PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications
Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (P...
Saved in:
Published in | Molecular cancer Vol. 19; no. 1; pp. 49 - 15 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
02.03.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1476-4598 1476-4598 |
DOI | 10.1186/s12943-020-01167-9 |
Cover
Loading…
Abstract | Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer. |
---|---|
AbstractList | Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer. Keywords: PARP inhibitor, Pancreatic cancer, BRCA, Synthetic lethality, Homologous recombination repair, Chemotherapy resistance, Biomarkers Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer. Abstract Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer. Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer.Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer. |
ArticleNumber | 49 |
Audience | Academic |
Author | Hua, Jie Liang, Chen Yu, Xianjun Wei, Miaoyan Liu, Jiang Zhang, Bo Shi, Si Meng, Qingcai Zhang, Yiyin Xu, Jin Zhu, Heng |
Author_xml | – sequence: 1 givenname: Heng surname: Zhu fullname: Zhu, Heng – sequence: 2 givenname: Miaoyan surname: Wei fullname: Wei, Miaoyan – sequence: 3 givenname: Jin surname: Xu fullname: Xu, Jin – sequence: 4 givenname: Jie surname: Hua fullname: Hua, Jie – sequence: 5 givenname: Chen surname: Liang fullname: Liang, Chen – sequence: 6 givenname: Qingcai surname: Meng fullname: Meng, Qingcai – sequence: 7 givenname: Yiyin surname: Zhang fullname: Zhang, Yiyin – sequence: 8 givenname: Jiang surname: Liu fullname: Liu, Jiang – sequence: 9 givenname: Bo surname: Zhang fullname: Zhang, Bo – sequence: 10 givenname: Xianjun surname: Yu fullname: Yu, Xianjun – sequence: 11 givenname: Si orcidid: 0000-0002-6652-0629 surname: Shi fullname: Shi, Si |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32122376$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kltrFDEUxwep2It-AR9kwBdfpuYyufkgLMVLoWCR-hzOZJLdlEyyJrMFv73Z3Va7RSQPOZz8zy85J__T5iimaJvmNUbnGEv-vmCietohgjqEMRedetac4F7wrmdKHj2Kj5vTUm4RwkKK_kVzTAkmhAp-0txcL75ftz6u_ODnlEsN2zVEky3M3rSmhjZ_aKcUrNkEyO1kzQqiL1NpIY6tCT56A6GF9TrUYPYplpfNcweh2Ff3-1nz4_Onm4uv3dW3L5cXi6vOME7nTtbnC1cf6ZRjVpIBAWCLe-YwRkQ5UASNjKhBAEg6OooZw1wSNhIkBWX0rLncc8cEt3qd_QT5l07g9S6R8lJDrm0Eq4FyR4CL3tRFkFVucIhxGDhHYz9AZX3cs9abYbKjsXHOEA6ghyfRr_Qy3WmBGK0fUQHv7gE5_dzYMuvJF2NDgGjTpug6b9Qrjiiq0rdPpLdpk2Md1ValMKNU0L-qJdQGfHSp3mu2UL3gmFMmqZJVdf4PVV2jnbyphnG-5g8K3jxu9E-HD56oArkXmJxKydZp4-fdx1ayDxojvbWf3ttPV_vpnf30dgbkSekD_T9FvwEerdo4 |
CitedBy_id | crossref_primary_10_3389_fonc_2021_681441 crossref_primary_10_4251_wjgo_v13_i11_1544 crossref_primary_10_1016_j_dnarep_2021_103125 crossref_primary_10_2147_IJN_S415631 crossref_primary_10_1186_s12967_025_06304_w crossref_primary_10_1245_s10434_024_16011_3 crossref_primary_10_3892_or_2024_8752 crossref_primary_10_1016_j_brainres_2024_148988 crossref_primary_10_1021_acs_jmedchem_4c00113 crossref_primary_10_2174_1389557523666230221145844 crossref_primary_10_1016_j_biopha_2022_113607 crossref_primary_10_1186_s13045_024_01613_x crossref_primary_10_1016_j_tips_2020_09_008 crossref_primary_10_1021_acs_jmedchem_3c00821 crossref_primary_10_1097_CAD_0000000000001712 crossref_primary_10_3390_ijms22073509 crossref_primary_10_1016_j_dnarep_2021_103116 crossref_primary_10_3390_cancers13225594 crossref_primary_10_3390_cancers17030335 crossref_primary_10_1016_j_ygyno_2021_04_015 crossref_primary_10_1097_JP9_0000000000000160 crossref_primary_10_1016_j_nbd_2023_106314 crossref_primary_10_3892_ol_2022_13555 crossref_primary_10_1007_s00210_022_02263_x crossref_primary_10_1016_j_jconrel_2024_11_071 crossref_primary_10_1002_cam4_5148 crossref_primary_10_3390_biology14030253 crossref_primary_10_3390_cancers14112619 crossref_primary_10_1021_acs_jmedchem_1c00234 crossref_primary_10_3390_cancers13030504 crossref_primary_10_1002_1878_0261_12847 crossref_primary_10_1136_bcr_2023_256235 crossref_primary_10_1002_mco2_216 crossref_primary_10_3390_cancers14143528 crossref_primary_10_1016_j_nucmedbio_2023_108367 crossref_primary_10_1016_j_intimp_2024_111939 crossref_primary_10_1155_2022_4070060 crossref_primary_10_3389_fimmu_2021_762989 crossref_primary_10_1177_17246008211070018 crossref_primary_10_3390_cancers12071838 crossref_primary_10_1016_j_ecoenv_2023_114630 crossref_primary_10_3892_etm_2023_12215 crossref_primary_10_1002_jbt_23274 crossref_primary_10_3389_fonc_2023_1077605 crossref_primary_10_3389_fcell_2022_818416 crossref_primary_10_3389_fcell_2021_631486 crossref_primary_10_3892_ol_2024_14610 crossref_primary_10_1155_2024_8897255 crossref_primary_10_3390_cancers12051228 crossref_primary_10_1038_s41598_023_45964_w crossref_primary_10_18632_oncoscience_610 crossref_primary_10_1038_s41598_023_43577_x crossref_primary_10_3389_fonc_2023_1267577 crossref_primary_10_1016_j_ctrv_2021_102262 crossref_primary_10_3390_biom10111529 crossref_primary_10_1016_j_annonc_2020_11_013 crossref_primary_10_1016_j_phrs_2021_106040 crossref_primary_10_1371_journal_pone_0290176 crossref_primary_10_3389_fonc_2022_960317 crossref_primary_10_1093_nar_gkac1251 crossref_primary_10_3389_fgene_2022_966941 crossref_primary_10_1038_s41388_024_02937_1 crossref_primary_10_2139_ssrn_3600546 crossref_primary_10_3390_cancers14010236 crossref_primary_10_36290_xon_2020_062 crossref_primary_10_1002_ijc_33918 crossref_primary_10_3748_wjg_v30_i42_4532 crossref_primary_10_5937_jomb0_26452 crossref_primary_10_1016_j_cej_2024_151775 crossref_primary_10_1016_j_ejmech_2021_114094 crossref_primary_10_1080_15384047_2021_2024414 crossref_primary_10_1200_JCO_20_03238 crossref_primary_10_1080_14656566_2024_2304125 crossref_primary_10_1016_j_isci_2020_101604 crossref_primary_10_3390_ijms24033031 crossref_primary_10_1080_13543784_2022_2009456 crossref_primary_10_1016_j_molcel_2020_10_009 crossref_primary_10_1155_2023_6510571 crossref_primary_10_3389_fonc_2021_606820 crossref_primary_10_3389_fphar_2022_939570 crossref_primary_10_1017_erm_2021_26 crossref_primary_10_1016_j_cellsig_2023_110782 crossref_primary_10_1200_JCO_21_01604 crossref_primary_10_2147_BCTT_S516542 crossref_primary_10_3389_fimmu_2024_1399222 crossref_primary_10_3389_fcell_2021_619549 crossref_primary_10_1007_s10528_021_10062_x crossref_primary_10_1177_03008916221110265 crossref_primary_10_1007_s12035_023_03376_x crossref_primary_10_1016_j_tranon_2021_101012 crossref_primary_10_1159_000508533 crossref_primary_10_1038_s41419_024_06984_0 crossref_primary_10_1080_14728222_2021_1957462 crossref_primary_10_1021_acs_jmedchem_1c01535 crossref_primary_10_1186_s13072_020_00371_7 crossref_primary_10_3390_cancers12113178 crossref_primary_10_3390_molecules26216741 crossref_primary_10_3390_cancers15041116 crossref_primary_10_1016_j_arr_2023_102176 crossref_primary_10_3390_jcm10040566 crossref_primary_10_1021_acs_molpharmaceut_1c00653 crossref_primary_10_3390_cells12141904 crossref_primary_10_1038_s41540_024_00394_w crossref_primary_10_1177_10732748241298329 crossref_primary_10_3390_biomedicines9070705 crossref_primary_10_36290_vnl_2022_087 crossref_primary_10_3390_ijms22136767 crossref_primary_10_1007_s00044_024_03282_4 crossref_primary_10_1016_j_canlet_2024_217010 crossref_primary_10_3389_fonc_2022_904327 crossref_primary_10_3390_antiox11040759 crossref_primary_10_3802_jgo_2025_36_e62 crossref_primary_10_3390_diagnostics11061046 crossref_primary_10_1038_s41389_022_00411_9 crossref_primary_10_1016_j_drudis_2023_103607 crossref_primary_10_1016_j_heliyon_2024_e35988 crossref_primary_10_1016_j_bmc_2024_117970 crossref_primary_10_1016_j_intimp_2023_110709 crossref_primary_10_1038_s41420_022_01008_2 crossref_primary_10_1016_j_biopha_2024_117430 crossref_primary_10_3390_ijms232415758 crossref_primary_10_1007_s11655_024_3708_6 crossref_primary_10_1002_med_22069 crossref_primary_10_1080_20016689_2022_2078474 crossref_primary_10_3390_cancers15082327 crossref_primary_10_1186_s10020_024_01049_6 crossref_primary_10_1038_s41388_021_01788_4 crossref_primary_10_1002_aac2_12054 crossref_primary_10_3389_fimmu_2021_790661 crossref_primary_10_1016_j_biopha_2022_113669 crossref_primary_10_1016_j_lfs_2020_118434 crossref_primary_10_1021_acs_jmedchem_4c00015 crossref_primary_10_1016_j_bbcan_2023_188910 crossref_primary_10_1038_s41419_024_07210_7 crossref_primary_10_1111_1759_7714_14920 crossref_primary_10_1016_j_drup_2024_101146 crossref_primary_10_1016_j_bbcan_2023_188992 crossref_primary_10_3390_cells13070602 crossref_primary_10_3390_cancers13051071 crossref_primary_10_1002_humu_24133 crossref_primary_10_1016_j_ejmech_2022_114116 crossref_primary_10_1038_s41419_021_04434_9 crossref_primary_10_1186_s12885_023_11467_0 crossref_primary_10_1038_s41597_023_02032_2 crossref_primary_10_3389_fonc_2023_1070343 crossref_primary_10_1177_10732748241274559 crossref_primary_10_3390_cancers15204976 crossref_primary_10_1039_D2RA02683J crossref_primary_10_1208_s12248_021_00556_2 crossref_primary_10_3390_ph15121505 crossref_primary_10_1093_glycob_cwad070 crossref_primary_10_3390_cancers14194939 crossref_primary_10_1016_j_pan_2021_02_007 crossref_primary_10_1155_2021_9734882 crossref_primary_10_1016_j_heliyon_2023_e20464 crossref_primary_10_1186_s13048_023_01094_5 crossref_primary_10_1016_j_neo_2025_101152 crossref_primary_10_1021_acsanm_3c04596 crossref_primary_10_1021_acsami_3c17977 crossref_primary_10_1038_s41467_022_30581_4 crossref_primary_10_1002_cncy_22589 crossref_primary_10_1038_s41379_021_00788_9 crossref_primary_10_1186_s13048_023_01283_2 crossref_primary_10_3390_ijms21134579 crossref_primary_10_2174_1389202923666220527114108 crossref_primary_10_1080_14737140_2020_1820330 crossref_primary_10_3390_ijms25158397 crossref_primary_10_1038_s41598_023_30081_5 crossref_primary_10_3389_fonc_2024_1380633 |
Cites_doi | 10.1002/bies.20085 10.1016/j.molcel.2015.10.032 10.1016/j.dnarep.2018.08.021 10.1038/bjc.2012.451 10.1158/2159-8290.CD-11-0348 10.1126/science.aam7344 10.1126/science.1164368 10.1002/med.21339 10.1371/journal.pmed.1000267 10.1200/JCO.2011.39.5590 10.1038/nature03445 10.1038/35077232 10.1038/bjc.2011.382 10.3322/caac.21551 10.1093/annonc/mdy174 10.1038/nm.3369 10.1016/j.ygyno.2017.10.003 10.1056/NEJMra0901557 10.1158/0008-5472.CAN-12-2753 10.1007/s00018-011-0811-6 10.4161/cc.22026 10.1038/nrgastro.2009.177 10.1038/nature03443 10.1200/JCO.2014.59.7401 10.1056/NEJMra1407390 10.1038/nature18325 10.1056/NEJMoa1706450 10.1093/annonc/mdw327 10.1158/1055-9965.EPI-06-0783 10.1093/genetics/59.1.37 10.1038/onc.2013.352 10.1056/NEJMoa1903387 10.1101/gad.290957.116 10.2147/OTT.S139336 10.1146/annurev-med-050913-022545 10.1038/nature14184 10.1200/JCO.2014.56.2728 10.1053/j.seminoncol.2016.09.002 10.4161/cc.10.20.17887 10.1016/S0140-6736(16)00141-0 10.1158/1078-0432.CCR-15-0426 10.1093/genetics/31.3.269 10.1126/science.1171202 10.1200/JCO.2008.16.0812 10.1200/JCO.2010.31.9079 10.1093/genetics/31.2.125 10.1002/path.4140 10.1002/emmm.200900041 10.1038/nrc.2015.21 10.1158/1078-0432.CCR-14-2616 10.3322/caac.21208 10.1016/j.tips.2006.04.007 10.1093/nar/gkl840 10.1016/j.ebiom.2018.12.060 10.1016/j.molcel.2015.10.013 10.1038/nsmb.3072 10.1158/1078-0432.CCR-10-0984 10.1126/science.1231573 10.1158/0008-5472.CAN-08-2287 10.1053/j.gastro.2019.02.037 10.1056/NEJMoa1909707 10.1038/nature24060 10.1186/s12885-015-1965-7 10.1126/science.7545954 10.1073/pnas.1508573112 10.1016/S1470-2045(19)30684-9 10.1038/nature06548 10.1093/annonc/mdu581 10.1056/NEJMoa0900212 10.1158/0008-5472.CAN-09-4716 10.1038/378789a0 10.1200/JCO.2010.34.2980 10.1586/14737159.2015.1078238 10.1007/s00432-018-2666-9 10.1200/PO.17.00316 10.1056/NEJMoa1910962 10.1038/nrg.2017.47 10.1038/nature11547 10.1158/0008-5472.CAN-06-0140 10.1056/NEJMoa1810858 10.3322/caac.21338 10.1016/S1470-2045(14)70228-1 10.1634/theoncologist.2015-0438 10.1016/j.molcel.2018.01.012 10.1016/j.clbc.2015.06.009 10.1093/nar/gkg761 10.1016/j.molonc.2011.07.001 10.1016/j.cell.2010.03.012 10.1016/j.tibs.2013.03.002 10.1093/annonc/mdt384 10.1056/NEJMoa1802905 10.1093/jnci/95.3.214 10.1186/s13073-018-0612-8 10.1158/2159-8290.CD-16-1250 10.1016/j.dld.2012.12.018 10.1016/j.celrep.2015.12.046 10.1158/0008-5472.CAN-16-0416 10.1038/nrm2851 10.1016/j.molcel.2009.06.037 10.1074/jbc.M608406200 10.1056/NEJMoa1911361 10.1038/gim.2017.85 10.1186/bcr2877 10.1074/jbc.M706734200 10.1073/pnas.0806092105 10.1016/S0140-6736(10)62307-0 10.1093/nar/gkq1241 10.1038/bjc.2016.203 10.1158/2159-8290.CD-11-0194 10.1158/1078-0432.CCR-09-2758 10.1200/JCO.2014.58.8848 10.1038/nrm3376 10.1038/nature13751 10.1158/1078-0432.CCR-10-0523 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12943-020-01167-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-4598 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_a36f2a674c4c420e9fbf056ab660d4ba PMC7053129 A616358398 32122376 10_1186_s12943_020_01167_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: 81625016 – fundername: ; grantid: 81772555; 81802352 – fundername: ; grantid: 17YF1402500 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PZZ RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c563t-82947f147f9f5e82b0aa1e145f11029fa920d529b7aa83df315516825d2087353 |
IEDL.DBID | M48 |
ISSN | 1476-4598 |
IngestDate | Wed Aug 27 01:28:08 EDT 2025 Thu Aug 21 13:58:23 EDT 2025 Thu Jul 10 19:03:15 EDT 2025 Fri Jul 25 23:35:14 EDT 2025 Tue Jun 17 21:14:12 EDT 2025 Mon Jul 21 12:53:00 EDT 2025 Mon Jul 21 06:08:10 EDT 2025 Tue Jul 01 01:01:17 EDT 2025 Thu Apr 24 22:52:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Homologous recombination repair BRCA Chemotherapy resistance Pancreatic cancer PARP inhibitor Biomarkers Synthetic lethality |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-82947f147f9f5e82b0aa1e145f11029fa920d529b7aa83df315516825d2087353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6652-0629 |
OpenAccessLink | https://doaj.org/article/a36f2a674c4c420e9fbf056ab660d4ba |
PMID | 32122376 |
PQID | 2379153373 |
PQPubID | 42702 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a36f2a674c4c420e9fbf056ab660d4ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_7053129 proquest_miscellaneous_2370496030 proquest_journals_2379153373 gale_infotracmisc_A616358398 gale_infotracacademiconefile_A616358398 pubmed_primary_32122376 crossref_citationtrail_10_1186_s12943_020_01167_9 crossref_primary_10_1186_s12943_020_01167_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-02 |
PublicationDateYYYYMMDD | 2020-03-02 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cancer |
PublicationTitleAlternate | Mol Cancer |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | SF El-Khamisy (1167_CR47) 2003; 31 A Ohmoto (1167_CR107) 2017; 10 C Bolin (1167_CR103) 2012; 69 1167_CR58 T Kamisawa (1167_CR3) 2016; 388 1167_CR59 R Tuli (1167_CR112) 2019; 40 1167_CR50 DP McLornan (1167_CR29) 2014; 371 S Eustermann (1167_CR49) 2015; 60 A Ray Chaudhuri (1167_CR84) 2016; 535 G von Minckwitz (1167_CR86) 2011; 29 B Norquist (1167_CR71) 2011; 29 CE Strom (1167_CR62) 2011; 39 I Faraoni (1167_CR96) 1852; 2015 BA Gibson (1167_CR53) 2012; 13 M Wang (1167_CR45) 2006; 34 S Paluch-Shimon (1167_CR18) 2016; 27 J Mateo (1167_CR33) 2020; 21 N Yamashita (1167_CR101) 2015; 15 R Plummer (1167_CR35) 2010; 16 GM Petersen (1167_CR25) 2016; 43 AV Biankin (1167_CR8) 2012; 491 L Oplustilova (1167_CR99) 2012; 11 AD D'Andrea (1167_CR87) 2018; 71 1167_CR38 A Kowalewski (1167_CR19) 2018; 144 J Bendell (1167_CR111) 2015; 26 LJ Barber (1167_CR70) 2013; 229 JC Lucchesi (1167_CR40) 1968; 59 1167_CR105 M Javle (1167_CR88) 2011; 105 CJ Lord (1167_CR36) 2017; 355 CJ Lord (1167_CR68) 2015; 66 P Francica (1167_CR77) 2018; 10 ME Moynahan (1167_CR39) 2010; 11 KG Chaffee (1167_CR17) 2018; 20 JF Haince (1167_CR46) 2007; 282 CC Gunderson (1167_CR91) 2015; 15 JK Litton (1167_CR31) 2018; 379 1167_CR26 1167_CR27 BG Bitler (1167_CR73) 2017; 147 S Holter (1167_CR11) 2015; 33 1167_CR28 A Vaidyanathan (1167_CR90) 2016; 115 MI Rodriguez (1167_CR57) 2015; 35 M Robson (1167_CR30) 2017; 377 J Ding (1167_CR65) 2006; 27 1167_CR22 1167_CR23 1167_CR113 R Ceccaldi (1167_CR55) 2015; 518 W Zhao (1167_CR60) 2017; 550 1167_CR115 I Ray-Coquard (1167_CR116) 2019; 381 L Cao (1167_CR76) 2009; 35 S Raimondi (1167_CR20) 2009; 6 B Kaufman (1167_CR109) 2015; 33 NJ O'Neil (1167_CR42) 2017; 18 J Michels (1167_CR93) 2014; 33 1167_CR14 A Hoglund (1167_CR97) 2011; 10 T Golan (1167_CR110) 2019; 381 1167_CR10 J Ledermann (1167_CR92) 2014; 15 1167_CR12 T Helleday (1167_CR64) 2011; 5 R Siegel (1167_CR5) 2014; 64 J de Bono (1167_CR114) 2017; 7 AM Mendes-Pereira (1167_CR69) 2009; 1 A Ashworth (1167_CR72) 2008; 26 NJ Roberts (1167_CR13) 2012; 2 SA Yazinski (1167_CR83) 2017; 31 etc. MATMPM (1167_CR34) 2019 JM Dawicki-McKenna (1167_CR51) 2015; 60 S Gillen (1167_CR4) 2010; 7 AD Singhi (1167_CR9) 2019; 156 RL Siegel (1167_CR2) 2019; 69 J Murai (1167_CR54) 2012; 72 W Chen (1167_CR1) 2016; 66 A Vincent (1167_CR21) 2011; 378 JC Ame (1167_CR44) 2004; 26 SF Bunting (1167_CR79) 2010; 141 S Rottenberg (1167_CR89) 2008; 105 YE Choi (1167_CR75) 2016; 14 CJ Lord (1167_CR102) 2013; 19 P Gottipati (1167_CR63) 2010; 70 1167_CR80 AJ Hartlerode (1167_CR98) 2015; 22 T Dobzhansky (1167_CR41) 1946; 31 N McCabe (1167_CR67) 2006; 66 A Gonzalez-Martin (1167_CR117) 2019; 381 A Pines (1167_CR52) 2013; 38 CE Redon (1167_CR95) 2010; 16 MR Mirza (1167_CR108) 2018; 29 A Ashworth (1167_CR81) 2008; 68 1167_CR6 YH Ibrahim (1167_CR82) 2012; 2 AJ Lombardi (1167_CR100) 2015; 21 N Resta (1167_CR15) 2013; 45 CH Lin (1167_CR104) 2015; 15 W Megchelenbrink (1167_CR43) 2015; 112 CL Scott (1167_CR56) 2015; 33 J Murai (1167_CR85) 2018; 69 K Moore (1167_CR32) 2018; 379 L CR (1167_CR118) 2019; 381 LA Chantrill (1167_CR7) 2015; 21 JF Haince (1167_CR48) 2008; 283 J Lee (1167_CR37) 2013; 25 AK Win (1167_CR16) 2012; 30 CJ Lord (1167_CR66) 2016; 16 1167_CR61 SL Edwards (1167_CR74) 2008; 451 A Mukhopadhyay (1167_CR94) 2010; 16 V Abkevich (1167_CR106) 2012; 107 M Makvandi (1167_CR78) 2016; 76 FJ Couch (1167_CR24) 2007; 16 |
References_xml | – volume: 26 start-page: 882 year: 2004 ident: 1167_CR44 publication-title: Bioessays doi: 10.1002/bies.20085 – volume: 60 start-page: 742 year: 2015 ident: 1167_CR49 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.10.032 – volume: 71 start-page: 172 year: 2018 ident: 1167_CR87 publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2018.08.021 – volume: 107 start-page: 1776 year: 2012 ident: 1167_CR106 publication-title: Br J Cancer doi: 10.1038/bjc.2012.451 – volume: 2 start-page: 1036 year: 2012 ident: 1167_CR82 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0348 – volume: 355 start-page: 1152 year: 2017 ident: 1167_CR36 publication-title: Science doi: 10.1126/science.aam7344 – ident: 1167_CR10 doi: 10.1126/science.1164368 – volume: 2015 start-page: 462 year: 1852 ident: 1167_CR96 publication-title: Biochim Biophys Acta – volume: 35 start-page: 678 year: 2015 ident: 1167_CR57 publication-title: Med Res Rev doi: 10.1002/med.21339 – volume: 7 year: 2010 ident: 1167_CR4 publication-title: PLoS Med doi: 10.1371/journal.pmed.1000267 – volume: 30 start-page: 958 year: 2012 ident: 1167_CR16 publication-title: J Clin Oncol doi: 10.1200/JCO.2011.39.5590 – ident: 1167_CR27 doi: 10.1038/nature03445 – ident: 1167_CR38 doi: 10.1038/35077232 – volume: 105 start-page: 1114 year: 2011 ident: 1167_CR88 publication-title: Br J Cancer doi: 10.1038/bjc.2011.382 – volume: 69 start-page: 7 year: 2019 ident: 1167_CR2 publication-title: CA Cancer J Clin doi: 10.3322/caac.21551 – volume: 29 start-page: 1366 year: 2018 ident: 1167_CR108 publication-title: Ann Oncol doi: 10.1093/annonc/mdy174 – volume: 19 start-page: 1381 year: 2013 ident: 1167_CR102 publication-title: Nat Med doi: 10.1038/nm.3369 – volume: 147 start-page: 695 year: 2017 ident: 1167_CR73 publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2017.10.003 – ident: 1167_CR6 doi: 10.1056/NEJMra0901557 – volume: 72 start-page: 5588 year: 2012 ident: 1167_CR54 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2753 – volume: 69 start-page: 951 year: 2012 ident: 1167_CR103 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-011-0811-6 – volume: 11 start-page: 3837 year: 2012 ident: 1167_CR99 publication-title: Cell Cycle doi: 10.4161/cc.22026 – volume: 6 start-page: 699 year: 2009 ident: 1167_CR20 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2009.177 – ident: 1167_CR23 – ident: 1167_CR26 doi: 10.1038/nature03443 – volume: 33 start-page: 3124 year: 2015 ident: 1167_CR11 publication-title: J Clin Oncol doi: 10.1200/JCO.2014.59.7401 – volume: 371 start-page: 1725 year: 2014 ident: 1167_CR29 publication-title: N Engl J Med doi: 10.1056/NEJMra1407390 – volume: 535 start-page: 382 year: 2016 ident: 1167_CR84 publication-title: Nature doi: 10.1038/nature18325 – volume: 377 start-page: 523 year: 2017 ident: 1167_CR30 publication-title: N Engl J Med doi: 10.1056/NEJMoa1706450 – volume: 27 start-page: v103 year: 2016 ident: 1167_CR18 publication-title: Ann Oncol doi: 10.1093/annonc/mdw327 – ident: 1167_CR12 – volume: 16 start-page: 342 year: 2007 ident: 1167_CR24 publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-06-0783 – volume: 59 start-page: 37 year: 1968 ident: 1167_CR40 publication-title: Genetics doi: 10.1093/genetics/59.1.37 – volume: 33 start-page: 3894 year: 2014 ident: 1167_CR93 publication-title: Oncogene doi: 10.1038/onc.2013.352 – volume: 381 start-page: 317 year: 2019 ident: 1167_CR110 publication-title: N Engl J Med doi: 10.1056/NEJMoa1903387 – volume: 31 start-page: 318 year: 2017 ident: 1167_CR83 publication-title: Genes Dev doi: 10.1101/gad.290957.116 – volume: 10 start-page: 5195 year: 2017 ident: 1167_CR107 publication-title: Onco Targets Ther doi: 10.2147/OTT.S139336 – volume: 66 start-page: 455 year: 2015 ident: 1167_CR68 publication-title: Annu Rev Med doi: 10.1146/annurev-med-050913-022545 – volume: 518 start-page: 258 year: 2015 ident: 1167_CR55 publication-title: Nature doi: 10.1038/nature14184 – volume: 33 start-page: 244 year: 2015 ident: 1167_CR109 publication-title: J Clin Oncol doi: 10.1200/JCO.2014.56.2728 – volume: 43 start-page: 548 year: 2016 ident: 1167_CR25 publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2016.09.002 – volume: 10 start-page: 3598 year: 2011 ident: 1167_CR97 publication-title: Cell Cycle doi: 10.4161/cc.10.20.17887 – volume: 388 start-page: 73 year: 2016 ident: 1167_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(16)00141-0 – volume: 21 start-page: 2029 year: 2015 ident: 1167_CR7 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-0426 – volume: 31 start-page: 269 year: 1946 ident: 1167_CR41 publication-title: Genetics doi: 10.1093/genetics/31.3.269 – volume-title: Pancreatic adenocarcinoma, version 3.2019, NCCN clinical practice guidelines in oncology year: 2019 ident: 1167_CR34 – ident: 1167_CR14 doi: 10.1126/science.1171202 – volume: 26 start-page: 3785 year: 2008 ident: 1167_CR72 publication-title: J Clin Oncol doi: 10.1200/JCO.2008.16.0812 – volume: 29 start-page: 2150 year: 2011 ident: 1167_CR86 publication-title: J Clin Oncol doi: 10.1200/JCO.2010.31.9079 – ident: 1167_CR28 doi: 10.1093/genetics/31.2.125 – volume: 229 start-page: 422 year: 2013 ident: 1167_CR70 publication-title: J Pathol doi: 10.1002/path.4140 – volume: 1 start-page: 315 year: 2009 ident: 1167_CR69 publication-title: EMBO Mol Med doi: 10.1002/emmm.200900041 – volume: 16 start-page: 110 year: 2016 ident: 1167_CR66 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2015.21 – volume: 21 start-page: 1962 year: 2015 ident: 1167_CR100 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2616 – volume: 64 start-page: 9 year: 2014 ident: 1167_CR5 publication-title: CA Cancer J Clin doi: 10.3322/caac.21208 – volume: 27 start-page: 338 year: 2006 ident: 1167_CR65 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2006.04.007 – volume: 34 start-page: 6170 year: 2006 ident: 1167_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl840 – volume: 40 start-page: 375 year: 2019 ident: 1167_CR112 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.12.060 – volume: 60 start-page: 755 year: 2015 ident: 1167_CR51 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.10.013 – volume: 22 start-page: 736 year: 2015 ident: 1167_CR98 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.3072 – volume: 16 start-page: 4527 year: 2010 ident: 1167_CR35 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-0984 – ident: 1167_CR80 doi: 10.1126/science.1231573 – volume: 68 start-page: 10021 year: 2008 ident: 1167_CR81 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2287 – volume: 156 start-page: 2242 year: 2019 ident: 1167_CR9 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.02.037 – volume: 381 start-page: 2403 year: 2019 ident: 1167_CR118 publication-title: N Engl J Med doi: 10.1056/NEJMoa1909707 – volume: 550 start-page: 360 year: 2017 ident: 1167_CR60 publication-title: Nature doi: 10.1038/nature24060 – volume: 15 start-page: 958 year: 2015 ident: 1167_CR104 publication-title: BMC Cancer doi: 10.1186/s12885-015-1965-7 – ident: 1167_CR58 doi: 10.1126/science.7545954 – volume: 112 start-page: 12217 year: 2015 ident: 1167_CR43 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1508573112 – volume: 21 start-page: 162 year: 2020 ident: 1167_CR33 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30684-9 – volume: 451 start-page: 1111 year: 2008 ident: 1167_CR74 publication-title: Nature doi: 10.1038/nature06548 – volume: 26 start-page: 804 year: 2015 ident: 1167_CR111 publication-title: Ann Oncol doi: 10.1093/annonc/mdu581 – ident: 1167_CR115 doi: 10.1056/NEJMoa0900212 – volume: 70 start-page: 5389 year: 2010 ident: 1167_CR63 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-4716 – ident: 1167_CR59 doi: 10.1038/378789a0 – volume: 29 start-page: 3008 year: 2011 ident: 1167_CR71 publication-title: J Clin Oncol doi: 10.1200/JCO.2010.34.2980 – volume: 15 start-page: 1111 year: 2015 ident: 1167_CR91 publication-title: Expert Rev Mol Diagn doi: 10.1586/14737159.2015.1078238 – volume: 144 start-page: 1503 year: 2018 ident: 1167_CR19 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-018-2666-9 – ident: 1167_CR113 doi: 10.1200/PO.17.00316 – volume: 381 start-page: 2391 year: 2019 ident: 1167_CR117 publication-title: N Engl J Med doi: 10.1056/NEJMoa1910962 – volume: 18 start-page: 613 year: 2017 ident: 1167_CR42 publication-title: Nat Rev Genet doi: 10.1038/nrg.2017.47 – volume: 491 start-page: 399 year: 2012 ident: 1167_CR8 publication-title: Nature doi: 10.1038/nature11547 – volume: 66 start-page: 8109 year: 2006 ident: 1167_CR67 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-0140 – volume: 379 start-page: 2495 year: 2018 ident: 1167_CR32 publication-title: N Engl J Med doi: 10.1056/NEJMoa1810858 – volume: 66 start-page: 115 year: 2016 ident: 1167_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21338 – volume: 15 start-page: 852 year: 2014 ident: 1167_CR92 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(14)70228-1 – ident: 1167_CR105 doi: 10.1634/theoncologist.2015-0438 – volume: 69 start-page: 371 year: 2018 ident: 1167_CR85 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.01.012 – volume: 15 start-page: 498 year: 2015 ident: 1167_CR101 publication-title: Clin Breast Cancer doi: 10.1016/j.clbc.2015.06.009 – volume: 31 start-page: 5526 year: 2003 ident: 1167_CR47 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg761 – volume: 5 start-page: 387 year: 2011 ident: 1167_CR64 publication-title: Mol Oncol doi: 10.1016/j.molonc.2011.07.001 – volume: 141 start-page: 243 year: 2010 ident: 1167_CR79 publication-title: Cell doi: 10.1016/j.cell.2010.03.012 – volume: 38 start-page: 321 year: 2013 ident: 1167_CR52 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2013.03.002 – volume: 25 start-page: 32 year: 2013 ident: 1167_CR37 publication-title: Ann Oncol doi: 10.1093/annonc/mdt384 – volume: 379 start-page: 753 year: 2018 ident: 1167_CR31 publication-title: N Engl J Med doi: 10.1056/NEJMoa1802905 – ident: 1167_CR22 doi: 10.1093/jnci/95.3.214 – volume: 10 start-page: 101 year: 2018 ident: 1167_CR77 publication-title: Genome Med doi: 10.1186/s13073-018-0612-8 – volume: 7 start-page: 620 year: 2017 ident: 1167_CR114 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-1250 – volume: 45 start-page: 606 year: 2013 ident: 1167_CR15 publication-title: Dig Liver Dis doi: 10.1016/j.dld.2012.12.018 – volume: 14 start-page: 429 year: 2016 ident: 1167_CR75 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.12.046 – volume: 76 start-page: 4516 year: 2016 ident: 1167_CR78 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-0416 – volume: 11 start-page: 196 year: 2010 ident: 1167_CR39 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2851 – volume: 35 start-page: 534 year: 2009 ident: 1167_CR76 publication-title: Mol Cell doi: 10.1016/j.molcel.2009.06.037 – volume: 282 start-page: 16441 year: 2007 ident: 1167_CR46 publication-title: J Biol Chem doi: 10.1074/jbc.M608406200 – volume: 381 start-page: 2416 year: 2019 ident: 1167_CR116 publication-title: N Engl J Med doi: 10.1056/NEJMoa1911361 – volume: 20 start-page: 119 year: 2018 ident: 1167_CR17 publication-title: Genet Med doi: 10.1038/gim.2017.85 – ident: 1167_CR50 doi: 10.1186/bcr2877 – volume: 283 start-page: 1197 year: 2008 ident: 1167_CR48 publication-title: J Biol Chem doi: 10.1074/jbc.M706734200 – volume: 105 start-page: 17079 year: 2008 ident: 1167_CR89 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0806092105 – volume: 378 start-page: 607 year: 2011 ident: 1167_CR21 publication-title: Lancet doi: 10.1016/S0140-6736(10)62307-0 – volume: 39 start-page: 3166 year: 2011 ident: 1167_CR62 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1241 – volume: 115 start-page: 431 year: 2016 ident: 1167_CR90 publication-title: Br J Cancer doi: 10.1038/bjc.2016.203 – volume: 2 start-page: 41 year: 2012 ident: 1167_CR13 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0194 – volume: 16 start-page: 2344 year: 2010 ident: 1167_CR94 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2758 – volume: 33 start-page: 1397 year: 2015 ident: 1167_CR56 publication-title: J Clin Oncol doi: 10.1200/JCO.2014.58.8848 – volume: 13 start-page: 411 year: 2012 ident: 1167_CR53 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3376 – ident: 1167_CR61 doi: 10.1038/nature13751 – volume: 16 start-page: 4532 year: 2010 ident: 1167_CR95 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-0523 |
SSID | ssj0017874 |
Score | 2.6292334 |
SecondaryResourceType | review_article |
Snippet | Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown... Abstract Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 49 |
SubjectTerms | Animals Antineoplastic Agents - therapeutic use Biological markers Biotechnology BRCA BRCA mutations Breast cancer Cancer therapies Cancer treatment Carcinogenesis Cell death Chemotherapy Chemotherapy resistance Clinical trials Deoxyribonucleic acid Development and progression Diseases DNA DNA damage DNA repair Drugs Gene mutation Genes Genetic aspects Genetic research Genomes Health risk assessment Homologous recombination repair Humans Kinases Medical prognosis Metastasis Molecular modelling Monosaccharides Mutation Olaparib Ovarian cancer Pancreatic cancer Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology PARP inhibitor Polo Poly (ADP-Ribose) Polymerase-1 - antagonists & inhibitors Poly(ADP-ribose) polymerase Poly(ADP-ribose) Polymerase Inhibitors - therapeutic use Prognosis Proteins Response rates Review Synthetic lethality Talazoparib Targeted cancer therapy Therapeutic applications Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yoHgRXb-qq0QQPEjZNknz4e0pLougLLILewv5ZAu-rux7e_C_dyZtH68IepFSKE1aMpmZzISZ_IaQt65VWUvv6sBSU4uOidrEkGrOnXZgfpTJJcv3mzy9EF8uu8u9Ul-YEzbCA48Td-y4zMxJJQJcrEkm-wxG23kpmyh8cY3A5s2bqSl-AGIo5iMyWh5vwKoJjFdiEhYifZuFGSpo_X-uyXtGaZkwuWeBTh6SB5PrSFfjkB-RO2k4JHfHYpK_Dsm9r1OY_DE5P1t9P6P9cNX7HqvpwCMFrR8dxEADcvrmA13PpXHpOuEB4H6z3lA3RDofl6T74e0n5OLk8_mn03oqn1CHTvJtrYFmlVu4Yb6TZr5xrk2t6DKYfGayM6yJHTNeOad5zLwEzWDHGFmjFe_4U3IwXA_pOaFCSRd1FjnC_2RQHoEDIzgPiIbvpK5IO8-mDRO2OJa4-GHLHkNLO3LAAgds4YA1FXm_--bniKzx194fkUm7noiKXV6ArNhJVuy_ZKUi75DFFnUXhhfcdAQBiEQULLuS4J124DICQUeLnqBzYdk8C4mddH5jGVcGvWfFK_Jm14xfYh7bkK5vSx_YkklYWSvybJSpHUkcvAjMUaqIWkjbguZly9BfFURwhUspMy_-xyS9JPdZURTUlyNysL25Ta_A8dr610XHfgPK-Sfq priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96ovgien5VT6kg-CDl2iTNhy-yischKIfcwb6FNE28gts9t3sP_vfOpOm6RTjKQtmkpdOZycx0Jr8h5K2tZFCisYWjvix4TXmhW-cLxqyyYH6kDrHK97s4veBfl_UyfXAbUlnltCbGhbpdO_xGfkyZ1OibSPbx6neBXaMwu5paaNwmdxC6DIMvudwFXBUII582yihxPIBt45i1xFIsxPvWM2MUMfv_X5n3TNO8bHLPDp08JA-SA5kvRo4_Ird8f0juji0l_xySe99SsvwxOT9b_DjLu_6yazrsqQOnOej-6Ca63CG_Nx_y1dQgN1953AbcDasht32bT5sm8_0k9xNycfLl_PNpkZooFK4WbFsooFmGCn7w1r2iTWlt5SteBzD8VAeradnWVDfSWsXawGLqDOLGlpZKspo9JQf9uvfPSc6lsK0KPLRwP-Fkg_CBLbgQiIlvhcpINb1N4xLCODa6-GVipKGEGTlggAMmcsDojLzfXXM14mvcOPsTMmk3E7Gx4x_rzU-TVM1YJgK1QnIHBy29Dk0AN882QpQtb2xG3iGLDWowPJ6zaSMCEIlYWGYhwEetwXEEgo5mM0Hz3Hx4EhKTNH8w_-Q0I292w3glVrP1fn0d50BgJmB9zcizUaZ2JDHwJbBSKSNyJm0zmucjfXcZccElLqhUv7j5sV6S-zSqAGrCETnYbq79K3Csts3rqD1_AbCzHrA priority: 102 providerName: ProQuest |
Title | PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32122376 https://www.proquest.com/docview/2379153373 https://www.proquest.com/docview/2370496030 https://pubmed.ncbi.nlm.nih.gov/PMC7053129 https://doaj.org/article/a36f2a674c4c420e9fbf056ab660d4ba |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_6QPGLaH1F6xFB8INEc7vJPgSRq7SUg5aj9uC-LZvH2kAvp3dXsP-9M5vkvGARyYeE7CZkdmZ2fpuZnQF4a4fSKZHZKGdlHCUpSyJd5GXEuVUWzY_Uzkf5novTaTKepbMd6ModtQO4unNpR_WkpsvrD79-3n5Bhf_sFV6Jjyu0WQl5IynEivJ4613YR8skqZTDWfLHq4DC6b3MiRT4WVp1m2jufEfPUPl8_n_P2ltmqx9SuWWjTh7BwxZchqNGGh7DTlkfwL2m3OTtAdw_ax3pT-ByMrqYhFV9VWUV1dvByxDnhQZC5mFOsrD8FM674rnhvKQtwtVqvgptXYTdhspw2wH-FKYnx5dfT6O2wEKUp4KvI4U0S4fD4ZAjpWJZbO2wHCapQ1DAtLOaxUXKdCatVbxw3LvVcE1ZsFhJnvJnsFcv6vIFhDiktlAucQW-T-Qyo9SCBcILypdvhQpg2I2mydvs41QE49r4VYgSpuGAQQ4YzwGjA3i_eeZHk3vjn72PiEmbnpQ3299YLL-bVg2N5cIxK2SS48HiUrvMIQS0mRBxkWQ2gHfEYkPyhp-X23aTAhJJebLMSCB-TRFUIkGHvZ6olXm_uRMS0wm1YVxqwteSB_Bm00xPUqRbXS5ufB9ctAmcewN43sjUhiSOOIOimAKQPWnr0dxvqasrnzNc0mTL9Mv_pu8VPGBeG0gpDmFvvbwpXyP-WmcD2JUzOYD90Wj8bYzno-PzycXA_80YeIX7DW8fLOk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYlZZeXsXU3b92mwcYehqkty5I1GCPdWtK1DaGk0DdVlq01sDhdkjL6p_Ybd45sZzGDvhUTMJEcJJ_bp5wbIe9MLF0mchNaVkYhTxkPVWHLMElMZsD8SOV8lO9QDE7597P0bIP8aXNhMKyy1YleURczi_-R77BEKsQmMvly-SvErlHoXW1baNRscVhe_4Yj2-LzwTeg73vG9vfGXwdh01UgtKlIlmHGFJcuhg8so8xYHhkTlzFPHVhCppxRLCpSpnJpTJYULvG-JDhIFSzKpO8SASp_kycAFXpkc3dvODpZ-S2A_XmbmpOJnQVYU45-Ugz-wgrjqmP-fJeA_23BmjHsBmquWb79h-RBA1lpv-axR2SjrLbInbqJ5fUWuXvcuOcfk_GofzKik-pikk-wiw_cUtA2NTC11CKHzT_RaduSl05LTDyeLKYLaqqCtmmadN2t_oSc3soLfkp61awqnxPKpTBF5rgr4PeElTkWLCwAtGAVfiOygMTt29S2qWmOrTV-an-2yYSuKaCBAtpTQKuAfFw9c1lX9Lhx9i4SaTUTq3H7L2bzH7oRbm0S4ZgRklu4WFQqlzsAliYXIip4bgLyAUmsUWfA8qxpUh9gk1h9S_cFoOIUoCpsaLszE2TddodbJtGNrlnof5IRkLerYXwS4-eqcnbl58BRUIBGD8izmqdWW0oAvWBsVEBkh9s6e-6OVJMLX4lcogpn6sXNy3pD7g3Gx0f66GB4-JLcZ14cUCq2SW85vypfAaxb5q8bWaLk_LbF9y-iClp9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARP+inhibitors+in+pancreatic+cancer%3A+molecular+mechanisms+and+clinical+applications&rft.jtitle=Molecular+cancer&rft.au=Zhu%2C+Heng&rft.au=Wei%2C+Miaoyan&rft.au=Xu%2C+Jin&rft.au=Hua%2C+Jie&rft.date=2020-03-02&rft.pub=BioMed+Central+Ltd&rft.issn=1476-4598&rft.eissn=1476-4598&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12943-020-01167-9&rft.externalDocID=A616358398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon |