PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism
Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that...
Saved in:
Published in | Developmental cell Vol. 46; no. 4; pp. 441 - 455.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.08.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1−/− and park2−/− mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention.
[Display omitted]
•PINK1 and PARK2 suppress oncogenic Kras-driven pancreatic tumorigenesis•Mitochondrial iron accumulation contributes to pancreatic tumorigenesis•HIF1A is required for the Warburg effect in pancreatic tumorigenesis•AIM2-mediated HMGB1 release promotes pancreatic tumorigenesis
Li et al. demonstrate in mouse models that Pink1 and Park2 deficiency accelerates pancreatic tumorigenesis through mitochondrial iron-dependent immunometabolic dysfunction. These findings shed light on how the autophagy pathway controls iron homeostasis and could have implications for the development of strategies to target mitochondrial iron metabolism in pancreatic cancer. |
---|---|
AbstractList | Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1-/- and park2-/- mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention.Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1-/- and park2-/- mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1[-/-] and park2[-/-] mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved. Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1−/− and park2−/− mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. [Display omitted] •PINK1 and PARK2 suppress oncogenic Kras-driven pancreatic tumorigenesis•Mitochondrial iron accumulation contributes to pancreatic tumorigenesis•HIF1A is required for the Warburg effect in pancreatic tumorigenesis•AIM2-mediated HMGB1 release promotes pancreatic tumorigenesis Li et al. demonstrate in mouse models that Pink1 and Park2 deficiency accelerates pancreatic tumorigenesis through mitochondrial iron-dependent immunometabolic dysfunction. These findings shed light on how the autophagy pathway controls iron homeostasis and could have implications for the development of strategies to target mitochondrial iron metabolism in pancreatic cancer. Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras -driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1 −/− and park2 −/− mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic tumorigenesis through control of mitochondrial iron-dependent immunometabolism. Using mouse models of spontaneous pancreatic cancer, we show that depletion of Pink1 and Park2 accelerates mutant Kras-driven pancreatic tumorigenesis. PINK1-PARK2 pathway-mediated degradation of SLC25A37 and SLC25A28 increases mitochondrial iron accumulation, which leads to the HIF1A-dependent Warburg effect and AIM2-dependent inflammasome activation in tumor cells. AIM2-mediated HMGB1 release further induces expression of CD274/PD-L1. Consequently, pharmacological administration of mitochondrial iron chelator, anti-HMGB1 antibody, or genetic depletion of Hif1a or Aim2 in pink1 and park2 mice confers protection against pancreatic tumorigenesis. Low PARK2 expression and high SLC25A37 and AIM2 expression are associated with poor prognosis in patients with pancreatic cancer. These findings suggest that disrupted mitochondrial iron homeostasis may contribute to cancer development and hence constitute a target for therapeutic intervention. |
Author | Tang, Daolin Cheng, Xing Xie, Yangchun Lotze, Michael T. Liu, Jinbao Wen, Qirong Kang, Rui Klionsky, Daniel J. Li, Changfeng Yuan, Hua Zhang, Ying Liu, Jiao Zeh, Herbert J. Zhu, Shan Kroemer, Guido |
AuthorAffiliation | 6 Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; 75006 Paris, France 11 Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden 7 Institut National de la Santé et de la Recherche Médicale, U1138; Paris, France 8 Université Pierre et Marie Curie, 75006 Paris, France 13 Lead Contact 4 Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA 10 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; 75015 Paris, France 2 School of Nursing of Jilin University, Changchun, Jilin 130021, China 12 Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI USA 3 The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangz |
AuthorAffiliation_xml | – name: 6 Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; 75006 Paris, France – name: 12 Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI USA – name: 3 The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Protein Modification and Degradation of Guangdong Higher Education Institutes, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China – name: 13 Lead Contact – name: 11 Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden – name: 8 Université Pierre et Marie Curie, 75006 Paris, France – name: 10 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; 75015 Paris, France – name: 7 Institut National de la Santé et de la Recherche Médicale, U1138; Paris, France – name: 1 Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China – name: 9 Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France – name: 2 School of Nursing of Jilin University, Changchun, Jilin 130021, China – name: 4 Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA – name: 5 Université Paris Descartes, Sorbonne Paris Cité; 75006 Paris, France |
Author_xml | – sequence: 1 givenname: Changfeng surname: Li fullname: Li, Changfeng email: changfengli1975@sina.com organization: Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China – sequence: 2 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China – sequence: 3 givenname: Xing surname: Cheng fullname: Cheng, Xing organization: Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China – sequence: 4 givenname: Hua surname: Yuan fullname: Yuan, Hua organization: School of Nursing of Jilin University, Changchun, Jilin 130021, China – sequence: 5 givenname: Shan surname: Zhu fullname: Zhu, Shan organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China – sequence: 6 givenname: Jiao surname: Liu fullname: Liu, Jiao organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China – sequence: 7 givenname: Qirong surname: Wen fullname: Wen, Qirong organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China – sequence: 8 givenname: Yangchun surname: Xie fullname: Xie, Yangchun organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA – sequence: 9 givenname: Jinbao surname: Liu fullname: Liu, Jinbao organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China – sequence: 10 givenname: Guido surname: Kroemer fullname: Kroemer, Guido organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 11 givenname: Daniel J. surname: Klionsky fullname: Klionsky, Daniel J. organization: Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA – sequence: 12 givenname: Michael T. surname: Lotze fullname: Lotze, Michael T. organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA – sequence: 13 givenname: Herbert J. surname: Zeh fullname: Zeh, Herbert J. organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA – sequence: 14 givenname: Rui surname: Kang fullname: Kang, Rui organization: Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA – sequence: 15 givenname: Daolin surname: Tang fullname: Tang, Daolin email: tangd2@upmc.edu organization: The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510510, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30100261$$D View this record in MEDLINE/PubMed https://hal.science/hal-04702756$$DView record in HAL |
BookMark | eNqFkU-P0zAQxSO0iP0D3wAhH9lDwjiJY5cDUlUBW20XKljOluNMGleJ3bWTSnx7XLWsYA8wF4_s996M_LtMzqyzmCSvKWQUaPVumzW419hnOVCRAc-A5s-SCyq4SClj9Cz2rChTJoCfJ5chbCHaqIAXyXkBFCCv6EXysF5-uaVE2Yas599uc_J92u08hkDWymqPajSa3E-D82aDFoMJZOy8mzYdWTg7etcT15I7MzrdOdt4o3qy9M6md9gYNWJDlsMwWTfgqGrXmzC8TJ63qg_46nReJT8-fbxf3KSrr5-Xi_kq1awqxlTlqqhA0KouCyhRz5jIa01brXNRzTiFFljFFCuV4gDAkTLgAmMJJqqiLq6SD8fc3VQP2GiM26pe7rwZlP8pnTLy7xdrOrlxe8krVlKRx4DrY0D3xHYzX8nDHZQccs6qPY3at6dh3j1MGEY5mBDh9Mqim4LMQfDZrOS0jNI3f-71mPybSRSUR4H2LgSP7aOEgjygl1t5RC8P6CVwGdFH2_snNm3GiO9ASZn-f-bTZ2EksjfoZdAGrY4QPepRNs78O-AXIlXMWQ |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2019_05_008 crossref_primary_10_1097_SHK_0000000000001534 crossref_primary_10_3389_fcell_2021_640786 crossref_primary_10_1080_15548627_2018_1526611 crossref_primary_10_1186_s13578_021_00696_0 crossref_primary_10_1016_j_semcancer_2020_05_002 crossref_primary_10_1038_s41401_024_01254_3 crossref_primary_10_1111_cas_15568 crossref_primary_10_1016_j_canlet_2021_12_032 crossref_primary_10_1016_j_phymed_2022_154164 crossref_primary_10_1016_j_bbadis_2022_166400 crossref_primary_10_1038_s41418_020_00728_1 crossref_primary_10_1186_s12943_024_01934_y crossref_primary_10_3390_biom14020228 crossref_primary_10_3390_genes14020474 crossref_primary_10_3389_fonc_2022_868639 crossref_primary_10_1016_j_canlet_2023_216494 crossref_primary_10_1038_s41419_019_1881_x crossref_primary_10_1093_mtomcs_mfab021 crossref_primary_10_1186_s12943_025_02243_8 crossref_primary_10_3389_fonc_2021_616079 crossref_primary_10_1172_JCI132876 crossref_primary_10_1016_j_cell_2018_09_048 crossref_primary_10_1080_15548627_2022_2062887 crossref_primary_10_3390_ijms232012123 crossref_primary_10_1002_mco2_462 crossref_primary_10_1038_s41577_023_00894_6 crossref_primary_10_1002_iub_2585 crossref_primary_10_1186_s12964_021_00769_0 crossref_primary_10_3390_ijms26010092 crossref_primary_10_1097_MD_0000000000033478 crossref_primary_10_3390_ijms241814254 crossref_primary_10_4239_wjd_v15_i11_2189 crossref_primary_10_3390_cells9102229 crossref_primary_10_1038_s41467_020_20154_8 crossref_primary_10_1016_j_cca_2020_08_031 crossref_primary_10_1186_s13045_020_00936_9 crossref_primary_10_1038_s41598_024_59243_9 crossref_primary_10_3389_fmolb_2023_1203269 crossref_primary_10_1016_j_cytogfr_2025_01_004 crossref_primary_10_1038_s41417_023_00722_y crossref_primary_10_3389_fimmu_2020_601815 crossref_primary_10_1007_s10555_024_10211_9 crossref_primary_10_1080_15548627_2020_1847462 crossref_primary_10_3389_fcell_2020_594203 crossref_primary_10_1111_cpr_13327 crossref_primary_10_1177_11769343221120960 crossref_primary_10_1002_jbt_23557 crossref_primary_10_1016_j_yexcr_2023_113860 crossref_primary_10_1016_j_freeradbiomed_2020_12_452 crossref_primary_10_3389_fonc_2022_927640 crossref_primary_10_3390_ijms24076506 crossref_primary_10_3389_fcvm_2023_1018422 crossref_primary_10_1016_j_isci_2020_101797 crossref_primary_10_1007_s00018_024_05556_x crossref_primary_10_1038_s41568_019_0123_y crossref_primary_10_1016_j_ceca_2020_102308 crossref_primary_10_3389_fonc_2020_569887 crossref_primary_10_1515_oncologie_2023_0280 crossref_primary_10_1002_eji_201848070 crossref_primary_10_1080_15548627_2020_1810918 crossref_primary_10_1158_2159_8290_CD_18_1409 crossref_primary_10_1016_j_chembiol_2020_02_005 crossref_primary_10_1016_j_jbc_2023_104774 crossref_primary_10_3390_cancers17010051 crossref_primary_10_1016_j_devcel_2021_02_010 crossref_primary_10_3389_fmed_2022_887062 crossref_primary_10_3389_fcell_2023_1297024 crossref_primary_10_3389_fphys_2023_1236651 crossref_primary_10_1007_s12672_021_00454_1 crossref_primary_10_1016_j_phrs_2024_107079 crossref_primary_10_1007_s10565_020_09561_1 crossref_primary_10_1016_j_ijbiomac_2024_129607 crossref_primary_10_3390_ijms241713336 crossref_primary_10_1038_s41418_021_00760_9 crossref_primary_10_1016_j_biopha_2024_117407 crossref_primary_10_1146_annurev_cancerbio_030419_033405 crossref_primary_10_1016_j_arr_2024_102428 crossref_primary_10_1016_j_jare_2024_12_045 crossref_primary_10_1016_j_biopha_2022_113516 crossref_primary_10_3389_fcell_2021_699621 crossref_primary_10_1155_2022_3128933 crossref_primary_10_1089_ars_2019_8013 crossref_primary_10_2174_1568009622666220428102741 crossref_primary_10_3389_fonc_2020_599816 crossref_primary_10_1016_j_celrep_2019_06_039 crossref_primary_10_1016_j_trecan_2024_01_002 crossref_primary_10_1186_s12935_020_01494_3 crossref_primary_10_3390_ijms24021459 crossref_primary_10_1016_j_jnha_2024_100212 crossref_primary_10_1016_j_semcdb_2024_02_001 crossref_primary_10_1080_15548627_2020_1714209 crossref_primary_10_3390_cells8050493 crossref_primary_10_3390_cancers15010057 crossref_primary_10_1002_advs_201900860 crossref_primary_10_3389_fonc_2019_00790 crossref_primary_10_3390_cells11213464 crossref_primary_10_3390_ijms23116178 crossref_primary_10_1016_j_tibs_2021_07_003 crossref_primary_10_1038_s41598_025_95173_w crossref_primary_10_3390_cells11111838 crossref_primary_10_1074_jbc_RA120_014615 crossref_primary_10_3390_cancers15041112 crossref_primary_10_1080_1061186X_2020_1867992 crossref_primary_10_3390_cancers13133311 crossref_primary_10_1007_s00018_021_03774_1 crossref_primary_10_1111_imr_13235 crossref_primary_10_7554_eLife_69431 crossref_primary_10_1126_sciadv_adn8402 crossref_primary_10_1016_j_bbcan_2023_188932 crossref_primary_10_1016_j_expneurol_2023_114614 crossref_primary_10_1126_sciadv_abg7287 crossref_primary_10_1007_s13167_019_00170_5 crossref_primary_10_1016_j_bbcan_2021_188533 crossref_primary_10_1158_0008_5472_CAN_20_2017 crossref_primary_10_3390_curroncol30030231 crossref_primary_10_1017_erm_2023_14 crossref_primary_10_1158_0008_5472_CAN_21_3917 crossref_primary_10_15252_embj_2021110031 crossref_primary_10_4236_ijcm_2024_157021 crossref_primary_10_1097_JP9_0000000000000002 crossref_primary_10_1126_scitranslmed_adg3049 crossref_primary_10_1016_j_jbior_2024_101041 crossref_primary_10_1016_j_trecan_2023_02_001 crossref_primary_10_3390_cells9041063 crossref_primary_10_1016_j_bbrep_2024_101893 crossref_primary_10_1038_s41598_020_75258_4 crossref_primary_10_3390_ijms25168647 crossref_primary_10_3389_fcell_2021_802528 crossref_primary_10_3390_cells10102641 crossref_primary_10_1111_febs_16208 crossref_primary_10_3390_ijms21134714 crossref_primary_10_1021_acsnano_3c04632 crossref_primary_10_3389_fcell_2021_724282 crossref_primary_10_1016_j_lfs_2023_122063 crossref_primary_10_1007_s10528_021_10084_5 crossref_primary_10_1038_s41422_019_0164_5 crossref_primary_10_3389_fphar_2022_937413 crossref_primary_10_1038_s41556_019_0350_1 crossref_primary_10_1016_j_isci_2024_110598 crossref_primary_10_1016_j_semcdb_2019_05_029 crossref_primary_10_1016_j_tips_2023_12_003 crossref_primary_10_1093_carcin_bgad072 crossref_primary_10_1016_j_jbc_2023_104691 crossref_primary_10_3389_fimmu_2025_1533007 crossref_primary_10_3390_cancers13102475 crossref_primary_10_1080_15548627_2024_2425594 crossref_primary_10_1016_j_bbamcr_2024_119752 crossref_primary_10_1172_JCI180983 crossref_primary_10_1016_j_semcancer_2019_07_015 crossref_primary_10_1186_s12935_021_02166_6 crossref_primary_10_1016_j_canlet_2023_216590 crossref_primary_10_1080_08916934_2023_2289362 crossref_primary_10_18632_aging_205964 crossref_primary_10_1016_j_molmet_2024_102089 crossref_primary_10_1038_s41419_022_04927_1 crossref_primary_10_1371_journal_pbio_3001480 crossref_primary_10_1016_j_ijbiomac_2025_140602 crossref_primary_10_4103_jcrt_jcrt_2449_23 crossref_primary_10_1136_jitc_2019_000337 crossref_primary_10_4110_in_2024_24_e38 crossref_primary_10_1177_10732748241287905 crossref_primary_10_4103_1673_5374_295314 crossref_primary_10_3390_life12081129 crossref_primary_10_1038_s41388_024_03157_3 crossref_primary_10_3389_fonc_2024_1452282 crossref_primary_10_32604_or_2023_028051 crossref_primary_10_1038_s41577_022_00760_x crossref_primary_10_1016_j_yexcr_2021_112552 crossref_primary_10_3389_fcell_2020_00431 crossref_primary_10_1080_25785826_2020_1809951 crossref_primary_10_3389_fcell_2020_590226 crossref_primary_10_1016_j_jnutbio_2023_109407 crossref_primary_10_1186_s12957_023_03206_3 crossref_primary_10_1002_JLB_3MIR1218_497R crossref_primary_10_1016_j_apsb_2023_07_019 crossref_primary_10_1038_s41575_021_00486_6 |
Cites_doi | 10.1016/j.ccr.2014.06.025 10.1038/nature12865 10.1074/jbc.M110.209338 10.1053/j.gastro.2017.12.004 10.1038/nature19084 10.1053/j.gastro.2011.03.041 10.1101/gad.2016111 10.1083/jcb.200911078 10.1016/j.mam.2014.05.001 10.1038/nm.3908 10.1158/0008-5472.CAN-16-1979 10.1080/15548627.2016.1239678 10.1016/S1535-6108(03)00309-X 10.1038/onc.2012.631 10.1016/j.cmet.2011.04.008 10.1097/00000478-200105000-00003 10.1038/nature04512 10.1002/hep.28251 10.1038/nature13611 10.1084/jem.20161707 10.1038/nm1622 10.1007/978-1-4939-1875-1_3 10.1038/ncb2012 10.1038/nrm2245 10.1128/MCB.01685-08 10.1172/JCI67230 10.3791/50514-v 10.1016/j.mito.2016.05.003 10.1038/nature14587 10.4161/cc.7.1.5145 10.1038/nrm3028 10.1038/nature13148 10.1158/0008-5472.CAN-15-3079 10.1158/2159-8290.CD-15-0822 10.1053/j.gastro.2017.07.036 10.1038/cr.2017.51 10.1093/hmg/ddr048 10.1038/nprot.2013.079 10.1210/me.2014-1367 10.4049/jimmunol.1502340 10.1038/nrc.2016.77 10.1111/jnc.13655 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1016/j.devcel.2018.07.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-1551 |
EndPage | 455.e8 |
ExternalDocumentID | PMC7654182 oai_HAL_hal_04702756v1 30100261 10_1016_j_devcel_2018_07_012 S1534580718305975 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA181450 – fundername: NCI NIH HHS grantid: R01 CA211070 – fundername: NIGMS NIH HHS grantid: R01 GM053396 – fundername: NIGMS NIH HHS grantid: R01 GM115366 – fundername: NCI NIH HHS grantid: R01 CA160417 – fundername: NCI NIH HHS grantid: P30 CA047904 – fundername: EPA grantid: EP-C-16-014 |
GroupedDBID | --- --K 0R~ 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EFKBS FGOYB HZ~ OZT R2- UHS CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c563t-a2a360816b4304ec9582bc1fcc2869710f0565a54aa70007e15078eeee85863b3 |
IEDL.DBID | IXB |
ISSN | 1534-5807 1878-1551 |
IngestDate | Thu Aug 21 13:28:15 EDT 2025 Fri May 09 12:20:53 EDT 2025 Tue Aug 05 10:19:56 EDT 2025 Thu Aug 28 04:18:58 EDT 2025 Thu Aug 21 00:09:40 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:26:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | pink1 park2 aim2 mitochondrial quality control mitophagy inflammasomes pancreatic tumorigenesis iron immunosuppression hmgb1 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-a2a360816b4304ec9582bc1fcc2869710f0565a54aa70007e15078eeee85863b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 D.T. and C.L. designed the experiments. C.L., Y.Z., X.C., H.Y., S.Z., J.L., Q.W., Y.X., J.L., R.K., and D.T conducted the experiments. D.T. and C.L. wrote the paper. M.T.L. and H.J.Z. provided the reagents. G.K. and D.J.K. edited and commented on the manuscript. Author Contributions |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1534580718305975 |
PMID | 30100261 |
PQID | 2087994714 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7654182 hal_primary_oai_HAL_hal_04702756v1 proquest_miscellaneous_2087994714 pubmed_primary_30100261 crossref_primary_10_1016_j_devcel_2018_07_012 crossref_citationtrail_10_1016_j_devcel_2018_07_012 elsevier_sciencedirect_doi_10_1016_j_devcel_2018_07_012 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-20 |
PublicationDateYYYYMMDD | 2018-08-20 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental cell |
PublicationTitleAlternate | Dev Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Kang, Xie, Zhang, Hou, Jiang, Zhu, Liu, Zeng, Wang, Bartlett (bib15) 2017 Tang, Kang, Livesey, Cheh, Farkas, Loughran, Hoppe, Bianchi, Tracey, Zeh (bib33) 2010; 190 Perera, Stoykova, Nicolay, Ross, Fitamant, Boukhali, Lengrand, Deshpande, Selig, Ferrone (bib23) 2015; 524 Sun, Ou, Chen, Niu, Chen, Kang, Tang (bib32) 2016; 63 Kang, Chen, Zhang, Hou, Wu, Cao, Huang, Yu, Fan, Yan (bib12) 2014; 40 Paradkar, Zumbrennen, Paw, Ward, Kaplan (bib22) 2009; 29 Reichert, Takano, Heeg, Bakir, Botta, Rustgi (bib25) 2013; 8 Tang, Kang, Livesey, Kroemer, Billiar, Van Houten, Zeh, Lotze (bib34) 2011; 13 Yang, Wang, Contino, Liesa, Sahin, Ying, Bause, Li, Stommel, Dell'antonio (bib40) 2011; 25 Klionsky (bib17) 2007; 8 Sousa, Biancur, Wang, Halbrook, Sherman, Zhang, Kremer, Hwang, Witkiewicz, Ying (bib31) 2016; 536 Maes, Kuchnio, Peric, Moens, Nys, De Bock, Quaegebeur, Schoors, Georgiadou, Wouters (bib19) 2014; 26 Viale, Pettazzoni, Lyssiotis, Ying, Sánchez, Marchesini, Carugo, Green, Seth, Giuliani (bib35) 2014; 514 Kang, Xie, Zhang, Hou, Jiang, Zhu, Liu, Zeng, Wang, Bartlett (bib14) 2017; 27 Lee, Spata, Bayne, Buza, Durham, Allman, Vonderheide, Simon (bib18) 2016; 6 Xie, Zhu, Zhong, Yang, Sun, Liu, Kroemer, Lotze, Zeh, Kang (bib39) 2017; 153 Hingorani, Petricoin, Maitra, Rajapakse, King, Jacobetz, Ross, Conrads, Veenstra, Hitt (bib8) 2003; 4 Kang, Tang, Schapiro, Loux, Livesey, Billiar, Wang, Van Houten, Lotze, Zeh (bib13) 2014; 33 Peyssonnaux, Nizet, Johnson (bib24) 2008; 7 Geisler, Holmström, Skujat, Fiesel, Rothfuss, Kahle, Springer (bib5) 2010; 12 Voigt, Berlemann, Winklhofer (bib36) 2016; 139 Gout, Pommier, Vincent, Kaniewski, Martel, Valcourt, Bartholin (bib6) 2013 Apetoh, Ghiringhelli, Tesniere, Obeid, Ortiz, Criollo, Mignot, Maiuri, Ullrich, Saulnier (bib2) 2007; 13 Hruban, Adsay, Albores-Saavedra, Compton, Garrett, Goodman, Kern, Klimstra, Klöppel, Longnecker (bib10) 2001; 25 Rooney, Ryde, Sanders, Howlett, Colton, Germ, Mayer, Greenamyre, Meyer (bib26) 2015; 1241 Yoshii, Kishi, Ishihara, Mizushima (bib41) 2011; 286 Shaw, Cope, Li, Corson, Hersey, Ackermann, Gwynn, Lambert, Wingert, Traver (bib29) 2006; 440 Wilson, Petrucelli, Chen, Koblansky, Truax, Oyama, Rogers, Brickey, Wang, Schneider (bib38) 2015; 21 Daley, Mani, Mohan, Akkad, Pandian, Savadkar, Lee, Torres-Hernandez, Aykut, Diskin (bib4) 2017; 214 Agnihotri, Golbourn, Huang, Remke, Younger, Cairns, Chalil, Smith, Krumholtz, Mackenzie (bib1) 2016; 76 Mancias, Wang, Gygi, Harper, Kimmelman (bib21) 2014; 509 Malik, Czajka, Cunningham (bib20) 2016; 29 Rosenfeldt, O'Prey, Morton, Nixon, MacKay, Mrowinska, Au, Rai, Zheng, Ridgway (bib27) 2013; 504 Kang, Zeng, Xie, Yan, Zhou, Cao, Klionsky, Tracey, Li, Wang (bib16) 2016; 12 Song, Zhu, Xie, Liu, Sun, Zeng, Wang, Ma, Kroemer, Bartlett (bib30) 2018; 154 Hay (bib7) 2016; 16 Watada, Fujitani (bib37) 2015; 29 Semenza (bib28) 2013; 123 Chan, Salazar, Pham, Sweredoski, Kolawa, Graham, Hess, Chan (bib3) 2011; 20 Youle, Narendra (bib42) 2011; 12 Hoque, Sohail, Malik, Sarwar, Luo, Shah, Barrat, Flavell, Gorelick, Husain (bib9) 2011; 141 Kang, Chen, Xie, Cao, Lotze, Tang, Zeh (bib11) 2016; 196 Zhu, Zhang, Sun, Zeh, Lotze, Kang, Tang (bib43) 2017; 77 Reichert (10.1016/j.devcel.2018.07.012_bib25) 2013; 8 Perera (10.1016/j.devcel.2018.07.012_bib23) 2015; 524 Semenza (10.1016/j.devcel.2018.07.012_bib28) 2013; 123 Viale (10.1016/j.devcel.2018.07.012_bib35) 2014; 514 Malik (10.1016/j.devcel.2018.07.012_bib20) 2016; 29 Kang (10.1016/j.devcel.2018.07.012_bib11) 2016; 196 Tang (10.1016/j.devcel.2018.07.012_bib34) 2011; 13 Kang (10.1016/j.devcel.2018.07.012_bib16) 2016; 12 Wilson (10.1016/j.devcel.2018.07.012_bib38) 2015; 21 Kang (10.1016/j.devcel.2018.07.012_bib12) 2014; 40 Hingorani (10.1016/j.devcel.2018.07.012_bib8) 2003; 4 Yoshii (10.1016/j.devcel.2018.07.012_bib41) 2011; 286 Apetoh (10.1016/j.devcel.2018.07.012_bib2) 2007; 13 Voigt (10.1016/j.devcel.2018.07.012_bib36) 2016; 139 Kang (10.1016/j.devcel.2018.07.012_bib14) 2017; 27 Paradkar (10.1016/j.devcel.2018.07.012_bib22) 2009; 29 Watada (10.1016/j.devcel.2018.07.012_bib37) 2015; 29 Gout (10.1016/j.devcel.2018.07.012_bib6) 2013 Chan (10.1016/j.devcel.2018.07.012_bib3) 2011; 20 Klionsky (10.1016/j.devcel.2018.07.012_bib17) 2007; 8 Hay (10.1016/j.devcel.2018.07.012_bib7) 2016; 16 Kang (10.1016/j.devcel.2018.07.012_bib13) 2014; 33 Tang (10.1016/j.devcel.2018.07.012_bib33) 2010; 190 Rosenfeldt (10.1016/j.devcel.2018.07.012_bib27) 2013; 504 Rooney (10.1016/j.devcel.2018.07.012_bib26) 2015; 1241 Hoque (10.1016/j.devcel.2018.07.012_bib9) 2011; 141 Geisler (10.1016/j.devcel.2018.07.012_bib5) 2010; 12 Youle (10.1016/j.devcel.2018.07.012_bib42) 2011; 12 Zhu (10.1016/j.devcel.2018.07.012_bib43) 2017; 77 Yang (10.1016/j.devcel.2018.07.012_bib40) 2011; 25 Daley (10.1016/j.devcel.2018.07.012_bib4) 2017; 214 Lee (10.1016/j.devcel.2018.07.012_bib18) 2016; 6 Sousa (10.1016/j.devcel.2018.07.012_bib31) 2016; 536 Hruban (10.1016/j.devcel.2018.07.012_bib10) 2001; 25 Maes (10.1016/j.devcel.2018.07.012_bib19) 2014; 26 Kang (10.1016/j.devcel.2018.07.012_bib15) 2017 Peyssonnaux (10.1016/j.devcel.2018.07.012_bib24) 2008; 7 Sun (10.1016/j.devcel.2018.07.012_bib32) 2016; 63 Xie (10.1016/j.devcel.2018.07.012_bib39) 2017; 153 Shaw (10.1016/j.devcel.2018.07.012_bib29) 2006; 440 Mancias (10.1016/j.devcel.2018.07.012_bib21) 2014; 509 Song (10.1016/j.devcel.2018.07.012_bib30) 2018; 154 Agnihotri (10.1016/j.devcel.2018.07.012_bib1) 2016; 76 30252570 - Autophagy. 2019 Jan;15(1):172-173. doi: 10.1080/15548627.2018.1526611. 40780210 - Dev Cell. 2025 Aug 18;60(16):2209-2210. doi: 10.1016/j.devcel.2025.07.018. |
References_xml | – year: 2017 ident: bib15 article-title: Intracellular HMGB1 as a Novel Tumor Suppressor of Pancreatic Cancer – volume: 7 start-page: 28 year: 2008 end-page: 32 ident: bib24 article-title: Role of the hypoxia inducible factors HIF in iron metabolism publication-title: Cell Cycle – volume: 8 start-page: 931 year: 2007 end-page: 937 ident: bib17 article-title: Autophagy: from phenomenology to molecular understanding in less than a decade publication-title: Nat. Rev. Mol. Cell Biol. – volume: 63 start-page: 173 year: 2016 end-page: 184 ident: bib32 article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells publication-title: Hepatology – volume: 190 start-page: 881 year: 2010 end-page: 892 ident: bib33 article-title: Endogenous HMGB1 regulates autophagy publication-title: J. Cell Biol. – volume: 440 start-page: 96 year: 2006 end-page: 100 ident: bib29 article-title: Mitoferrin is essential for erythroid iron assimilation publication-title: Nature – volume: 13 start-page: 1050 year: 2007 end-page: 1059 ident: bib2 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. – volume: 286 start-page: 19630 year: 2011 end-page: 19640 ident: bib41 article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane publication-title: J. Biol. Chem. – volume: 13 start-page: 701 year: 2011 end-page: 711 ident: bib34 article-title: High-mobility group box 1 is essential for mitochondrial quality control publication-title: Cell Metab. – volume: 524 start-page: 361 year: 2015 end-page: 365 ident: bib23 article-title: Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism publication-title: Nature – volume: 25 start-page: 717 year: 2011 end-page: 729 ident: bib40 article-title: Pancreatic cancers require autophagy for tumor growth publication-title: Genes Dev. – volume: 29 start-page: 59 year: 2016 end-page: 64 ident: bib20 article-title: Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences publication-title: Mitochondrion – volume: 12 start-page: 119 year: 2010 end-page: 131 ident: bib5 article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 publication-title: Nat. Cell. Biol. – volume: 40 start-page: 1 year: 2014 end-page: 116 ident: bib12 article-title: HMGB1 in health and disease publication-title: Mol. Aspects Med. – volume: 536 start-page: 479 year: 2016 end-page: 483 ident: bib31 article-title: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion publication-title: Nature – volume: 29 start-page: 338 year: 2015 end-page: 348 ident: bib37 article-title: Minireview: autophagy in pancreatic beta-cells and its implication in diabetes publication-title: Mol. Endocrinol. – volume: 26 start-page: 190 year: 2014 end-page: 206 ident: bib19 article-title: Tumor vessel normalization by chloroquine independent of autophagy publication-title: Cancer Cell – volume: 6 start-page: 256 year: 2016 end-page: 269 ident: bib18 article-title: Hif1a deletion reveals pro-neoplastic function of B. Cells in pancreatic neoplasia publication-title: Cancer Discov. – year: 2013 ident: bib6 article-title: Isolation and culture of mouse primary pancreatic acinar cells publication-title: J. Vis. Exp. – volume: 509 start-page: 105 year: 2014 end-page: 109 ident: bib21 article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy publication-title: Nature – volume: 153 start-page: 1429 year: 2017 end-page: 1443.e5 ident: bib39 article-title: Inhibition of Aurora kinase A induces necroptosis in pancreatic carcinoma publication-title: Gastroenterology – volume: 514 start-page: 628 year: 2014 end-page: 632 ident: bib35 article-title: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 4 start-page: 437 year: 2003 end-page: 450 ident: bib8 article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse publication-title: Cancer Cell – volume: 214 start-page: 1711 year: 2017 end-page: 1724 ident: bib4 article-title: NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma publication-title: J. Exp. Med. – volume: 8 start-page: 1354 year: 2013 end-page: 1365 ident: bib25 article-title: Isolation, culture and genetic manipulation of mouse pancreatic ductal cells publication-title: Nat. Protoc. – volume: 25 start-page: 579 year: 2001 end-page: 586 ident: bib10 article-title: Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions publication-title: Am. J. Surg. Pathol. – volume: 20 start-page: 1726 year: 2011 end-page: 1737 ident: bib3 article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy publication-title: Hum. Mol. Genet. – volume: 123 start-page: 3664 year: 2013 end-page: 3671 ident: bib28 article-title: HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations publication-title: J. Clin. Invest. – volume: 12 start-page: 9 year: 2011 end-page: 14 ident: bib42 article-title: Mechanisms of mitophagy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 29 start-page: 1007 year: 2009 end-page: 1016 ident: bib22 article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2 publication-title: Mol. Cell. Biol. – volume: 16 start-page: 635 year: 2016 end-page: 649 ident: bib7 article-title: Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? publication-title: Nat. Rev. Cancer – volume: 196 start-page: 4331 year: 2016 end-page: 4337 ident: bib11 article-title: The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis publication-title: J. Immunol. – volume: 139 start-page: 232 year: 2016 end-page: 239 ident: bib36 article-title: The mitochondrial kinase PINK1: functions beyond mitophagy publication-title: J. Neurochem. – volume: 27 start-page: 916 year: 2017 end-page: 932 ident: bib14 article-title: Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer publication-title: Cell Res. – volume: 154 start-page: 1480 year: 2018 end-page: 1493 ident: bib30 article-title: JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice publication-title: Gastroenterology – volume: 77 start-page: 2064 year: 2017 end-page: 2077 ident: bib43 article-title: HSPA5 regulates ferroptotic cell death in cancer cells publication-title: Cancer Res. – volume: 33 start-page: 567 year: 2014 end-page: 577 ident: bib13 article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics publication-title: Oncogene – volume: 504 start-page: 296 year: 2013 end-page: 300 ident: bib27 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature – volume: 141 start-page: 358 year: 2011 end-page: 369 ident: bib9 article-title: TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis publication-title: Gastroenterology – volume: 21 start-page: 906 year: 2015 end-page: 913 ident: bib38 article-title: Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt publication-title: Nat. Med. – volume: 1241 start-page: 23 year: 2015 end-page: 38 ident: bib26 article-title: PCR based determination of mitochondrial DNA copy number in multiple species publication-title: Methods Mol. Biol. – volume: 76 start-page: 4708 year: 2016 end-page: 4719 ident: bib1 article-title: PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma publication-title: Cancer Res. – volume: 12 start-page: 2374 year: 2016 end-page: 2385 ident: bib16 article-title: A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis publication-title: Autophagy – volume: 26 start-page: 190 year: 2014 ident: 10.1016/j.devcel.2018.07.012_bib19 article-title: Tumor vessel normalization by chloroquine independent of autophagy publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.06.025 – volume: 504 start-page: 296 year: 2013 ident: 10.1016/j.devcel.2018.07.012_bib27 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature doi: 10.1038/nature12865 – volume: 286 start-page: 19630 year: 2011 ident: 10.1016/j.devcel.2018.07.012_bib41 article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.209338 – volume: 154 start-page: 1480 year: 2018 ident: 10.1016/j.devcel.2018.07.012_bib30 article-title: JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.12.004 – year: 2017 ident: 10.1016/j.devcel.2018.07.012_bib15 – volume: 536 start-page: 479 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib31 article-title: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion publication-title: Nature doi: 10.1038/nature19084 – volume: 141 start-page: 358 year: 2011 ident: 10.1016/j.devcel.2018.07.012_bib9 article-title: TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.03.041 – volume: 25 start-page: 717 year: 2011 ident: 10.1016/j.devcel.2018.07.012_bib40 article-title: Pancreatic cancers require autophagy for tumor growth publication-title: Genes Dev. doi: 10.1101/gad.2016111 – volume: 190 start-page: 881 year: 2010 ident: 10.1016/j.devcel.2018.07.012_bib33 article-title: Endogenous HMGB1 regulates autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200911078 – volume: 40 start-page: 1 year: 2014 ident: 10.1016/j.devcel.2018.07.012_bib12 article-title: HMGB1 in health and disease publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2014.05.001 – volume: 21 start-page: 906 year: 2015 ident: 10.1016/j.devcel.2018.07.012_bib38 article-title: Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt publication-title: Nat. Med. doi: 10.1038/nm.3908 – volume: 77 start-page: 2064 year: 2017 ident: 10.1016/j.devcel.2018.07.012_bib43 article-title: HSPA5 regulates ferroptotic cell death in cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1979 – volume: 12 start-page: 2374 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib16 article-title: A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis publication-title: Autophagy doi: 10.1080/15548627.2016.1239678 – volume: 4 start-page: 437 year: 2003 ident: 10.1016/j.devcel.2018.07.012_bib8 article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00309-X – volume: 33 start-page: 567 year: 2014 ident: 10.1016/j.devcel.2018.07.012_bib13 article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics publication-title: Oncogene doi: 10.1038/onc.2012.631 – volume: 13 start-page: 701 year: 2011 ident: 10.1016/j.devcel.2018.07.012_bib34 article-title: High-mobility group box 1 is essential for mitochondrial quality control publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.04.008 – volume: 25 start-page: 579 year: 2001 ident: 10.1016/j.devcel.2018.07.012_bib10 article-title: Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions publication-title: Am. J. Surg. Pathol. doi: 10.1097/00000478-200105000-00003 – volume: 440 start-page: 96 year: 2006 ident: 10.1016/j.devcel.2018.07.012_bib29 article-title: Mitoferrin is essential for erythroid iron assimilation publication-title: Nature doi: 10.1038/nature04512 – volume: 63 start-page: 173 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib32 article-title: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells publication-title: Hepatology doi: 10.1002/hep.28251 – volume: 514 start-page: 628 year: 2014 ident: 10.1016/j.devcel.2018.07.012_bib35 article-title: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature doi: 10.1038/nature13611 – volume: 214 start-page: 1711 year: 2017 ident: 10.1016/j.devcel.2018.07.012_bib4 article-title: NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma publication-title: J. Exp. Med. doi: 10.1084/jem.20161707 – volume: 13 start-page: 1050 year: 2007 ident: 10.1016/j.devcel.2018.07.012_bib2 article-title: Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy publication-title: Nat. Med. doi: 10.1038/nm1622 – volume: 1241 start-page: 23 year: 2015 ident: 10.1016/j.devcel.2018.07.012_bib26 article-title: PCR based determination of mitochondrial DNA copy number in multiple species publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1875-1_3 – volume: 12 start-page: 119 year: 2010 ident: 10.1016/j.devcel.2018.07.012_bib5 article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 publication-title: Nat. Cell. Biol. doi: 10.1038/ncb2012 – volume: 8 start-page: 931 year: 2007 ident: 10.1016/j.devcel.2018.07.012_bib17 article-title: Autophagy: from phenomenology to molecular understanding in less than a decade publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2245 – volume: 29 start-page: 1007 year: 2009 ident: 10.1016/j.devcel.2018.07.012_bib22 article-title: Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01685-08 – volume: 123 start-page: 3664 year: 2013 ident: 10.1016/j.devcel.2018.07.012_bib28 article-title: HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations publication-title: J. Clin. Invest. doi: 10.1172/JCI67230 – year: 2013 ident: 10.1016/j.devcel.2018.07.012_bib6 article-title: Isolation and culture of mouse primary pancreatic acinar cells publication-title: J. Vis. Exp. doi: 10.3791/50514-v – volume: 29 start-page: 59 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib20 article-title: Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences publication-title: Mitochondrion doi: 10.1016/j.mito.2016.05.003 – volume: 524 start-page: 361 year: 2015 ident: 10.1016/j.devcel.2018.07.012_bib23 article-title: Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism publication-title: Nature doi: 10.1038/nature14587 – volume: 7 start-page: 28 year: 2008 ident: 10.1016/j.devcel.2018.07.012_bib24 article-title: Role of the hypoxia inducible factors HIF in iron metabolism publication-title: Cell Cycle doi: 10.4161/cc.7.1.5145 – volume: 12 start-page: 9 year: 2011 ident: 10.1016/j.devcel.2018.07.012_bib42 article-title: Mechanisms of mitophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3028 – volume: 509 start-page: 105 year: 2014 ident: 10.1016/j.devcel.2018.07.012_bib21 article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy publication-title: Nature doi: 10.1038/nature13148 – volume: 76 start-page: 4708 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib1 article-title: PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3079 – volume: 6 start-page: 256 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib18 article-title: Hif1a deletion reveals pro-neoplastic function of B. Cells in pancreatic neoplasia publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0822 – volume: 153 start-page: 1429 year: 2017 ident: 10.1016/j.devcel.2018.07.012_bib39 article-title: Inhibition of Aurora kinase A induces necroptosis in pancreatic carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.07.036 – volume: 27 start-page: 916 year: 2017 ident: 10.1016/j.devcel.2018.07.012_bib14 article-title: Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer publication-title: Cell Res. doi: 10.1038/cr.2017.51 – volume: 20 start-page: 1726 year: 2011 ident: 10.1016/j.devcel.2018.07.012_bib3 article-title: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr048 – volume: 8 start-page: 1354 year: 2013 ident: 10.1016/j.devcel.2018.07.012_bib25 article-title: Isolation, culture and genetic manipulation of mouse pancreatic ductal cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.079 – volume: 29 start-page: 338 year: 2015 ident: 10.1016/j.devcel.2018.07.012_bib37 article-title: Minireview: autophagy in pancreatic beta-cells and its implication in diabetes publication-title: Mol. Endocrinol. doi: 10.1210/me.2014-1367 – volume: 196 start-page: 4331 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib11 article-title: The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis publication-title: J. Immunol. doi: 10.4049/jimmunol.1502340 – volume: 16 start-page: 635 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib7 article-title: Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.77 – volume: 139 start-page: 232 year: 2016 ident: 10.1016/j.devcel.2018.07.012_bib36 article-title: The mitochondrial kinase PINK1: functions beyond mitophagy publication-title: J. Neurochem. doi: 10.1111/jnc.13655 – reference: 40780210 - Dev Cell. 2025 Aug 18;60(16):2209-2210. doi: 10.1016/j.devcel.2025.07.018. – reference: 30252570 - Autophagy. 2019 Jan;15(1):172-173. doi: 10.1080/15548627.2018.1526611. |
SSID | ssj0016180 |
Score | 2.6330774 |
Snippet | Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic... Pancreatic cancer is an aggressive malignancy with changes in the tumor microenvironment. Here, we demonstrate that PINK1 and PARK2 suppressed pancreatic... |
SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 441 |
SubjectTerms | aim2 Animals Autophagy - physiology Carcinogenesis - metabolism Cell Transformation, Neoplastic - pathology hmgb1 immunosuppression inflammasomes iron Iron - metabolism Life Sciences Mice, Transgenic Mitochondria - genetics Mitochondria - metabolism Mitochondrial Proteins - metabolism mitochondrial quality control mitophagy Mitophagy - genetics pancreatic tumorigenesis park2 pink1 Protein Kinases - genetics Protein Kinases - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism |
Title | PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism |
URI | https://dx.doi.org/10.1016/j.devcel.2018.07.012 https://www.ncbi.nlm.nih.gov/pubmed/30100261 https://www.proquest.com/docview/2087994714 https://hal.science/hal-04702756 https://pubmed.ncbi.nlm.nih.gov/PMC7654182 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddYbCX0XVf6T7Qxl5NbMv6eszCSrouo2wt5E1Iskw9GrtrksL--93JdlhWRmF-smXZln2nu5Pv40fIB8arMsucToIqGSxQQp5YoWFPukxpZ61wmO88_ypmF8XnBV_skemQC4Nhlb3s72R6lNZ9y7j_muPruh5_h7lacAUqUgHPaomJ5qxQMYlv8XHrSRBZRE_Dzgn2HtLnYoxXGW59QAdEpmIJzyz_l3p6cIlxkneN0L9jKf9QTscH5HFvVdJJN_AnZC80h-RhhzP56yn5CWv304zapqRnk2-nOUUsT1xn0zMgejQbPT3fLBElC2VfvaI9fg-ddqHstK3oHCY_CMumRJ6lJzdtk8wj0Eco6QmmmbTLsAaeuqpXy2fk4vjT-XSW9FgLieeCrRObWyYQhMMVLC2C11zlzmeV97kSGsyQCiwlbnlhrUS7IqAhqQJsiivBHHtO9pu2CS8J9ehs9blOlfUFl84qJyvBrPBVxYMWI8KGT2x8X4gc8TCuzBBx9sN0hDFIGJNKA4QZkWR71XVXiOOe_nKgntlhKAO64p4r3wOxtw_B-tuzyReDbWkh0c0rbrMReTfwgoEJiV4W24R2s4I7Kak16PxiRF50vLG9F0jTuOiFwe1wzc7Dds809WUs-i0RsF3lR__9Wq_IIzzC_-F5-prsr2824Q0YVGv3Ns6Y3_85Hv8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF61RQheEGcJ54J4tWJ7vddjiKgSmqAKUilvq931WjVq7NIklfj3zPiICAhVwk-WvT7iub7NzM5HyAfGizxJnI6CyhlMUEIaWaFhT7pEaWetcLjeef5FTM6zz0u-PCDjfi0MllV2vr_16Y237o4Mu685vCrL4Tew1YwrCJEKdFZLfkjuABqQaJ3T5cddKkEkDX0ajo5weL9-rinyysOND5iBSFTTwzNJ_xWfDi-wUPJvFPpnMeVv0enkIXnQwUo6at_8ETkI1WNytyWa_PmE_IDJ-2lCbZXTs9HX05QimSdOtOkZSL3BjZ4utiukyULnV65pR-BDx20tO60LOgfrB29Z5ai0dHpdV9G8YfoIOZ3iOpN6FTagVJflevWUnJ98WownUUe2EHku2CayqWUCWThcxuIseM1V6nxSeJ8qoQGHFACVuOWZtRKBRUAkqQJsiivBHHtGjqq6Cs8J9Zht9amOlfUZl84qJwvBrPBFwYMWA8L6T2x814kcCTEuTV9y9t20gjEoGBNLA4IZkGh31VXbieOW8bKXntnTKAPB4pYr34Owdw_BBtyT0czgsTiTmOcVN8mAvOt1wYBFYprFVqHeruFOSmoNQT8bkONWN3b3AnfazHrh5fa0Zu9h-2eq8qLp-i2RsV2lL_77Z70l9yaL-czMQONekvt4Bv8cT-NX5GhzvQ2vAV1t3JvGen4BaG8iHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PINK1+and+PARK2+Suppress+Pancreatic+Tumorigenesis+through+Control+of+Mitochondrial+Iron-Mediated+Immunometabolism&rft.jtitle=Developmental+cell&rft.au=Li%2C+Changfeng&rft.au=Zhang%2C+Ying&rft.au=Cheng%2C+Xing&rft.au=Yuan%2C+Hua&rft.date=2018-08-20&rft.issn=1878-1551&rft.eissn=1878-1551&rft.volume=46&rft.issue=4&rft.spage=441&rft_id=info:doi/10.1016%2Fj.devcel.2018.07.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon |