PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism

Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental cell Vol. 46; no. 4; pp. 441 - 455.e8
Main Authors Li, Changfeng, Zhang, Ying, Cheng, Xing, Yuan, Hua, Zhu, Shan, Liu, Jiao, Wen, Qirong, Xie, Yangchun, Liu, Jinbao, Kroemer, Guido, Klionsky, Daniel J., Lotze, Michael T., Zeh, Herbert J., Kang, Rui, Tang, Daolin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.08.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1−/− and park2−/− mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. [Display omitted] •PINK1 and PARK2 suppress oncogenic Kras-driven pancreatic tumorigenesis•Mitochondrial iron accumulation contributes to pancreatic tumorigenesis•HIF1A is required for the Warburg effect in pancreatic tumorigenesis•AIM2-mediated HMGB1 release promotes pancreatic tumorigenesis Li et al. demonstrate in mouse models that Pink1 and Park2 deficiency accelerates pancreatic tumorigenesis through mitochondrial iron-dependent immunometabolic dysfunction. These findings shed light on how the autophagy pathway controls iron homeostasis and could have implications for the development of strategies to target mitochondrial iron metabolism in pancreatic cancer.
AbstractList Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1-/- and park2-/- mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention.Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1-/- and park2-/- mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention.
Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1[-/-] and park2[-/-] mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.
Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1−/− and park2−/− mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. [Display omitted] •PINK1 and PARK2 suppress oncogenic Kras-driven pancreatic tumorigenesis•Mitochondrial iron accumulation contributes to pancreatic tumorigenesis•HIF1A is required for the Warburg effect in pancreatic tumorigenesis•AIM2-mediated HMGB1 release promotes pancreatic tumorigenesis Li et al. demonstrate in mouse models that Pink1 and Park2 deficiency accelerates pancreatic tumorigenesis through mitochondrial iron-dependent immunometabolic dysfunction. These findings shed light on how the autophagy pathway controls iron homeostasis and could have implications for the development of strategies to target mitochondrial iron metabolism in pancreatic cancer.
Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras -driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1 −/− and park2 −/− mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention.
Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1 and park2 mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention.
Author Tang, Daolin
Cheng, Xing
Xie, Yangchun
Lotze, Michael T.
Liu, Jinbao
Wen, Qirong
Kang, Rui
Klionsky, Daniel J.
Li, Changfeng
Yuan, Hua
Zhang, Ying
Liu, Jiao
Zeh, Herbert J.
Zhu, Shan
Kroemer, Guido
AuthorAffiliation 6 Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; 75006 Paris, France
11 Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
7 Institut National de la Santé et de la Recherche Médicale, U1138; Paris, France
8 Université Pierre et Marie Curie, 75006 Paris, France
13 Lead Contact
4 Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
10 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; 75015 Paris, France
2 School of Nursing of Jilin University, Changchun, Jilin 130021, China
12 Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI USA
3 The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangz
AuthorAffiliation_xml – name: 6 Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; 75006 Paris, France
– name: 12 Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI USA
– name: 3 The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
– name: 13 Lead Contact
– name: 11 Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
– name: 8 Université Pierre et Marie Curie, 75006 Paris, France
– name: 10 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; 75015 Paris, France
– name: 7 Institut National de la Santé et de la Recherche Médicale, U1138; Paris, France
– name: 1 Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
– name: 9 Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France
– name: 2 School of Nursing of Jilin University, Changchun, Jilin 130021, China
– name: 4 Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
– name: 5 Université Paris Descartes, Sorbonne Paris Cité; 75006 Paris, France
Author_xml – sequence: 1
  givenname: Changfeng
  surname: Li
  fullname: Li, Changfeng
  email: changfengli1975@sina.com
  organization: Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
– sequence: 2
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
– sequence: 3
  givenname: Xing
  surname: Cheng
  fullname: Cheng, Xing
  organization: Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
– sequence: 4
  givenname: Hua
  surname: Yuan
  fullname: Yuan, Hua
  organization: School of Nursing of Jilin University, Changchun, Jilin 130021, China
– sequence: 5
  givenname: Shan
  surname: Zhu
  fullname: Zhu, Shan
  organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
– sequence: 6
  givenname: Jiao
  surname: Liu
  fullname: Liu, Jiao
  organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
– sequence: 7
  givenname: Qirong
  surname: Wen
  fullname: Wen, Qirong
  organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
– sequence: 8
  givenname: Yangchun
  surname: Xie
  fullname: Xie, Yangchun
  organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
– sequence: 9
  givenname: Jinbao
  surname: Liu
  fullname: Liu, Jinbao
  organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
– sequence: 10
  givenname: Guido
  surname: Kroemer
  fullname: Kroemer, Guido
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 11
  givenname: Daniel J.
  surname: Klionsky
  fullname: Klionsky, Daniel J.
  organization: Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
– sequence: 12
  givenname: Michael T.
  surname: Lotze
  fullname: Lotze, Michael T.
  organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
– sequence: 13
  givenname: Herbert J.
  surname: Zeh
  fullname: Zeh, Herbert J.
  organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
– sequence: 14
  givenname: Rui
  surname: Kang
  fullname: Kang, Rui
  organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
– sequence: 15
  givenname: Daolin
  surname: Tang
  fullname: Tang, Daolin
  email: tangd2@upmc.edu
  organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30100261$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04702756$$DView record in HAL
BookMark eNqFkU-P0zAQxSO0iP0D3wAhH9lDwjiJY5cDUlUBW20XKljOluNMGleJ3bWTSnx7XLWsYA8wF4_s996M_LtMzqyzmCSvKWQUaPVumzW419hnOVCRAc-A5s-SCyq4SClj9Cz2rChTJoCfJ5chbCHaqIAXyXkBFCCv6EXysF5-uaVE2Yas599uc_J92u08hkDWymqPajSa3E-D82aDFoMJZOy8mzYdWTg7etcT15I7MzrdOdt4o3qy9M6md9gYNWJDlsMwWTfgqGrXmzC8TJ63qg_46nReJT8-fbxf3KSrr5-Xi_kq1awqxlTlqqhA0KouCyhRz5jIa01brXNRzTiFFljFFCuV4gDAkTLgAmMJJqqiLq6SD8fc3VQP2GiM26pe7rwZlP8pnTLy7xdrOrlxe8krVlKRx4DrY0D3xHYzX8nDHZQccs6qPY3at6dh3j1MGEY5mBDh9Mqim4LMQfDZrOS0jNI3f-71mPybSRSUR4H2LgSP7aOEgjygl1t5RC8P6CVwGdFH2_snNm3GiO9ASZn-f-bTZ2EksjfoZdAGrY4QPepRNs78O-AXIlXMWQ
CitedBy_id crossref_primary_10_1016_j_semcdb_2019_05_008
crossref_primary_10_1097_SHK_0000000000001534
crossref_primary_10_3389_fcell_2021_640786
crossref_primary_10_1080_15548627_2018_1526611
crossref_primary_10_1186_s13578_021_00696_0
crossref_primary_10_1016_j_semcancer_2020_05_002
crossref_primary_10_1038_s41401_024_01254_3
crossref_primary_10_1111_cas_15568
crossref_primary_10_1016_j_canlet_2021_12_032
crossref_primary_10_1016_j_phymed_2022_154164
crossref_primary_10_1016_j_bbadis_2022_166400
crossref_primary_10_1038_s41418_020_00728_1
crossref_primary_10_1186_s12943_024_01934_y
crossref_primary_10_3390_biom14020228
crossref_primary_10_3390_genes14020474
crossref_primary_10_3389_fonc_2022_868639
crossref_primary_10_1016_j_canlet_2023_216494
crossref_primary_10_1038_s41419_019_1881_x
crossref_primary_10_1093_mtomcs_mfab021
crossref_primary_10_1186_s12943_025_02243_8
crossref_primary_10_3389_fonc_2021_616079
crossref_primary_10_1172_JCI132876
crossref_primary_10_1016_j_cell_2018_09_048
crossref_primary_10_1080_15548627_2022_2062887
crossref_primary_10_3390_ijms232012123
crossref_primary_10_1002_mco2_462
crossref_primary_10_1038_s41577_023_00894_6
crossref_primary_10_1002_iub_2585
crossref_primary_10_1186_s12964_021_00769_0
crossref_primary_10_3390_ijms26010092
crossref_primary_10_1097_MD_0000000000033478
crossref_primary_10_3390_ijms241814254
crossref_primary_10_4239_wjd_v15_i11_2189
crossref_primary_10_3390_cells9102229
crossref_primary_10_1038_s41467_020_20154_8
crossref_primary_10_1016_j_cca_2020_08_031
crossref_primary_10_1186_s13045_020_00936_9
crossref_primary_10_1038_s41598_024_59243_9
crossref_primary_10_3389_fmolb_2023_1203269
crossref_primary_10_1016_j_cytogfr_2025_01_004
crossref_primary_10_1038_s41417_023_00722_y
crossref_primary_10_3389_fimmu_2020_601815
crossref_primary_10_1007_s10555_024_10211_9
crossref_primary_10_1080_15548627_2020_1847462
crossref_primary_10_3389_fcell_2020_594203
crossref_primary_10_1111_cpr_13327
crossref_primary_10_1177_11769343221120960
crossref_primary_10_1002_jbt_23557
crossref_primary_10_1016_j_yexcr_2023_113860
crossref_primary_10_1016_j_freeradbiomed_2020_12_452
crossref_primary_10_3389_fonc_2022_927640
crossref_primary_10_3390_ijms24076506
crossref_primary_10_3389_fcvm_2023_1018422
crossref_primary_10_1016_j_isci_2020_101797
crossref_primary_10_1007_s00018_024_05556_x
crossref_primary_10_1038_s41568_019_0123_y
crossref_primary_10_1016_j_ceca_2020_102308
crossref_primary_10_3389_fonc_2020_569887
crossref_primary_10_1515_oncologie_2023_0280
crossref_primary_10_1002_eji_201848070
crossref_primary_10_1080_15548627_2020_1810918
crossref_primary_10_1158_2159_8290_CD_18_1409
crossref_primary_10_1016_j_chembiol_2020_02_005
crossref_primary_10_1016_j_jbc_2023_104774
crossref_primary_10_3390_cancers17010051
crossref_primary_10_1016_j_devcel_2021_02_010
crossref_primary_10_3389_fmed_2022_887062
crossref_primary_10_3389_fcell_2023_1297024
crossref_primary_10_3389_fphys_2023_1236651
crossref_primary_10_1007_s12672_021_00454_1
crossref_primary_10_1016_j_phrs_2024_107079
crossref_primary_10_1007_s10565_020_09561_1
crossref_primary_10_1016_j_ijbiomac_2024_129607
crossref_primary_10_3390_ijms241713336
crossref_primary_10_1038_s41418_021_00760_9
crossref_primary_10_1016_j_biopha_2024_117407
crossref_primary_10_1146_annurev_cancerbio_030419_033405
crossref_primary_10_1016_j_arr_2024_102428
crossref_primary_10_1016_j_jare_2024_12_045
crossref_primary_10_1016_j_biopha_2022_113516
crossref_primary_10_3389_fcell_2021_699621
crossref_primary_10_1155_2022_3128933
crossref_primary_10_1089_ars_2019_8013
crossref_primary_10_2174_1568009622666220428102741
crossref_primary_10_3389_fonc_2020_599816
crossref_primary_10_1016_j_celrep_2019_06_039
crossref_primary_10_1016_j_trecan_2024_01_002
crossref_primary_10_1186_s12935_020_01494_3
crossref_primary_10_3390_ijms24021459
crossref_primary_10_1016_j_jnha_2024_100212
crossref_primary_10_1016_j_semcdb_2024_02_001
crossref_primary_10_1080_15548627_2020_1714209
crossref_primary_10_3390_cells8050493
crossref_primary_10_3390_cancers15010057
crossref_primary_10_1002_advs_201900860
crossref_primary_10_3389_fonc_2019_00790
crossref_primary_10_3390_cells11213464
crossref_primary_10_3390_ijms23116178
crossref_primary_10_1016_j_tibs_2021_07_003
crossref_primary_10_1038_s41598_025_95173_w
crossref_primary_10_3390_cells11111838
crossref_primary_10_1074_jbc_RA120_014615
crossref_primary_10_3390_cancers15041112
crossref_primary_10_1080_1061186X_2020_1867992
crossref_primary_10_3390_cancers13133311
crossref_primary_10_1007_s00018_021_03774_1
crossref_primary_10_1111_imr_13235
crossref_primary_10_7554_eLife_69431
crossref_primary_10_1126_sciadv_adn8402
crossref_primary_10_1016_j_bbcan_2023_188932
crossref_primary_10_1016_j_expneurol_2023_114614
crossref_primary_10_1126_sciadv_abg7287
crossref_primary_10_1007_s13167_019_00170_5
crossref_primary_10_1016_j_bbcan_2021_188533
crossref_primary_10_1158_0008_5472_CAN_20_2017
crossref_primary_10_3390_curroncol30030231
crossref_primary_10_1017_erm_2023_14
crossref_primary_10_1158_0008_5472_CAN_21_3917
crossref_primary_10_15252_embj_2021110031
crossref_primary_10_4236_ijcm_2024_157021
crossref_primary_10_1097_JP9_0000000000000002
crossref_primary_10_1126_scitranslmed_adg3049
crossref_primary_10_1016_j_jbior_2024_101041
crossref_primary_10_1016_j_trecan_2023_02_001
crossref_primary_10_3390_cells9041063
crossref_primary_10_1016_j_bbrep_2024_101893
crossref_primary_10_1038_s41598_020_75258_4
crossref_primary_10_3390_ijms25168647
crossref_primary_10_3389_fcell_2021_802528
crossref_primary_10_3390_cells10102641
crossref_primary_10_1111_febs_16208
crossref_primary_10_3390_ijms21134714
crossref_primary_10_1021_acsnano_3c04632
crossref_primary_10_3389_fcell_2021_724282
crossref_primary_10_1016_j_lfs_2023_122063
crossref_primary_10_1007_s10528_021_10084_5
crossref_primary_10_1038_s41422_019_0164_5
crossref_primary_10_3389_fphar_2022_937413
crossref_primary_10_1038_s41556_019_0350_1
crossref_primary_10_1016_j_isci_2024_110598
crossref_primary_10_1016_j_semcdb_2019_05_029
crossref_primary_10_1016_j_tips_2023_12_003
crossref_primary_10_1093_carcin_bgad072
crossref_primary_10_1016_j_jbc_2023_104691
crossref_primary_10_3389_fimmu_2025_1533007
crossref_primary_10_3390_cancers13102475
crossref_primary_10_1080_15548627_2024_2425594
crossref_primary_10_1016_j_bbamcr_2024_119752
crossref_primary_10_1172_JCI180983
crossref_primary_10_1016_j_semcancer_2019_07_015
crossref_primary_10_1186_s12935_021_02166_6
crossref_primary_10_1016_j_canlet_2023_216590
crossref_primary_10_1080_08916934_2023_2289362
crossref_primary_10_18632_aging_205964
crossref_primary_10_1016_j_molmet_2024_102089
crossref_primary_10_1038_s41419_022_04927_1
crossref_primary_10_1371_journal_pbio_3001480
crossref_primary_10_1016_j_ijbiomac_2025_140602
crossref_primary_10_4103_jcrt_jcrt_2449_23
crossref_primary_10_1136_jitc_2019_000337
crossref_primary_10_4110_in_2024_24_e38
crossref_primary_10_1177_10732748241287905
crossref_primary_10_4103_1673_5374_295314
crossref_primary_10_3390_life12081129
crossref_primary_10_1038_s41388_024_03157_3
crossref_primary_10_3389_fonc_2024_1452282
crossref_primary_10_32604_or_2023_028051
crossref_primary_10_1038_s41577_022_00760_x
crossref_primary_10_1016_j_yexcr_2021_112552
crossref_primary_10_3389_fcell_2020_00431
crossref_primary_10_1080_25785826_2020_1809951
crossref_primary_10_3389_fcell_2020_590226
crossref_primary_10_1016_j_jnutbio_2023_109407
crossref_primary_10_1186_s12957_023_03206_3
crossref_primary_10_1002_JLB_3MIR1218_497R
crossref_primary_10_1016_j_apsb_2023_07_019
crossref_primary_10_1038_s41575_021_00486_6
Cites_doi 10.1016/j.ccr.2014.06.025
10.1038/nature12865
10.1074/jbc.M110.209338
10.1053/j.gastro.2017.12.004
10.1038/nature19084
10.1053/j.gastro.2011.03.041
10.1101/gad.2016111
10.1083/jcb.200911078
10.1016/j.mam.2014.05.001
10.1038/nm.3908
10.1158/0008-5472.CAN-16-1979
10.1080/15548627.2016.1239678
10.1016/S1535-6108(03)00309-X
10.1038/onc.2012.631
10.1016/j.cmet.2011.04.008
10.1097/00000478-200105000-00003
10.1038/nature04512
10.1002/hep.28251
10.1038/nature13611
10.1084/jem.20161707
10.1038/nm1622
10.1007/978-1-4939-1875-1_3
10.1038/ncb2012
10.1038/nrm2245
10.1128/MCB.01685-08
10.1172/JCI67230
10.3791/50514-v
10.1016/j.mito.2016.05.003
10.1038/nature14587
10.4161/cc.7.1.5145
10.1038/nrm3028
10.1038/nature13148
10.1158/0008-5472.CAN-15-3079
10.1158/2159-8290.CD-15-0822
10.1053/j.gastro.2017.07.036
10.1038/cr.2017.51
10.1093/hmg/ddr048
10.1038/nprot.2013.079
10.1210/me.2014-1367
10.4049/jimmunol.1502340
10.1038/nrc.2016.77
10.1111/jnc.13655
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1016/j.devcel.2018.07.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
EndPage 455.e8
ExternalDocumentID PMC7654182
oai_HAL_hal_04702756v1
30100261
10_1016_j_devcel_2018_07_012
S1534580718305975
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA181450
– fundername: NCI NIH HHS
  grantid: R01 CA211070
– fundername: NIGMS NIH HHS
  grantid: R01 GM053396
– fundername: NIGMS NIH HHS
  grantid: R01 GM115366
– fundername: NCI NIH HHS
  grantid: R01 CA160417
– fundername: NCI NIH HHS
  grantid: P30 CA047904
– fundername: EPA
  grantid: EP-C-16-014
GroupedDBID ---
--K
0R~
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
FGOYB
HZ~
OZT
R2-
UHS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c563t-a2a360816b4304ec9582bc1fcc2869710f0565a54aa70007e15078eeee85863b3
IEDL.DBID IXB
ISSN 1534-5807
1878-1551
IngestDate Thu Aug 21 13:28:15 EDT 2025
Fri May 09 12:20:53 EDT 2025
Tue Aug 05 10:19:56 EDT 2025
Thu Aug 28 04:18:58 EDT 2025
Thu Aug 21 00:09:40 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Fri Feb 23 02:26:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords pink1
park2
aim2
mitochondrial quality control
mitophagy
inflammasomes
pancreatic tumorigenesis
iron
immunosuppression
hmgb1
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-a2a360816b4304ec9582bc1fcc2869710f0565a54aa70007e15078eeee85863b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
D.T. and C.L. designed the experiments. C.L., Y.Z., X.C., H.Y., S.Z., J.L., Q.W., Y.X., J.L., R.K., and D.T conducted the experiments. D.T. and C.L. wrote the paper. M.T.L. and H.J.Z. provided the reagents. G.K. and D.J.K. edited and commented on the manuscript.
Author Contributions
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1534580718305975
PMID 30100261
PQID 2087994714
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7654182
hal_primary_oai_HAL_hal_04702756v1
proquest_miscellaneous_2087994714
pubmed_primary_30100261
crossref_primary_10_1016_j_devcel_2018_07_012
crossref_citationtrail_10_1016_j_devcel_2018_07_012
elsevier_sciencedirect_doi_10_1016_j_devcel_2018_07_012
PublicationCentury 2000
PublicationDate 2018-08-20
PublicationDateYYYYMMDD 2018-08-20
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kang, Xie, Zhang, Hou, Jiang, Zhu, Liu, Zeng, Wang, Bartlett (bib15) 2017
Tang, Kang, Livesey, Cheh, Farkas, Loughran, Hoppe, Bianchi, Tracey, Zeh (bib33) 2010; 190
Perera, Stoykova, Nicolay, Ross, Fitamant, Boukhali, Lengrand, Deshpande, Selig, Ferrone (bib23) 2015; 524
Sun, Ou, Chen, Niu, Chen, Kang, Tang (bib32) 2016; 63
Kang, Chen, Zhang, Hou, Wu, Cao, Huang, Yu, Fan, Yan (bib12) 2014; 40
Paradkar, Zumbrennen, Paw, Ward, Kaplan (bib22) 2009; 29
Reichert, Takano, Heeg, Bakir, Botta, Rustgi (bib25) 2013; 8
Tang, Kang, Livesey, Kroemer, Billiar, Van Houten, Zeh, Lotze (bib34) 2011; 13
Yang, Wang, Contino, Liesa, Sahin, Ying, Bause, Li, Stommel, Dell'antonio (bib40) 2011; 25
Klionsky (bib17) 2007; 8
Sousa, Biancur, Wang, Halbrook, Sherman, Zhang, Kremer, Hwang, Witkiewicz, Ying (bib31) 2016; 536
Maes, Kuchnio, Peric, Moens, Nys, De Bock, Quaegebeur, Schoors, Georgiadou, Wouters (bib19) 2014; 26
Viale, Pettazzoni, Lyssiotis, Ying, Sánchez, Marchesini, Carugo, Green, Seth, Giuliani (bib35) 2014; 514
Kang, Xie, Zhang, Hou, Jiang, Zhu, Liu, Zeng, Wang, Bartlett (bib14) 2017; 27
Lee, Spata, Bayne, Buza, Durham, Allman, Vonderheide, Simon (bib18) 2016; 6
Xie, Zhu, Zhong, Yang, Sun, Liu, Kroemer, Lotze, Zeh, Kang (bib39) 2017; 153
Hingorani, Petricoin, Maitra, Rajapakse, King, Jacobetz, Ross, Conrads, Veenstra, Hitt (bib8) 2003; 4
Kang, Tang, Schapiro, Loux, Livesey, Billiar, Wang, Van Houten, Lotze, Zeh (bib13) 2014; 33
Peyssonnaux, Nizet, Johnson (bib24) 2008; 7
Geisler, Holmström, Skujat, Fiesel, Rothfuss, Kahle, Springer (bib5) 2010; 12
Voigt, Berlemann, Winklhofer (bib36) 2016; 139
Gout, Pommier, Vincent, Kaniewski, Martel, Valcourt, Bartholin (bib6) 2013
Apetoh, Ghiringhelli, Tesniere, Obeid, Ortiz, Criollo, Mignot, Maiuri, Ullrich, Saulnier (bib2) 2007; 13
Hruban, Adsay, Albores-Saavedra, Compton, Garrett, Goodman, Kern, Klimstra, Klöppel, Longnecker (bib10) 2001; 25
Rooney, Ryde, Sanders, Howlett, Colton, Germ, Mayer, Greenamyre, Meyer (bib26) 2015; 1241
Yoshii, Kishi, Ishihara, Mizushima (bib41) 2011; 286
Shaw, Cope, Li, Corson, Hersey, Ackermann, Gwynn, Lambert, Wingert, Traver (bib29) 2006; 440
Wilson, Petrucelli, Chen, Koblansky, Truax, Oyama, Rogers, Brickey, Wang, Schneider (bib38) 2015; 21
Daley, Mani, Mohan, Akkad, Pandian, Savadkar, Lee, Torres-Hernandez, Aykut, Diskin (bib4) 2017; 214
Agnihotri, Golbourn, Huang, Remke, Younger, Cairns, Chalil, Smith, Krumholtz, Mackenzie (bib1) 2016; 76
Mancias, Wang, Gygi, Harper, Kimmelman (bib21) 2014; 509
Malik, Czajka, Cunningham (bib20) 2016; 29
Rosenfeldt, O'Prey, Morton, Nixon, MacKay, Mrowinska, Au, Rai, Zheng, Ridgway (bib27) 2013; 504
Kang, Zeng, Xie, Yan, Zhou, Cao, Klionsky, Tracey, Li, Wang (bib16) 2016; 12
Song, Zhu, Xie, Liu, Sun, Zeng, Wang, Ma, Kroemer, Bartlett (bib30) 2018; 154
Hay (bib7) 2016; 16
Watada, Fujitani (bib37) 2015; 29
Semenza (bib28) 2013; 123
Chan, Salazar, Pham, Sweredoski, Kolawa, Graham, Hess, Chan (bib3) 2011; 20
Youle, Narendra (bib42) 2011; 12
Hoque, Sohail, Malik, Sarwar, Luo, Shah, Barrat, Flavell, Gorelick, Husain (bib9) 2011; 141
Kang, Chen, Xie, Cao, Lotze, Tang, Zeh (bib11) 2016; 196
Zhu, Zhang, Sun, Zeh, Lotze, Kang, Tang (bib43) 2017; 77
Reichert (10.1016/j.devcel.2018.07.012_bib25) 2013; 8
Perera (10.1016/j.devcel.2018.07.012_bib23) 2015; 524
Semenza (10.1016/j.devcel.2018.07.012_bib28) 2013; 123
Viale (10.1016/j.devcel.2018.07.012_bib35) 2014; 514
Malik (10.1016/j.devcel.2018.07.012_bib20) 2016; 29
Kang (10.1016/j.devcel.2018.07.012_bib11) 2016; 196
Tang (10.1016/j.devcel.2018.07.012_bib34) 2011; 13
Kang (10.1016/j.devcel.2018.07.012_bib16) 2016; 12
Wilson (10.1016/j.devcel.2018.07.012_bib38) 2015; 21
Kang (10.1016/j.devcel.2018.07.012_bib12) 2014; 40
Hingorani (10.1016/j.devcel.2018.07.012_bib8) 2003; 4
Yoshii (10.1016/j.devcel.2018.07.012_bib41) 2011; 286
Apetoh (10.1016/j.devcel.2018.07.012_bib2) 2007; 13
Voigt (10.1016/j.devcel.2018.07.012_bib36) 2016; 139
Kang (10.1016/j.devcel.2018.07.012_bib14) 2017; 27
Paradkar (10.1016/j.devcel.2018.07.012_bib22) 2009; 29
Watada (10.1016/j.devcel.2018.07.012_bib37) 2015; 29
Gout (10.1016/j.devcel.2018.07.012_bib6) 2013
Chan (10.1016/j.devcel.2018.07.012_bib3) 2011; 20
Klionsky (10.1016/j.devcel.2018.07.012_bib17) 2007; 8
Hay (10.1016/j.devcel.2018.07.012_bib7) 2016; 16
Kang (10.1016/j.devcel.2018.07.012_bib13) 2014; 33
Tang (10.1016/j.devcel.2018.07.012_bib33) 2010; 190
Rosenfeldt (10.1016/j.devcel.2018.07.012_bib27) 2013; 504
Rooney (10.1016/j.devcel.2018.07.012_bib26) 2015; 1241
Hoque (10.1016/j.devcel.2018.07.012_bib9) 2011; 141
Geisler (10.1016/j.devcel.2018.07.012_bib5) 2010; 12
Youle (10.1016/j.devcel.2018.07.012_bib42) 2011; 12
Zhu (10.1016/j.devcel.2018.07.012_bib43) 2017; 77
Yang (10.1016/j.devcel.2018.07.012_bib40) 2011; 25
Daley (10.1016/j.devcel.2018.07.012_bib4) 2017; 214
Lee (10.1016/j.devcel.2018.07.012_bib18) 2016; 6
Sousa (10.1016/j.devcel.2018.07.012_bib31) 2016; 536
Hruban (10.1016/j.devcel.2018.07.012_bib10) 2001; 25
Maes (10.1016/j.devcel.2018.07.012_bib19) 2014; 26
Kang (10.1016/j.devcel.2018.07.012_bib15) 2017
Peyssonnaux (10.1016/j.devcel.2018.07.012_bib24) 2008; 7
Sun (10.1016/j.devcel.2018.07.012_bib32) 2016; 63
Xie (10.1016/j.devcel.2018.07.012_bib39) 2017; 153
Shaw (10.1016/j.devcel.2018.07.012_bib29) 2006; 440
Mancias (10.1016/j.devcel.2018.07.012_bib21) 2014; 509
Song (10.1016/j.devcel.2018.07.012_bib30) 2018; 154
Agnihotri (10.1016/j.devcel.2018.07.012_bib1) 2016; 76
30252570 - Autophagy. 2019 Jan;15(1):172-173. doi: 10.1080/15548627.2018.1526611.
40780210 - Dev Cell. 2025 Aug 18;60(16):2209-2210. doi: 10.1016/j.devcel.2025.07.018.
References_xml – year: 2017
  ident: bib15
  article-title: Intracellular HMGB1 as a Novel Tumor Suppressor of Pancreatic Cancer
– volume: 7
  start-page: 28
  year: 2008
  end-page: 32
  ident: bib24
  article-title: Role of the hypoxia inducible factors HIF in iron metabolism
  publication-title: Cell Cycle
– volume: 8
  start-page: 931
  year: 2007
  end-page: 937
  ident: bib17
  article-title: Autophagy: from phenomenology to molecular understanding in less than a decade
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 63
  start-page: 173
  year: 2016
  end-page: 184
  ident: bib32
  article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells
  publication-title: Hepatology
– volume: 190
  start-page: 881
  year: 2010
  end-page: 892
  ident: bib33
  article-title: Endogenous HMGB1 regulates autophagy
  publication-title: J. Cell Biol.
– volume: 440
  start-page: 96
  year: 2006
  end-page: 100
  ident: bib29
  article-title: Mitoferrin is essential for erythroid iron assimilation
  publication-title: Nature
– volume: 13
  start-page: 1050
  year: 2007
  end-page: 1059
  ident: bib2
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
– volume: 286
  start-page: 19630
  year: 2011
  end-page: 19640
  ident: bib41
  article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 701
  year: 2011
  end-page: 711
  ident: bib34
  article-title: High-mobility group box 1 is essential for mitochondrial quality control
  publication-title: Cell Metab.
– volume: 524
  start-page: 361
  year: 2015
  end-page: 365
  ident: bib23
  article-title: Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism
  publication-title: Nature
– volume: 25
  start-page: 717
  year: 2011
  end-page: 729
  ident: bib40
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes Dev.
– volume: 29
  start-page: 59
  year: 2016
  end-page: 64
  ident: bib20
  article-title: Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences
  publication-title: Mitochondrion
– volume: 12
  start-page: 119
  year: 2010
  end-page: 131
  ident: bib5
  article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat. Cell. Biol.
– volume: 40
  start-page: 1
  year: 2014
  end-page: 116
  ident: bib12
  article-title: HMGB1 in health and disease
  publication-title: Mol. Aspects Med.
– volume: 536
  start-page: 479
  year: 2016
  end-page: 483
  ident: bib31
  article-title: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion
  publication-title: Nature
– volume: 29
  start-page: 338
  year: 2015
  end-page: 348
  ident: bib37
  article-title: Minireview: autophagy in pancreatic beta-cells and its implication in diabetes
  publication-title: Mol. Endocrinol.
– volume: 26
  start-page: 190
  year: 2014
  end-page: 206
  ident: bib19
  article-title: Tumor vessel normalization by chloroquine independent of autophagy
  publication-title: Cancer Cell
– volume: 6
  start-page: 256
  year: 2016
  end-page: 269
  ident: bib18
  article-title: Hif1a deletion reveals pro-neoplastic function of B. Cells in pancreatic neoplasia
  publication-title: Cancer Discov.
– year: 2013
  ident: bib6
  article-title: Isolation and culture of mouse primary pancreatic acinar cells
  publication-title: J. Vis. Exp.
– volume: 509
  start-page: 105
  year: 2014
  end-page: 109
  ident: bib21
  article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
  publication-title: Nature
– volume: 153
  start-page: 1429
  year: 2017
  end-page: 1443.e5
  ident: bib39
  article-title: Inhibition of Aurora kinase A induces necroptosis in pancreatic carcinoma
  publication-title: Gastroenterology
– volume: 514
  start-page: 628
  year: 2014
  end-page: 632
  ident: bib35
  article-title: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
– volume: 4
  start-page: 437
  year: 2003
  end-page: 450
  ident: bib8
  article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
  publication-title: Cancer Cell
– volume: 214
  start-page: 1711
  year: 2017
  end-page: 1724
  ident: bib4
  article-title: NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma
  publication-title: J. Exp. Med.
– volume: 8
  start-page: 1354
  year: 2013
  end-page: 1365
  ident: bib25
  article-title: Isolation, culture and genetic manipulation of mouse pancreatic ductal cells
  publication-title: Nat. Protoc.
– volume: 25
  start-page: 579
  year: 2001
  end-page: 586
  ident: bib10
  article-title: Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions
  publication-title: Am. J. Surg. Pathol.
– volume: 20
  start-page: 1726
  year: 2011
  end-page: 1737
  ident: bib3
  article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
  publication-title: Hum. Mol. Genet.
– volume: 123
  start-page: 3664
  year: 2013
  end-page: 3671
  ident: bib28
  article-title: HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
  publication-title: J. Clin. Invest.
– volume: 12
  start-page: 9
  year: 2011
  end-page: 14
  ident: bib42
  article-title: Mechanisms of mitophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 29
  start-page: 1007
  year: 2009
  end-page: 1016
  ident: bib22
  article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2
  publication-title: Mol. Cell. Biol.
– volume: 16
  start-page: 635
  year: 2016
  end-page: 649
  ident: bib7
  article-title: Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?
  publication-title: Nat. Rev. Cancer
– volume: 196
  start-page: 4331
  year: 2016
  end-page: 4337
  ident: bib11
  article-title: The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis
  publication-title: J. Immunol.
– volume: 139
  start-page: 232
  year: 2016
  end-page: 239
  ident: bib36
  article-title: The mitochondrial kinase PINK1: functions beyond mitophagy
  publication-title: J. Neurochem.
– volume: 27
  start-page: 916
  year: 2017
  end-page: 932
  ident: bib14
  article-title: Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer
  publication-title: Cell Res.
– volume: 154
  start-page: 1480
  year: 2018
  end-page: 1493
  ident: bib30
  article-title: JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice
  publication-title: Gastroenterology
– volume: 77
  start-page: 2064
  year: 2017
  end-page: 2077
  ident: bib43
  article-title: HSPA5 regulates ferroptotic cell death in cancer cells
  publication-title: Cancer Res.
– volume: 33
  start-page: 567
  year: 2014
  end-page: 577
  ident: bib13
  article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics
  publication-title: Oncogene
– volume: 504
  start-page: 296
  year: 2013
  end-page: 300
  ident: bib27
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
– volume: 141
  start-page: 358
  year: 2011
  end-page: 369
  ident: bib9
  article-title: TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis
  publication-title: Gastroenterology
– volume: 21
  start-page: 906
  year: 2015
  end-page: 913
  ident: bib38
  article-title: Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt
  publication-title: Nat. Med.
– volume: 1241
  start-page: 23
  year: 2015
  end-page: 38
  ident: bib26
  article-title: PCR based determination of mitochondrial DNA copy number in multiple species
  publication-title: Methods Mol. Biol.
– volume: 76
  start-page: 4708
  year: 2016
  end-page: 4719
  ident: bib1
  article-title: PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma
  publication-title: Cancer Res.
– volume: 12
  start-page: 2374
  year: 2016
  end-page: 2385
  ident: bib16
  article-title: A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis
  publication-title: Autophagy
– volume: 26
  start-page: 190
  year: 2014
  ident: 10.1016/j.devcel.2018.07.012_bib19
  article-title: Tumor vessel normalization by chloroquine independent of autophagy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.06.025
– volume: 504
  start-page: 296
  year: 2013
  ident: 10.1016/j.devcel.2018.07.012_bib27
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
  doi: 10.1038/nature12865
– volume: 286
  start-page: 19630
  year: 2011
  ident: 10.1016/j.devcel.2018.07.012_bib41
  article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.209338
– volume: 154
  start-page: 1480
  year: 2018
  ident: 10.1016/j.devcel.2018.07.012_bib30
  article-title: JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.12.004
– year: 2017
  ident: 10.1016/j.devcel.2018.07.012_bib15
– volume: 536
  start-page: 479
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib31
  article-title: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion
  publication-title: Nature
  doi: 10.1038/nature19084
– volume: 141
  start-page: 358
  year: 2011
  ident: 10.1016/j.devcel.2018.07.012_bib9
  article-title: TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.03.041
– volume: 25
  start-page: 717
  year: 2011
  ident: 10.1016/j.devcel.2018.07.012_bib40
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes Dev.
  doi: 10.1101/gad.2016111
– volume: 190
  start-page: 881
  year: 2010
  ident: 10.1016/j.devcel.2018.07.012_bib33
  article-title: Endogenous HMGB1 regulates autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200911078
– volume: 40
  start-page: 1
  year: 2014
  ident: 10.1016/j.devcel.2018.07.012_bib12
  article-title: HMGB1 in health and disease
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2014.05.001
– volume: 21
  start-page: 906
  year: 2015
  ident: 10.1016/j.devcel.2018.07.012_bib38
  article-title: Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt
  publication-title: Nat. Med.
  doi: 10.1038/nm.3908
– volume: 77
  start-page: 2064
  year: 2017
  ident: 10.1016/j.devcel.2018.07.012_bib43
  article-title: HSPA5 regulates ferroptotic cell death in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1979
– volume: 12
  start-page: 2374
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib16
  article-title: A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1239678
– volume: 4
  start-page: 437
  year: 2003
  ident: 10.1016/j.devcel.2018.07.012_bib8
  article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00309-X
– volume: 33
  start-page: 567
  year: 2014
  ident: 10.1016/j.devcel.2018.07.012_bib13
  article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics
  publication-title: Oncogene
  doi: 10.1038/onc.2012.631
– volume: 13
  start-page: 701
  year: 2011
  ident: 10.1016/j.devcel.2018.07.012_bib34
  article-title: High-mobility group box 1 is essential for mitochondrial quality control
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.04.008
– volume: 25
  start-page: 579
  year: 2001
  ident: 10.1016/j.devcel.2018.07.012_bib10
  article-title: Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/00000478-200105000-00003
– volume: 440
  start-page: 96
  year: 2006
  ident: 10.1016/j.devcel.2018.07.012_bib29
  article-title: Mitoferrin is essential for erythroid iron assimilation
  publication-title: Nature
  doi: 10.1038/nature04512
– volume: 63
  start-page: 173
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib32
  article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells
  publication-title: Hepatology
  doi: 10.1002/hep.28251
– volume: 514
  start-page: 628
  year: 2014
  ident: 10.1016/j.devcel.2018.07.012_bib35
  article-title: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
  doi: 10.1038/nature13611
– volume: 214
  start-page: 1711
  year: 2017
  ident: 10.1016/j.devcel.2018.07.012_bib4
  article-title: NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20161707
– volume: 13
  start-page: 1050
  year: 2007
  ident: 10.1016/j.devcel.2018.07.012_bib2
  article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm1622
– volume: 1241
  start-page: 23
  year: 2015
  ident: 10.1016/j.devcel.2018.07.012_bib26
  article-title: PCR based determination of mitochondrial DNA copy number in multiple species
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1875-1_3
– volume: 12
  start-page: 119
  year: 2010
  ident: 10.1016/j.devcel.2018.07.012_bib5
  article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat. Cell. Biol.
  doi: 10.1038/ncb2012
– volume: 8
  start-page: 931
  year: 2007
  ident: 10.1016/j.devcel.2018.07.012_bib17
  article-title: Autophagy: from phenomenology to molecular understanding in less than a decade
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2245
– volume: 29
  start-page: 1007
  year: 2009
  ident: 10.1016/j.devcel.2018.07.012_bib22
  article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01685-08
– volume: 123
  start-page: 3664
  year: 2013
  ident: 10.1016/j.devcel.2018.07.012_bib28
  article-title: HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI67230
– year: 2013
  ident: 10.1016/j.devcel.2018.07.012_bib6
  article-title: Isolation and culture of mouse primary pancreatic acinar cells
  publication-title: J. Vis. Exp.
  doi: 10.3791/50514-v
– volume: 29
  start-page: 59
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib20
  article-title: Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.05.003
– volume: 524
  start-page: 361
  year: 2015
  ident: 10.1016/j.devcel.2018.07.012_bib23
  article-title: Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism
  publication-title: Nature
  doi: 10.1038/nature14587
– volume: 7
  start-page: 28
  year: 2008
  ident: 10.1016/j.devcel.2018.07.012_bib24
  article-title: Role of the hypoxia inducible factors HIF in iron metabolism
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.1.5145
– volume: 12
  start-page: 9
  year: 2011
  ident: 10.1016/j.devcel.2018.07.012_bib42
  article-title: Mechanisms of mitophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3028
– volume: 509
  start-page: 105
  year: 2014
  ident: 10.1016/j.devcel.2018.07.012_bib21
  article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
  publication-title: Nature
  doi: 10.1038/nature13148
– volume: 76
  start-page: 4708
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib1
  article-title: PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-3079
– volume: 6
  start-page: 256
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib18
  article-title: Hif1a deletion reveals pro-neoplastic function of B. Cells in pancreatic neoplasia
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-0822
– volume: 153
  start-page: 1429
  year: 2017
  ident: 10.1016/j.devcel.2018.07.012_bib39
  article-title: Inhibition of Aurora kinase A induces necroptosis in pancreatic carcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.07.036
– volume: 27
  start-page: 916
  year: 2017
  ident: 10.1016/j.devcel.2018.07.012_bib14
  article-title: Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.51
– volume: 20
  start-page: 1726
  year: 2011
  ident: 10.1016/j.devcel.2018.07.012_bib3
  article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr048
– volume: 8
  start-page: 1354
  year: 2013
  ident: 10.1016/j.devcel.2018.07.012_bib25
  article-title: Isolation, culture and genetic manipulation of mouse pancreatic ductal cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.079
– volume: 29
  start-page: 338
  year: 2015
  ident: 10.1016/j.devcel.2018.07.012_bib37
  article-title: Minireview: autophagy in pancreatic beta-cells and its implication in diabetes
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2014-1367
– volume: 196
  start-page: 4331
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib11
  article-title: The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1502340
– volume: 16
  start-page: 635
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib7
  article-title: Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.77
– volume: 139
  start-page: 232
  year: 2016
  ident: 10.1016/j.devcel.2018.07.012_bib36
  article-title: The mitochondrial kinase PINK1: functions beyond mitophagy
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13655
– reference: 40780210 - Dev Cell. 2025 Aug 18;60(16):2209-2210. doi: 10.1016/j.devcel.2025.07.018.
– reference: 30252570 - Autophagy. 2019 Jan;15(1):172-173. doi: 10.1080/15548627.2018.1526611.
SSID ssj0016180
Score 2.6330774
Snippet Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic...
Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 441
SubjectTerms aim2
Animals
Autophagy - physiology
Carcinogenesis - metabolism
Cell Transformation, Neoplastic - pathology
hmgb1
immunosuppression
inflammasomes
iron
Iron - metabolism
Life Sciences
Mice, Transgenic
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Proteins - metabolism
mitochondrial quality control
mitophagy
Mitophagy - genetics
pancreatic tumorigenesis
park2
pink1
Protein Kinases - genetics
Protein Kinases - metabolism
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Title PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism
URI https://dx.doi.org/10.1016/j.devcel.2018.07.012
https://www.ncbi.nlm.nih.gov/pubmed/30100261
https://www.proquest.com/docview/2087994714
https://hal.science/hal-04702756
https://pubmed.ncbi.nlm.nih.gov/PMC7654182
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddYbCX0XVf6T7Qxl5NbMv6eszCSrouo2wt5E1Iskw9GrtrksL--93JdlhWRmF-smXZln2nu5Pv40fIB8arMsucToIqGSxQQp5YoWFPukxpZ61wmO88_ypmF8XnBV_skemQC4Nhlb3s72R6lNZ9y7j_muPruh5_h7lacAUqUgHPaomJ5qxQMYlv8XHrSRBZRE_Dzgn2HtLnYoxXGW59QAdEpmIJzyz_l3p6cIlxkneN0L9jKf9QTscH5HFvVdJJN_AnZC80h-RhhzP56yn5CWv304zapqRnk2-nOUUsT1xn0zMgejQbPT3fLBElC2VfvaI9fg-ddqHstK3oHCY_CMumRJ6lJzdtk8wj0Eco6QmmmbTLsAaeuqpXy2fk4vjT-XSW9FgLieeCrRObWyYQhMMVLC2C11zlzmeV97kSGsyQCiwlbnlhrUS7IqAhqQJsiivBHHtO9pu2CS8J9ehs9blOlfUFl84qJyvBrPBVxYMWI8KGT2x8X4gc8TCuzBBx9sN0hDFIGJNKA4QZkWR71XVXiOOe_nKgntlhKAO64p4r3wOxtw_B-tuzyReDbWkh0c0rbrMReTfwgoEJiV4W24R2s4I7Kak16PxiRF50vLG9F0jTuOiFwe1wzc7Dds809WUs-i0RsF3lR__9Wq_IIzzC_-F5-prsr2824Q0YVGv3Ns6Y3_85Hv8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF61RQheEGcJ54J4tWJ7vddjiKgSmqAKUilvq931WjVq7NIklfj3zPiICAhVwk-WvT7iub7NzM5HyAfGizxJnI6CyhlMUEIaWaFhT7pEaWetcLjeef5FTM6zz0u-PCDjfi0MllV2vr_16Y237o4Mu685vCrL4Tew1YwrCJEKdFZLfkjuABqQaJ3T5cddKkEkDX0ajo5weL9-rinyysOND5iBSFTTwzNJ_xWfDi-wUPJvFPpnMeVv0enkIXnQwUo6at_8ETkI1WNytyWa_PmE_IDJ-2lCbZXTs9HX05QimSdOtOkZSL3BjZ4utiukyULnV65pR-BDx20tO60LOgfrB29Z5ai0dHpdV9G8YfoIOZ3iOpN6FTagVJflevWUnJ98WownUUe2EHku2CayqWUCWThcxuIseM1V6nxSeJ8qoQGHFACVuOWZtRKBRUAkqQJsiivBHHtGjqq6Cs8J9Zht9amOlfUZl84qJwvBrPBFwYMWA8L6T2x814kcCTEuTV9y9t20gjEoGBNLA4IZkGh31VXbieOW8bKXntnTKAPB4pYr34Owdw_BBtyT0czgsTiTmOcVN8mAvOt1wYBFYprFVqHeruFOSmoNQT8bkONWN3b3AnfazHrh5fa0Zu9h-2eq8qLp-i2RsV2lL_77Z70l9yaL-czMQONekvt4Bv8cT-NX5GhzvQ2vAV1t3JvGen4BaG8iHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PINK1+and+PARK2+Suppress+Pancreatic+Tumorigenesis+through+Control+of+Mitochondrial+Iron-Mediated+Immunometabolism&rft.jtitle=Developmental+cell&rft.au=Li%2C+Changfeng&rft.au=Zhang%2C+Ying&rft.au=Cheng%2C+Xing&rft.au=Yuan%2C+Hua&rft.date=2018-08-20&rft.issn=1878-1551&rft.eissn=1878-1551&rft.volume=46&rft.issue=4&rft.spage=441&rft_id=info:doi/10.1016%2Fj.devcel.2018.07.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon