ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses
Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detec...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 7; p. 2389 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.07.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects’ signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications. |
---|---|
AbstractList | Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects' signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications.Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects' signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications. Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects' signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications. |
Author | Vu, Huong Thi Thu Cherelle, Pierre Gomez, Felipe Lefeber, Dirk Vanderborght, Bram Nowé, Ann |
AuthorAffiliation | Robotics & MultiBody Mechanics Research Group (R& MM) and Artificial Intelligence Lab, Vrije Universiteit Brussel and Flanders Make; Pleinlaan 2, 1050 Brussel, Belgium; felipe.gomez.marulanda@vub.ac.be (F.G.); pierre.cherelle@vub.ac.be (P.C.); dlefeber@vub.ac.be (D.L.); ann.nowe@vub.ac.be (A.N.); Bram.Vanderborght@vub.be (B.V.) |
AuthorAffiliation_xml | – name: Robotics & MultiBody Mechanics Research Group (R& MM) and Artificial Intelligence Lab, Vrije Universiteit Brussel and Flanders Make; Pleinlaan 2, 1050 Brussel, Belgium; felipe.gomez.marulanda@vub.ac.be (F.G.); pierre.cherelle@vub.ac.be (P.C.); dlefeber@vub.ac.be (D.L.); ann.nowe@vub.ac.be (A.N.); Bram.Vanderborght@vub.be (B.V.) |
Author_xml | – sequence: 1 givenname: Huong Thi Thu orcidid: 0000-0001-8512-2784 surname: Vu fullname: Vu, Huong Thi Thu – sequence: 2 givenname: Felipe orcidid: 0000-0002-9266-5485 surname: Gomez fullname: Gomez, Felipe – sequence: 3 givenname: Pierre surname: Cherelle fullname: Cherelle, Pierre – sequence: 4 givenname: Dirk surname: Lefeber fullname: Lefeber, Dirk – sequence: 5 givenname: Ann surname: Nowé fullname: Nowé, Ann – sequence: 6 givenname: Bram orcidid: 0000-0003-4881-9341 surname: Vanderborght fullname: Vanderborght, Bram |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30041421$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEUhUeoiD5gwR9AltjAYqhf4_GwqBSlTykKWcDa8th3Jo4m42A7VP33OE1btUViZcvnu0fn-t7j4mD0IxTFR4K_Mdbg00gkrimTzZviiHDKS0kpPnh2PyyOY1xhTBlj8l1xyDDmWSRHhbk4Ly_n8-9oguZwi84BNmgGOoxu7NFk6H1wablGyWcpgUloAcHAmHQPyHcoLQFdaZfQ9M4MgDof0MLfQgCLFsHHLEeI74u3nR4ifHg4T4pflxc_p9fl7MfVzXQyK00lWCpFW0lRcwBOaEWwbYRlglUtN0C05lATaDi1ddsYiRtLqWVdS1tqQWoAadhJcbP3tV6v1Ca4tQ53ymun7h986JUOyeWgqjMVlV1FoNaWmw5La6QhVBNjiaSaZa-zvddm267B7loOenhh-lIZ3VL1_o8SWEgueTb48mAQ_O8txKTWLhoYBj2C30ZFcS0oq6tGZPTzK3Tlt2HMX6UooYKJikv6fwrLOjOCZOrT89xPgR8nnoHTPWDyfGKAThmXdHJ-14YbFMFqt1PqaadyxddXFY-m_7J_AdW1yMs |
CitedBy_id | crossref_primary_10_1109_TNSRE_2021_3098689 crossref_primary_10_3389_fnbot_2022_923164 crossref_primary_10_1016_j_jscai_2024_102522 crossref_primary_10_1109_JSEN_2022_3177951 crossref_primary_10_3390_s18103502 crossref_primary_10_3390_s22103736 crossref_primary_10_3390_s23198275 crossref_primary_10_1109_TNSRE_2022_3229220 crossref_primary_10_1109_TNSRE_2019_2950309 crossref_primary_10_1109_JSEN_2024_3404633 crossref_primary_10_1016_j_arcontrol_2023_03_003 crossref_primary_10_1155_2020_8672431 crossref_primary_10_1109_TBME_2021_3120616 crossref_primary_10_3390_biomimetics8080558 crossref_primary_10_1186_s12984_020_00723_0 crossref_primary_10_3390_a12120253 crossref_primary_10_1016_j_robot_2021_103842 crossref_primary_10_1109_ACCESS_2024_3414175 crossref_primary_10_1109_JSEN_2023_3267490 crossref_primary_10_1109_JSEN_2019_2928777 crossref_primary_10_1109_JSEN_2021_3121422 crossref_primary_10_3389_fspor_2022_1037438 crossref_primary_10_3390_s21082727 crossref_primary_10_3390_s19132988 crossref_primary_10_1109_ACCESS_2021_3086807 crossref_primary_10_1109_JSEN_2023_3343721 crossref_primary_10_3390_s20143972 crossref_primary_10_3390_s24051519 crossref_primary_10_1109_LRA_2023_3256927 crossref_primary_10_1155_2020_4760297 crossref_primary_10_1109_JSEN_2021_3077698 crossref_primary_10_1109_JBHI_2022_3228329 crossref_primary_10_3389_fnbot_2021_704226 crossref_primary_10_3390_ijerph17165633 crossref_primary_10_1016_j_eswa_2022_117306 crossref_primary_10_3390_s21227473 crossref_primary_10_1109_TIM_2023_3343771 crossref_primary_10_1016_j_bspc_2021_103429 crossref_primary_10_1080_02640414_2019_1680083 crossref_primary_10_1109_LRA_2021_3062003 crossref_primary_10_1109_LSENS_2024_3453558 crossref_primary_10_3390_s21082821 crossref_primary_10_1007_s10619_021_07361_y crossref_primary_10_1155_2022_9933018 crossref_primary_10_3390_s20174675 crossref_primary_10_1093_jcde_qwab054 |
Cites_doi | 10.1109/TBME.2018.2813999 10.1109/TNSRE.2013.2282416 10.3390/s16101634 10.1016/j.medengphy.2014.12.004 10.1109/EMBC.2016.7591866 10.1016/j.medengphy.2015.01.001 10.1016/j.medengphy.2013.10.004 10.3390/s140202776 10.3390/s17030478 10.1109/IEMBS.2011.6091084 10.1109/MeMeA.2015.7145188 10.1109/PHT.2013.6461326 10.1016/0893-6080(91)90075-G 10.1186/s12984-017-0342-y 10.1109/BHI.2017.7897274 10.1007/978-3-7908-2604-3_16 10.1109/TNSRE.2016.2529581 10.3390/s16101579 10.1109/TNSRE.2013.2291907 10.1016/j.robot.2017.02.004 10.1109/TNSRE.2016.2636367 10.1016/S0893-6080(05)80056-5 10.1109/CCTA.2017.8062565 10.1109/TNSRE.2015.2409123 10.1109/IWBE.2011.6079053 10.1109/JBHI.2013.2293887 10.1080/00401706.1971.10488811 10.1142/S0219843607001138 10.1109/TIT.1980.1056144 10.1109/MRA.2015.2408791 10.1007/3-540-44938-8_13 10.1109/BSN.2014.22 10.1016/j.mechatronics.2011.03.003 10.1109/EMBC.2012.6347120 10.1109/TNSRE.2016.2536278 10.1016/j.gaitpost.2007.03.018 10.1109/7333.918277 10.3390/s150924514 10.1109/LRA.2016.2530165 10.1016/j.clinbiomech.2007.11.009 10.1038/nature14539 10.3390/s100201154 10.3390/s16010134 10.1016/j.gaitpost.2008.01.019 10.1109/BioRob.2012.6290278 10.1016/j.medengphy.2009.10.014 10.4108/icst.pervasivehealth.2011.246061 10.3390/s16010066 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s18072389 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_fc528f51e7ad4cf08dc8c12a1cd182a3 PMC6068484 30041421 10_3390_s18072389 |
Genre | Journal Article |
GeographicLocations | United States--US Germany |
GeographicLocations_xml | – name: United States--US – name: Germany |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c563t-6b58674ee412510d96d3635b4ce1aa4e71e942d7b9c809d22d3fb2b2de8aee8c3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:20:50 EDT 2025 Thu Aug 21 18:26:09 EDT 2025 Fri Jul 11 16:20:17 EDT 2025 Fri Jul 25 20:47:18 EDT 2025 Fri Jul 25 20:28:01 EDT 2025 Wed Feb 19 02:41:54 EST 2025 Tue Jul 01 01:36:59 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | exoskeleton gait recognition gait event detection lower limb prosthesis gait phase prediction |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-6b58674ee412510d96d3635b4ce1aa4e71e942d7b9c809d22d3fb2b2de8aee8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-9266-5485 0000-0001-8512-2784 0000-0003-4881-9341 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18072389 |
PMID | 30041421 |
PQID | 2108748261 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fc528f51e7ad4cf08dc8c12a1cd182a3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6068484 proquest_miscellaneous_2076237596 proquest_journals_2126365482 proquest_journals_2108748261 pubmed_primary_30041421 crossref_citationtrail_10_3390_s18072389 crossref_primary_10_3390_s18072389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-23 |
PublicationDateYYYYMMDD | 2018-07-23 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Gouwanda (ref_22) 2015; 37 Boutaayamou (ref_37) 2015; 37 ref_50 Flynn (ref_5) 2018; 15 ref_12 ref_54 ref_52 Maqbool (ref_34) 2017; 25 ref_18 ref_16 LeCun (ref_53) 2015; 521 ref_15 Skelly (ref_25) 2001; 9 Agostini (ref_24) 2014; 22 (ref_51) 1993; 6 Zheng (ref_32) 2017; 25 ref_23 Bae (ref_14) 2011; 21 ref_20 Kotiadis (ref_3) 2010; 32 Kamnik (ref_11) 2014; 14 ref_29 ref_28 Allen (ref_48) 1971; 13 ref_26 Catalfamo (ref_6) 2008; 28 Lau (ref_7) 2008; 27 Shorter (ref_43) 2008; 23 Taborri (ref_19) 2015; 15 ref_36 ref_35 ref_33 Shore (ref_49) 1980; 26 ref_31 ref_30 Fisher (ref_44) 1936; 7 ref_39 Cherelle (ref_27) 2014; 22 Mannini (ref_13) 2010; 10 Rueterbories (ref_38) 2014; 36 Qi (ref_2) 2016; 24 ref_47 Mannini (ref_17) 2014; 18 ref_46 ref_42 ref_41 ref_40 Tanghe (ref_21) 2016; 1 Wang (ref_55) 2015; 22 Ito (ref_45) 1991; 4 Khandelwal (ref_10) 2016; 24 Ferris (ref_1) 2007; 4 ref_9 ref_8 Cherelle (ref_4) 2017; 91 |
References_xml | – ident: ref_42 doi: 10.1109/TBME.2018.2813999 – volume: 7 start-page: 179 year: 1936 ident: ref_44 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Hum. Genet. – volume: 22 start-page: 138 year: 2014 ident: ref_27 article-title: Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2282416 – ident: ref_9 doi: 10.3390/s16101634 – volume: 37 start-page: 219 year: 2015 ident: ref_22 article-title: A robust real-time gait event detection using wireless gyroscope and its application on normal and altered gaits publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.12.004 – ident: ref_41 doi: 10.1109/EMBC.2016.7591866 – volume: 37 start-page: 226 year: 2015 ident: ref_37 article-title: Development and validation of an accelerometer-based method for quantifying gait events publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.01.001 – ident: ref_39 – volume: 36 start-page: 502 year: 2014 ident: ref_38 article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.10.004 – volume: 14 start-page: 2776 year: 2014 ident: ref_11 article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis publication-title: Sensors doi: 10.3390/s140202776 – ident: ref_33 doi: 10.3390/s17030478 – ident: ref_15 doi: 10.1109/IEMBS.2011.6091084 – ident: ref_8 – ident: ref_18 doi: 10.1109/MeMeA.2015.7145188 – ident: ref_29 doi: 10.1109/PHT.2013.6461326 – ident: ref_52 – volume: 4 start-page: 385 year: 1991 ident: ref_45 article-title: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90075-G – volume: 15 start-page: 3 year: 2018 ident: ref_5 article-title: VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: Case study in control of an active two degree of freedom transfemoral prosthesis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-017-0342-y – ident: ref_12 doi: 10.1109/BHI.2017.7897274 – ident: ref_50 doi: 10.1007/978-3-7908-2604-3_16 – volume: 25 start-page: 161 year: 2017 ident: ref_32 article-title: Noncontact capacitive sensing-based locomotion transition recognition for amputees with robotic transtibial prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2529581 – ident: ref_20 doi: 10.3390/s16101579 – volume: 22 start-page: 946 year: 2014 ident: ref_24 article-title: Segmentation and classification of gait cycles publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2291907 – volume: 91 start-page: 327 year: 2017 ident: ref_4 article-title: The Ankle Mimicking Prosthetic Foot 3—Locking mechanisms, actuator design, control and experiments with an amputee publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2017.02.004 – volume: 25 start-page: 1500 year: 2017 ident: ref_34 article-title: A real-time gait event detection for lower limb prosthesis control and evaluation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2636367 – volume: 6 start-page: 525 year: 1993 ident: ref_51 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – ident: ref_40 doi: 10.1109/CCTA.2017.8062565 – volume: 24 start-page: 88 year: 2016 ident: ref_2 article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2409123 – ident: ref_28 doi: 10.1109/IWBE.2011.6079053 – volume: 18 start-page: 1122 year: 2014 ident: ref_17 article-title: Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2013.2293887 – volume: 13 start-page: 469 year: 1971 ident: ref_48 article-title: Mean square error of prediction as a criterion for selecting variables publication-title: Technometrics doi: 10.1080/00401706.1971.10488811 – ident: ref_47 – volume: 4 start-page: 507 year: 2007 ident: ref_1 article-title: A physiologist’s perspective on robotic exoskeletons for human locomotion publication-title: Int. J. Humanoid Robot. doi: 10.1142/S0219843607001138 – volume: 26 start-page: 26 year: 1980 ident: ref_49 article-title: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1980.1056144 – volume: 22 start-page: 80 year: 2015 ident: ref_55 article-title: Walk the walk: A lightweight active transtibial prosthesis publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2015.2408791 – ident: ref_46 doi: 10.1007/3-540-44938-8_13 – ident: ref_23 doi: 10.1109/BSN.2014.22 – volume: 21 start-page: 961 year: 2011 ident: ref_14 article-title: Gait phase analysis based on a Hidden Markov Model publication-title: Mechatronics doi: 10.1016/j.mechatronics.2011.03.003 – ident: ref_16 doi: 10.1109/EMBC.2012.6347120 – volume: 24 start-page: 1363 year: 2016 ident: ref_10 article-title: Gait event detection in real-world environment for long-term applications: Incorporating domain knowledge into time-frequency analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2536278 – volume: 27 start-page: 248 year: 2008 ident: ref_7 article-title: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.03.018 – volume: 9 start-page: 59 year: 2001 ident: ref_25 article-title: Real-time gait event detection for paraplegic FES walking publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.918277 – volume: 15 start-page: 24514 year: 2015 ident: ref_19 article-title: Validation of inter-subject training for hidden Markov models applied to gait phase detection in children with cerebral palsy publication-title: Sensors doi: 10.3390/s150924514 – ident: ref_54 – volume: 1 start-page: 792 year: 2016 ident: ref_21 article-title: Predicting seat-off and detecting start-of-assistance events for assisting sit-to-stand with an exoskeleton publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2016.2530165 – volume: 23 start-page: 459 year: 2008 ident: ref_43 article-title: A new approach to detecting asymmetries in gait publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.11.009 – volume: 521 start-page: 436 year: 2015 ident: ref_53 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 10 start-page: 1154 year: 2010 ident: ref_13 article-title: Machine learning methods for classifying human physical activity from on-body accelerometers publication-title: Sensors doi: 10.3390/s100201154 – ident: ref_36 – ident: ref_30 doi: 10.3390/s16010134 – volume: 28 start-page: 420 year: 2008 ident: ref_6 article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.01.019 – ident: ref_26 doi: 10.1109/BioRob.2012.6290278 – volume: 32 start-page: 287 year: 2010 ident: ref_3 article-title: Inertial gait phase detection for control of a drop foot stimulator publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2009.10.014 – ident: ref_31 doi: 10.4108/icst.pervasivehealth.2011.246061 – ident: ref_35 doi: 10.3390/s16010066 |
SSID | ssj0023338 |
Score | 2.4647827 |
Snippet | Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2389 |
SubjectTerms | Accuracy Algorithms Amputation Artificial intelligence Electromyography exoskeleton Gait gait event detection gait phase prediction gait recognition International conferences lower limb prosthesis Neural networks Phase transitions Prostheses Sensors Skin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAQHkESmUQBy5R47fDbWm7VEis9kCl3iI_Jt1KJanY9MC_Z5xko92qiEuv8SjxY-z5vtj-hpBPnjFhSiXzWLuQy1io3IlgcvBRxrTRqV26O_xjoc_O5fcLdbGV6iudCRvkgYeOO6qD4rZWDIyLMtSFjcEGxh0LEaGx63U-MeZtyNRItQQyr0FHSCCpP1ozW6TsWuVO9OlF-u9DlncPSG5FnPkz8nSEinQ2VPE5eQTNC_JkS0Bwn4TTk3y-WHyhM4qrFT0BuKGjYuolnV1ftkj9V79o12JR2i2gy3SOpelwEaFtTRH80W_uqqPHf_ALFPErXaasaRDpMt0GWcEa1i_J-fz05_FZPqZNyIPSosu1V1YbCSATeCliqaNAWOFlAOacBMOglDwaXwZblJHzKGrPPY9gHYAN4hXZa9oG3hBacLCqdsoHqyQwby0EH5WFEqRx1mfk86Y7qzBqiqfUFtcVcovU89XU8xn5OJneDEIa9xl9TWMyGSTt6_4BekQ1ekT1P4_IyMFmRKtxQq4rZLbWSORS7B_FXAuN7I1n5MNUjDMtbZ-4BtpbtCkwcAijSp2R14N_TBXtdcskx5ebHc_ZacluSXO16tW8kUFaaeXbh2j6O_IYAZ1N_565OCB73e9beI-gqfOH_fz4C8ssFuA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEEcuESNX7HDBS1ttxUSqz1QqbfIj8lupZJsm_TAv2eczYZu1XKNR4nj13yfx_6GkM-OMaELJdNQWZ_KkKnUCq9TcEGGGOjMbbw7_HOWn5zKH2fqbNhwa4djlZs1sV-oQ-PjHvk-UhOjJYJh9m11mcasUTG6OqTQeEgeMfQ08UiXmR6PhEsg_1qrCQmk9vstM1nMsVVs-aBeqv8ufHn7mOQNvzN9SnYHwEgn6x5-Rh5A_Zw8uSEj-IL4o8N0Opt9pROKaxY9BFjRQTd1QScXC_yNbvmbdg0WxZgBncfTLHWHSwltKooQkB7b844e_MEvUESxdB5zp0Gg83gnZAkttC_J6fTo18FJOiRPSL3KRZfmTplcSwAZIUwWijwIBBdOemDWStAMCsmDdoU3WRE4D6Jy3PEAxgIYL16Rnbqp4Q2hGQejKqucN0oCc8aAd0EZKEBqa1xCvmyas_SDsnhMcHFRIsOILV-OLZ-QT6Ppai2ncZfR99gno0FUwO4fNFeLcphQZeUVN5VioG2QvspM8MYzbpkPSJmsSMjepkfLYVq25b9BdE8xz0WOHI4n5ONYjPMtBlFsDc012mToPoRWRZ6Q1-vxMVa0Vy-THF-ut0bO1p9sl9Tny17TG3mkkUa-_X-t35HHCNhM3FvmYo_sdFfX8B5BUec-9CP_L2YnDTg priority: 102 providerName: ProQuest |
Title | ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30041421 https://www.proquest.com/docview/2108748261 https://www.proquest.com/docview/2126365482 https://www.proquest.com/docview/2076237596 https://pubmed.ncbi.nlm.nih.gov/PMC6068484 https://doaj.org/article/fc528f51e7ad4cf08dc8c12a1cd182a3 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELb2cYED4r2BpTKIA5dA4tixg4RQd7fdFdJWFaJSb5Efk7ZSSZY2K7H_nnGaRltUuOSQGeUx9tjzeexvCHlv4jiRmeChK7QNuYtEqBMrQzCOO5_oTLU_O3w9Sq8m_NtUTA_ItsZma8D1Xmjn60lNVsuPv3_dfUWH_-IRJ0L2T-tYRb52VnZIjnFCkr6QwTXvkgksQRi2IRXaVd-ZihrG_n1h5t-7Je9NP8PH5FEbN9L-pqGfkAMon5KH99gEnxE7uAiHo9Fn2qc4dNELgBva0qfOaH85q1aLev6T1hWKfOqAjv2mlrLGEYVWBcVIkF7qRU3P7_ANFINZOvYl1MDRsT8aMoc1rJ-TyXDw4_wqbGsohFakSR2mRqhUcgDuI5nIZalLMMYw3EKsNQcZQ8aZkyazKsocYy4pDDPMgdIAyiYvyFFZlXBCaMRAiUILY5XgEBulwBonFGTApVYmIB-25sxtSzDu61wscwQa3vJ5Z_mAvOtUbzasGvuUznybdAqeCLu5Ua1meetXeWEFU4WIQWrHbREpZ5WNmY6tQ-Skk4Ccbls033auHGGukhyBVfwPMUuTFKEcC8jbToxu53MpuoTqFnUinEUSKbI0IC83_aP70IbEjDN8uNzpOTt_sispF_OG2hvhpOKKv_r_V78mDzBuU36JmSWn5Khe3cIbjI1q0yOHcirxqoaXPXJ8NhiNv_eadYZe4xN_ANkqEwo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXKATgg3hgKLAgkLlbtfdhrJIRC0zSlbZRDK_Xm7mOcVCp2aFyh_hTfyKzjmAYVbr16Rmt7dp47OzOEvDdxzNNMitAV2obCRTLU3KYhGCecT3Qm2tcOH4yS4ZH4diyP18ivZS2Mv1a51ImNonaV9WfkmxiaqFSgMxx_mf0I_dQon11djtBYsMUeXP7EkG3-ebeP-_uBscH24dYwbKcKhFYmvA4TI1WSCgDhbXvkssRxtLpGWIi1FpDGkAnmUpNZFWWOMccLwwxzoDSAshzXvUVuC46W3FemD3a6AI9jvLfoXoTAaHMeq8jP9MpWbF4zGuA6f_bva5lX7NzgAbnfOqi0t-Coh2QNykfk3pW2hY-J3e6Hg9HoE-1R1JG0DzCjbZ_WCe2dTZBs9fQ7rSsE-RwFHfvbM2WNqotWBUWXk-7o05puXeIbKHrNdOxntYGjY1-DMoU5zJ-Qoxsh61OyXlYlPCc0YqBkoaWxSgqIjVJgjZMKMhCpViYgH5fkzG3bydwP1DjLMaLxlM87ygfkXYc6W7TvuA7pq9-TDsF33G4eVOeTvBXgvLCSqULGkGonbBEpZ5WNmY6twxBN84BsLHc0b9XAPP_DtP8As4QnGDOygLztwCjfPmmjS6guECdCc8VTmSUBebbgj-5Dm25pguHi6QrnrPzJKqQ8nTY9xDFuVUKJF___6jfkzvDwYD_f3x3tvSR30VlU_lyb8Q2yXp9fwCt0yGrzupECSk5uWux-A1bfSrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVELwgLgJFFgQSLxYsffwrpEQSpuElkIUISr1zewxTioVuzSuUP8av47ZxDENKrz11TNa27NzfXvMEPLKJglXmRSRL4yLhI9lZLhTEVgvfNjoTE24O_x5nO4eiI-H8nCD_FrdhQnHKlc-ceGofeXCGnkPoYlWApPhpFc0xyImg9H7kx9R6CAVdlpX7TSWKrIP5z8Rvs3f7Q1wrl8zNhp-3dmNmg4DkZMpr6PUSp0qASBCnI99lnqOEdgKB4kxAlQCmWBe2czpOPOMeV5YZpkHbQC04zjuNbKpAirqkM3t4XjypYV7HNHfspYR51ncmyc6Dh2-srUIuGgUcFl2-_chzQtRb3Sb3GrSVdpf6tcdsgHlXXLzQhHDe8QNB9FoPH5L-xQ9Jh0AnNCmauuU9o-nKLh69p3WFZLCjgWdhLM0ZY2OjFYFxQSUfjBHNd05xzdQzKHpJHRuA08n4UbKDOYwv08OrkSwD0inrEp4RGjMQMvCSOu0FJBYrcFZLzVkIJTRtkverMSZu6aueWivcZwjvgmSz1vJd8nLlvVkWczjMqbtMCctQ6i_vXhQnU7zxpzzwkmmC5mAMl64ItbeaZcwkziPgM3wLtlazWjeOIV5_keF_0FmKU8RQbIuedGS0drDFo4poTpDnhiDF1cyS7vk4VI_2g9d1E4TDAdXa5qz9ifrlPJotqgojihWCy0e__-rn5PraHL5p73x_hNyAzNHHRa5Gd8infr0DJ5idlbbZ40ZUPLtqi3vNxf7UEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ED-FNN%3A+A+New+Deep+Learning+Algorithm+to+Detect+Percentage+of+the+Gait+Cycle+for+Powered+Prostheses&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huong+Thi+Thu+Vu&rft.au=Gomez%2C+Felipe&rft.au=Cherelle%2C+Pierre&rft.au=Lefeber%2C+Dirk&rft.date=2018-07-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=18&rft.issue=7&rft.spage=2389&rft_id=info:doi/10.3390%2Fs18072389&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |