ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses

Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detec...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 7; p. 2389
Main Authors Vu, Huong Thi Thu, Gomez, Felipe, Cherelle, Pierre, Lefeber, Dirk, Nowé, Ann, Vanderborght, Bram
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.07.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects’ signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications.
AbstractList Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects' signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications.Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects' signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications.
Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects' signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications.
Author Vu, Huong Thi Thu
Cherelle, Pierre
Gomez, Felipe
Lefeber, Dirk
Vanderborght, Bram
Nowé, Ann
AuthorAffiliation Robotics & MultiBody Mechanics Research Group (R& MM) and Artificial Intelligence Lab, Vrije Universiteit Brussel and Flanders Make; Pleinlaan 2, 1050 Brussel, Belgium; felipe.gomez.marulanda@vub.ac.be (F.G.); pierre.cherelle@vub.ac.be (P.C.); dlefeber@vub.ac.be (D.L.); ann.nowe@vub.ac.be (A.N.); Bram.Vanderborght@vub.be (B.V.)
AuthorAffiliation_xml – name: Robotics & MultiBody Mechanics Research Group (R& MM) and Artificial Intelligence Lab, Vrije Universiteit Brussel and Flanders Make; Pleinlaan 2, 1050 Brussel, Belgium; felipe.gomez.marulanda@vub.ac.be (F.G.); pierre.cherelle@vub.ac.be (P.C.); dlefeber@vub.ac.be (D.L.); ann.nowe@vub.ac.be (A.N.); Bram.Vanderborght@vub.be (B.V.)
Author_xml – sequence: 1
  givenname: Huong Thi Thu
  orcidid: 0000-0001-8512-2784
  surname: Vu
  fullname: Vu, Huong Thi Thu
– sequence: 2
  givenname: Felipe
  orcidid: 0000-0002-9266-5485
  surname: Gomez
  fullname: Gomez, Felipe
– sequence: 3
  givenname: Pierre
  surname: Cherelle
  fullname: Cherelle, Pierre
– sequence: 4
  givenname: Dirk
  surname: Lefeber
  fullname: Lefeber, Dirk
– sequence: 5
  givenname: Ann
  surname: Nowé
  fullname: Nowé, Ann
– sequence: 6
  givenname: Bram
  orcidid: 0000-0003-4881-9341
  surname: Vanderborght
  fullname: Vanderborght, Bram
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30041421$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhUeoiD5gwR9AltjAYqhf4_GwqBSlTykKWcDa8th3Jo4m42A7VP33OE1btUViZcvnu0fn-t7j4mD0IxTFR4K_Mdbg00gkrimTzZviiHDKS0kpPnh2PyyOY1xhTBlj8l1xyDDmWSRHhbk4Ly_n8-9oguZwi84BNmgGOoxu7NFk6H1wablGyWcpgUloAcHAmHQPyHcoLQFdaZfQ9M4MgDof0MLfQgCLFsHHLEeI74u3nR4ifHg4T4pflxc_p9fl7MfVzXQyK00lWCpFW0lRcwBOaEWwbYRlglUtN0C05lATaDi1ddsYiRtLqWVdS1tqQWoAadhJcbP3tV6v1Ca4tQ53ymun7h986JUOyeWgqjMVlV1FoNaWmw5La6QhVBNjiaSaZa-zvddm267B7loOenhh-lIZ3VL1_o8SWEgueTb48mAQ_O8txKTWLhoYBj2C30ZFcS0oq6tGZPTzK3Tlt2HMX6UooYKJikv6fwrLOjOCZOrT89xPgR8nnoHTPWDyfGKAThmXdHJ-14YbFMFqt1PqaadyxddXFY-m_7J_AdW1yMs
CitedBy_id crossref_primary_10_1109_TNSRE_2021_3098689
crossref_primary_10_3389_fnbot_2022_923164
crossref_primary_10_1016_j_jscai_2024_102522
crossref_primary_10_1109_JSEN_2022_3177951
crossref_primary_10_3390_s18103502
crossref_primary_10_3390_s22103736
crossref_primary_10_3390_s23198275
crossref_primary_10_1109_TNSRE_2022_3229220
crossref_primary_10_1109_TNSRE_2019_2950309
crossref_primary_10_1109_JSEN_2024_3404633
crossref_primary_10_1016_j_arcontrol_2023_03_003
crossref_primary_10_1155_2020_8672431
crossref_primary_10_1109_TBME_2021_3120616
crossref_primary_10_3390_biomimetics8080558
crossref_primary_10_1186_s12984_020_00723_0
crossref_primary_10_3390_a12120253
crossref_primary_10_1016_j_robot_2021_103842
crossref_primary_10_1109_ACCESS_2024_3414175
crossref_primary_10_1109_JSEN_2023_3267490
crossref_primary_10_1109_JSEN_2019_2928777
crossref_primary_10_1109_JSEN_2021_3121422
crossref_primary_10_3389_fspor_2022_1037438
crossref_primary_10_3390_s21082727
crossref_primary_10_3390_s19132988
crossref_primary_10_1109_ACCESS_2021_3086807
crossref_primary_10_1109_JSEN_2023_3343721
crossref_primary_10_3390_s20143972
crossref_primary_10_3390_s24051519
crossref_primary_10_1109_LRA_2023_3256927
crossref_primary_10_1155_2020_4760297
crossref_primary_10_1109_JSEN_2021_3077698
crossref_primary_10_1109_JBHI_2022_3228329
crossref_primary_10_3389_fnbot_2021_704226
crossref_primary_10_3390_ijerph17165633
crossref_primary_10_1016_j_eswa_2022_117306
crossref_primary_10_3390_s21227473
crossref_primary_10_1109_TIM_2023_3343771
crossref_primary_10_1016_j_bspc_2021_103429
crossref_primary_10_1080_02640414_2019_1680083
crossref_primary_10_1109_LRA_2021_3062003
crossref_primary_10_1109_LSENS_2024_3453558
crossref_primary_10_3390_s21082821
crossref_primary_10_1007_s10619_021_07361_y
crossref_primary_10_1155_2022_9933018
crossref_primary_10_3390_s20174675
crossref_primary_10_1093_jcde_qwab054
Cites_doi 10.1109/TBME.2018.2813999
10.1109/TNSRE.2013.2282416
10.3390/s16101634
10.1016/j.medengphy.2014.12.004
10.1109/EMBC.2016.7591866
10.1016/j.medengphy.2015.01.001
10.1016/j.medengphy.2013.10.004
10.3390/s140202776
10.3390/s17030478
10.1109/IEMBS.2011.6091084
10.1109/MeMeA.2015.7145188
10.1109/PHT.2013.6461326
10.1016/0893-6080(91)90075-G
10.1186/s12984-017-0342-y
10.1109/BHI.2017.7897274
10.1007/978-3-7908-2604-3_16
10.1109/TNSRE.2016.2529581
10.3390/s16101579
10.1109/TNSRE.2013.2291907
10.1016/j.robot.2017.02.004
10.1109/TNSRE.2016.2636367
10.1016/S0893-6080(05)80056-5
10.1109/CCTA.2017.8062565
10.1109/TNSRE.2015.2409123
10.1109/IWBE.2011.6079053
10.1109/JBHI.2013.2293887
10.1080/00401706.1971.10488811
10.1142/S0219843607001138
10.1109/TIT.1980.1056144
10.1109/MRA.2015.2408791
10.1007/3-540-44938-8_13
10.1109/BSN.2014.22
10.1016/j.mechatronics.2011.03.003
10.1109/EMBC.2012.6347120
10.1109/TNSRE.2016.2536278
10.1016/j.gaitpost.2007.03.018
10.1109/7333.918277
10.3390/s150924514
10.1109/LRA.2016.2530165
10.1016/j.clinbiomech.2007.11.009
10.1038/nature14539
10.3390/s100201154
10.3390/s16010134
10.1016/j.gaitpost.2008.01.019
10.1109/BioRob.2012.6290278
10.1016/j.medengphy.2009.10.014
10.4108/icst.pervasivehealth.2011.246061
10.3390/s16010066
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s18072389
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed

Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_fc528f51e7ad4cf08dc8c12a1cd182a3
PMC6068484
30041421
10_3390_s18072389
Genre Journal Article
GeographicLocations United States--US
Germany
GeographicLocations_xml – name: United States--US
– name: Germany
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-6b58674ee412510d96d3635b4ce1aa4e71e942d7b9c809d22d3fb2b2de8aee8c3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:20:50 EDT 2025
Thu Aug 21 18:26:09 EDT 2025
Fri Jul 11 16:20:17 EDT 2025
Fri Jul 25 20:47:18 EDT 2025
Fri Jul 25 20:28:01 EDT 2025
Wed Feb 19 02:41:54 EST 2025
Tue Jul 01 01:36:59 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords exoskeleton
gait recognition
gait event detection
lower limb prosthesis
gait phase prediction
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-6b58674ee412510d96d3635b4ce1aa4e71e942d7b9c809d22d3fb2b2de8aee8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-9266-5485
0000-0001-8512-2784
0000-0003-4881-9341
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18072389
PMID 30041421
PQID 2108748261
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_fc528f51e7ad4cf08dc8c12a1cd182a3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6068484
proquest_miscellaneous_2076237596
proquest_journals_2126365482
proquest_journals_2108748261
pubmed_primary_30041421
crossref_citationtrail_10_3390_s18072389
crossref_primary_10_3390_s18072389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-23
PublicationDateYYYYMMDD 2018-07-23
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-23
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gouwanda (ref_22) 2015; 37
Boutaayamou (ref_37) 2015; 37
ref_50
Flynn (ref_5) 2018; 15
ref_12
ref_54
ref_52
Maqbool (ref_34) 2017; 25
ref_18
ref_16
LeCun (ref_53) 2015; 521
ref_15
Skelly (ref_25) 2001; 9
Agostini (ref_24) 2014; 22
(ref_51) 1993; 6
Zheng (ref_32) 2017; 25
ref_23
Bae (ref_14) 2011; 21
ref_20
Kotiadis (ref_3) 2010; 32
Kamnik (ref_11) 2014; 14
ref_29
ref_28
Allen (ref_48) 1971; 13
ref_26
Catalfamo (ref_6) 2008; 28
Lau (ref_7) 2008; 27
Shorter (ref_43) 2008; 23
Taborri (ref_19) 2015; 15
ref_36
ref_35
ref_33
Shore (ref_49) 1980; 26
ref_31
ref_30
Fisher (ref_44) 1936; 7
ref_39
Cherelle (ref_27) 2014; 22
Mannini (ref_13) 2010; 10
Rueterbories (ref_38) 2014; 36
Qi (ref_2) 2016; 24
ref_47
Mannini (ref_17) 2014; 18
ref_46
ref_42
ref_41
ref_40
Tanghe (ref_21) 2016; 1
Wang (ref_55) 2015; 22
Ito (ref_45) 1991; 4
Khandelwal (ref_10) 2016; 24
Ferris (ref_1) 2007; 4
ref_9
ref_8
Cherelle (ref_4) 2017; 91
References_xml – ident: ref_42
  doi: 10.1109/TBME.2018.2813999
– volume: 7
  start-page: 179
  year: 1936
  ident: ref_44
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Hum. Genet.
– volume: 22
  start-page: 138
  year: 2014
  ident: ref_27
  article-title: Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2282416
– ident: ref_9
  doi: 10.3390/s16101634
– volume: 37
  start-page: 219
  year: 2015
  ident: ref_22
  article-title: A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.12.004
– ident: ref_41
  doi: 10.1109/EMBC.2016.7591866
– volume: 37
  start-page: 226
  year: 2015
  ident: ref_37
  article-title: Development and validation of an accelerometer-based method for quantifying gait events
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.01.001
– ident: ref_39
– volume: 36
  start-page: 502
  year: 2014
  ident: ref_38
  article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.10.004
– volume: 14
  start-page: 2776
  year: 2014
  ident: ref_11
  article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis
  publication-title: Sensors
  doi: 10.3390/s140202776
– ident: ref_33
  doi: 10.3390/s17030478
– ident: ref_15
  doi: 10.1109/IEMBS.2011.6091084
– ident: ref_8
– ident: ref_18
  doi: 10.1109/MeMeA.2015.7145188
– ident: ref_29
  doi: 10.1109/PHT.2013.6461326
– ident: ref_52
– volume: 4
  start-page: 385
  year: 1991
  ident: ref_45
  article-title: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90075-G
– volume: 15
  start-page: 3
  year: 2018
  ident: ref_5
  article-title: VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: Case study in control of an active two degree of freedom transfemoral prosthesis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-017-0342-y
– ident: ref_12
  doi: 10.1109/BHI.2017.7897274
– ident: ref_50
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 25
  start-page: 161
  year: 2017
  ident: ref_32
  article-title: Noncontact capacitive sensing-based locomotion transition recognition for amputees with robotic transtibial prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2529581
– ident: ref_20
  doi: 10.3390/s16101579
– volume: 22
  start-page: 946
  year: 2014
  ident: ref_24
  article-title: Segmentation and classification of gait cycles
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2291907
– volume: 91
  start-page: 327
  year: 2017
  ident: ref_4
  article-title: The Ankle Mimicking Prosthetic Foot 3—Locking mechanisms, actuator design, control and experiments with an amputee
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2017.02.004
– volume: 25
  start-page: 1500
  year: 2017
  ident: ref_34
  article-title: A real-time gait event detection for lower limb prosthesis control and evaluation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2636367
– volume: 6
  start-page: 525
  year: 1993
  ident: ref_51
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– ident: ref_40
  doi: 10.1109/CCTA.2017.8062565
– volume: 24
  start-page: 88
  year: 2016
  ident: ref_2
  article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2409123
– ident: ref_28
  doi: 10.1109/IWBE.2011.6079053
– volume: 18
  start-page: 1122
  year: 2014
  ident: ref_17
  article-title: Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2013.2293887
– volume: 13
  start-page: 469
  year: 1971
  ident: ref_48
  article-title: Mean square error of prediction as a criterion for selecting variables
  publication-title: Technometrics
  doi: 10.1080/00401706.1971.10488811
– ident: ref_47
– volume: 4
  start-page: 507
  year: 2007
  ident: ref_1
  article-title: A physiologist’s perspective on robotic exoskeletons for human locomotion
  publication-title: Int. J. Humanoid Robot.
  doi: 10.1142/S0219843607001138
– volume: 26
  start-page: 26
  year: 1980
  ident: ref_49
  article-title: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1980.1056144
– volume: 22
  start-page: 80
  year: 2015
  ident: ref_55
  article-title: Walk the walk: A lightweight active transtibial prosthesis
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2015.2408791
– ident: ref_46
  doi: 10.1007/3-540-44938-8_13
– ident: ref_23
  doi: 10.1109/BSN.2014.22
– volume: 21
  start-page: 961
  year: 2011
  ident: ref_14
  article-title: Gait phase analysis based on a Hidden Markov Model
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2011.03.003
– ident: ref_16
  doi: 10.1109/EMBC.2012.6347120
– volume: 24
  start-page: 1363
  year: 2016
  ident: ref_10
  article-title: Gait event detection in real-world environment for long-term applications: Incorporating domain knowledge into time-frequency analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2536278
– volume: 27
  start-page: 248
  year: 2008
  ident: ref_7
  article-title: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.03.018
– volume: 9
  start-page: 59
  year: 2001
  ident: ref_25
  article-title: Real-time gait event detection for paraplegic FES walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/7333.918277
– volume: 15
  start-page: 24514
  year: 2015
  ident: ref_19
  article-title: Validation of inter-subject training for hidden Markov models applied to gait phase detection in children with cerebral palsy
  publication-title: Sensors
  doi: 10.3390/s150924514
– ident: ref_54
– volume: 1
  start-page: 792
  year: 2016
  ident: ref_21
  article-title: Predicting seat-off and detecting start-of-assistance events for assisting sit-to-stand with an exoskeleton
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2016.2530165
– volume: 23
  start-page: 459
  year: 2008
  ident: ref_43
  article-title: A new approach to detecting asymmetries in gait
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.11.009
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_53
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 10
  start-page: 1154
  year: 2010
  ident: ref_13
  article-title: Machine learning methods for classifying human physical activity from on-body accelerometers
  publication-title: Sensors
  doi: 10.3390/s100201154
– ident: ref_36
– ident: ref_30
  doi: 10.3390/s16010134
– volume: 28
  start-page: 420
  year: 2008
  ident: ref_6
  article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.019
– ident: ref_26
  doi: 10.1109/BioRob.2012.6290278
– volume: 32
  start-page: 287
  year: 2010
  ident: ref_3
  article-title: Inertial gait phase detection for control of a drop foot stimulator
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2009.10.014
– ident: ref_31
  doi: 10.4108/icst.pervasivehealth.2011.246061
– ident: ref_35
  doi: 10.3390/s16010066
SSID ssj0023338
Score 2.4647827
Snippet Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2389
SubjectTerms Accuracy
Algorithms
Amputation
Artificial intelligence
Electromyography
exoskeleton
Gait
gait event detection
gait phase prediction
gait recognition
International conferences
lower limb prosthesis
Neural networks
Phase transitions
Prostheses
Sensors
Skin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAQHkESmUQBy5R47fDbWm7VEis9kCl3iI_Jt1KJanY9MC_Z5xko92qiEuv8SjxY-z5vtj-hpBPnjFhSiXzWLuQy1io3IlgcvBRxrTRqV26O_xjoc_O5fcLdbGV6iudCRvkgYeOO6qD4rZWDIyLMtSFjcEGxh0LEaGx63U-MeZtyNRItQQyr0FHSCCpP1ozW6TsWuVO9OlF-u9DlncPSG5FnPkz8nSEinQ2VPE5eQTNC_JkS0Bwn4TTk3y-WHyhM4qrFT0BuKGjYuolnV1ftkj9V79o12JR2i2gy3SOpelwEaFtTRH80W_uqqPHf_ALFPErXaasaRDpMt0GWcEa1i_J-fz05_FZPqZNyIPSosu1V1YbCSATeCliqaNAWOFlAOacBMOglDwaXwZblJHzKGrPPY9gHYAN4hXZa9oG3hBacLCqdsoHqyQwby0EH5WFEqRx1mfk86Y7qzBqiqfUFtcVcovU89XU8xn5OJneDEIa9xl9TWMyGSTt6_4BekQ1ekT1P4_IyMFmRKtxQq4rZLbWSORS7B_FXAuN7I1n5MNUjDMtbZ-4BtpbtCkwcAijSp2R14N_TBXtdcskx5ebHc_ZacluSXO16tW8kUFaaeXbh2j6O_IYAZ1N_565OCB73e9beI-gqfOH_fz4C8ssFuA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEEcuESNX7HDBS1ttxUSqz1QqbfIj8lupZJsm_TAv2eczYZu1XKNR4nj13yfx_6GkM-OMaELJdNQWZ_KkKnUCq9TcEGGGOjMbbw7_HOWn5zKH2fqbNhwa4djlZs1sV-oQ-PjHvk-UhOjJYJh9m11mcasUTG6OqTQeEgeMfQ08UiXmR6PhEsg_1qrCQmk9vstM1nMsVVs-aBeqv8ufHn7mOQNvzN9SnYHwEgn6x5-Rh5A_Zw8uSEj-IL4o8N0Opt9pROKaxY9BFjRQTd1QScXC_yNbvmbdg0WxZgBncfTLHWHSwltKooQkB7b844e_MEvUESxdB5zp0Gg83gnZAkttC_J6fTo18FJOiRPSL3KRZfmTplcSwAZIUwWijwIBBdOemDWStAMCsmDdoU3WRE4D6Jy3PEAxgIYL16Rnbqp4Q2hGQejKqucN0oCc8aAd0EZKEBqa1xCvmyas_SDsnhMcHFRIsOILV-OLZ-QT6Ppai2ncZfR99gno0FUwO4fNFeLcphQZeUVN5VioG2QvspM8MYzbpkPSJmsSMjepkfLYVq25b9BdE8xz0WOHI4n5ONYjPMtBlFsDc012mToPoRWRZ6Q1-vxMVa0Vy-THF-ut0bO1p9sl9Tny17TG3mkkUa-_X-t35HHCNhM3FvmYo_sdFfX8B5BUec-9CP_L2YnDTg
  priority: 102
  providerName: ProQuest
Title ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses
URI https://www.ncbi.nlm.nih.gov/pubmed/30041421
https://www.proquest.com/docview/2108748261
https://www.proquest.com/docview/2126365482
https://www.proquest.com/docview/2076237596
https://pubmed.ncbi.nlm.nih.gov/PMC6068484
https://doaj.org/article/fc528f51e7ad4cf08dc8c12a1cd182a3
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELb2cYED4r2BpTKIA5dA4tixg4RQd7fdFdJWFaJSb5Efk7ZSSZY2K7H_nnGaRltUuOSQGeUx9tjzeexvCHlv4jiRmeChK7QNuYtEqBMrQzCOO5_oTLU_O3w9Sq8m_NtUTA_ItsZma8D1Xmjn60lNVsuPv3_dfUWH_-IRJ0L2T-tYRb52VnZIjnFCkr6QwTXvkgksQRi2IRXaVd-ZihrG_n1h5t-7Je9NP8PH5FEbN9L-pqGfkAMon5KH99gEnxE7uAiHo9Fn2qc4dNELgBva0qfOaH85q1aLev6T1hWKfOqAjv2mlrLGEYVWBcVIkF7qRU3P7_ANFINZOvYl1MDRsT8aMoc1rJ-TyXDw4_wqbGsohFakSR2mRqhUcgDuI5nIZalLMMYw3EKsNQcZQ8aZkyazKsocYy4pDDPMgdIAyiYvyFFZlXBCaMRAiUILY5XgEBulwBonFGTApVYmIB-25sxtSzDu61wscwQa3vJ5Z_mAvOtUbzasGvuUznybdAqeCLu5Ua1meetXeWEFU4WIQWrHbREpZ5WNmY6tQ-Skk4Ccbls033auHGGukhyBVfwPMUuTFKEcC8jbToxu53MpuoTqFnUinEUSKbI0IC83_aP70IbEjDN8uNzpOTt_sispF_OG2hvhpOKKv_r_V78mDzBuU36JmSWn5Khe3cIbjI1q0yOHcirxqoaXPXJ8NhiNv_eadYZe4xN_ANkqEwo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXKATgg3hgKLAgkLlbtfdhrJIRC0zSlbZRDK_Xm7mOcVCp2aFyh_hTfyKzjmAYVbr16Rmt7dp47OzOEvDdxzNNMitAV2obCRTLU3KYhGCecT3Qm2tcOH4yS4ZH4diyP18ivZS2Mv1a51ImNonaV9WfkmxiaqFSgMxx_mf0I_dQon11djtBYsMUeXP7EkG3-ebeP-_uBscH24dYwbKcKhFYmvA4TI1WSCgDhbXvkssRxtLpGWIi1FpDGkAnmUpNZFWWOMccLwwxzoDSAshzXvUVuC46W3FemD3a6AI9jvLfoXoTAaHMeq8jP9MpWbF4zGuA6f_bva5lX7NzgAbnfOqi0t-Coh2QNykfk3pW2hY-J3e6Hg9HoE-1R1JG0DzCjbZ_WCe2dTZBs9fQ7rSsE-RwFHfvbM2WNqotWBUWXk-7o05puXeIbKHrNdOxntYGjY1-DMoU5zJ-Qoxsh61OyXlYlPCc0YqBkoaWxSgqIjVJgjZMKMhCpViYgH5fkzG3bydwP1DjLMaLxlM87ygfkXYc6W7TvuA7pq9-TDsF33G4eVOeTvBXgvLCSqULGkGonbBEpZ5WNmY6twxBN84BsLHc0b9XAPP_DtP8As4QnGDOygLztwCjfPmmjS6guECdCc8VTmSUBebbgj-5Dm25pguHi6QrnrPzJKqQ8nTY9xDFuVUKJF___6jfkzvDwYD_f3x3tvSR30VlU_lyb8Q2yXp9fwCt0yGrzupECSk5uWux-A1bfSrA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVELwgLgJFFgQSLxYsffwrpEQSpuElkIUISr1zewxTioVuzSuUP8av47ZxDENKrz11TNa27NzfXvMEPLKJglXmRSRL4yLhI9lZLhTEVgvfNjoTE24O_x5nO4eiI-H8nCD_FrdhQnHKlc-ceGofeXCGnkPoYlWApPhpFc0xyImg9H7kx9R6CAVdlpX7TSWKrIP5z8Rvs3f7Q1wrl8zNhp-3dmNmg4DkZMpr6PUSp0qASBCnI99lnqOEdgKB4kxAlQCmWBe2czpOPOMeV5YZpkHbQC04zjuNbKpAirqkM3t4XjypYV7HNHfspYR51ncmyc6Dh2-srUIuGgUcFl2-_chzQtRb3Sb3GrSVdpf6tcdsgHlXXLzQhHDe8QNB9FoPH5L-xQ9Jh0AnNCmauuU9o-nKLh69p3WFZLCjgWdhLM0ZY2OjFYFxQSUfjBHNd05xzdQzKHpJHRuA08n4UbKDOYwv08OrkSwD0inrEp4RGjMQMvCSOu0FJBYrcFZLzVkIJTRtkverMSZu6aueWivcZwjvgmSz1vJd8nLlvVkWczjMqbtMCctQ6i_vXhQnU7zxpzzwkmmC5mAMl64ItbeaZcwkziPgM3wLtlazWjeOIV5_keF_0FmKU8RQbIuedGS0drDFo4poTpDnhiDF1cyS7vk4VI_2g9d1E4TDAdXa5qz9ifrlPJotqgojihWCy0e__-rn5PraHL5p73x_hNyAzNHHRa5Gd8infr0DJ5idlbbZ40ZUPLtqi3vNxf7UEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ED-FNN%3A+A+New+Deep+Learning+Algorithm+to+Detect+Percentage+of+the+Gait+Cycle+for+Powered+Prostheses&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huong+Thi+Thu+Vu&rft.au=Gomez%2C+Felipe&rft.au=Cherelle%2C+Pierre&rft.au=Lefeber%2C+Dirk&rft.date=2018-07-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=18&rft.issue=7&rft.spage=2389&rft_id=info:doi/10.3390%2Fs18072389&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon