding and immunogenic Aedes aegypti saliva proteins publication-title: Proteomics – volume: 126 start-page: 787 year: 2006 end-page: 796 ident: bb0425 article-title: Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli publication-title: J. Invest. Dermatol. – volume: 161 start-page: 526 year: 1985 end-page: 546 ident: bb0405 article-title: Murine epidermal langerhans cells mature into potent immunostimulatory dendritic cells in vitro publication-title: J. Exp. Med. – volume: 124 year: 1992 ident: bb0375 article-title: Dengue virus infection of human skin fibroblasts in vitro production of IFN-β, IL-6 and GM-CSF publication-title: Arch. Virol. – volume: 72 start-page: 325 year: 2005 end-page: 329 ident: bb0735 article-title: Oral transmission of West Nile virus in a hamster model publication-title: Am. J. Trop. Med. Hyg. – volume: 103 start-page: 109 year: 2009 end-page: 121 ident: bb0025 article-title: Impact of climate change and other factors on emerging arbovirus diseases publication-title: Trans. R. Soc. Trop. Med. Hyg. – volume: 11 start-page: 51 year: 2010 ident: bb0490 article-title: An insight into the sialotranscriptome of the West Nile mosquito vector, publication-title: BMC Genomics – volume: 55 start-page: 68 year: 2017 end-page: 70 ident: bb0275 article-title: Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway publication-title: Infect. Genet. Evol. – volume: 15 start-page: 1 year: 2022 end-page: 9 ident: bb0790 article-title: Saliva collection via capillary method may underestimate arboviral transmission by mosquitoes publication-title: Parasit. Vectors – volume: 337 start-page: 211 year: 1991 end-page: 214 ident: bb0225 article-title: Keratinocytes as initiators of inflammation publication-title: Lancet – volume: 120 start-page: 990 year: 2003 end-page: 997 ident: bb0340 article-title: Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a Type-1 polarized phenotype in dendritic cells: role of keratinocyte-derived tumor necrosis factor α, type I interferons, and Interleukin-18 publication-title: J. Invest. Dermatol. – volume: 19 start-page: 74 year: 2006 end-page: 82 ident: bb0190 article-title: Potentiation of West Nile encephalitis by mosquito feeding publication-title: Viral Immunol. – volume: 8 year: 2012 ident: bb0785 article-title: Dengue virus infection of the aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior publication-title: PLoS Pathog. – volume: 14 start-page: 142 year: 2000 end-page: 148 ident: bb0475 article-title: Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex) publication-title: Med. Vet. Entomol. – volume: 9 start-page: 2708 year: 2012 end-page: 2717 ident: bb0080 article-title: Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios publication-title: J. R. Soc. Interface – volume: 7 year: 2013 ident: bb0175 article-title: Aedes Mosquito saliva modulates Rift Valley fever virus pathogenicity publication-title: PLoS Negl. Trop. Dis. – volume: 88 start-page: 569 year: 1987 end-page: 573 ident: bb0310 article-title: The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin publication-title: J. Invest. Dermatol. – volume: 114 start-page: 560 year: 2000 end-page: 568 ident: bb0440 article-title: Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus publication-title: J. Invest. Dermatol. – volume: 4 start-page: 948 year: 2019 end-page: 955 ident: bb0615 article-title: Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice publication-title: Nat. Microbiol. – volume: 85 start-page: 5197 year: 2011 end-page: 5201 ident: bb0255 article-title: Keratinocytes are cell targets of West Nile virus in vivo publication-title: J. Virol. – volume: 464–465 start-page: 26 year: 2014 end-page: 32 ident: bb0325 article-title: Role of skin immune cells on the host susceptibility to mosquito-borne viruses publication-title: Virology – volume: 174 start-page: 3932 year: 2005 end-page: 3940 ident: bb0505 article-title: Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia publication-title: J. Immunol. – volume: 116 start-page: 269 year: 1998 end-page: 277 ident: bb0540 article-title: A Mouse Model of Mosquito Allergy for Study of Antigen–Specific IgE and IgG Subclass Responses, Lymphocyte Proliferation, and IL–4 and IFN–Á Production publication-title: Int. Arch. Allergy Immunol. – volume: 4 year: 2015 ident: bb0035 article-title: The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus publication-title: Elife – volume: 2 start-page: 789 year: 2004 ident: bb0010 article-title: Transmission cycles, host range, evolution and emergence of arboviral disease publication-title: Nat. Rev. Microbiol. – volume: 18 start-page: 284 year: 2002 end-page: 289 ident: bb0125 article-title: Vector competence of three north American strains of Aedes albopictus for West Nile virus publication-title: J. Am. Mosq. Control Assoc. – volume: 910 start-page: 679 year: 2009 end-page: 691 ident: bb0380 article-title: Skin immune sentinels in health and disease publication-title: Nat. Rev. Immunol. – volume: 85 start-page: 5197 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0255 article-title: Keratinocytes are cell targets of West Nile virus in vivo publication-title: J. Virol. doi: 10.1128/JVI.02692-10 – volume: 4 start-page: 1 year: 2019 ident: 10.1016/j.onehlt.2023.100506_bb0610 article-title: AgBR1 antibodies delay lethal Aedes aegypti-borne West Nile virus infection in mice publication-title: npj Vaccines doi: 10.1038/s41541-019-0120-x – volume: 2 start-page: 1 year: 2009 ident: 10.1016/j.onehlt.2023.100506_bb0635 article-title: Differential expression of Aedes aegypti salivary transcriptome upon blood feeding publication-title: Parasit. Vectors doi: 10.1186/1756-3305-2-34 – volume: 10 start-page: 1906 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0630 article-title: Blood-feeding and immunogenic Aedes aegypti saliva proteins publication-title: Proteomics doi: 10.1002/pmic.200900626 – volume: 70 year: 1996 ident: 10.1016/j.onehlt.2023.100506_bb0400 article-title: Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? publication-title: J. Virol. doi: 10.1128/jvi.70.7.4761-4766.1996 – volume: 118 start-page: 3661 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0765 article-title: Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease publication-title: Blood doi: 10.1182/blood-2011-02-338244 – volume: 138 start-page: 618 year: 2018 ident: 10.1016/j.onehlt.2023.100506_bb0260 article-title: Interplay between keratinocytes and myeloid cells drives dengue virus spread in human skin publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2017.10.018 – volume: 14 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0705 article-title: Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0008191 – volume: 75 start-page: 257 year: 1992 ident: 10.1016/j.onehlt.2023.100506_bb0420 article-title: Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration publication-title: Immunology – volume: 79 start-page: 13350 year: 2005 ident: 10.1016/j.onehlt.2023.100506_bb0365 article-title: Virology, M. D.-J. of & 2005, undefined. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival publication-title: Am Soc Microbiol – volume: 119 year: 2022 ident: 10.1016/j.onehlt.2023.100506_bb0775 article-title: Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 88 start-page: 164 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0645 article-title: Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host publication-title: J. Virol. doi: 10.1128/JVI.02235-13 – volume: 63 start-page: 173 issue: 6 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0450 article-title: Neutrophils and immunity: challenges and opportunities publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1785 – volume: 23 start-page: 581 year: 1986 ident: 10.1016/j.onehlt.2023.100506_bb0695 article-title: Hemodynamics of human skin during mosquito (Diptera: Culicidae) blood feeding publication-title: J. Med. Entomol. doi: 10.1093/jmedent/23.6.581 – volume: 176 start-page: 4141 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0550 article-title: Mast cell-dependent Down-regulation of antigen-specific immune responses by mosquito bites publication-title: J. Immunol. doi: 10.4049/jimmunol.176.7.4141 – volume: 47 start-page: 190 year: 1992 ident: 10.1016/j.onehlt.2023.100506_bb0685 article-title: Nonvascular delivery of Rift Valley fever virus by infected mosquitoes publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1992.47.190 – volume: 133 start-page: 198 year: 2004 ident: 10.1016/j.onehlt.2023.100506_bb0565 article-title: Mosquito allergy: immune mechanisms and recombinant salivary allergens publication-title: Int. Arch. Allergy Immunol. doi: 10.1159/000076787 – volume: 80 start-page: 7009 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0360 article-title: PKR and RNase L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons publication-title: J. Virol. doi: 10.1128/JVI.00489-06 – volume: 4 start-page: 1 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0715 article-title: Implication of haematophagous arthropod salivary proteins in host-vector interactions publication-title: Parasit. Vectors doi: 10.1186/1756-3305-4-187 – volume: 9 start-page: 266 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0135 article-title: A Systematic Review: Is Aedes albopictus an Efficient Bridge Vector for Zoonotic Arboviruses? publication-title: Pathog doi: 10.3390/pathogens9040266 – volume: 29 start-page: 430 year: 2015 ident: 10.1016/j.onehlt.2023.100506_bb0120 article-title: Evaluation of vector competence for West Nile virus in Italian Stegomyia albopicta (=Aedes albopictus) mosquitoes publication-title: Med. Vet. Entomol. doi: 10.1111/mve.12133 – volume: 10 start-page: 259 issue: 3 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0215 article-title: Comparative Role of Aedes albopictus and Aedes aegypti in the Emergence of Dengue and Chikungunya in Central Africa publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2009.0005 – volume: 89 start-page: 8880 year: 2015 ident: 10.1016/j.onehlt.2023.100506_bb0240 article-title: Biology of Zika virus infection in human skin cells publication-title: J. Virol. doi: 10.1128/JVI.00354-15 – volume: 5 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0295 article-title: Reciprocal immune enhancement of dengue and Zika virus infection in human skin publication-title: JCI Insight doi: 10.1172/jci.insight.133653 – volume: 114 start-page: 560 year: 2000 ident: 10.1016/j.onehlt.2023.100506_bb0440 article-title: Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.2000.00904.x – volume: 14 start-page: 142 year: 2000 ident: 10.1016/j.onehlt.2023.100506_bb0475 article-title: Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex) publication-title: Med. Vet. Entomol. doi: 10.1046/j.1365-2915.2000.00227.x – volume: 74 start-page: 914 year: 2000 ident: 10.1016/j.onehlt.2023.100506_bb0300 article-title: Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis publication-title: J. Virol. doi: 10.1128/JVI.74.2.914-922.2000 – volume: 68 issue: 514–525 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0065 article-title: Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito publication-title: Evolution (N. Y). – volume: 69 start-page: 395 year: 2018 ident: 10.1016/j.onehlt.2023.100506_bb0050 article-title: Zika, chikungunya, and other emerging vector-borne viral diseases publication-title: Annu. Rev. Med. doi: 10.1146/annurev-med-050715-105122 – volume: 90 start-page: 292 year: 2016 ident: 10.1016/j.onehlt.2023.100506_bb0185 article-title: Parameters of mosquito-enhanced West Nile virus infection publication-title: J. Virol. doi: 10.1128/JVI.02280-15 – ident: 10.1016/j.onehlt.2023.100506_bb0005 – volume: 51 start-page: 303 year: 2004 ident: 10.1016/j.onehlt.2023.100506_bb0230 article-title: Innate immune functions of the keratinocytes: a review publication-title: Acta Microbiol. Immunol. Hung. doi: 10.1556/AMicr.51.2004.3.8 – volume: 88 start-page: 569 year: 1987 ident: 10.1016/j.onehlt.2023.100506_bb0310 article-title: The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin publication-title: J. Invest. Dermatol. doi: 10.1111/1523-1747.ep12470172 – volume: 12 year: 2018 ident: 10.1016/j.onehlt.2023.100506_bb0205 article-title: Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0006733 – volume: 26 start-page: 295 year: 2004 ident: 10.1016/j.onehlt.2023.100506_bb0640 article-title: Saliva of the yellow fever mosquito, Aedes aegypti, modulates murine lymphocyte function publication-title: Parasite Immunol. doi: 10.1111/j.0141-9838.2004.00712.x – volume: 119 year: 2022 ident: 10.1016/j.onehlt.2023.100506_bb0525 article-title: Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2114309119 – volume: 174 start-page: 3932 year: 2005 ident: 10.1016/j.onehlt.2023.100506_bb0505 article-title: Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia publication-title: J. Immunol. doi: 10.4049/jimmunol.174.7.3932 – volume: 22 year: 2021 ident: 10.1016/j.onehlt.2023.100506_bb0570 article-title: IL-10 in mast cell-mediated immune responses: anti-inflammatory and proinflammatory roles publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22094972 – volume: 15 start-page: 19710 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0045 article-title: Introduction and control of three invasive mosquito species in the Netherlands, July-October 2010 publication-title: Eurosurveillance doi: 10.2807/ese.15.45.19710-en – volume: 464–465 start-page: 26 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0325 article-title: Role of skin immune cells on the host susceptibility to mosquito-borne viruses publication-title: Virology doi: 10.1016/j.virol.2014.06.023 – volume: 22 start-page: 149 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0095 article-title: Cold acclimation and overwintering of female Aedes albopictus in Roma publication-title: J. Am. Mosq. Control Assoc. doi: 10.2987/8756-971X(2006)22[149:CAAOOF]2.0.CO;2 – volume: 40 start-page: 767 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0495 article-title: An insight into the sialome of blood-feeding Nematocera publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2010.08.002 – volume: 18 start-page: 284 year: 2002 ident: 10.1016/j.onehlt.2023.100506_bb0125 article-title: Vector competence of three north American strains of Aedes albopictus for West Nile virus publication-title: J. Am. Mosq. Control Assoc. – volume: 11 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0605 article-title: A mosquito salivary protein promotes flavivirus transmission by activation of autophagy publication-title: Nat. Commun. – volume: 126 start-page: 787 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0425 article-title: Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli publication-title: J. Invest. Dermatol. doi: 10.1038/sj.jid.5700107 – volume: 10 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0285 article-title: Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004548 – volume: 8 start-page: 387 year: 2018 ident: 10.1016/j.onehlt.2023.100506_bb0390 article-title: Innate immune response of primary human keratinocytes to West Nile virus infection and its modulation by mosquito saliva publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2018.00387 – volume: 86 start-page: 323 year: 2005 ident: 10.1016/j.onehlt.2023.100506_bb0265 article-title: Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells publication-title: Int. J. Exp. Pathol. doi: 10.1111/j.0959-9673.2005.00445.x – volume: 14 start-page: 978 year: 2013 ident: 10.1016/j.onehlt.2023.100506_bb0315 article-title: The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2680 – volume: 181 start-page: 2694 year: 2008 ident: 10.1016/j.onehlt.2023.100506_bb0330 article-title: Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.181.4.2694 – volume: 12 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0470 article-title: Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aax2421 – volume: 279 start-page: 925 year: 2012 ident: 10.1016/j.onehlt.2023.100506_bb0745 article-title: Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2011.1282 – volume: 45 start-page: 75 year: 1999 ident: 10.1016/j.onehlt.2023.100506_bb0770 article-title: Comparative blood coagulation studies in the ostrich publication-title: Immunopharmacology doi: 10.1016/S0162-3109(99)00058-2 – volume: 26 start-page: 301 year: 1994 ident: 10.1016/j.onehlt.2023.100506_bb0560 article-title: Are we really allergic to mosquito bites? publication-title: Ann. Med. doi: 10.3109/07853899409147906 – volume: 35 start-page: 4470 year: 2017 ident: 10.1016/j.onehlt.2023.100506_bb0040 article-title: AIDS, avian flu, SARS, MERS, Ebola, Zika… what next? publication-title: Vaccine doi: 10.1016/j.vaccine.2017.04.082 – volume: 137 start-page: 2149 year: 2017 ident: 10.1016/j.onehlt.2023.100506_bb0320 article-title: Differential activation of human keratinocytes by Leishmania species causing localized or disseminated disease publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2017.05.028 – volume: 29 start-page: 795 year: 2008 ident: 10.1016/j.onehlt.2023.100506_bb0435 article-title: Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells publication-title: Immunity doi: 10.1016/j.immuni.2008.08.013 – volume: 337 start-page: 211 year: 1991 ident: 10.1016/j.onehlt.2023.100506_bb0225 article-title: Keratinocytes as initiators of inflammation publication-title: Lancet doi: 10.1016/0140-6736(91)92168-2 – volume: 85 start-page: 9 year: 2000 ident: 10.1016/j.onehlt.2023.100506_bb0625 article-title: T-cell subsets (Th1 versus Th2) publication-title: Ann. Allergy Asthma Immunol. doi: 10.1016/S1081-1206(10)62426-X – volume: 12 start-page: 1190 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0680 article-title: Venezuelan equine encephalitis virus transmission and effect on pathogenesis publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1708.050841 – volume: 124 year: 1992 ident: 10.1016/j.onehlt.2023.100506_bb0375 article-title: Dengue virus infection of human skin fibroblasts in vitro production of IFN-β, IL-6 and GM-CSF publication-title: Arch. Virol. doi: 10.1007/BF01314622 – volume: 29 start-page: 282 year: 2015 ident: 10.1016/j.onehlt.2023.100506_bb0760 article-title: Thromboelastography in selected avian species publication-title: J. Avian Med. Surg. doi: 10.1647/2014-034 – volume: 55 start-page: 68 year: 2017 ident: 10.1016/j.onehlt.2023.100506_bb0275 article-title: Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2017.08.032 – volume: 43 start-page: 44 year: 1968 ident: 10.1016/j.onehlt.2023.100506_bb0465 article-title: Pathogenesis of neurotropic arbovirus infections publication-title: Curr. Top. Microbiol. Immunol. – volume: 25 start-page: 1 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0105 article-title: Detection of west nile virus in a common whitethroat (curruca communis) and culex mosquitoes in the Netherlands, 2020 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.40.2001704 – volume: 40 start-page: 126 year: 2016 ident: 10.1016/j.onehlt.2023.100506_bb0155 article-title: Mosquito saliva induced cutaneous events augment chikungunya virus replication and disease progression publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2016.02.033 – volume: 5 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0545 article-title: Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection publication-title: PLoS One doi: 10.1371/journal.pone.0011704 – volume: 25 start-page: 153 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0430 article-title: Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming publication-title: Immunity doi: 10.1016/j.immuni.2006.04.017 – volume: 1 start-page: 1 year: 1988 ident: 10.1016/j.onehlt.2023.100506_bb0085 article-title: The biology of Aedes albopictus publication-title: J. Am. Mosq. Control Assoc. Suppl. – volume: 194 start-page: 342 issue: 19 year: 2018 ident: 10.1016/j.onehlt.2023.100506_bb0590 article-title: Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-β receptor publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0063-9 – volume: 3 start-page: 1895 year: 2007 ident: 10.1016/j.onehlt.2023.100506_bb0140 article-title: A single mutation in chikungunya virus affects vector specificity and epidemic potential publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0030201 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0650 article-title: Aedes albopictus d7 salivary protein prevents host hemostasis and inflammation publication-title: Biomolecules doi: 10.3390/biom10101372 – volume: 51 start-page: 690 year: 1994 ident: 10.1016/j.onehlt.2023.100506_bb0555 article-title: Differential modulation of murine cellular immune responses by salivary gland extract of Aedes aegypti publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1994.51.690 – volume: 85 start-page: 1517 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0195 article-title: Mosquito saliva causes enhancement of West Nile virus infection in mice publication-title: J. Virol. doi: 10.1128/JVI.01112-10 – volume: 17 start-page: 178 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0665 article-title: Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor publication-title: Platelets doi: 10.1080/09537100500460234 – volume: 4 start-page: 948 year: 2019 ident: 10.1016/j.onehlt.2023.100506_bb0615 article-title: Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0385-x – volume: 206 start-page: 2937 year: 2009 ident: 10.1016/j.onehlt.2023.100506_bb0395 article-title: External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers publication-title: J. Exp. Med. doi: 10.1084/jem.20091527 – volume: 82 start-page: 385 year: 1999 ident: 10.1016/j.onehlt.2023.100506_bb0445 article-title: Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions publication-title: Int. J. Cancer doi: 10.1002/(SICI)1097-0215(19990730)82:3<385::AID-IJC12>3.0.CO;2-5 – volume: 2 start-page: 789 year: 2004 ident: 10.1016/j.onehlt.2023.100506_bb0010 article-title: Transmission cycles, host range, evolution and emergence of arboviral disease publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1006 – volume: 29 start-page: 141 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0710 article-title: Vector competence of Aedes japonicus for chikungunya and dengue viruses publication-title: J. Eur. Mosq. Control Assoc. – volume: 127 start-page: 331 year: 2007 ident: 10.1016/j.onehlt.2023.100506_bb0335 article-title: Human keratinocytes express functional toll-like receptor 3, 4, 5, and 9 publication-title: J. Invest. Dermatol. doi: 10.1038/sj.jid.5700530 – volume: 8 start-page: 652 year: 2002 ident: 10.1016/j.onehlt.2023.100506_bb0110 article-title: Emergence of Usutu virus, an African mosquito-borne Flavivirus of the Japanese encephalitis virus group, Central Europe publication-title: Emerg. Infect. Dis. doi: 10.3201/eid0807.020094 – volume: 18 start-page: 191 year: 2004 ident: 10.1016/j.onehlt.2023.100506_bb0700 article-title: Differential modulation of murine host immune response by salivary gland extracts from the mosquitoes Aedes aegypti and Culex quinquefasciatus publication-title: Med. Vet. Entomol. doi: 10.1111/j.1365-2915.2004.00498.x – volume: 9 start-page: 2708 year: 2012 ident: 10.1016/j.onehlt.2023.100506_bb0080 article-title: Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0138 – volume: 82 start-page: 8465 year: 2008 ident: 10.1016/j.onehlt.2023.100506_bb0350 article-title: Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection publication-title: J. Virol. doi: 10.1128/JVI.00918-08 – volume: 5 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0270 article-title: Activation of the innate immune response against DENV in Normal non-transformed human fibroblasts publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001420 – volume: 43 start-page: 623 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0200 article-title: Relationships between host viremia and vector susceptibility for arboviruses publication-title: J. Med. Entomol. doi: 10.1093/jmedent/43.3.623 – volume: 48 start-page: 73 year: 2003 ident: 10.1016/j.onehlt.2023.100506_bb0510 article-title: Role of arthropod saliva in blood feeding: Sialome and post-Sialome perspectives publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.ento.48.060402.102812 – volume: 370 start-page: 20140135 year: 2015 ident: 10.1016/j.onehlt.2023.100506_bb0015 article-title: Climate change influences on global distributions of dengue and chikungunya virus vectors publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2014.0135 – volume: 9 start-page: 1 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0115 article-title: Epidemiology of usutu virus: the european scenario publication-title: Pathogens doi: 10.3390/pathogens9090699 – volume: 7 year: 2013 ident: 10.1016/j.onehlt.2023.100506_bb0175 article-title: Aedes Mosquito saliva modulates Rift Valley fever virus pathogenicity publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002237 – volume: 86 start-page: 7637 year: 2012 ident: 10.1016/j.onehlt.2023.100506_bb0165 article-title: Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice publication-title: J. Virol. doi: 10.1128/JVI.00534-12 – year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0210 – volume: 13 start-page: 217 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0030 article-title: Habitat suitability modelling to assess the introductions of Aedes albopictus (Diptera: Culicidae) in the Netherlands publication-title: Parasit. Vectors doi: 10.1186/s13071-020-04077-3 – volume: 10 start-page: 127 year: 2013 ident: 10.1016/j.onehlt.2023.100506_bb0160 article-title: Development of a transmission model for dengue virus publication-title: Virol. J. doi: 10.1186/1743-422X-10-127 – volume: 54 start-page: 338 year: 1996 ident: 10.1016/j.onehlt.2023.100506_bb0740 article-title: La Crosse viremias in white-tailed deer and chipmunks exposed by injection or mosquito bite publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1996.54.338 – volume: 43 start-page: 1035 year: 1964 ident: 10.1016/j.onehlt.2023.100506_bb0755 article-title: Blood clotting times of five avian species publication-title: Poult. Sci. doi: 10.3382/ps.0431035 – volume: 139 start-page: 391 year: 2019 ident: 10.1016/j.onehlt.2023.100506_bb0250 article-title: Insights into ZIKV-mediated innate immune responses in human dermal fibroblasts and epidermal keratinocytes publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2018.07.038 – volume: 15 start-page: 1 year: 2022 ident: 10.1016/j.onehlt.2023.100506_bb0790 article-title: Saliva collection via capillary method may underestimate arboviral transmission by mosquitoes publication-title: Parasit. Vectors doi: 10.1186/s13071-022-05198-7 – volume: 92 start-page: 388 year: 1997 ident: 10.1016/j.onehlt.2023.100506_bb0415 article-title: Langerhans cells require signals from both tumour necrosis factor- α and interleukin-1β for migration publication-title: Immunology doi: 10.1046/j.1365-2567.1997.00360.x – volume: 278 start-page: 2446 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0060 article-title: Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2010.2469 – volume: 3 start-page: 1262 year: 2007 ident: 10.1016/j.onehlt.2023.100506_bb0220 article-title: Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0030132 – volume: 204 start-page: 2001 year: 2001 ident: 10.1016/j.onehlt.2023.100506_bb0670 article-title: The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.11.2001 – volume: 10 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0280 article-title: Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004541 – volume: 6 start-page: 816 year: 2000 ident: 10.1016/j.onehlt.2023.100506_bb0290 article-title: Human skin Langerhans cells are targets of dengue virus infection publication-title: Nat. Med. doi: 10.1038/77553 – volume: 910 start-page: 679 issue: 9 year: 2009 ident: 10.1016/j.onehlt.2023.100506_bb0380 article-title: Skin immune sentinels in health and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2622 – volume: 22 start-page: 685 year: 2013 ident: 10.1016/j.onehlt.2023.100506_bb0480 article-title: Visualization and live imaging analysis of a mosquito saliva protein in host animal skin using a transgenic mosquito with a secreted luciferase reporter system publication-title: Insect Mol. Biol. doi: 10.1111/imb.12055 – volume: 60 start-page: 273 year: 2003 ident: 10.1016/j.onehlt.2023.100506_bb0345 article-title: Pathogenesis of flavivirus encephalitis publication-title: Adv. Virus Res. doi: 10.1016/S0065-3527(03)60008-4 – volume: 32 start-page: 563 year: 1995 ident: 10.1016/j.onehlt.2023.100506_bb0690 article-title: Nonvascular delivery of St. Louis encephalitis and Venezuelan equine encephalitis viruses by infected mosquitoes (Diptera: Culicidae) feeding on a vertebrate host publication-title: J. Med. Entomol. doi: 10.1093/jmedent/32.4.563 – volume: 33 start-page: 645 year: 2017 ident: 10.1016/j.onehlt.2023.100506_bb0150 article-title: Mosquito biting modulates skin response to virus infection publication-title: Trends Parasitol. doi: 10.1016/j.pt.2017.04.003 – volume: 80 start-page: 5338 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0370 article-title: Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection publication-title: J. Virol. doi: 10.1128/JVI.00274-06 – volume: 31 start-page: 292 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0090 article-title: Analysis of the potential for survival and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom publication-title: J. Vector Ecol. doi: 10.3376/1081-1710(2006)31[292:AOTPFS]2.0.CO;2 – volume: 116 start-page: 269 year: 1998 ident: 10.1016/j.onehlt.2023.100506_bb0540 article-title: A Mouse Model of Mosquito Allergy for Study of Antigen–Specific IgE and IgG Subclass Responses, Lymphocyte Proliferation, and IL–4 and IFN–Á Production publication-title: Int. Arch. Allergy Immunol. doi: 10.1159/000023955 – volume: 4 year: 2015 ident: 10.1016/j.onehlt.2023.100506_bb0035 article-title: The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus publication-title: Elife doi: 10.7554/eLife.08347 – volume: 206 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0130 article-title: Into the woods: changes in mosquito community composition and presence of key vectors at increasing distances from the urban edge in urban forest parks in Manaus, Brazil publication-title: Acta Trop. doi: 10.1016/j.actatropica.2020.105441 – volume: 9 start-page: 191 year: 2009 ident: 10.1016/j.onehlt.2023.100506_bb0100 article-title: Introduction, scenarios for establishment and seasonal activity of aedes albopictus in the Netherlands publication-title: Vector-Borne Zoonotic Dis. doi: 10.1089/vbz.2008.0038 – volume: 90 start-page: 482 year: 1992 ident: 10.1016/j.onehlt.2023.100506_bb0385 article-title: Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice publication-title: J. Clin. Invest. doi: 10.1172/JCI115884 – volume: 58 start-page: 433 year: 2013 ident: 10.1016/j.onehlt.2023.100506_bb0750 article-title: Host Preferences of Blood-Feeding Mosquitoes publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev-ento-120811-153618 – volume: 103 start-page: 109 year: 2009 ident: 10.1016/j.onehlt.2023.100506_bb0025 article-title: Impact of climate change and other factors on emerging arbovirus diseases publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/j.trstmh.2008.07.025 – volume: 6 year: 2012 ident: 10.1016/j.onehlt.2023.100506_bb0600 article-title: Immunization of mice with recombinant mosquito salivary protein D7 enhances mortality from subsequent West Nile virus infection via mosquito bite publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001935 – volume: 281 start-page: 1935 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0655 article-title: Function and evolution of a mosquito salivary protein family publication-title: J. Biol. Chem. doi: 10.1074/jbc.M510359200 – volume: 12 year: 2016 ident: 10.1016/j.onehlt.2023.100506_bb0520 article-title: Mosquito saliva increases endothelial permeability in the skin, immune cell migration, and dengue pathogenesis during antibody-dependent enhancement publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005676 – volume: 197 start-page: 4382 year: 2016 ident: 10.1016/j.onehlt.2023.100506_bb0305 article-title: A role for human skin mast cells in dengue virus infection and systemic spread publication-title: J. Immunol. doi: 10.4049/jimmunol.1600846 – volume: 5 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0530 article-title: Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus publication-title: PLoS One doi: 10.1371/journal.pone.0012137 – volume: 31 start-page: 287 year: 2009 ident: 10.1016/j.onehlt.2023.100506_bb0620 article-title: SAAG-4 is a novel mosquito salivary protein that programmes host CD4 + T cells to express IL-4 publication-title: Parasite Immunol. doi: 10.1111/j.1365-3024.2009.01096.x – volume: 9 start-page: 313 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0460 article-title: The fine line between protection and pathology in neurotropic flavivirus and alphavirus infections publication-title: Futur. Virol. doi: 10.2217/fvl.14.6 – volume: 25 start-page: 4337 year: 2016 ident: 10.1016/j.onehlt.2023.100506_bb0055 article-title: Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization? publication-title: Mol. Ecol. doi: 10.1111/mec.13762 – volume: 88 start-page: 1881 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0180 article-title: Analysis of early dengue virus infection in mice as modulated by Aedes aegypti probing publication-title: J. Virol. doi: 10.1128/JVI.01218-13 – volume: 21 start-page: 35 year: 1999 ident: 10.1016/j.onehlt.2023.100506_bb0535 article-title: Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: an effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice publication-title: Parasite Immunol. doi: 10.1046/j.1365-3024.1999.00199.x – volume: 8 year: 2012 ident: 10.1016/j.onehlt.2023.100506_bb0785 article-title: Dengue virus infection of the aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002631 – volume: 11 start-page: 2130 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0075 article-title: Accelerating invasion potential of disease vector Aedes aegypti under climate change publication-title: Nat. Commun. doi: 10.1038/s41467-020-16010-4 – volume: 11 start-page: 51 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0490 article-title: An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis publication-title: BMC Genomics doi: 10.1186/1471-2164-11-51 – volume: 93 year: 2019 ident: 10.1016/j.onehlt.2023.100506_bb0585 article-title: Aedes aegypti NeSt1 protein enhances Zika virus pathogenesis by activating neutrophils publication-title: J. Virol. doi: 10.1128/JVI.00395-19 – volume: 202 start-page: 8 year: 2004 ident: 10.1016/j.onehlt.2023.100506_bb0355 article-title: Interferons, interferon-like cytokines, and their receptors publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2004.00204.x – volume: 218 start-page: 7 year: 2018 ident: 10.1016/j.onehlt.2023.100506_bb0795 article-title: Mosquito saliva: the Hope for a universal arbovirus vaccine? publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy179 – volume: 44 start-page: 1455 year: 2016 ident: 10.1016/j.onehlt.2023.100506_bb0515 article-title: Host inflammatory response to mosquito bites enhances the severity of arbovirus infection publication-title: Immunity doi: 10.1016/j.immuni.2016.06.002 – volume: 72 start-page: 325 year: 2005 ident: 10.1016/j.onehlt.2023.100506_bb0735 article-title: Oral transmission of West Nile virus in a hamster model publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2005.72.325 – volume: 5 start-page: 1 year: 2008 ident: 10.1016/j.onehlt.2023.100506_bb0020 article-title: Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? publication-title: Virol. J. doi: 10.1186/1743-422X-5-33 – volume: 3 start-page: 1058 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0145 article-title: Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030263 – volume: 11 start-page: 762 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0580 article-title: Monocyte recruitment during infection and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3070 – volume: 117 start-page: 702 year: 2001 ident: 10.1016/j.onehlt.2023.100506_bb0410 article-title: Interleukin-1β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice publication-title: J. Invest. Dermatol. doi: 10.1046/j.0022-202x.2001.01454.x – volume: 14 start-page: 221 year: 2022 ident: 10.1016/j.onehlt.2023.100506_bb0725 article-title: Multiple Salivary Proteins from Aedes aegypti Mosquito Bind to the Zika Virus Envelope Protein publication-title: Viruses doi: 10.3390/v14020221 – volume: 158 start-page: 47 year: 2019 ident: 10.1016/j.onehlt.2023.100506_bb0575 article-title: Evaluation of inflammatory skin infiltrate following Aedes aegypti bites in sensitized and non-sensitized mice reveals saliva-dependent and immune-dependent phenotypes publication-title: Immunology doi: 10.1111/imm.13096 – volume: 2 year: 2007 ident: 10.1016/j.onehlt.2023.100506_bb0675 article-title: Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection publication-title: PLoS One doi: 10.1371/journal.pone.0001171 – volume: 10 year: 2016 ident: 10.1016/j.onehlt.2023.100506_bb0720 article-title: Aedes aegypti D7 saliva protein inhibits dengue virus infection publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0004941 – volume: 11 start-page: 1177 year: 2009 ident: 10.1016/j.onehlt.2023.100506_bb0070 article-title: Aedes albopictus, an arbovirus vector: from the darkness to the light publication-title: Microbes Infect. doi: 10.1016/j.micinf.2009.05.005 – volume: 202 start-page: 1804 year: 2010 ident: 10.1016/j.onehlt.2023.100506_bb0455 article-title: A paradoxical role for neutrophils in the pathogenesis of West Nile virus publication-title: J. Infect. Dis. doi: 10.1086/657416 – volume: 19 start-page: 74 year: 2006 ident: 10.1016/j.onehlt.2023.100506_bb0190 article-title: Potentiation of West Nile encephalitis by mosquito feeding publication-title: Viral Immunol. doi: 10.1089/vim.2006.19.74 – volume: 7 year: 2012 ident: 10.1016/j.onehlt.2023.100506_bb0235 article-title: Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice publication-title: PLoS One doi: 10.1371/journal.pone.0050464 – volume: 35 start-page: 261 year: 1998 ident: 10.1016/j.onehlt.2023.100506_bb0170 article-title: Mosquito feeding-induced enhancement of Cache Valley virus (Bunyaviridae) infection in mice publication-title: J. Med. Entomol. doi: 10.1093/jmedent/35.3.261 – volume: 11 start-page: 2911 year: 2020 ident: 10.1016/j.onehlt.2023.100506_bb0500 article-title: ADP binding by the Culex quinquefasciatus mosquito D7 salivary protein enhances blood feeding on mammals publication-title: Nat. Commun. doi: 10.1038/s41467-020-16665-z – volume: 92 start-page: 694 year: 1995 ident: 10.1016/j.onehlt.2023.100506_bb0660 article-title: The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5′-nucleotidase family publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.3.694 – volume: 120 start-page: 990 year: 2003 ident: 10.1016/j.onehlt.2023.100506_bb0340 article-title: Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a Type-1 polarized phenotype in dendritic cells: role of keratinocyte-derived tumor necrosis factor α, type I interferons, and Interleukin-18 publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.2003.12245.x – volume: 161 start-page: 526 year: 1985 ident: 10.1016/j.onehlt.2023.100506_bb0405 article-title: Murine epidermal langerhans cells mature into potent immunostimulatory dendritic cells in vitro publication-title: J. Exp. Med. doi: 10.1084/jem.161.3.526 – volume: 17 start-page: 1 year: 1980 ident: 10.1016/j.onehlt.2023.100506_bb0780 article-title: Aedes Triseriatus (Diptera: Culicidae) and La Crosse virus: II. Modification of mosquito feeding behavior by virus infection publication-title: J. Med. Entomol. doi: 10.1093/jmedent/17.1.1 – volume: 32 year: 1987 ident: 10.1016/j.onehlt.2023.100506_bb0485 article-title: Role of saliva in blood-feeding by arthropods publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.en.32.010187.002335 – volume: 468–470 start-page: 133 year: 2014 ident: 10.1016/j.onehlt.2023.100506_bb0595 article-title: Aedes aegypti salivary protein ‘aegyptin’ co-inoculation modulates dengue virus infection in the vertebrate host publication-title: Virology doi: 10.1016/j.virol.2014.07.019 – volume: 11 start-page: 1664 year: 2011 ident: 10.1016/j.onehlt.2023.100506_bb0245 article-title: Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2011.06.009 |
SSID | ssj0001528525 |
Score | 2.2842317 |
Snippet | Due to changes in climate, numerous mosquito species are continuously extending their geographical distributions, posing potential new public health threats as... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100506 |
SubjectTerms | Aedes Arbovirus arboviruses climate Culex disease severity endothelium Mosquito saliva Pathogenesis permeability phenotype public health risk saliva Special section on One Health - approach to arboviruses; Edited by Marion Koopmans, Reina Sikkema, Maarten Schrama, Barry Rockx species Transmission vertebrates viremia |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT4KI6zO-aMFrMOl3jqu4LIKeXNhb0-mHG1kTd5Lx91uVToYZBefidaaTofv7eupLuuorQt42XOnEGl2KOrWl4B72nAIuC80S-pErZ7De-fMXdXEpPl3Jq71WX5gTlu2B88K9qwKEOO5q4XwropZNCLX2MbVNrILMxVUQ8_YepnJ9MDNy7rjKQGGAhKzFWjc3J3cNfby-wVRKxjFPQGLDo724NNv3H4Snv-Xnn1mUe2Hp_AG5v-hJepbncUruxP4huZdfxtFcY_SIRCADxUwNzAtCmOmQ6I9hvN3Cfqajw-Mg2vXUbdrhV7fZjnTCEAYUwHdp1PWBYufi4Rv-MXYjDgXdSLGVM547T5Firchjcnn-8euHi3Lpr1B6qfhUOh20962uU8VSZNE4JoPjzjQScFWeCxlFCq5KCvvd-TZyFqKS0VcJdEDFn5CTHlbyGaEGnrBbzXxbc0BJwR1AmHnGnXIqNJ4XhK-ra_1iPo49MG7smmX23WZMLGJiMyYFKXdX_czmG0fGv0fgdmPROnv-AAhlF0LZY4QqiF5ht4sKyeoCbtUd-fk3K0ssIIQnL66Pw3a0s8ta3YD4--cYgbbxxhTkaWbWbiJcc7TVZwUxB5w7mOnhN313PZuFo4A0oHKf_4-1eUHu4nxzqtxLcjJttvEViLKpfT3vv9_tzzYP priority: 102 providerName: Directory of Open Access Journals |
Title | The significance of mosquito saliva in arbovirus transmission and pathogenesis in the vertebrate host |
URI | https://dx.doi.org/10.1016/j.onehlt.2023.100506 https://www.ncbi.nlm.nih.gov/pubmed/37363242 https://www.proquest.com/docview/2830219439 https://www.proquest.com/docview/2834214588 https://pubmed.ncbi.nlm.nih.gov/PMC10288056 https://doaj.org/article/0d4313a14acb4e759dd17cefb9e0d510 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnpAQojxDoTIS12gTO37kSCuqCgkuUGlvluNHG1SSspvl9zPjJEsDEpU4Jpk87BmPv9gz3xDyruZSRVarvCpjk1fcwZiTYMuVYhH5yKXVmO_86bO8uKw-rsX6gJzNuTAYVjn5_tGnJ289nVlNvbm6bdvVFwbYQakS8AAOa4mJ5rzSKYlvffp7nUUwLVLtVZTP8YY5gy6FefVduL7BoErGMWJAYOmjOzNUIvJfTFR_A9E_4ynvTFDnj8mjCVnS9-PHH5GD0D0hD8dlOTpmGz0lAcyCYswGRgihwmkf6fd--2MHI5tuLW4M0bajdtP0P9vNbksHnMzAGHBVjdrOU6xh3F-hi2y3KAoIkmJRZ9yBHgLFrJFn5PL8w9ezi3yqtJA7IfmQW-WVc40qY8FiYEFbJrzlVtcCNCwdr0SoordFlFj5zjWBMx-kCK6IgAgK_pwcdtCTLwnV8K_dKOaakjdVkPAEgGiOcSut9LXjGeFz7xo30ZBjNYwbM8ebfTOjTgzqxIw6yUi-v-t2pOG4R_4UFbeXRRLtdKLfXJnJikzhAT1xW1bWwacqUXtfKhdiU4fCg6_KiJrVbhY2CY9q73n929lKDGgI92BsF_rd1iS-tbIGGPhPmQoJ5LXOyIvRsvYN4YojwT7LiF7Y3KKlyytde51owxFKasC7r_67WcfkAR6NkXKvyeGw2YU3gMmG5iStZZykofcLULw3XQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOYCEEG_C00hco03s2E6OtKLaQtsLrbQ3y_GjTVWSssny-5nJY2lAohJXx05sz3j8xf5mhpCPBZcqsELFWRrKOOMW1pwEXc4UCxiPXJoc_Z2PT-TyLPuyEqsdsj_5wiCtcrT9g03vrfVYshhnc3FdVYtvDLCDUingAVzWUtwhdwENKMzfcLja-33QIlgu-uSr2CDGFpMLXc_zamp_cYWsSsaRMiAw99GNLaqP5D_bqf5Gon8SKm_sUAePyMMRWtJPQ-8fkx1fPyEPhnM5OrgbPSUe9IIiaQMpQihx2gT6vWl_bGBp09bgzRCtamrWZfOzWm9a2uFuBtqAx2rU1I5iEuPmHG1k1WJVgJAUszrjFXTnKbqNPCNnB59P95fxmGohtkLyLjbKKWtLlYaEBc98bphwhpu8ECBiaXkmfBacSYLE1He29Jw5L4W3SQBIkPDnZLeGmXxJaA4_26Vitkx5mXkJbwCpWMaNNNIVlkeET7Or7RiHHNNhXOmJcHapB5lolIkeZBKReNvqeojDcUv9PRTcti5G0e4LmvW5HtVIJw7gEzdpZix0VYnCuVRZH8rCJw6MVUTUJHY9U0p4VXXL5z9MWqJBQngJY2rfbFrdB1xLC8CB_6yTYQT5PI_Ii0GztgPhimOEfRaRfKZzs5HOn9TVRR83HLFkDoD31X8P6z25tzw9PtJHhydfX5P7-GSgzb0hu916498CQOvKd_0C_AWUJTmH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+significance+of+mosquito+saliva+in+arbovirus+transmission+and+pathogenesis+in+the+vertebrate+host&rft.jtitle=One+health&rft.au=Visser%2C+Imke&rft.au=Koenraadt%2C+Constantianus+J+M&rft.au=Koopmans%2C+Marion+P+G&rft.au=Rockx%2C+Barry&rft.date=2023-06-01&rft.issn=2352-7714&rft.eissn=2352-7714&rft.volume=16&rft.spage=100506&rft_id=info:doi/10.1016%2Fj.onehlt.2023.100506&rft_id=info%3Apmid%2F37363242&rft.externalDocID=37363242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7714&client=summon |